101
|
Wijegunawardana D, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43, drive ribonucleoprotein condensate transport dysfunction and suppress local translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526372. [PMID: 36778347 PMCID: PMC9915502 DOI: 10.1101/2023.01.30.526372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Altered RNA metabolism is a common pathogenic mechanism linked to familial and sporadic Amyotrophic lateral sclerosis (ALS). ALS is characterized by mislocalization and aggregation of TDP-43, an RNA-binding protein (RBP) with multiple roles in post-transcriptional RNA processing. Recent studies have identified genetic interactions between TDP-43 and Ataxin-2, a polyglutamine (polyQ) RBP in which intermediate length polyQ expansions confer increased ALS risk. Here, we used live-cell confocal imaging, photobleaching and translation reporter assays to study the localization, transport dynamics and mRNA regulatory functions of TDP-43/Ataxin-2 in rodent primary cortical neurons. We show that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within ribonucleoprotein (RNP) condensates, and disrupt both its motility along the axon and liquid-like properties. Our data suggest that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, these results indicate Ataxin-2 polyQ expansions have detrimental effects on stability, localization, and translation of transcripts critical for axonal and cytoskeletal integrity, particularly important for motor neurons.
Collapse
|
102
|
Wang J, Tierney L, Wilson C, Phillips V, Goldman L, Mumaw C, Muang E, Walker CL. Carboxyl-terminal modulator protein (CTMP) deficiency mitigates denervation-induced skeletal muscle atrophy. Biochem Biophys Res Commun 2023; 644:155-161. [PMID: 36652767 DOI: 10.1016/j.bbrc.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Denervated skeletal muscles show decreased Akt activity and phosphorylation, resulting in atrophy. Akt inhibits downstream transcription of atrophy-associated ubiquitin ligases like muscle ring-finger protein 1 (MuRF-1). In addition, reduced Akt signaling contributes to aberrant protein synthesis in muscles. In ALS mice, we recently found that carboxyl-terminator modulator protein (CTMP) expression is increased and correlated with reduced Akt signaling in atrophic skeletal muscle. CTMP has also been implicated in promoting muscle degeneration and catabolism in an in vitro muscle atrophy model. The present study examined whether sciatic nerve injury (SNI) stimulated CTMP expression in denervated skeletal muscle during muscle atrophy. We hypothesized that CTMP deficiency would reduce neurogenic atrophy and reverse Akt signaling downregulation. Compared to the unaffected contralateral muscle, wild-type (WT) gastrocnemius muscle had a significant increase in CTMP (p < 0.05). Furthermore, denervated CTMP knockout (CTMP-KO) gastrocnemius weighed more than WT muscle (p < 0.05). Denervated CTMP-KO gastrocnemius also showed higher Akt and downstream glycogen synthase kinase 3β (GSK3β) phosphorylation compared to WT muscle (p < 0.05) as well as ribosomal proteins S6 and 4E-BP1 phosphorylation (p < 0.001 and p < 0.05, respectively). Moreover, CTMP-KO mice showed significantly lower levels of E3 ubiquitin ligase MuRF-1 and myostatin than WT muscle (p < 0.05). Our findings suggest that CTMP is essential to muscle atrophy after denervation and it may act by reducing Akt signaling, protein synthesis, and increasing myocellular catabolism.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Lydia Tierney
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Christopher Wilson
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Victoria Phillips
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Lillian Goldman
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Christen Mumaw
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA; Neuromusculoskeletal Research Group, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, 46202, USA
| | - En Muang
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA
| | - Chandler L Walker
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA; Neuromusculoskeletal Research Group, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
103
|
Digital color-coded molecular barcoding reveals dysregulation of common FUS and FMRP targets in soma and neurites of ALS mutant motoneurons. Cell Death Dis 2023; 9:33. [PMID: 36702823 PMCID: PMC9879958 DOI: 10.1038/s41420-023-01340-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Mutations in RNA binding proteins (RBPs) have been linked to the motor neuron disease amyotrophic lateral sclerosis (ALS). Extensive auto-regulation, cross-regulation, cooperation and competition mechanisms among RBPs are in place to ensure proper expression levels of common targets, often including other RBPs and their own transcripts. Moreover, several RBPs play a crucial role in the nervous system by localizing target RNAs in specific neuronal compartments. These include the RBPs FUS, FMRP, and HuD. ALS mutations in a given RBP are predicted to produce a broad impact on such delicate equilibrium. Here we studied the effects of the severe FUS-P525L mutation on common FUS and FMRP targets. Expression profiling by digital color-coded molecular barcoding in cell bodies and neurites of human iPSC-derived motor neurons revealed altered levels of transcripts involved in the cytoskeleton, neural projection and synapses. One of the common targets is HuD, which is upregulated because of the loss of FMRP binding to its 3'UTR due to mutant FUS competition. Notably, many genes are commonly altered upon FUS mutation or HuD overexpression, suggesting that a substantial part of the effects of mutant FUS on the motor neuron transcriptome could be due to HuD gain-of-function. Among altered transcripts, we also identified other common FUS and FMRP targets, namely MAP1B, PTEN, and AP2B1, that are upregulated upon loss of FMRP binding on their 3'UTR in FUS-P525L motor neurons. This work demonstrates that the impairment of FMRP function by mutant FUS might alter the expression of several genes, including new possible biomarkers and therapeutic targets for ALS.
Collapse
|
104
|
Stoklund Dittlau K, Van Den Bosch L. Why should we care about astrocytes in a motor neuron disease? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1047540. [PMID: 39086676 PMCID: PMC11285655 DOI: 10.3389/fmmed.2023.1047540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 08/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in adults, causing progressive degeneration of motor neurons, which results in muscle atrophy, respiratory failure and ultimately death of the patients. The pathogenesis of ALS is complex, and extensive efforts have focused on unravelling the underlying molecular mechanisms with a large emphasis on the dying motor neurons. However, a recent shift in focus towards the supporting glial population has revealed a large contribution and influence in ALS, which stresses the need to explore this area in more detail. Especially studies into astrocytes, the residential homeostatic supporter cells of neurons, have revealed a remarkable astrocytic dysfunction in ALS, and therefore could present a target for new and promising therapeutic entry points. In this review, we provide an overview of general astrocyte function and summarize the current literature on the role of astrocytes in ALS by categorizing the potentially underlying molecular mechanisms. We discuss the current efforts in astrocyte-targeted therapy, and highlight the potential and shortcomings of available models.
Collapse
Affiliation(s)
- Katarina Stoklund Dittlau
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven—University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, Leuven, Belgium
- VIB Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
105
|
Lassetter AP, Corty MM, Barria R, Sheehan AE, Hill JQ, Aicher SA, Fox AN, Freeman MR. Glial TGFβ activity promotes neuron survival in peripheral nerves. J Cell Biol 2023; 222:e202111053. [PMID: 36399182 PMCID: PMC9679965 DOI: 10.1083/jcb.202111053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/06/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
Maintaining long, energetically demanding axons throughout the life of an animal is a major challenge for the nervous system. Specialized glia ensheathe axons and support their function and integrity throughout life, but glial support mechanisms remain poorly defined. Here, we identified a collection of secreted and transmembrane molecules required in glia for long-term axon survival in vivo. We showed that the majority of components of the TGFβ superfamily are required in glia for sensory neuron maintenance but not glial ensheathment of axons. In the absence of glial TGFβ signaling, neurons undergo age-dependent degeneration that can be rescued either by genetic blockade of Wallerian degeneration or caspase-dependent death. Blockade of glial TGFβ signaling results in increased ATP in glia that can be mimicked by enhancing glial mitochondrial biogenesis or suppressing glial monocarboxylate transporter function. We propose that glial TGFβ signaling supports axon survival and suppresses neurodegeneration through promoting glial metabolic support of neurons.
Collapse
Affiliation(s)
| | - Megan M. Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Romina Barria
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Amy E. Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Jo Q. Hill
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - Sue A. Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR
| | - A. Nicole Fox
- University of Massachusetts Medical School, Worcester, MA
| | - Marc R. Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
106
|
Kovrazhkina EA, Serdyuk AV, Razinskaya OD, Shurdumova MH, Vyatkina NV, Baranova EA. [Myasthenic syndrome in a patient with end-stage amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:102-107. [PMID: 37490673 DOI: 10.17116/jnevro2023123071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and myasthenia gravis are diseases with similar clinical features but different prognosis and approach to treatment. It is possible as an extremely rare combination of these diseases, as well as myasthenia gravis with signs of ALS (MuSK-positive), as well as ALS, accompanied by myasthenic syndrome. Latter option is the most common. Myasthenic syndrome accompanying the ALS characterized by pathological muscle fatigue signs, symptoms variability during the day, partial sensitivity to neostigmine, M-wave decrements detection during electromyographyc study. We present a case of a patient with terminal ALS and myasthenic syndrome. The main pathogenesis theories of this condition and the differential diagnosis of ALS and myasthenia gravis are discussed.
