101
|
Pravdivtsev AN, Hövener JB. Simulating Non-linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE). Chemistry 2019; 25:7659-7668. [PMID: 30689237 DOI: 10.1002/chem.201806133] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Indexed: 01/30/2023]
Abstract
The hyperpolarization of nuclear spins by using parahydrogen (pH2 ) is a fascinating technique that allows spin polarization and thus the magnetic resonance signal to be increased by several orders of magnitude. Entirely new applications have become available. Signal amplification by reversible exchange (SABRE) is a relatively new method that is based on the reversible exchange of a substrate, catalyst and parahydrogen. SABRE is particularly interesting for in vivo medical and industrial applications, such as fast and low-cost trace analysis or continuous signal enhancement. Ever since its discovery, many attempts have been made to model and understand SABRE, with various degrees of simplifications. In this work, we reduced the simplifications further, taking into account non-linear chemical and physical (CAP) dynamics of several multi-spin systems. A master equation was derived and realized using the MOIN open-source software. The effects of different parameters (exchange rates, concentrations, spin-spin couplings) on relaxation and the polarization level have been evaluated and the results provide interesting insights into the mechanism of SABRE.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
102
|
Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging Technologies to Image Tissue Metabolism. Cell Metab 2019; 29:518-538. [PMID: 30269982 DOI: 10.1016/j.cmet.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Due to the implication of altered metabolism in a large spectrum of tissue function and disease, assessment of metabolic processes becomes essential in managing health. In this regard, imaging can play a critical role in allowing observation of biochemical and physiological processes. Nuclear imaging methods, in particular positron emission tomography, have been widely employed for imaging metabolism but are mainly limited by the use of ionizing radiation and the sensing of only one parameter at each scanning session. Observations in healthy individuals or longitudinal studies of disease could markedly benefit from non-ionizing, multi-parameter imaging methods. We therefore focus this review on progress with the non-ionizing radiation methods of MRI, hyperpolarized magnetic resonance and magnetic resonance spectroscopy, chemical exchange saturation transfer, and emerging optoacoustic (photoacoustic) imaging. We also briefly discuss the role of nuclear and optical imaging methods for research and clinical protocols.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany.
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin 10126, Italy
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, Cambridge CB2 1GA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
103
|
Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C MRI: State of the Art and Future Directions. Radiology 2019; 291:273-284. [PMID: 30835184 DOI: 10.1148/radiol.2019182391] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperpolarized (HP) carbon 13 (13C) MRI is an emerging molecular imaging method that allows rapid, noninvasive, and pathway-specific investigation of dynamic metabolic and physiologic processes that were previously inaccessible to imaging. This technique has enabled real-time in vivo investigations of metabolism that are central to a variety of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and kidney. This review provides an overview of the methods of hyperpolarization and 13C probes investigated to date in preclinical models of disease. The article then discusses the progress that has been made in translating this technology for clinical investigation. In particular, the potential roles and emerging clinical applications of HP [1-13C]pyruvate MRI will be highlighted. The future directions to enable the adoption of this technology to advance the basic understanding of metabolism, to improve disease diagnosis, and to accelerate treatment assessment are also detailed.
Collapse
Affiliation(s)
- Zhen J Wang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Peder E Z Larson
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Jeremy W Gordon
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Robert A Bok
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - James Slater
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Javier E Villanueva-Meyer
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Christopher P Hess
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - John Kurhanewicz
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Daniel B Vigneron
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
104
|
Chen HY, Gordon JW, Bok RA, Cao P, von Morze C, van Criekinge M, Milshteyn E, Carvajal L, Hurd RE, Kurhanewicz J, Vigneron DB, Larson PE. Pulse sequence considerations for quantification of pyruvate-to-lactate conversion k PL in hyperpolarized 13 C imaging. NMR IN BIOMEDICINE 2019; 32:e4052. [PMID: 30664305 PMCID: PMC6380928 DOI: 10.1002/nbm.4052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 05/26/2023]
