101
|
Sun L, Sun J, Chen L, Niu P, Yang X, Guo Y. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr Polym 2017; 163:81-91. [PMID: 28267521 DOI: 10.1016/j.carbpol.2017.01.016] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 01/20/2023]
Abstract
The objective of this study was to characterize the physical, mechanical and bioactive properties of chitosan film incorporated with thinned young apple polyphenols (YAP). The results indicated that the addition of YAP resulted in a significant increase in the thickness, density, swelling degree, solubility and opacity of chitosan film, but the water content, water vapor permeability and mechanical properties of the film were decreased. Besides, the antioxidant and antimicrobial properties of chitosan film were significantly enhanced by YAP. Both the NMR and FTIR spectra indicated the interactions between YAP and chitosan were likely to be non-covalent. Furthermore, the thermal stability of the film was decreased by YAP addition, suggested by DSC. Interestingly, the changing tendency of crystalline degree indicated by X-ray kept pace with that of thermal stability for YAP-chitosan films. Overall, YAP-chitosan film was shown a potential as a bioactive packaging material to extend food shelf-life.
Collapse
Affiliation(s)
- Lijun Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China; Centre for Nutrition and Food Science, Queensland Alliance for Agricultural and Food Innovation, The University of Queensland, Brisbane 4072, Australia.
| | - Jiaojiao Sun
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Lei Chen
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710062, PR China
| | - Pengfei Niu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
102
|
Oh GW, Ko SC, Je JY, Kim YM, Oh J, Jung WK. Fabrication, characterization and determination of biological activities of poly(ε-caprolactone)/chitosan-caffeic acid composite fibrous mat for wound dressing application. Int J Biol Macromol 2016; 93:1549-1558. [DOI: 10.1016/j.ijbiomac.2016.06.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 01/18/2023]
|
103
|
Ahn CB, Je JY, Kim YS, Park SJ, Kim BI. Induction of Nrf2-mediated phase II detoxifying/antioxidant enzymes in vitro by chitosan-caffeic acid against hydrogen peroxide-induced hepatotoxicity through JNK/ERK pathway. Mol Cell Biochem 2016; 424:79-86. [PMID: 27743232 DOI: 10.1007/s11010-016-2845-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Chemical modification of chitosan is a promising method for the improvement of biological activity. In this study, chitosan-caffeic acid (CCA) was prepared and its in vitro hepatoprotective ability against hydrogen peroxide-induced hepatic damage in liver cells was evaluated. Treatment with CCA (50-400 µg/mL) did not show cytotoxicity and also significantly (p < 0.05) recovered cell viability against 650 µM hydrogen peroxide-induced hepatotoxicity. CCA treatment attenuated reactive oxygen species generation and lipid peroxidation in addition to increasing cellular glutathione level in cultured hepatocytes. To validate the underlying mechanism, antioxidant and phase II detoxifying enzyme expressions, which are mediated by NF-E2-related factor 2 (Nrf2) activation, were analyzed and CCA treatment was found to increase the expression of superoxide dismutase-1 (SOD-1), glutathione reductase (GR), heme oxygenase-1 (HO-1), and NAD(P)H:quinine oxidoreductase 1 (NQO1). CCA treatment resulted in increased Nrf2 nuclear translocation. The phosphorylation of extracellular regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) by CCA treatment contributed to Nrf2 activation. Pharmacological blockade of ERK, JNK, and p38 MAPK revealed that SP600125 (JNK inhibitor) and PD98059 (ERK inhibitor) treatment reduced Nrf2 translocation into the nucleus while SB203580 (p38 inhibitor) exhibited weak inhibition. Collectively, CCA protects liver cells against hydrogen peroxide-induced injury and this ability is attributed to the induction of antioxidants and phase II detoxifying enzymes that are mediated by Nrf2 translocation via JNK/ERK signaling.