Collapse
Affiliation(s)
- E A Kovrazhkina
- Federal Center for Brain and Neurotechnology, Moscow, Russia
| | - A V Serdyuk
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O D Razinskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M H Shurdumova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Moscow City Clinical Hospital No. 31, Moscow, Russia
| | - N V Vyatkina
- Moscow City Clinical Hospital No. 31, Moscow, Russia
| | - E A Baranova
- Federal Center for Brain and Neurotechnology, Moscow, Russia
- Kazan State Medical Academy, Kazan, Russia
| |
Collapse
|
107
|
Meanti R, Bresciani E, Rizzi L, Coco S, Zambelli V, Dimitroulas A, Molteni L, Omeljaniuk RJ, Locatelli V, Torsello A. Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:2376-2394. [PMID: 36111771 PMCID: PMC10616926 DOI: 10.2174/1570159x20666220915103613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Anna Dimitroulas
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, United Kingdom
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Robert J. Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| |
Collapse
|
108
|
Toh C, Keslake A, Payne T, Onwuegbuzie A, Harding J, Baster K, Hoggard N, Shaw PJ, Wilkinson ID, Jenkins TM. Analysis of brain and spinal MRI measures in a common domain to investigate directional neurodegeneration in motor neuron disease. J Neurol 2023; 270:1682-1690. [PMID: 36509983 PMCID: PMC9971079 DOI: 10.1007/s00415-022-11520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) of the brain and cervical spinal cord is often performed in diagnostic evaluation of suspected motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Analysis of MRI-derived tissue damage metrics in a common domain facilitates group-level inferences on pathophysiology. This approach was applied to address competing hypotheses of directionality of neurodegeneration, whether anterograde, cranio-caudal dying-forward from precentral gyrus or retrograde, dying-back. METHODS In this cross-sectional study, MRI was performed on 75 MND patients and 13 healthy controls. Precentral gyral thickness was estimated from volumetric T1-weighted images using FreeSurfer, corticospinal tract fractional anisotropy (FA) from diffusion tensor imaging using FSL, and cross-sectional cervical cord area between C1-C8 levels using Spinal Cord Toolbox. To analyse these multimodal data within a common domain, individual parameter estimates representing tissue damage at each corticospinal tract level were first converted to z-scores, referenced to healthy control norms. Mixed-effects linear regression models were then fitted to these z-scores, with gradients hypothesised to represent directionality of neurodegeneration. RESULTS At group-level, z-scores did not differ significantly between precentral gyral and intracranial corticospinal tract tissue damage estimates (regression coefficient - 0.24, [95% CI - 0.62, 0.14], p = 0.222), but step-changes were evident between intracranial corticospinal tract and C1 (1.14, [95% CI 0.74, 1.53], p < 0.001), and between C5 and C6 cord levels (0.98, [95% CI 0.58, 1.38], p < 0.001). DISCUSSION Analysis of brain and cervical spinal MRI data in a common domain enabled investigation of pathophysiological hypotheses in vivo. A cranio-caudal step-change in MND patients was observed, and requires further investigation in larger cohorts.
Collapse
Affiliation(s)
- C Toh
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Keslake
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - T Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Onwuegbuzie
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Harding
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - K Baster
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - N Hoggard
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - I D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - T M Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
- Royal Perth Hospital, Victoria Square, Perth, WA, 6000, Australia.
| |
Collapse
|
109
|
Tsitsipatis D, Mazan-Mamczarz K, Si Y, Herman AB, Yang JH, Guha A, Piao Y, Fan J, Martindale JL, Munk R, Yang X, De S, Singh BK, Ho R, Gorospe M, King PH. Transcriptomic analysis of human ALS skeletal muscle reveals a disease-specific pattern of dysregulated circRNAs. Aging (Albany NY) 2022; 14:9832-9859. [PMID: 36585921 PMCID: PMC9831722 DOI: 10.18632/aging.204450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023]
Abstract
Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in many diseases. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS compared to normal individuals. By RT-qPCR analysis, we confirmed that 8 circRNAs were significantly elevated and 10 were significantly reduced in ALS, while the linear mRNA counterparts, arising from shared precursor RNAs, generally did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, a subset of the circRNAs significantly elevated in ALS muscle biopsies were significantly reduced in the spinal cord samples from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ying Si
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Abhishek Guha
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Brijesh K. Singh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Peter H. King
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
110
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
111
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
112
|
Nishimune H, Stanford KG, Chen J, Odum JD, Rorie AD, Rogers RS, Wheatley JL, Geiger PC, Stanford JA. Forelimb Resistance Exercise Protects Against Neuromuscular Junction Denervation in the SOD1-G93A Rat Model of ALS. Degener Neurol Neuromuscul Dis 2022; 12:145-155. [PMID: 36444378 PMCID: PMC9700444 DOI: 10.2147/dnnd.s388455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2023] Open
Abstract
INTRODUCTION The symptoms of Amyotrophic Lateral Sclerosis (ALS) include muscle weakness and eventual paralysis. These symptoms result from denervation of the neuromuscular junction (NMJ) and motor neuron cell death in the brain and spinal cord. Due to the "dying back" pattern of motor neuron degeneration, protecting NMJs should be a therapeutic priority. Although exercise has the potential to protect against NMJ denervation, its use in ALS has been controversial. Most preclinical studies have focused on aerobic exercise, which report that exercise can be beneficial at moderate intensities. The effects of resistance exercise on NMJ preservation in limb muscles have not been explored. METHODS We trained male SOD1-G93A rats, which model ALS, to perform a unilateral isometric forelimb resistance exercise task. This task allows within-animal comparisons of trained and untrained forelimbs. We then determined the effects of isometric resistance exercise on NMJ denervation and AMP kinase (AMPK) activation in forelimb muscles. RESULTS Our results revealed that SOD1-G93A rats were able to learn and perform the task similarly to wildtype rats, even after loss of body weight. SOD1-G93A rats exhibited significantly greater NMJ innervation in their trained vs their untrained forelimb biceps muscles. Measures of activated (phosphorylated) AMPK (pAMPK) were also greater in the trained vs untrained forelimb triceps muscles. DISCUSSION These results demonstrate that isometric resistance exercise may protect against NMJ denervation in ALS. Future studies are required to determine the extent to which our findings generalize to female SOD1-G93A rats and to other subtypes of ALS.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Tokyo Metropolitan Institute of Gerontology, Neurobiology of Aging, Tokyo, Japan
| | - Kimberly G Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jie Chen
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - James D Odum
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander D Rorie
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert S Rogers
- Departments of Physiology and Basic Sciences, Kansas City University of Medicine and Biosciences, Joplin, MO, USA
| | - Joshua L Wheatley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paige C Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
113
|
Bratkowski M, Burdett TC, Danao J, Wang X, Mathur P, Gu W, Beckstead JA, Talreja S, Yang YS, Danko G, Park JH, Walton M, Brown SP, Tegley CM, Joseph PRB, Reynolds CH, Sambashivan S. Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron 2022; 110:3711-3726.e16. [PMID: 36087583 DOI: 10.1016/j.neuron.2022.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Axon degeneration is an early pathological event in many neurological diseases. The identification of the nicotinamide adenine dinucleotide (NAD) hydrolase SARM1 as a central metabolic sensor and axon executioner presents an exciting opportunity to develop novel neuroprotective therapies that can prevent or halt the degenerative process, yet limited progress has been made on advancing efficacious inhibitors. We describe a class of NAD-dependent active-site SARM1 inhibitors that function by intercepting NAD hydrolysis and undergoing covalent conjugation with the reaction product adenosine diphosphate ribose (ADPR). The resulting small-molecule ADPR adducts are highly potent and confer compelling neuroprotection in preclinical models of neurological injury and disease, validating this mode of inhibition as a viable therapeutic strategy. Additionally, we show that the most potent inhibitor of CD38, a related NAD hydrolase, also functions by the same mechanism, further underscoring the broader applicability of this mechanism in developing therapies against this class of enzymes.