Abstract
Hyperpolarized 13 C MRI takes advantage of the unprecedented 50 000-fold signal-to-noise ratio enhancement to interrogate cancer metabolism in patients and animals. It can measure the pyruvate-to-lactate conversion rate, kPL , a metabolic biomarker of cancer aggressiveness and progression. Therefore, it is crucial to evaluate kPL reliably. In this study, three sequence components and parameters that modulate kPL estimation were identified and investigated in model simulations and through in vivo animal studies using several specifically designed pulse sequences. These factors included a magnetization spoiling effect due to RF pulses, a crusher gradient-induced flow suppression, and intrinsic image weightings due to relaxation. Simulation showed that the RF-induced magnetization spoiling can be substantially improved using an inputless kPL fitting. In vivo studies found a significantly higher apparent kPL with an additional gradient that leads to flow suppression (kPL,FID-Delay,Crush /kPL,FID-Delay = 1.37 ± 0.33, P < 0.01, N = 6), which agrees with simulation outcomes (12.5% kPL error with Δv = 40 cm/s), indicating that the gradients predominantly suppressed flowing pyruvate spins. Significantly lower kPL was found using a delayed free induction decay (FID) acquisition versus a minimum-TE version (kPL,FID-Delay /kPL,FID = 0.67 ± 0.09, P < 0.01, N = 5), and the lactate peak had broader linewidth than pyruvate (Δωlactate /Δωpyruvate = 1.32 ± 0.07, P < 0.000 01, N = 13). This illustrated that lactate's T2 *, shorter than that of pyruvate, can affect calculated kPL values. We also found that an FID sequence yielded significantly lower kPL versus a double spin-echo sequence that includes spin-echo spoiling, flow suppression from crusher gradients, and more T2 weighting (kPL,DSE /kPL,FID = 2.40 ± 0.98, P < 0.0001, N = 7). In summary, the pulse sequence, as well as its interaction with pharmacokinetics and the tissue microenvironment, can impact and be optimized for the measurement of kPL . The data acquisition and analysis pipelines can work synergistically to provide more robust and reproducible kPL measures for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Mark van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Ralph E. Hurd
- Department of Radiology, Stanford University, California, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
105
|
Bok R, Lee J, Sriram R, Keshari K, Sukumar S, Daneshmandi S, Korenchan DE, Flavell RR, Vigneron DB, Kurhanewicz J, Seth P. The Role of Lactate Metabolism in Prostate Cancer Progression and Metastases Revealed by Dual-Agent Hyperpolarized 13C MRSI. Cancers (Basel) 2019; 11:cancers11020257. [PMID: 30813322 PMCID: PMC6406929 DOI: 10.3390/cancers11020257] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 01/11/2023] Open
Abstract
This study applied a dual-agent, 13C-pyruvate and 13C-urea, hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) and multi-parametric (mp) 1H magnetic resonance imaging (MRI) approach in the transgenic adenocarcinoma of mouse prostate (TRAMP) model to investigate changes in tumor perfusion and lactate metabolism during prostate cancer development, progression and metastases, and after lactate dehydrogenase-A (LDHA) knock-out. An increased Warburg effect, as measured by an elevated hyperpolarized (HP) Lactate/Pyruvate (Lac/Pyr) ratio, and associated Ldha expression and LDH activity were significantly higher in high- versus low-grade TRAMP tumors and normal prostates. The hypoxic tumor microenvironment in high-grade tumors, as measured by significantly decreased HP 13C-urea perfusion and increased PIM staining, played a key role in increasing lactate production through increased Hif1α and then Ldha expression. Increased lactate induced Mct4 expression and an acidic tumor microenvironment that provided a potential mechanism for the observed high rate of lymph node (86%) and liver (33%) metastases. The Ldha knockdown in the triple-transgenic mouse model of prostate cancer resulted in a significant reduction in HP Lac/Pyr, which preceded a reduction in tumor volume or apparent water diffusion coefficient (ADC). The Ldha gene knockdown significantly reduced primary tumor growth and reduced lymph node and visceral metastases. These data suggested a metabolic transformation from low- to high-grade prostate cancer including an increased Warburg effect, decreased perfusion, and increased metastatic potential. Moreover, these data suggested that LDH activity and lactate are required for tumor progression. The lactate metabolism changes during prostate cancer provided the motivation for applying hyperpolarized 13C MRSI to detect aggressive disease at diagnosis and predict early therapeutic response.
Collapse
Affiliation(s)
- Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - Jessie Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - Kayvan Keshari
- Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Subramaniam Sukumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - Saeed Daneshmandi
- Department of Medicine, Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Beth Israel Cancer Center, Harvard Medical School, Boston, MA 02215, USA.
| | - David E Korenchan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA.