Collapse
Affiliation(s)
- Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan, 48547, Republic of Korea.
| | - Young-Sang Kim
- Department of Chemistry, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sun-Joo Park
- Department of Chemistry, Pukyong National University, Busan, 48513, Republic of Korea
| | - Boo Il Kim
- Specialized Graduate School of Science & Technology Convergence, Pukyong National University, Busan, 48547, Republic of Korea
| |
Collapse
|
104
|
Liu F, Ma C, Gao Y, McClements DJ. Food-Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Compr Rev Food Sci Food Saf 2016; 16:76-95. [DOI: 10.1111/1541-4337.12229] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/29/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Fuguo Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
- Dept. of Food Science; Univ. of Massachusetts Amherst; Amherst MA 01003 USA
| | - Cuicui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering; China Agricultural Univ; Beijing 100083 People's Republic of China
| | | |
Collapse
|
105
|
Hu Q, Luo Y. Polyphenol-chitosan conjugates: Synthesis, characterization, and applications. Carbohydr Polym 2016; 151:624-639. [DOI: 10.1016/j.carbpol.2016.05.109] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/30/2016] [Accepted: 05/29/2016] [Indexed: 01/09/2023]
|
106
|
Moreno-Vásquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodríguez-Félix F, Sánchez-Valdes S, Rosas-Burgos EC, Ocaño-Higuera VM, Graciano-Verdugo AZ. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydr Polym 2016; 155:117-127. [PMID: 27702495 DOI: 10.1016/j.carbpol.2016.08.056] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023]
Abstract
Chitosan was functionalized with epigallocatechin gallate (EGCG) by a free radical-induced grafting procedure, which was carried out by a redox pair (ascorbic acid/hydrogen peroxide) as the radical initiator. The successful preparation of EGCG grafted-chitosan was verified by spectroscopic (UV, FTIR and XPS) and thermal (DSC and TGA) analyses. The degree of grafting of phenolic compounds onto the chitosan was determined by the Folin-Ciocalteu procedure. Additionally, the biological activities (antioxidant and antibacterial) of pure EGCG, blank chitosan and EGCG grafted-chitosan were evaluated. The spectroscopic and thermal results indicate chitosan functionalization with EGCG; the EGCG content was 25.8mg/g of EGCG grafted-chitosan. The antibacterial activity of the EGCG grafted-chitosan was increased compared to pure EGCG or blank chitosan against S. aureus and Pseudomonas sp. (p<0.05). Additionally, EGCG grafted-chitosan showed higher antioxidant activity than blank chitosan. These results indicate that EGCG grafted-chitosan might be useful in active food packaging.
Collapse
Affiliation(s)
- María Jesús Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | - Emma Lucía Valenzuela-Buitimea
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, México
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | | |
Collapse
|
107
|
Hu Q, Wang T, Zhou M, Xue J, Luo Y. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5893-5900. [PMID: 27379913 DOI: 10.1021/acs.jafc.6b02255] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.
Collapse
Affiliation(s)
- Qiaobin Hu
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Taoran Wang
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Mingyong Zhou
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
108
|
Effect of Chitosan Gallate Coating on the Quality Maintenance of Refrigerated (4 °C) Silver Pomfret (Pampus argentus). FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1771-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
109
|
Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm. Microb Pathog 2016; 95:21-31. [DOI: 10.1016/j.micpath.2016.02.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/23/2022]
|
110
|
Wu C, Wang L, Fang Z, Hu Y, Chen S, Sugawara T, Ye X. The Effect of the Molecular Architecture on the Antioxidant Properties of Chitosan Gallate. Mar Drugs 2016; 14:E95. [PMID: 27187421 PMCID: PMC4882569 DOI: 10.3390/md14050095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 11/23/2022] Open
Abstract
To elucidate the structure-antioxidant activity relationships of chitosan gallate (CG), a series of CG derivatives with different degrees of substitution (DS's) and molecular weights (MWs) were synthesized from chitosan (CS) and gallic acid (GA) via a free radical graft reaction. A higher MW led to a lower DS of CG. The structures of CG were characterized by FT-IR and ¹H NMR, and results showed that GA was mainly conjugated to the C-2 and C-6 positions of the CS chain. The antioxidant activity (the DPPH radical scavenging activity and reducing power) were enhanced with an increased DS and a decreased MW of CG. A correlation between antioxidant activities and the DS and MW of CG was also established. In addition, a suitable concentration (0~250 μg/mL) of CG with different MWs (32.78~489.32 kDa) and DS's (0~92.89 mg·GAE/g CG) has no cytotoxicity. These results should provide a guideline to the application of CG derivatives in food or pharmacology industries.