Collapse
Affiliation(s)
| | - Thomas C Burdett
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Jean Danao
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Xidao Wang
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Prakhyat Mathur
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Weijing Gu
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | | | - Santosh Talreja
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Yu-San Yang
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Gregory Danko
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Jae Hong Park
- Biology Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Mary Walton
- Chemistry Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | - Sean P Brown
- Chemistry Department, Nura Bio Inc., South San Francisco, CA 94080, USA
| | | | - Prem Raj B Joseph
- WuXi AppTec, Research Services Division, 6 Cedarbrook Drive, Cranbury, NJ 08512, USA
| | | | | |
Collapse
|
114
|
Sasserath T, Robertson AL, Mendez R, Hays TT, Smith E, Cooper H, Akanda N, Rumsey JW, Guo X, Farkhondeh A, Pradhan M, Baumgaertel K, Might M, Rodems S, Zheng W, Hickman JJ. An induced pluripotent stem cell-derived NMJ platform for study of the NGLY1-Congenital Disorder of Deglycosylation. ADVANCED THERAPEUTICS 2022; 5:2200009. [PMID: 36589922 PMCID: PMC9798846 DOI: 10.1002/adtp.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/05/2023]
Abstract
There are many neurological rare diseases where animal models have proven inadequate or do not currently exist. NGLY1 Deficiency, a congenital disorder of deglycosylation, is a rare disease that predominantly affects motor control, especially control of neuromuscular action. In this study, NGLY1-deficient, patient-derived induced pluripotent stem cells (iPSCs) were differentiated into motoneurons (MNs) to identify disease phenotypes analogous to clinical disease pathology with significant deficits apparent in the NGLY1-deficient lines compared to the control. A neuromuscular junction (NMJ) model was developed using patient and wild type (WT) MNs to study functional differences between healthy and diseased NMJs. Reduced axon length, increased and shortened axon branches, MN action potential (AP) bursting and decreased AP firing rate and amplitude were observed in the NGLY1-deficient MNs in monoculture. When transitioned to the NMJ-coculture system, deficits in NMJ number, stability, failure rate, and synchronicity with indirect skeletal muscle (SkM) stimulation were observed. This project establishes a phenotypic NGLY1 model for investigation of possible therapeutics and investigations into mechanistic deficits in the system.
Collapse
Affiliation(s)
- Trevor Sasserath
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Ashley L Robertson
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Roxana Mendez
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| | - Tristan T Hays
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Ethan Smith
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Helena Cooper
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Nesar Akanda
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| | - John W Rumsey
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
| | - Xiufang Guo
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| | - Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building C, Room 310W Rockville, MD 20850, USA
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building C, Room 310W Rockville, MD 20850, USA
| | - Karsten Baumgaertel
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Matthew Might
- University of Alabama at Birmingham, Hugh Kaul Precision Medicine Institute, 510 20th St S, Office 858B, Birmingham, AL 35210, USA
| | - Steven Rodems
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building C, Room 310W Rockville, MD 20850, USA
| | - James J Hickman
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL 32826 USA
- University of Central Florida, NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, FL 32826 USA
| |
Collapse
|
115
|
Liao P, Yuan Y, Liu Z, Hou X, Li W, Wen J, Zhang K, Jiao B, Shen L, Jiang H, Guo J, Tang B, Zhang Z, Hu Z, Wang J. Association of variants in the KIF1A gene with amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:46. [PMID: 36284339 PMCID: PMC9597953 DOI: 10.1186/s40035-022-00320-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord. As in many other neurodegenerative disorders, the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport. Notably, sensory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2 (HSAN2) and spastic paraplegia 30 (SPG30) share several causative genes with ALS, as well as having common clinical phenotypes. KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors (SVPs) and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30. METHODS Here, we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS. RESULTS We identified rare damage variants (RDVs) in the KIF1A gene associated with ALS and delineated the clinical characteristics of ALS patients with KIF1A RDVs. Clinically, these patients tended to exhibit sensory disturbance. Interestingly, the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein. Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A, VAMP2, and synaptophysin. Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor. CONCLUSIONS Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS, indicating KIF1A as an important player in the oligogenic scenario of ALS.
Collapse
Affiliation(s)
- Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, China.
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
| |
Collapse
|
116
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Deficient Sarcolemma Repair in ALS: A Novel Mechanism with Therapeutic Potential. Cells 2022; 11:cells11203263. [PMID: 36291129 PMCID: PMC9600524 DOI: 10.3390/cells11203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jianjie Ma
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| |
Collapse
|
117
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
118
|
Kawamoto Y, Tada M, Asano T, Nakamura H, Jitsuki-Takahashi A, Makihara H, Kubota S, Hashiguchi S, Kunii M, Ohshima T, Goshima Y, Takeuchi H, Doi H, Nakamura F, Tanaka F. Phosphorylated CRMP1, axon guidance protein, is a component of spheroids and is involved in axonal pathology in amyotrophic lateral sclerosis. Front Neurol 2022; 13:994676. [PMID: 36237616 PMCID: PMC9552802 DOI: 10.3389/fneur.2022.994676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by distal axonopathy that begins at the distal axons, including the neuromuscular junctions, and progresses proximally in a “dying back” manner prior to the degeneration of cell bodies. However, the molecular mechanism for distal axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A), a repulsive axon guidance molecule that phosphorylates collapsin response mediator proteins (CRMPs), is known to be highly expressed in Schwann cells near distal axons in a mouse model of ALS. To clarify the involvement of Sema3A–CRMP signaling in the axonal pathogenesis of ALS, we investigated the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35 patients with sporadic ALS and seven disease controls. In ALS patients, we found that pCRMP1 accumulated in the proximal axons and co-localized with phosphorylated neurofilaments (pNFs), which are a major protein constituent of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal in spheroid immunostaining was inversely correlated with disease duration in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1 may precede that of pNFs in spheroids or promote ALS progression. In addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited axonal outgrowth in Neuro2A cells. Taken together, these results indicate that pCRMP1 may be involved in the pathogenesis of axonopathy in ALS, leading to spheroid formation through the proximal progression of axonopathy.
Collapse
Affiliation(s)
- Yuko Kawamoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuya Asano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Aoi Jitsuki-Takahashi
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroko Makihara
- Department of Nursing Course Biological Science and Nursing, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- *Correspondence: Fumiaki Tanaka
| |
Collapse
|
119
|
Damaged DNA Is an Early Event of Neurodegeneration in Induced Pluripotent Stem Cell-Derived Motoneurons with UBQLN2P497H Mutation. Int J Mol Sci 2022; 23:ijms231911333. [PMID: 36232630 PMCID: PMC9570184 DOI: 10.3390/ijms231911333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Ubiquilin-2 (UBQLN2) mutations lead to familial amyotrophic lateral sclerosis (FALS)/and frontotemporal dementia (FTLD) through unknown mechanisms. The combination of iPSC technology and CRISPR-mediated genome editing technology can generate an iPSC-derived motor neuron (iPSC-MN) model with disease-relevant mutations, which results in increased opportunities for disease mechanism research and drug screening. In this study, we introduced a UBQLN2-P497H mutation into a healthy control iPSC line using CRISPR/Cas9, and differentiated into MNs to study the pathology of UBQLN2-related ALS. Our in vitro MN model faithfully recapitulated specific aspects of the disease, including MN apoptosis. Under sodium arsenite (SA) treatment, we found differences in the number and the size of UBQLN2+ inclusions in UBQLN2P497H MNs and wild-type (WT) MNs. We also observed cytoplasmic TAR DNA-binding protein (TARDBP, also known as TDP-43) aggregates in UBQLN2P497H MNs, but not in WT MNs, as well as the recruitment of TDP-43 into stress granules (SGs) upon SA treatment. We noted that UBQLN2-P497H mutation induced MNs DNA damage, which is an early event in UBQLN2-ALS. Additionally, DNA damage led to an increase in compensation for FUS, whereas UBQLN2-P497H mutation impaired this function. Therefore, FUS may be involved in DNA damage repair signaling.
Collapse
|
120
|
Johnson SA, Fang T, De Marchi F, Neel D, Van Weehaeghe D, Berry JD, Paganoni S. Pharmacotherapy for Amyotrophic Lateral Sclerosis: A Review of Approved and Upcoming Agents. Drugs 2022; 82:1367-1388. [PMID: 36121612 DOI: 10.1007/s40265-022-01769-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder involving loss of upper and lower motor neurons, with most cases ending in death within 3-5 years of onset. Several molecular and cellular pathways have been identified to cause ALS; however, treatments to stop or reverse disease progression are yet to be found. Riluzole, a neuroprotective agent offering only a modest survival benefit, has long been the sole disease-modifying therapy for ALS. Edaravone, which demonstrated statistically significant slowing of ALS disease progression, is gaining approval in an increasing number of countries since its first approval in 2015. Sodium phenylbutyrate and taurursodiol (PB-TURSO) was conditionally approved in Canada in 2022, having shown significant slowing of disease progression and prolonged survival. Most clinical trials have focused on testing small molecules affecting common cellular pathways in ALS: targeting glutamatergic, apoptotic, inflammatory, and oxidative stress mechanisms among others. More recently, clinical trials utilizing stem cell transplantation and other biologics have emerged. This rich and ever-growing pipeline of investigational products, along with innovative clinical trial designs, collaborative trial networks, and an engaged ALS community', provide renewed hope to finding a cure for ALS. This article reviews existing ALS therapies and the current clinical drug development pipeline.
Collapse
Affiliation(s)
- Stephen A Johnson
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA
| | - Ton Fang
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Fabiola De Marchi
- Department of Neurology, ALS Centre, Maggiore della Carità Hospital, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Donatienne Van Weehaeghe
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - James D Berry
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA
| | - Sabrina Paganoni
- Neurological Clinical Research Institute (NCRI), Healey & AMG Center for ALS, Massachusetts General Hospital, 165 Cambridge St, Suite 600, Boston, MA, 02114, USA.