| | - Pankaj Seth
- Department of Medicine, Division of Interdisciplinary Medicine, Beth Israel Deaconess Medical Center, Beth Israel Cancer Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
106
|
Singh M, Josan S, Zhu M, Jhajharia A, Mayer D. Dynamic metabolic imaging of copolarized [2- 13 C]pyruvate and [1,4- 13 C 2 ]fumarate using 3D-spiral CSI with alternate spectral band excitation. Magn Reson Med 2019; 81:2869-2877. [PMID: 30687948 DOI: 10.1002/mrm.27639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Developing a method for simultaneous metabolic imaging of copolarized [2-13 C]pyruvate and [1,4-13 C2 ]fumarate without chemical shift displacement artifacts that also permits different excitation flip angles for substrates and their metabolic products. METHODS The proposed pulse sequence consists of 2 frequency-selective radiofrequency pulses to alternatingly excite 2 spectral sub-bands each one followed by a fast 3D spiral CSI (3D-spCSI) readout. Spectrally selective radiofrequency pulses were designed to excite differential flip angles on substrates and products in each spectral sub-band. Number of signal averages analysis was used to determine a spectral width suitable to resolve the metabolites of interest in each of the sub-bands. RESULTS Phantom experiments verified the copolarization strategy and radiofrequency pulse design following differential flip angle used in our method. The signal behavior of the resonances in each sub-band was unaffected by the excitation of the respective alternate frequency band. Dynamic 3D 13 C CSI data demonstrated the ability of the sequence to image metabolites like pyruvate-hydrate, lactate, alanine, fumarate, and malate simultaneously and detect metabolic changes in the liver in a rat model of carbon tetrachloride-induced liver damage. CONCLUSION The presented method allows the dynamic CSI of a mixture of [2-13 C]pyruvate and [1,4-13 C2 ]fumarate without chemical shift displacement artifacts while also permitting the use of different flip angles for substrate and product signals. The method is potentially useful for combined in vivo imaging of inflammation and cell necrosis.
Collapse
Affiliation(s)
- Maninder Singh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| | | | - Minjie Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| | - Aditya Jhajharia
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
107
|
Emerging Functional Imaging Biomarkers of Tumour Responses to Radiotherapy. Cancers (Basel) 2019; 11:cancers11020131. [PMID: 30678055 PMCID: PMC6407112 DOI: 10.3390/cancers11020131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Tumour responses to radiotherapy are currently primarily assessed by changes in size. Imaging permits non-invasive, whole-body assessment of tumour burden and guides treatment options for most tumours. However, in most tumours, changes in size are slow to manifest and can sometimes be difficult to interpret or misleading, potentially leading to prolonged durations of ineffective treatment and delays in changing therapy. Functional imaging techniques that monitor biological processes have the potential to detect tumour responses to treatment earlier and refine treatment options based on tumour biology rather than solely on size and staging. By considering the biological effects of radiotherapy, this review focusses on emerging functional imaging techniques with the potential to augment morphological imaging and serve as biomarkers of early response to radiotherapy.
Collapse
|
108
|
Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Gallagher FA, Keshari KR, Kjaer A, Laustsen C, Mankoff DA, Merritt ME, Nelson SJ, Pauly JM, Lee P, Ronen S, Tyler DJ, Rajan SS, Spielman DM, Wald L, Zhang X, Malloy CR, Rizi R. Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology. Neoplasia 2019; 21:1-16. [PMID: 30472500 PMCID: PMC6260457 DOI: 10.1016/j.neo.2018.09.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind.
Collapse
Affiliation(s)
- John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | | | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center, Houston, TX, USA
| | - Kevin Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | | | - David A Mankoff
- Department of Radiology, University of Pennsylvania, PA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - John M Pauly
- Department of Electric Engineering, Stanford University, USA
| | - Philips Lee
- Functional Metabolism Group, Singapore Biomedical Consortium, Agency for Science, Technology and Research, Singapore
| | - Sabrina Ronen
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Damian J Tyler
- Department of Biomedical Science, University of Oxford, Oxford, UK
| | - Sunder S Rajan
- Center for Devices and Radiological Health (CDRH), FDA, White Oak, MD, USA
| | - Daniel M Spielman
- Departments of Radiology and Electric Engineering, Stanford University, USA
| | - Lawrence Wald
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, PA, USA
| |
Collapse
|
109
|
Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:185-237. [PMID: 31900911 PMCID: PMC8096614 DOI: 10.1007/978-3-030-32656-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
110
|
Skinner JG, Menichetti L, Flori A, Dost A, Schmidt AB, Plaumann M, Gallagher FA, Hövener JB. Metabolic and Molecular Imaging with Hyperpolarised Tracers. Mol Imaging Biol 2018; 20:902-918. [PMID: 30120644 DOI: 10.1007/s11307-018-1265-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.
Collapse
Affiliation(s)
- Jason Graham Skinner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Anna Dost
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Benjamin Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Markus Plaumann
- Institute of Biometrics and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Jan-Bernd Hövener
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| |
Collapse
|
111
|
Vishwanath V, Mayer D, Fu D, Wnorowski A, Siddiqui MM. Hyperpolarized 13C magnetic resonance imaging, using metabolic imaging to improve the detection and management of prostate, bladder, and kidney urologic malignancies. Transl Androl Urol 2018; 7:855-863. [PMID: 30456188 PMCID: PMC6212626 DOI: 10.21037/tau.2018.08.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Approximately 25% of the 2 million new cancer diagnoses in the United States in 2018 were comprised of malignancies of the urogenital system. Of these cancers, 75% occurred in the kidney/renal pelvis, prostate, and urinary bladder. Early diagnosis is beneficial to long-term survival. Currently, urologists rely heavily on computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET) to both diagnose and offer prognoses, but these techniques are limited in their resolution and are more effective when cancers have reached macroscopic size in later stages. Recent developments in cancer metabolomics have revealed that cancerous cells preferentially upregulate specific metabolic pathways as a means of conserving their resources and maximizing their growth potential. This has opened a new avenue for early diagnosis with much higher resolution, reliability, and accuracy through 13C hyperpolarized MRI. Preferential cancer pathways can be elucidated through this technique using 13C-labeled molecules utilized for energy generation and tumor growth. As these pathways are identified, targeted therapies are being designed to inhibit these pathways to allow for treatment that is cytotoxic to malignant cells but preserves native cells. In this paper, we review the current understanding of urologic cancer metabolomics, specifically in the kidney, prostate, and bladder. We will review the basic physics of MRI and demonstrate how hyperpolarized 13C MRI offers an innovative solution to early diagnosis as well as creates novel avenues for more targeted therapy.
Collapse
Affiliation(s)
- Vijay Vishwanath
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dexue Fu
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amelia Wnorowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mohummad Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,The Veterans Health Administration Research and Development Service, Baltimore, MD, USA
| |
Collapse
|
112
|
Pravdivtsev AN, Kozinenko VP, Hövener JB. Only Para-Hydrogen Spectroscopy (OPSY) Revisited: In-Phase Spectra for Chemical Analysis and Imaging. J Phys Chem A 2018; 122:8948-8956. [PMID: 30293421 DOI: 10.1021/acs.jpca.8b07459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We revisited only para-hydrogen spectroscopy (OPSY) for the analysis of para-hydrogen-enhanced NMR spectra at high magnetic fields. We found that the sign of the gradients and interpulse delays are pivotal for the performance of the sequence: the variant of double-quantum filter OPSY, where the second time interval is twice as long as the first one (OPSYd-12) converts the antiphase spectrum to in-phase and efficiently suppresses the background signal in a single scan better than the other variants. OPSYd-12 strongly facilitates the analysis of para-hydrogen-derived NMR spectra in homogeneous and inhomogeneous magnetic fields. Furthermore, the net magnetization produced is essential for subsequent applications such as imaging, e.g., in a reaction chamber or in vivo.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH) , Kiel University , Am Botanischen Garten 18 , 24118 , Kiel , Germany
| | - Vitaly P Kozinenko
- Novosibirsk State University , Pirogova str. 2 , 630090 , Novosibirsk , Russia.,International Tomography Center SB RAS , Institutskaya str. 3a , 630090 , Novosibirsk , Russia
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH) , Kiel University , Am Botanischen Garten 18 , 24118 , Kiel , Germany
| |
Collapse
|
113
|
Larson PEZ, Chen HY, Gordon JW, Korn N, Maidens J, Arcak M, Tang S, Criekinge M, Carvajal L, Mammoli D, Bok R, Aggarwal R, Ferrone M, Slater JB, Nelson SJ, Kurhanewicz J, Vigneron DB. Investigation of analysis methods for hyperpolarized 13C-pyruvate metabolic MRI in prostate cancer patients. NMR IN BIOMEDICINE 2018. [PMID: 30230646 DOI: 10.1002/nbm.3997e3997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, we applied HP [1-13 C]pyruvate dynamic MRI in prostate cancer to measure the conversion from pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was to develop and test analysis methods for improved quantification of this metabolic conversion. In this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate conversion rate, kPL , as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic modeling included an "inputless" method requiring no assumptions regarding the input function, as well as a method incorporating bolus characteristics in the fitting. These were first evaluated with simulated data designed to match human prostate data, where we examined the expected sensitivity of metabolism quantification to variations in kPL , signal-to-noise ratio (SNR), bolus characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer patient datasets. The simulations indicated that the inputless method with fixed relaxation rates provided high expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function showed high variability in parameter maps. Overall, we found the inputless kPL fitting method to be a simple, robust approach for quantification of metabolic conversion following HP [1-13 C]pyruvate injection in human prostate cancer studies. This study also provided initial ranges of HP [1-13 C]pyruvate parameters (SNR, kPL , bolus characteristics) in the human prostate.