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA.
| |
Collapse
|
121
|
Sanchez Avila A, Henstridge C. Array tomography: 15 years of synaptic analysis. Neuronal Signal 2022; 6:NS20220013. [PMID: 36187224 PMCID: PMC9512143 DOI: 10.1042/ns20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Synapses are minuscule, intricate structures crucial for the correct communication between neurons. In the 125 years since the term synapse was first coined, we have advanced a long way when it comes to our understanding of how they work and what they do. Most of the fundamental discoveries have been invariably linked to advances in technology. However, due to their size, delicate structural integrity and their sheer number, our knowledge of synaptic biology has remained somewhat elusive and their role in neurodegenerative diseases still remains largely unknown. Here, we briefly discuss some of the imaging technologies used to study synapses and focus on the utility of the high-resolution imaging technique array tomography (AT). We introduce the AT technique and highlight some of the ways it is utilised with a particular focus on its power for analysing synaptic composition and pathology in human post-mortem tissue. We also discuss some of the benefits and drawbacks of techniques for imaging synapses and highlight some recent advances in the study of form and function by combining physiology and high-resolution synaptic imaging.
Collapse
Affiliation(s)
- Anna Sanchez Avila
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| | - Christopher M. Henstridge
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
122
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
123
|
ALS mutations in both human skeletal muscle and motoneurons differentially affects neuromuscular junction integrity and function. Biomaterials 2022; 289:121752. [DOI: 10.1016/j.biomaterials.2022.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
|
124
|
Dissanayake KN, Redman RR, Mackenzie H, Eddleston M, Ribchester RR. "Calcium bombs" as harbingers of synaptic pathology and their mitigation by magnesium at murine neuromuscular junctions. Front Mol Neurosci 2022; 15:937974. [PMID: 35959105 PMCID: PMC9361872 DOI: 10.3389/fnmol.2022.937974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Excitotoxicity is thought to be an important factor in the onset and progression of amyotrophic lateral sclerosis (ALS). Evidence from human and animal studies also indicates that early signs of ALS include degeneration of motor nerve terminals at neuromuscular junctions (NMJs), before degeneration of motor neuron cell bodies. Here we used a model of excitotoxicity at NMJs in isolated mouse muscle, utilizing the organophosphorus (OP) compound omethoate, which inhibits acetylcholinesterase activity. Acute exposure to omethoate (100 μM) induced prolonged motor endplate contractures in response to brief tetanic nerve stimulation at 20-50 Hz. In some muscle fibers, Fluo-4 fluorescence showed association of these contractures with explosive increases in Ca2+ ("calcium bombs") localized to motor endplates. Calcium bombs were strongly and selectively mitigated by increasing Mg2+ concentration in the bathing medium from 1 to 5 mM. Overnight culture of nerve-muscle preparations from WldS mice in omethoate or other OP insecticide components and their metabolites (dimethoate, cyclohexanone, and cyclohexanol) induced degeneration of NMJs. This degeneration was also strongly mitigated by increasing [Mg2+] from 1 to 5 mM. Thus, equivalent increases in extracellular [Mg2+] mitigated both post-synaptic calcium bombs and degeneration of NMJs. The data support a link between Ca2+ and excitotoxicity at NMJs and suggest that elevating extracellular [Mg2+] could be an effective intervention in treatment of synaptic pathology induced by excitotoxic triggers.
Collapse
Affiliation(s)
- Kosala N. Dissanayake
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert R. Redman
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Harry Mackenzie
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Eddleston
- Clinical Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Richard R. Ribchester,
| |
Collapse
|
125
|
Collins JM, Atkinson RAK, Matthews LM, Murray IC, Perry SE, King AE. Sarm1 knockout modifies biomarkers of neurodegeneration and spinal cord circuitry but not disease progression in the mSOD1 G93A mouse model of ALS. Neurobiol Dis 2022; 172:105821. [PMID: 35863521 DOI: 10.1016/j.nbd.2022.105821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022] Open
Abstract
The mechanisms underlying the loss of motor neuron axon integrity in amyotrophic lateral sclerosis (ALS) are unclear. SARM1 has been identified as a genetic risk variant in sporadic ALS, and the SARM1 protein is a key mediator of axon degeneration. To investigate the role of SARM1 in ALS-associated axon degeneration, we knocked out Sarm1 (Sarm1KO) in mSOD1G93ATg (mSOD1) mice. Animals were monitored for ALS disease onset and severity, with motor function assessed at pre-symptomatic and late-stage disease and lumbar spinal cord and sciatic nerve harvested for immunohistochemistry at endpoint (20 weeks). Serum was collected monthly to assess protein concentrations of biomarkers linked to axon degeneration (neurofilament light (NFL) and tau), and astrogliosis (glial fibrillary acidic protein (GFAP)), using single molecule array (Simoa®) technology. Overall, loss of Sarm1 in mSOD1 mice did not slow or delay symptom onset, failed to improve functional declines, and failed to protect motor neurons. Serum NFL levels in mSOD1 mice increased between 8 -12 and 16-20 weeks of age, with the later increase significantly reduced by loss of SARM1. Similarly, loss of SARM1 significantly reduced an increase in serum GFAP between 16 and 20 weeks of age in mSOD1 mice, indicating protection of both global axon degeneration and astrogliosis. In the spinal cord, Sarm1 deletion protected against loss of excitatory VGluT2-positive puncta and attenuated astrogliosis in mSOD1 mice. In the sciatic nerve, absence of SARM1 in mSOD1 mice restored the average area of phosphorylated neurofilament reactivity towards WT levels. Together these data suggest that Sarm1KO in mSOD1 mice is not sufficient to ameliorate functional decline or motor neuron loss but does alter serum biomarker levels and provide protection to axons and glutamatergic synapses. This indicates that treatments targeting SARM1 could warrant further investigation in ALS, potentially as part of a combination therapy.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Lyzette M Matthews
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Isabella C Murray
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Sharn E Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, Tas, 7001, Australia.
| |
Collapse
|
126
|
Kurashige T, Morino H, Murao T, Izumi Y, Sugiura T, Kuraoka K, Kawakami H, Torii T, Maruyama H. TDP-43 Accumulation Within Intramuscular Nerve Bundles of Patients With Amyotrophic Lateral Sclerosis. JAMA Neurol 2022; 79:693-701. [PMID: 35604654 PMCID: PMC9127711 DOI: 10.1001/jamaneurol.2022.1113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Importance Degeneration of neuromuscular junctions and axons is considered an important aspect of the pathomechanism of amyotrophic lateral sclerosis (ALS). However, a mechanism including the role of transactive response DNA-binding protein 43 (TDP-43) in axons has not been pathologically clarified. Objective To identify and characterize the histopathology of peripheral axons in the skeletal muscle of patients with ALS. Design, Setting, and Participants This study comprised 2 parts: a postmortem case-control study and a retrospective population-based cohort study with a minimum of 1 year of follow-up. Patients in the cohort study were enrolled from January 1, 2004, to September 30, 2019. The postmortem study included patients with sporadic ALS (SALS) with TDP-43 pathology and control patients with non-ALS disease. The cohort study enrolled patients without a family history of ALS or other neuromuscular disease and those not diagnosed with a muscle disease at biopsy. Patients were excluded if their clinical records were not screened after biopsy, if they were diagnosed with a muscular disease, and if they were harboring known causative genes of ALS. Data were collected between September 2019 and June 2021 and analyzed in June 2021. Exposures Muscle biopsy or postmortem muscle tissue examination. Main Outcomes and Measures Clinical information and muscle pathological characteristics. Results A total of 10 patients with autopsy-confirmed SALS (mean [SD] age at death, 76.1 [8.5] years; 8 men [80%]) exhibited axonal phosphorylated TDP-43 (pTDP-43)-positive accumulations in intramuscular nerve bundles; the 12 control patients without ALS did not. Among the 114 patients in the cohort study (mean [SD] age, 62.3 [16.1] years; 76 men [67%]), 71 patients (62.3%) exhibited intramuscular nerve bundles; 43 (37.7%) did not. Among those who exhibited pTDP-43-positive intramuscular nerve bundles, 33 patients (22 men [66.7%]; mean [SD] age, 65.2 [15.6] years) were later diagnosed with ALS. The other 38 patients (26 men [68.4%]; mean [SD] age, 59.3 [18.0] years) showed no pTDP-43-positive bundles and did not develop ALS. Among those without evident nerve bundles (28 men [65.1%]; mean [SD] age, 61.3 [15.3] years), 3 were later diagnosed with ALS. Among patients with ALS in the biopsy cohort, 9 with pTDP-43-positive bundles showed only lower motor neuron symptoms at biopsy. Conclusions and Relevance Results of this dual case-control and retrospective cohort study suggest that axonal pTDP-43 accumulations may be characteristic for patients with ALS. As such findings precede clinical fulfillment of the Gold Coast criteria, TDP-43 in nerve bundles may be a novel diagnostic biomarker for ALS.