Collapse
Affiliation(s)
- Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Natalie Korn
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Maidens
- Department of Electrical Engineering and Computer Sciences, University of California - Berkeley, Berkeley, California
| | - Murat Arcak
- Department of Electrical Engineering and Computer Sciences, University of California - Berkeley, Berkeley, California
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Mark Criekinge
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California - San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California - San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| |
Collapse
|
114
|
Larson PEZ, Chen HY, Gordon JW, Korn N, Maidens J, Arcak M, Tang S, Criekinge M, Carvajal L, Mammoli D, Bok R, Aggarwal R, Ferrone M, Slater JB, Nelson SJ, Kurhanewicz J, Vigneron DB. Investigation of analysis methods for hyperpolarized 13C-pyruvate metabolic MRI in prostate cancer patients. NMR IN BIOMEDICINE 2018; 31:e3997. [PMID: 30230646 PMCID: PMC6392436 DOI: 10.1002/nbm.3997] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 05/08/2023]
Abstract
MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, we applied HP [1-13 C]pyruvate dynamic MRI in prostate cancer to measure the conversion from pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was to develop and test analysis methods for improved quantification of this metabolic conversion. In this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate conversion rate, kPL , as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic modeling included an "inputless" method requiring no assumptions regarding the input function, as well as a method incorporating bolus characteristics in the fitting. These were first evaluated with simulated data designed to match human prostate data, where we examined the expected sensitivity of metabolism quantification to variations in kPL , signal-to-noise ratio (SNR), bolus characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer patient datasets. The simulations indicated that the inputless method with fixed relaxation rates provided high expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function showed high variability in parameter maps. Overall, we found the inputless kPL fitting method to be a simple, robust approach for quantification of metabolic conversion following HP [1-13 C]pyruvate injection in human prostate cancer studies. This study also provided initial ranges of HP [1-13 C]pyruvate parameters (SNR, kPL , bolus characteristics) in the human prostate.
Collapse
Affiliation(s)
- Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Natalie Korn
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Maidens
- Department of Electrical Engineering and Computer Sciences, University of California – Berkeley, Berkeley, California
| | - Murat Arcak
- Department of Electrical Engineering and Computer Sciences, University of California – Berkeley, Berkeley, California
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Mark Criekinge
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California – San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California – San Francisco, San Francisco, California
| | - James B. Slater
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Sarah J. Nelson
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| |
Collapse
|
115
|
Gordon JW, Chen HY, Autry A, Park I, Van Criekinge M, Mammoli D, Milshteyn E, Bok R, Xu D, Li Y, Aggarwal R, Chang S, Slater JB, Ferrone M, Nelson S, Kurhanewicz J, Larson PEZ, Vigneron DB. Translation of Carbon-13 EPI for hyperpolarized MR molecular imaging of prostate and brain cancer patients. Magn Reson Med 2018; 81:2702-2709. [PMID: 30375043 DOI: 10.1002/mrm.27549] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop and translate a metabolite-specific imaging sequence using a symmetric echo planar readout for clinical hyperpolarized (HP) Carbon-13 (13 C) applications. METHODS Initial data were acquired from patients with prostate cancer (N = 3) and high-grade brain tumors (N = 3) on a 3T scanner. Samples of [1-13 C]pyruvate were polarized for at least 2 h using a 5T SPINlab system operating at 0.8 K. Following injection of the HP substrate, pyruvate, lactate, and bicarbonate (for brain studies) were sequentially excited with a singleband spectral-spatial RF pulse and signal was rapidly encoded with a single-shot echo planar readout on a slice-by-slice basis. Data were acquired dynamically with a temporal resolution of 2 s for prostate studies and 3 s for brain studies. RESULTS High pyruvate signal was seen throughout the prostate and brain, with conversion to lactate being shown across studies, whereas bicarbonate production was also detected in the brain. No Nyquist ghost artifacts or obvious geometric distortion from the echo planar readout were observed. The average error in center frequency was 1.2 ± 17.0 and 4.5 ± 1.4 Hz for prostate and brain studies, respectively, below the threshold for spatial shift because of bulk off-resonance. CONCLUSION This study demonstrated the feasibility of symmetric EPI to acquire HP 13 C metabolite maps in a clinical setting. As an advance over prior single-slice dynamic or single time point volumetric spectroscopic imaging approaches, this metabolite-specific EPI acquisition provided robust whole-organ coverage for brain and prostate studies while retaining high SNR, spatial resolution, and dynamic temporal resolution.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Adam Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| | - Sarah Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
116
|
Ardenkjaer-Larsen JH, Bowen S, Petersen JR, Rybalko O, Vinding MS, Ullisch M, Nielsen NC. Cryogen-free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T. Magn Reson Med 2018; 81:2184-2194. [PMID: 30357898 DOI: 10.1002/mrm.27537] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE A novel dissolution dynamic nuclear polarization (dDNP) polarizer platform is presented. The polarizer meets a number of key requirements for in vitro, preclinical, and clinical applications. METHOD It uses no liquid cryogens, operates in continuous mode, accommodates a wide range of sample sizes up to and including those required for human studies, and is fully automated. RESULTS It offers a wide operational window both in terms of magnetic field, up to 10.1 T, and temperature, from room temperature down to 1.3 K. The polarizer delivers a 13 C liquid state polarization for [1-13 C]pyruvate of 70%. The build-up time constant in the solid state is approximately 1200 s (20 minutes), allowing a sample throughput of at least one sample per hour including sample loading and dissolution. CONCLUSION We confirm the previously reported strong field dependence in the range 3.35 to 6.7 T, but see no further increase in polarization when increasing the magnetic field strength to 10.1 T for [1-13 C]pyruvate and trityl. Using a custom dry magnet, cold head and recondensing, closed-cycle cooling system, combined with a modular DNP probe, and automation and fluid handling systems, we have designed a unique dDNP system with unrivalled flexibility and performance.
Collapse
Affiliation(s)
- Jan Henrik Ardenkjaer-Larsen
- Department of Electrical Engineering, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark.,GE Healthcare, Brøndby, Denmark
| | - Sean Bowen
- Department of Electrical Engineering, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jan Raagaard Petersen
- Department of Electrical Engineering, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Oleksandr Rybalko
- Department of Electrical Engineering, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mads Sloth Vinding
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Marcus Ullisch
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus, Denmark
| |
Collapse
|
117
|
Bertelsen LB, Nielsen PM, Qi H, Mariager CØ, Lindhardt J, Laustsen C. Renal Energy Metabolism Following Acute Dichloroacetate and 2,4-Dinitrophenol Administration: Assessing the Cumulative Action with Hyperpolarized [1- 13C]Pyruvate MRI. ACTA ACUST UNITED AC 2018; 4:105-109. [PMID: 30320210 PMCID: PMC6173791 DOI: 10.18383/j.tom.2018.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Numerous patient groups receive >1 medication and as such represent a potential point of improvement in today's healthcare setup, as the combined or cumulative effects are difficult to monitor in an individual patient. Here we show the ability to monitor the pharmacological effect of 2 classes of medications sequentially, namely, 2,4-dinitrophenol, a mitochondrial uncoupler, and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, both targeting the oxygen-dependent energy metabolism. We show that although the 2 drugs target 2 different metabolic pathways connected ultimately to oxygen metabolism, we could distinguish the 2 in vivo by using hyperpolarized [1-13C]pyruvate magnetic resonance imaging. A statistically significantly different pyruvate dehydrogenase flux was observed by reversing the treatment order of 2,4-dinitrophenol and dichloroacetate. The significance of this study is the demonstration of the ability to monitor the metabolic cumulative effects of 2 distinct therapeutics on an in vivo organ level using hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
118
|
Lovegrove CE, Matanhelia M, Randeva J, Eldred-Evans D, Tam H, Miah S, Winkler M, Ahmed HU, Shah TT. Prostate imaging features that indicate benign or malignant pathology on biopsy. Transl Androl Urol 2018; 7:S420-S435. [PMID: 30363462 PMCID: PMC6178322 DOI: 10.21037/tau.2018.07.06] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accurate diagnosis of clinically significant prostate cancer is essential in identifying patients who should be offered treatment with curative intent. Modifications to the Gleason grading system in recent years show that accurate grading and reporting at needle biopsy can improve identification of clinically significant prostate cancers. Extracapsular extension of prostate cancer has been demonstrated to be an adverse prognostic factor with greater risk of metastatic spread than organ-confined disease. Tumor volume may be an independent prognostic factor and should be considered in conjunction with other factors. Multi-parametric magnetic resonance imaging (MP-MRI) has become an increasingly important tool in the diagnosis and characterization of prostate cancer. MP-MRI allows T2-weighted (T2W) anatomical imaging to be combined with functional and physiological assessment. Diffusion-weighted imaging (DWI) has shown greater sensitivity, specificity and negative predictive value compared to prostate specific antigen (PSA) testing and T2W imaging alone and has a more positive correlation with Gleason score and tumour volume. Dynamic gadolinium contrast-enhanced (DCE) imaging can exhibit difficulties in distinguishing prostatitis from malignancy in the peripheral zone, and between benign prostatic hyperplasia (BPH) and malignancies in the transition zone (TZ). Computer aided diagnosis utilizes software to aid radiologists in detecting and diagnosing abnormalities from diagnostic imaging. New techniques of quantitative MRI, such as VERDICT MRI use tissue-specific factors to delineate different cellular and microstructural phenotypes, characterizing tissue properties with greater detail. Proton MR spectroscopic imaging (MRSI) is a more technically challenging imaging modality than DCE and DWI MRI. Over the last decade, choline and prostate-specific membrane antigen (PSMA) positron emission tomography (PET) have developed as better tools for staging than conventional imaging. While hyperpolarized MRI shows promise in improving the imaging and differentiation of benign and malignant lesions there is further work required. Accurate reading and interpretation of diagnostic investigations is key to accurate identification of abnormal areas requiring biopsy, sparing those in whom benign or indolent disease can be managed by non-invasive means. Embracing and advancing existing technologies is essential in furthering this process.