Collapse
Affiliation(s)
- Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomomi Murao
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohito Sugiura
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Kazuya Kuraoka
- Department of Diagnostic Pathology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Torii
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
127
|
Colciaghi F, Costanza M. Unveiling Leukocyte Extracellular Traps in Inflammatory Responses of the Central Nervous System. Front Immunol 2022; 13:915392. [PMID: 35844591 PMCID: PMC9283689 DOI: 10.3389/fimmu.2022.915392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past nearly two decades, increasing evidence has uncovered how immune cells can actively extrude genetic material to entrap invading pathogens or convey sterile inflammatory signals that contribute to shaping immune responses. Originally identified in neutrophils, the release of decondensed chromatin fibers decorated with antimicrobial proteins, called extracellular traps (ETs), has been recognized as a specific form of programmed inflammatory cell death, which is now known to occur in several other leukocytes. Subsequent reports have shown that self-DNA can be extruded from immune cells even in the absence of cell death phenomena. More recent data suggest that ETs formation could exacerbate neuroinflammation in several disorders of the central nervous system (CNS). This review article provides an overview of the varied types, sources, and potential functions of extracellular DNA released by immune cells. Key evidence suggesting the involvement of ETs in neurodegenerative, traumatic, autoimmune, and oncological disorders of the CNS will be discussed, outlining ongoing challenges and drawing potentially novel lines of investigation.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Massimo Costanza,
| |
Collapse
|
128
|
Coleman MP. Axon Biology in ALS: Mechanisms of Axon Degeneration and Prospects for Therapy. Neurotherapeutics 2022; 19:1133-1144. [PMID: 36207571 PMCID: PMC9587191 DOI: 10.1007/s13311-022-01297-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 10/10/2022] Open
Abstract
This review addresses the longstanding debate over whether amyotrophic lateral sclerosis (ALS) is a 'dying back' or 'dying forward' disorder in the light of new gene identifications and the increased understanding of mechanisms of action for previously identified ALS genes. While the topological pattern of pathology in animal models, and more anecdotally in patients is indeed 'dying back', this review discusses how this fits with the fact that many of the major initiating events are thought to occur within the soma. It also discusses how widely varying ALS risk factors, including some impacting axons directly, may combine to drive a common pathway involving TAR DNA binding protein 43 (TDP-43) and neuromuscular junction (NMJ) denervation. The emerging association between sterile alpha and TIR motif-containing 1 (SARM1), a protein so far mostly associated with axon degeneration, and sporadic ALS is another major theme. The strengths and limitations of the current evidence supporting an association are considered, along with ways in which SARM1 could become activated in ALS. The final section addresses SARM1-based therapies along with the prospects for targeting other axonal steps in ALS pathogenesis.
Collapse
Affiliation(s)
- Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
129
|
Sirisi S, Querol-Vilaseca M, Dols-Icardo O, Pegueroles J, Montal V, Muñoz L, Torres S, Ferrer-Raventós P, Iulita MF, Sánchez-Aced É, Blesa R, Illán-Gala I, Molina-Porcel L, Borrego-Ecija S, Sánchez-Valle R, Clarimon J, Belbin O, Fortea J, Lleó A. Myelin loss in C9orf72 hexanucleotide expansion carriers. J Neurosci Res 2022; 100:1862-1875. [PMID: 35766328 DOI: 10.1002/jnr.25100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders. However, less is known about the role of oligodendrocytes (OLs). Here, we applied digital neuropathological methods to compare the expression pattern of glial cells in the frontal cortex (FrCx) of human post-mortem samples from patients with C9-FTLD and C9-FTLD/ALS, sporadic FTLD (sFTLD), and healthy controls (HCs). We also compared MBP levels in CSF from an independent clinical FTD cohort. We observed an increase in GFAP, and Iba1 immunoreactivity in C9 and sFTLD compared to controls in the gray matter (GM) of the FrCx. We observed a decrease in MBP immunoreactivity in the GM and white matter (WM) of the FrCx of C9, compared to HC and sFTLD. There was a negative correlation between MBP and pTDP-43 in C9 in the WM of the FrCx. We observed an increase in CSF MBP concentrations in C9 and sFTLD compared to HC. In conclusion, the C9 expansion is associated with myelin loss in the frontal cortex. This loss of MBP may be a result of oligodendroglial dysfunction due to the expansion or the presence of pTDP-43 in OLs. Understanding these biological processes will help to identify specific pathways associated with the C9orf72 expansion.
Collapse
Affiliation(s)
- Sònia Sirisi
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Querol-Vilaseca
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Dols-Icardo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jordi Pegueroles
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Victor Montal
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Laia Muñoz
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Soraya Torres
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Paula Ferrer-Raventós
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Florencia Iulita
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Érika Sánchez-Aced
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Illán-Gala
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Borrego-Ecija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jordi Clarimon
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
130
|
Krus KL, Strickland A, Yamada Y, Devault L, Schmidt RE, Bloom AJ, Milbrandt J, DiAntonio A. Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Rep 2022; 39:111001. [PMID: 35767949 PMCID: PMC9327139 DOI: 10.1016/j.celrep.2022.111001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
TDP-43 mediates proper Stathmin-2 (STMN2) mRNA splicing, and STMN2 protein is reduced in the spinal cord of most patients with amyotrophic lateral sclerosis (ALS). To test the hypothesis that STMN2 loss contributes to ALS pathogenesis, we generated constitutive and conditional STMN2 knockout mice. Constitutive STMN2 loss results in early-onset sensory and motor neuropathy featuring impaired motor behavior and dramatic distal neuromuscular junction (NMJ) denervation of fast-fatigable motor units, which are selectively vulnerable in ALS, without axon or motoneuron degeneration. Selective excision of STMN2 in motoneurons leads to similar NMJ pathology. STMN2 knockout heterozygous mice, which better model the partial loss of STMN2 protein found in patients with ALS, display a slowly progressive, motor-selective neuropathy with functional deficits and NMJ denervation. Thus, our findings strongly support the hypothesis that STMN2 reduction owing to TDP-43 pathology contributes to ALS pathogenesis.
Collapse
Affiliation(s)
- Kelsey L Krus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yurie Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Devault
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO 63110, USA.
| |
Collapse
|
131
|
Tossing G, Livernoche R, Maios C, Bretonneau C, Labarre A, Parker JA. Genetic and pharmacological PARP inhibition reduces axonal degeneration in C. elegans models of ALS. Hum Mol Genet 2022; 31:3313-3324. [PMID: 35594544 DOI: 10.1093/hmg/ddac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Axonal degeneration is observed in early stages of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). This degeneration generally precedes apoptosis and therefore may be a promising therapeutic target. An increasing number of genes have been identified to actively regulate axonal degeneration and regeneration, however, only a few potential therapeutic targets have been identified in the context of neurodegenerative diseases. Here we investigate DLK-1, a major axonal regeneration pathway and its contribution to axonal degeneration phenotypes in several C. elegans ALS models. From this pathway, we identified the PAR polymerases (PARP) PARP-1 and PARP-2 as the most consistent modifiers of axonal degeneration in our models of ALS. Genetic and pharmacological inhibition of PARP-1 and PARP-2 reduces axonal degeneration and improves related motor phenotypes.
Collapse
Affiliation(s)
- Gilles Tossing
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | | | - Claudia Maios
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Constantin Bretonneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Audrey Labarre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Neuroscience, Université de Montréal, Montreal, Canada
| |
Collapse
|
132
|
Salvany S, Casanovas A, Piedrafita L, Gras S, Calderó J, Esquerda JE. Accumulation of misfolded SOD1 outlines distinct patterns of motor neuron pathology and death during disease progression in a SOD1 G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol 2022; 32:e13078. [PMID: 35584812 PMCID: PMC9616096 DOI: 10.1111/bpa.13078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Early misfolded superoxide dismutase 1 (mfSOD1) accumulation, motor neuron (MN) degeneration, and microgliosis are hallmark pathological features in SOD1G93A amyotrophic lateral sclerosis (ALS) mice. Because of the different vulnerabilities of distinct MN subtypes, degenerating and surviving MNs coexist in different proportions during disease progression. By examining the expression of misfolded conformers of SOD1 using specific antibodies, we defined distinct MN phenotypes that were evaluated during disease progression and the local neuroinflammatory reaction. The most severe phenotype corresponded to somata of fast‐twitch subtype MNs, which exhibited highly positive mfSOD1 immunostaining and an extreme degree of vacuolar degeneration. Vacuoles, which are of mitochondrial origin, contain mfSOD1 in conjunction with nonmitochondrial proteins, such as chromogranin, CD81, and flotillin. The fusion of ER‐derived vesicles enriched in mfSOD1 with outer mitochondrial membranes is thought to be the primary mechanism for vacuole formation. In addition, the ulterior coalescence of enlarged mitochondria may lead to the formation of giant vacuoles. Vacuolar degeneration is a transient degenerative process occurring early during the presymptomatic stages of the disease in ALS mice. Some vacuolated MNs are also positive for pMLKL, the effector protein of necroptosis. This indicates a newly described mechanism in which extracellular vesicles derived from damaged MNs, via cellular secretion or necroptotic disruption, may be the triggers for initiating neuroinflammation, glial‐mediated neurotoxicity, and disease spreading. Furthermore, as MN degeneration in mutant SOD1 mice is noncell autonomous, the effects of experimentally increasing or decreasing the microglial response on the expression of MN phenotypes were also evaluated, demonstrating bidirectional cross talk signaling between the degree of expression of mfSOD1 and local neuroinflammation. More detailed knowledge regarding these processes occurring long before the end stages of the disease is necessary to identify novel molecular targets for future preclinical testing.