Collapse
Affiliation(s)
- Catherine Elizabeth Lovegrove
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Mudit Matanhelia
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Jagpal Randeva
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - David Eldred-Evans
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Henry Tam
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Saiful Miah
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Mathias Winkler
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Hashim U Ahmed
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Taimur T Shah
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, London, UK.,Imperial Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
119
|
Riis-Vestergaard MJ, Breining P, Pedersen SB, Laustsen C, Stødkilde-Jørgensen H, Borghammer P, Jessen N, Richelsen B. Evaluation of Active Brown Adipose Tissue by the Use of Hyperpolarized [1- 13C]Pyruvate MRI in Mice. Int J Mol Sci 2018; 19:ijms19092597. [PMID: 30200469 PMCID: PMC6164296 DOI: 10.3390/ijms19092597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The capacity to increase energy expenditure makes brown adipose tissue (BAT) a putative target for treatment of metabolic diseases such as obesity. Presently, investigation of BAT in vivo is mainly performed by fluoro-d-glucose positron emission tomography (FDG PET)/CT. However, non-radioactive methods that add information on, for example, substrate metabolism are warranted. Thus, the aim of this study was to evaluate the potential of hyperpolarized [1-13C]pyruvate Magnetic Resonance Imaging (HP-MRI) to determine BAT activity in mice following chronic cold exposure. Cold (6 °C) and thermo-neutral (30 °C) acclimated mice were scanned with HP-MRI for assessment of the interscapular BAT (iBAT) activity. Comparable mice were scanned with the conventional method FDG PET/MRI. Finally, iBAT was evaluated for gene expression and protein levels of the specific thermogenic marker, uncoupling protein 1 (UCP1). Cold exposure increased the thermogenic capacity 3–4 fold (p < 0.05) as measured by UCP1 gene and protein analysis. Furthermore, cold exposure as compared with thermo-neutrality increased iBAT pyruvate metabolism by 5.5-fold determined by HP-MRI which is in good agreement with the 5-fold increment in FDG uptake (p < 0.05) measured by FDG PET/MRI. iBAT activity is detectable in mice using HP-MRI in which potential changes in intracellular metabolism may add useful information to the conventional FDG PET studies. HP-MRI may also be a promising radiation-free tool for repetitive BAT studies in humans.
Collapse
Affiliation(s)
- Mette Ji Riis-Vestergaard
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Peter Breining
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Steen Bønløkke Pedersen
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Christoffer Laustsen
- MR Research Center, Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | | | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Bjørn Richelsen
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| |
Collapse
|
120
|
Magnetic resonance imaging of cancer metabolism with hyperpolarized 13C-labeled cell metabolites. Curr Opin Chem Biol 2018; 45:187-194. [DOI: 10.1016/j.cbpa.2018.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
|
121
|
Bhujwalla ZM, Kakkad S, Chen Z, Jin J, Hapuarachchige S, Artemov D, Penet MF. Theranostics and metabolotheranostics for precision medicine in oncology. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:141-151. [PMID: 29705040 PMCID: PMC5943142 DOI: 10.1016/j.jmr.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/12/2018] [Accepted: 03/07/2018] [Indexed: 05/14/2023]
Abstract
Most diseases, especially cancer, would significantly benefit from precision medicine where treatment is shaped for the individual. The concept of theragnostics or theranostics emerged around 2002 to describe the incorporation of diagnostic assays into the selection of therapy for this purpose. Increasingly, theranostics has been used for strategies that combine noninvasive imaging-based diagnostics with therapy. Within the past decade theranostic imaging has transformed into a rapidly expanding field that is located at the interface of diagnosis and therapy. A critical need in cancer treatment is to minimize damage to normal tissue. Molecular imaging can be applied to identify targets specific to cancer with imaging, design agents against these targets to visualize their delivery, and monitor response to treatment, with the overall purpose of minimizing collateral damage. Genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. With this cancer fingerprint, theranostic agents can be designed to personalize treatment for precision medicine of cancer, and minimize damage to normal tissue. Here, for the first time, we have introduced the term 'metabolotheranostics' to describe strategies where disease-based alterations in metabolic pathways detected by MRS are specifically targeted with image-guided delivery platforms to achieve disease-specific therapy. The versatility of MRI and MRS in molecular and functional imaging makes these technologies especially important in theranostic MRI and 'metabolotheranostics'. Our purpose here is to provide insights into the capabilities and applications of this exciting new field in cancer treatment with a focus on MRI and MRS.