Collapse
Affiliation(s)
- Sara Salvany
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Sílvia Gras
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Jordi Calderó
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Josep E Esquerda
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| |
Collapse
|
133
|
Guerra San Juan I, Nash LA, Smith KS, Leyton-Jaimes MF, Qian M, Klim JR, Limone F, Dorr AB, Couto A, Pintacuda G, Joseph BJ, Whisenant DE, Noble C, Melnik V, Potter D, Holmes A, Burberry A, Verhage M, Eggan K. Loss of mouse Stmn2 function causes motor neuropathy. Neuron 2022; 110:1671-1688.e6. [PMID: 35294901 PMCID: PMC9119928 DOI: 10.1016/j.neuron.2022.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/01/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration accompanied by aberrant accumulation and loss of function of the RNA-binding protein TDP43. Thus far, it remains unresolved to what extent TDP43 loss of function directly contributes to motor system dysfunction. Here, we employed gene editing to find whether the mouse ortholog of the TDP43-regulated gene STMN2 has an important function in maintaining the motor system. Both mosaic founders and homozygous loss-of-function Stmn2 mice exhibited neuromuscular junction denervation and fragmentation, resulting in muscle atrophy and impaired motor behavior, accompanied by an imbalance in neuronal microtubule dynamics in the spinal cord. The introduction of human STMN2 through BAC transgenesis was sufficient to rescue the motor phenotypes observed in Stmn2 mutant mice. Collectively, our results demonstrate that disrupting the ortholog of a single TDP43-regulated RNA is sufficient to cause substantial motor dysfunction, indicating that disruption of TDP43 function is likely a contributor to ALS.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Leslie A Nash
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kevin S Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcel F Leyton-Jaimes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Qian
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Alexander B Dorr
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Greta Pintacuda
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian J Joseph
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - D Eric Whisenant
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Caroline Noble
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Veronika Melnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Deirdre Potter
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amie Holmes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Burberry
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
134
|
Hur SK, Hunter M, Dominique MA, Farag M, Cotton-Samuel D, Khan T, Trojanowski JQ, Spiller KJ, Lee VMY. Slow motor neurons resist pathological TDP-43 and mediate motor recovery in the rNLS8 model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2022; 10:75. [PMID: 35568882 PMCID: PMC9107273 DOI: 10.1186/s40478-022-01373-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/22/2023] Open
Abstract
In the intermediate stages of amyotrophic lateral sclerosis (ALS), surviving motor neurons (MNs) that show intrinsic resistance to TDP-43 proteinopathy can partially compensate for the loss of their more disease-susceptible counterparts. Elucidating the mechanisms of this compensation may reveal approaches for attenuating motor impairment in ALS patients. In the rNLS8 mouse model of ALS-like pathology driven by doxycycline-regulated neuronal expression of human TDP-43 lacking a nuclear localization signal (hTDP-43ΔNLS), slow MNs are more resistant to disease than fast-fatigable (FF) MNs and can mediate recovery following transgene suppression. In the present study, we used a viral tracing strategy to show that these disease-resistant slow MNs sprout to reinnervate motor endplates of adjacent muscle fibers vacated by degenerated FF MNs. Moreover, we found that neuromuscular junctions within fast-twitch skeletal muscle (tibialis anterior, TA) reinnervated by SK3-positive slow MNs acquire resistance to axonal dieback when challenged with a second course of hTDP-43ΔNLS pathology. The selective resistance of reinnervated neuromuscular junctions was specifically induced by the unique pattern of reinnervation following TDP-43-induced neurodegeneration, as recovery from unilateral sciatic nerve crush did not produce motor units resistant to subsequent hTDP-43ΔNLS. Using cross-reinnervation and self-reinnervation surgery in which motor axons are disconnected from their target muscle and reconnected to a new muscle, we show that FF MNs remain hTDP-43ΔNLS-susceptible and slow MNs remain resistant, regardless of which muscle fibers they control. Collectively, these findings demonstrate that MN identity dictates the susceptibility of neuromuscular junctions to TDP-43 pathology and slow MNs can drive recovery of motor systems due to their remarkable resilience to TDP-43-driven degeneration. This study highlights a potential pathway for regaining motor function with ALS pathology in the advent of therapies that halt the underlying neurodegenerative process.
Collapse
Affiliation(s)
- Seong Kwon Hur
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Mandana Hunter
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Myrna A. Dominique
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Madona Farag
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Dejania Cotton-Samuel
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Tahiyana Khan
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - John Q. Trojanowski
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Krista J. Spiller
- grid.497530.c0000 0004 0389 4927Janssen Research and Development, Neuroscience Therapeutic Area, 1400 McKean Rd, Spring House, PA 19002 USA
| | - Virginia M.-Y. Lee
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
135
|
Rubio MA, Herrando-Grabulosa M, Gaja-Capdevila N, Vilches JJ, Navarro X. Characterization of somatosensory neuron involvement in the SOD1 G93A mouse model. Sci Rep 2022; 12:7600. [PMID: 35534694 PMCID: PMC9085861 DOI: 10.1038/s41598-022-11767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
SOD1G93A mice show loss of cutaneous small fibers, as in ALS patients. Our objective is to characterize the involvement of different somatosensory neuron populations and its temporal progression in the SOD1G93A mice. We aim to further define peripheral sensory involvement, analyzing at the same time points the neuronal bodies located in the dorsal root ganglia (DRG) and the distal part of their axons in the skin, in order to shed light in the mechanisms of sensory involvement in ALS. We performed immunohistochemical analysis of peptidergic (CGRP), non-peptidergic (IB4) fibers in epidermis, as well as sympathetic sudomotor fibers (VIP) in the footpads of SOD1G93A mice and wild type littermates at 4, 8, 12 and 16 weeks of age. We also immunolabeled and quantified neuronal bodies of IB4, CGRP and parvalbumin (PV) positive sensory neurons in lumbar DRG. We detected a reduction of intraepidermal nerve fiber density in the SOD1G93A mice of both peptidergic and non-peptidergic axons, compared with the WT, being the non-peptidergic the fewest. Sweat gland innervation was similarly affected in the SOD1G93A mouse at 12 weeks. Nonetheless, the number of DRG neurons from different sensory populations remained unchanged during all stages. Cutaneous sensory axons are affected in the SOD1G93A mouse, with non-peptidergic being slightly more vulnerable than peptidergic axons. Loss or lack of growth of the distal portion of sensory axons with preservation of the corresponding neuronal bodies suggest a distal axonopathy.
Collapse
Affiliation(s)
- Miguel A Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nuria Gaja-Capdevila
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge J Vilches
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Unitat de Fisiologia Medica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
136
|
Broadhead MJ, Bonthron C, Waddington J, Smith WV, Lopez MF, Burley S, Valli J, Zhu F, Komiyama NH, Smith C, Grant SGN, Miles GB. Selective vulnerability of tripartite synapses in amyotrophic lateral sclerosis. Acta Neuropathol 2022; 143:471-486. [PMID: 35305541 PMCID: PMC8960590 DOI: 10.1007/s00401-022-02412-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder. Separate lines of evidence suggest that synapses and astrocytes play a role in the pathological mechanisms underlying ALS. Given that astrocytes make specialised contacts with some synapses, called tripartite synapses, we hypothesise that tripartite synapses could act as the fulcrum of disease in ALS. To test this hypothesis, we have performed an extensive microscopy-based investigation of synapses and tripartite synapses in the spinal cord of ALS model mice and post-mortem human tissue from ALS cases. We reveal widescale synaptic changes at the early symptomatic stages of the SOD1G93a mouse model. Super-resolution microscopy reveals that large complex postsynaptic structures are lost in ALS mice. Most surprisingly, tripartite synapses are selectively lost, while non-tripartite synapses remain in equal number to healthy controls. Finally, we also observe a similar selective loss of tripartite synapses in human post-mortem ALS spinal cords. From these data we conclude that tripartite synaptopathy is a key hallmark of ALS.
Collapse
|
137
|
Genç B, Jara JH, Sanchez SS, Lagrimas AKB, Gözütok Ö, Koçak N, Zhu Y, Hande Özdinler P. Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons. Gene Ther 2022; 29:178-192. [PMID: 34853443 PMCID: PMC9018479 DOI: 10.1038/s41434-021-00303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
There are no effective cures for upper motor neuron (UMN) diseases, such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and hereditary spastic paraplegia. Here, we show UMN loss occurs independent of spinal motor neuron degeneration and that UMNs are indeed effective cellular targets for gene therapy, which offers a potential solution especially for UMN disease patients. UCHL1 (ubiquitin C-terminal hydrolase-L1) is a deubiquitinating enzyme crucial for maintaining free ubiquitin levels. Corticospinal motor neurons (CSMN, a.k.a UMNs in mice) show early, selective, and profound degeneration in Uchl1nm3419 (UCHL1-/-) mice, which lack all UCHL1 function. When UCHL1 activity is ablated only from spinal motor neurons, CSMN remained intact. However, restoring UCHL1 specifically in CSMN of UCHL1-/- mice via directed gene delivery was sufficient to improve CSMN integrity to the healthy control levels. In addition, when UCHL1 gene was delivered selectively to CSMN that are diseased due to misfolded SOD1 toxicity and TDP-43 pathology via AAV-mediated retrograde transduction, the disease causing misfolded SOD1 and mutant human TDP-43 were reduced in hSOD1G93A and prpTDP-43A315T models, respectively. Diseased CSMN retained their neuronal integrity and cytoarchitectural stability in two different mouse models that represent two distinct causes of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier H Jara
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Santana S Sanchez
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amiko K B Lagrimas
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Öge Gözütok
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nuran Koçak
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - P Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
138
|
NU-9 improves health of hSOD1 G93A mouse upper motor neurons in vitro, especially in combination with riluzole or edaravone. Sci Rep 2022; 12:5383. [PMID: 35354901 PMCID: PMC8967818 DOI: 10.1038/s41598-022-09332-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 11/27/2022] Open
Abstract
Even though amyotrophic lateral sclerosis (ALS) is a disease of the upper and lower motor neurons, to date none of the compounds in clinical trials have been tested for improving the health of diseased upper motor neurons (UMNs). There is an urgent need to develop preclinical assays that include UMN health as a readout. Since ALS is a complex disease, combinatorial treatment strategies will be required to address the mechanisms perturbed in patients. Here, we describe a novel in vitro platform that takes advantage of an UMN reporter line in which UMNs are genetically labeled with fluorescence and have misfolded SOD1 toxicity. We report that NU-9, an analog of the cyclohexane-1,3-dione family of compounds, improves the health of UMNs with misfolded SOD1 toxicity more effectively than riluzole or edaravone, -the only two FDA-approved ALS drugs to date-. Interestingly, when NU-9 is applied in combination with riluzole or edaravone, there is an additive effect on UMN health, as they extend longer axons and display enhanced branching and arborization, two important characteristics of healthy UMNs in vitro.
Collapse
|
139
|
Deschenes MR, Flannery R, Hawbaker A, Patek L, Mifsud M. Adaptive Remodeling of the Neuromuscular Junction with Aging. Cells 2022; 11:cells11071150. [PMID: 35406714 PMCID: PMC8997609 DOI: 10.3390/cells11071150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with gradual degeneration, in mass and function, of the neuromuscular system. This process, referred to as “sarcopenia”, is considered a disease by itself, and it has been linked to a number of other serious maladies such as type II diabetes, osteoporosis, arthritis, cardiovascular disease, and even dementia. While the molecular causes of sarcopenia remain to be fully elucidated, recent findings have implicated the neuromuscular junction (NMJ) as being an important locus in the development and progression of that malady. This synapse, which connects motor neurons to the muscle fibers that they innervate, has been found to degenerate with age, contributing both to senescent-related declines in muscle mass and function. The NMJ also shows plasticity in response to a number of neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) and Lambert-Eaton myasthenic syndrome (LEMS). Here, the structural and functional degradation of the NMJ associated with aging and disease is described, along with the measures that might be taken to effectively mitigate, if not fully prevent, that degeneration.
Collapse
|
140
|
Alteration of the Neuromuscular Junction and Modifications of Muscle Metabolism in Response to Neuron-Restricted Expression of the CHMP2Bintron5 Mutant in a Mouse Model of ALS-FTD Syndrome. Biomolecules 2022; 12:biom12040497. [PMID: 35454086 PMCID: PMC9025139 DOI: 10.3390/biom12040497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
CHMP2B is a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Mutations in CHMP2B are an uncommon cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases with clinical, genetic, and pathological overlap. Different mutations have now been identified across the ALS-FTD spectrum. Disruption of the neuromuscular junction is an early pathogenic event in ALS. Currently, the links between neuromuscular junction functionality and ALS-associated genes, such as CHMP2B, remain poorly understood. We have previously shown that CHMP2B transgenic mice expressing the CHMP2Bintron5 mutant specifically in neurons develop a progressive motor phenotype reminiscent of ALS. In this study, we used complementary approaches (behavior, histology, electroneuromyography, and biochemistry) to determine the extent to which neuron-specific expression of CHMP2Bintron5 could impact the skeletal muscle characteristics. We show that neuronal expression of the CHMP2Bintron5 mutant is sufficient to trigger progressive gait impairment associated with structural and functional changes in the neuromuscular junction. Indeed, CHMP2Bintron5 alters the pre-synaptic terminal organization and the synaptic transmission that ultimately lead to a switch of fast-twitch glycolytic muscle fibers to more oxidative slow-twitch muscle fibers. Taken together these data indicate that neuronal expression of CHMP2Bintron5 is sufficient to induce a synaptopathy with molecular and functional changes in the motor unit reminiscent of those found in ALS patients.
Collapse
|
141
|
Shapiro D, Massopust R, Taetzsch T, Valdez G. Argonaute 2 is lost from neuromuscular junctions affected with amyotrophic lateral sclerosis in SOD1 G93A mice. Sci Rep 2022; 12:4630. [PMID: 35301367 PMCID: PMC8931107 DOI: 10.1038/s41598-022-08455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/24/2022] [Indexed: 01/22/2023] Open
Abstract
miRNAs are necessary for neuromuscular junction (NMJ) health; however, little is known about the proteins required for their activity in this regard. We examined expression of Argonaute 2 (Ago2) and miRNA biogenesis genes in skeletal muscles during development, following nerve injury and in the SOD1G93A ALS mouse model. We found that these genes are enriched in neonate muscles and in adult muscles following nerve injury. Despite widespread NMJ deterioration, these genes were not increased in muscles of SOD1G93A mice. We also found that Ago2 distribution is linked to maturation, innervation, and health of NMJs. Ago2 increasingly concentrates in synaptic regions during NMJ maturation, disperses following experimental denervation and reconcentrates at the NMJ upon reinnervation. Similar to experimentally denervated muscles, a homogenous distribution of Ago2 was observed in SOD1G93A muscle fibers. To determine if Ago2 is necessary for the health of adult muscles, we excised Ago2 from Ago2fl/fl mice using adeno-associated virus mediated Cre recombinase expression. We observed modest changes in muscle histology after 3 months of Ago2 knockdown. Together, these data provide critical insights into the role of Ago2 and miRNA biogenesis genes in healthy and ALS-afflicted skeletal muscles and NMJs.
Collapse
Affiliation(s)
- Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Ryan Massopust
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA.
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA.
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, USA.
| |
Collapse
|
142
|
Olivera-Bravo S, Bolatto C, Otero Damianovich G, Stancov M, Cerri S, Rodríguez P, Boragno D, Hernández Mir K, Cuitiño MN, Larrambembere F, Isasi E, Alem D, Canclini L, Marco M, Davyt D, Díaz-Amarilla P. Neuroprotective effects of violacein in a model of inherited amyotrophic lateral sclerosis. Sci Rep 2022; 12:4439. [PMID: 35292673 PMCID: PMC8924276 DOI: 10.1038/s41598-022-06470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive death of motor neurons and muscle atrophy, with defective neuron-glia interplay and emergence of aberrant glial phenotypes having a role in disease pathology. Here, we have studied if the pigment violacein with several reported protective/antiproliferative properties may control highly neurotoxic astrocytes (AbAs) obtained from spinal cord cultures of symptomatic hSOD1G93A rats, and if it could be neuroprotective in this ALS experimental model. At concentrations lower than those reported as protective, violacein selectively killed aberrant astrocytes. Treatment of hSOD1G93A rats with doses equivalent to the concentrations that killed AbAs caused a marginally significant delay in survival, partially preserved the body weight and soleus muscle mass and improved the integrity of the neuromuscular junction. Reduced motor neuron death and glial reactivity was also found and likely related to decreased inflammation and matrix metalloproteinase-2 and -9. Thus, in spite that new experimental designs aimed at extending the lifespan of hSOD1G93A rats are needed, improvements observed upon violacein treatment suggest a significant therapeutic potential that deserves further studies.