Collapse
Affiliation(s)
- Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhihang Chen
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudath Hapuarachchige
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
122
|
Matsuo M, Kawai T, Kishimoto S, Saito K, Munasinghe J, Devasahayam N, Mitchell JB, Krishna MC. Co-imaging of the tumor oxygenation and metabolism using electron paramagnetic resonance imaging and 13-C hyperpolarized magnetic resonance imaging before and after irradiation. Oncotarget 2018; 9:25089-25100. [PMID: 29861855 PMCID: PMC5982751 DOI: 10.18632/oncotarget.25317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/02/2018] [Indexed: 01/18/2023] Open
Abstract
To examine the relationship between local oxygen partial pressure and energy metabolism in the tumor, electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) with hyperpolarized [1-13C] pyruvate were performed. SCCVII and HT29 solid tumors implanted in the mouse leg were imaged by EPRI using OX063, a paramagnetic probe and 13C-MRI using hyperpolarized [1-13C] pyruvate. Local partial oxygen pressure and pyruvate metabolism in the two tumor implants were examined. The effect of a single dose of 5-Gy irradiation on the pO2 and metabolism was also investigated by sequential imaging of EPRI and 13C-MRI in HT29 tumors. A phantom study using tubes filled with different concentration of [1-13C] pyruvate, [1-13C] lactate, and OX063 at different levels of oxygen confirmed the validity of this sequential imaging of EPRI and hyperpolarized 13C-MRI. In vivo studies revealed SCCVII tumor had a significantly larger hypoxic fraction (pO2 < 8 mmHg) compared to HT29 tumor. The flux of pyruvate-to-lactate conversion was also higher in SCCVII than HT29. The lactate-to-pyruvate ratio in hypoxic regions (pO2 < 8 mmHg) 24 hours after 5-Gy irradiation was significantly higher than those without irradiation (0.76 vs. 0.36) in HT29 tumor. The in vitro study showed an increase in extracellular acidification rate after irradiation. In conclusion, co-imaging of pO2 and pyruvate-to-lactate conversion kinetics successfully showed the local metabolic changes especially in hypoxic area induced by radiation therapy.
Collapse
Affiliation(s)
- Masayuki Matsuo
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Radiology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tatsuya Kawai
- Radiation Oncology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- MRI Research Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
123
|
Zaccagna F, Grist JT, Deen SS, Woitek R, Lechermann LMT, McLean MA, Basu B, Gallagher FA. Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol 2018; 91:20170688. [PMID: 29293376 PMCID: PMC6190784 DOI: 10.1259/bjr.20170688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
Glucose metabolism in tumours is reprogrammed away from oxidative metabolism, even in the presence of oxygen. Non-invasive imaging techniques can probe these alterations in cancer metabolism providing tools to detect tumours and their response to therapy. Although Positron Emission Tomography with (18F)2-fluoro-2-deoxy-D-glucose (18F-FDG PET) is an established clinical tool to probe cancer metabolism, it has poor spatial resolution and soft tissue contrast, utilizes ionizing radiation and only probes glucose uptake and phosphorylation and not further downstream metabolism. Magnetic Resonance Spectroscopy (MRS) has the capability to non-invasively detect and distinguish molecules within tissue but has low sensitivity and can only detect selected nuclei. Dynamic Nuclear Polarization (DNP) is a technique which greatly increases the signal-to-noise ratio (SNR) achieved with MR by significantly increasing nuclear spin polarization and this method has now been translated into human imaging. This review provides a brief overview of this process, also termed Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (HP 13C-MRSI), its applications in preclinical imaging, an outline of the current human trials that are ongoing, as well as future potential applications in oncology.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|