Collapse
Affiliation(s)
- Silvia Olivera-Bravo
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Carmen Bolatto
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Gabriel Otero Damianovich
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Matías Stancov
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Sofía Cerri
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Paola Rodríguez
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Boragno
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Karina Hernández Mir
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - María Noel Cuitiño
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Fernanda Larrambembere
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Eugenia Isasi
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Diego Alem
- Genetic Department, IIBCE, Montevideo, Uruguay
| | | | - Marta Marco
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Tumoral Biol Area, Clin Biochem Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Danilo Davyt
- Pharm Chem Lab, Organic Chemistry Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Pablo Díaz-Amarilla
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
143
|
Zamani A, Walker AK, Rollo B, Ayers KL, Farah R, O'Brien TJ, Wright DK. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:17. [PMID: 35287738 PMCID: PMC8922788 DOI: 10.1186/s40035-022-00291-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple lines of evidence suggest possible impairment of the glymphatic system in amyotrophic lateral sclerosis (ALS). To investigate this, we used in vivo magnetic resonance imaging (MRI) to assess glymphatic function early in the course of disease in a transgenic mouse with doxycycline (Dox)-controlled expression of cytoplasmic human TDP-43 (hTDP-43ΔNLS), mimicking the key pathology implicated in ALS. METHODS Adult TDP-43 transgenic and littermate monogenic control mice underwent longitudinal multimodal MRI one and three weeks after the cessation of Dox feed, together with weekly rotarod assessments of motor performance. Glymphatic function was assessed using dynamic contrast-enhanced MRI to track the clearance of an MR contrast agent injected into the cisterna magna. RESULTS Compared to their littermate controls, TDP-43 mice exhibited progressive neurodegeneration including that within the primary motor cortex, primary somatosensory cortex and corticospinal tract, significant weight loss including gastrocnemius atrophy, and shortened telomere length. Furthermore, in the presence of this ALS-like phenotype, these mice have significantly disrupted glymphatic function. CONCLUSIONS Although the relationship between glymphatic clearance and ALS disease progression remains to be elucidated, these changes occurred very early in the disease course. This provides initial evidence to suggest that the glymphatic system might be a potential therapeutic target in the treatment of ALS.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Adam K Walker
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Katie L Ayers
- The Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Raysha Farah
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
144
|
Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2022; 59:1502-1527. [PMID: 34997540 DOI: 10.1007/s12035-021-02658-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by progressive degeneration of motor neurons leading to skeletal muscle denervation. Earlier studies have shown that motor neuron degeneration begins in motor cortex and descends to the neuromuscular junction (NMJ) in a dying forward fashion. However, accumulating evidences support that ALS is a distal axonopathy where early pathological changes occur at the NMJ, prior to onset of clinical symptoms and propagates towards the motor neuron cell body supporting "dying back" hypothesis. Despite several evidences, series of events triggering NMJ disassembly in ALS are still obscure. Neuromuscular junction is a specialized tripartite chemical synapse which involves a well-coordinated communication among the presynaptic motor neuron, postsynaptic skeletal muscle, and terminal Schwann cells. This review provides comprehensive insight into the role of NMJ in ALS pathogenesis. We have emphasized the molecular alterations in cellular components of NMJ leading to loss of effective neuromuscular transmission in ALS. Further, we provide a preview into research involved in exploring NMJ as potential target for designing effective therapies for ALS.
Collapse
Affiliation(s)
- Sagar Verma
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Shiffali Khurana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Abhishek Vats
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bandana Sahu
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | | | | | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| |
Collapse
|
145
|
Gois AM, Bispo JM, Lins LC, Medeiros KA, Souza MF, Santos ER, Santos JF, Ribeiro AM, Silva RH, Paixão MO, Leopoldino JF, Marchioro M, Santos JR, Mendonça DM. Motor behavioral abnormalities and histopathological findings in middle aged male Wistar rats inoculated with cerebrospinal fluid from patients with Amyotrophic Lateral Sclerosis. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2022. [DOI: 10.1016/j.crbeha.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
146
|
Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 2022; 11:cells11040706. [PMID: 35203354 PMCID: PMC8869783 DOI: 10.3390/cells11040706] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disorders are currently incurable devastating diseases which are characterized by the slow and progressive loss of neurons in specific brain regions. Progress in the investigation of the mechanisms of these disorders helped to identify a number of genes associated with familial forms of these diseases and a number of toxins and risk factors which trigger sporadic and toxic forms of these diseases. Recently, some similarities in the mechanisms of neurodegenerative diseases were identified, including the involvement of mitochondria, oxidative stress, and the abnormality of Ca2+ signaling in neurons and astrocytes. Thus, mitochondria produce reactive oxygen species during metabolism which play a further role in redox signaling, but this may also act as an additional trigger for abnormal mitochondrial calcium handling, resulting in mitochondrial calcium overload. Combinations of these factors can be the trigger of neuronal cell death in some pathologies. Here, we review the latest literature on the crosstalk of reactive oxygen species and Ca2+ in brain mitochondria in physiology and beyond, considering how changes in mitochondrial metabolism or redox signaling can convert this interaction into a pathological event.
Collapse
|
147
|
Baskoylu SN, Chapkis N, Unsal B, Lins J, Schuch K, Simon J, Hart AC. Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis. Cell Rep 2022; 38:110195. [PMID: 35081350 DOI: 10.1016/j.celrep.2021.110195] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2021] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
How mutations in FUS lead to neuronal dysfunction in amyotrophic lateral sclerosis (ALS) patients remains unclear. To examine mechanisms underlying ALS FUS dysfunction, we generate C. elegans knockin models using CRISPR-Cas9-mediated genome editing, creating R524S and P525L ALS FUS models. Although FUS inclusions are not detected, ALS FUS animals show defective neuromuscular function and locomotion under stress. Unlike animals lacking the endogenous FUS ortholog, ALS FUS animals have impaired neuronal autophagy and increased SQST-1 accumulation in motor neurons. Loss of sqst-1, the C. elegans ortholog for ALS-linked, autophagy adaptor protein SQSTM1/p62, suppresses both neuromuscular and stress-induced locomotion defects in ALS FUS animals, but does not suppress neuronal autophagy defects. Therefore, autophagy dysfunction is upstream of, and not dependent on, SQSTM1 function in ALS FUS pathogenesis. Combined, our findings demonstrate that autophagy dysfunction likely contributes to protein homeostasis and neuromuscular defects in ALS FUS knockin animals.
Collapse
Affiliation(s)
- Saba N Baskoylu
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Natalie Chapkis
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Burak Unsal
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA; Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Jeremy Lins
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Kelsey Schuch
- Department of Molecular Biology, Cellular Biology & Biochemistry, Brown University, Providence, RI 02906, USA
| | - Jonah Simon
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Anne C Hart
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
148
|
Benson BC, Shaw PJ, Azzouz M, Highley JR, Hautbergue GM. Proteinopathies as Hallmarks of Impaired Gene Expression, Proteostasis and Mitochondrial Function in Amyotrophic Lateral Sclerosis. Front Neurosci 2022; 15:783624. [PMID: 35002606 PMCID: PMC8733206 DOI: 10.3389/fnins.2021.783624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/26/2021] [Indexed: 01/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. As with the majority of neurodegenerative diseases, the pathological hallmarks of ALS involve proteinopathies which lead to the formation of various polyubiquitylated protein aggregates in neurons and glia. ALS is a highly heterogeneous disease, with both familial and sporadic forms arising from the convergence of multiple disease mechanisms, many of which remain elusive. There has been considerable research effort invested into exploring these disease mechanisms and in recent years dysregulation of RNA metabolism and mitochondrial function have emerged as of crucial importance to the onset and development of ALS proteinopathies. Widespread alterations of the RNA metabolism and post-translational processing of proteins lead to the disruption of multiple biological pathways. Abnormal mitochondrial structure, impaired ATP production, dysregulation of energy metabolism and calcium homeostasis as well as apoptosis have been implicated in the neurodegenerative process. Dysfunctional mitochondria further accumulate in ALS motor neurons and reflect a wider failure of cellular quality control systems, including mitophagy and other autophagic processes. Here, we review the evidence for RNA and mitochondrial dysfunction as some of the earliest critical pathophysiological events leading to the development of ALS proteinopathies, explore their relative pathological contributions and their points of convergence with other key disease mechanisms. This review will focus primarily on mutations in genes causing four major types of ALS (C9ORF72, SOD1, TARDBP/TDP-43, and FUS) and in protein homeostasis genes (SQSTM1, OPTN, VCP, and UBQLN2) as well as sporadic forms of the disease. Finally, we will look to the future of ALS research and how an improved understanding of central mechanisms underpinning proteinopathies might inform research directions and have implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Bridget C Benson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - J Robin Highley
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
149
|
Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients. Mol Neurodegener 2022; 17:1. [PMID: 34991663 PMCID: PMC8739729 DOI: 10.1186/s13024-021-00511-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/17/2021] [Indexed: 03/31/2023] Open
Abstract
Background In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. Methods To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. Results Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. Conclusions These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00511-x.
Collapse
Affiliation(s)
- A Joseph Bloom
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Xianrong Mao
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Amy Strickland
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Jeffrey Milbrandt
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Developmental Biology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
150
|
Lotti F, Przedborski S. Motoneuron Diseases. ADVANCES IN NEUROBIOLOGY 2022; 28:323-352. [PMID: 36066831 DOI: 10.1007/978-3-031-07167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.
Collapse
Affiliation(s)
- Francesco Lotti
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|