Collapse
Affiliation(s)
- Chunhua Wu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan.
| | - Liping Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Zhongxiang Fang
- Faculty of Veterinary and Agricultural Sciences, the University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yaqin Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
111
|
Yang C, Zhou Y, Zheng Y, Li C, Sheng S, Wang J, Wu F. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum. Int J Biol Macromol 2016; 87:577-85. [PMID: 26993531 DOI: 10.1016/j.ijbiomac.2016.03.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains.
Collapse
Affiliation(s)
- Caifeng Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yu Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yu Zheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Changlong Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| | - Fuan Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| |
Collapse
|
112
|
Oliver S, Vittorio O, Cirillo G, Boyer C. Enhancing the therapeutic effects of polyphenols with macromolecules. Polym Chem 2016. [DOI: 10.1039/c5py01912e] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of key macromolecular systems employed to stabilise polyphenols, including direct polymerisation of polyphenol monomers and conjugation with macromolecules.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| | - Orazio Vittorio
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science
- University of Calabria Arcavacata di Rende
- Italy
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
113
|
Synthesis, antioxidant and cathepsin D inhibition activity of quaternary ammonium chitosan derivatives. Carbohydr Polym 2016; 136:884-91. [DOI: 10.1016/j.carbpol.2015.09.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 11/23/2022]
|
114
|
Wang Y, Pitto-Barry A, Habtemariam A, Romero-Canelon I, Sadler PJ, Barry NPE. Nanoparticles of chitosan conjugated to organo-ruthenium complexes. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00115g] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis of nanoparticles of conjugates of caffeic acid-modified chitosan with ruthenium arene complexes is described.
Collapse
Affiliation(s)
- Yanqing Wang
- Institute of Applied Chemistry and Environmental Engineering
- Yancheng Teachers University
- Yancheng City
- People's Republic of China
- Department of Chemistry
| | | | | | | | | | | |
Collapse
|
115
|
Cai J, Dang Q, Liu C, Wang T, Fan B, Yan J, Xu Y. Preparation, characterization and antibacterial activity of O -acetyl-chitosan- N -2-hydroxypropyl trimethyl ammonium chloride. Int J Biol Macromol 2015; 80:8-15. [DOI: 10.1016/j.ijbiomac.2015.05.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
|
116
|
Chingwaru W, Vidmar J, Kapewangolo PT, Mazimba O, Jackson J. Therapeutic and Prophylactic Potential of Morama (Tylosema esculentum): A Review. Phytother Res 2015. [PMID: 26206567 DOI: 10.1002/ptr.5419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tylosema esculentum (morama) is a highly valued traditional food and source of medicine for the San and other indigenous populations that inhabit the arid to semi-arid parts of Southern Africa. Morama beans are a rich source of phenolic acids, flavonoids, certain fatty acids, non-essential amino acids, certain phytosterols, tannins and minerals. The plant's tuber contains griffonilide, behenic acid and starch. Concoctions of extracts from morama bean, tuber and other local plants are frequently used to treat diarrhoea and digestive disorders by the San and other indigenous populations. Information on composition and bioactivity of phytochemical components of T. esculentum suggests that the polyphenol-rich extracts of the bean testae and cotyledons have great potential as sources of chemicals that inhibit infectious microorganisms (viral, bacterial and fungal, including drug-resistant strains), offer protection against certain non-communicable diseases and promote wound healing and gut health. The potential antinutritional properties of a few morama components are also highlighted. More research is necessary to reveal the full prophylactic and therapeutic potential of the plant against diseases of the current century. Research on domestication and conservation of the plant offers new hope for sustainable utilisation of the plant.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| | - Ofentse Mazimba
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| | - Jose Jackson
- Research and Partnerships at Botswana Institute for Technology Research and Innovation, Private Bag 0082, Gaborone, Botswana
| |
Collapse
|
117
|
Vanillic acid and coumaric acid grafted chitosan derivatives: improved grafting ratio and potential application in functional food. Journal of Food Science and Technology 2015. [DOI: 10.1007/s13197-015-1874-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
118
|
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13:2158-82. [PMID: 25871293 PMCID: PMC4413205 DOI: 10.3390/md13042158] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.
Collapse
Affiliation(s)
- Garry Kerch
- Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, LV-1048, Latvia.
| |
Collapse
|
119
|
Kim DH, Je JY. Antimicrobial Activity of Gallic Acid-Grafted-Chitosan Against Fish Pathogens. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1018993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
120
|
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:246012. [PMID: 25861355 PMCID: PMC4378595 DOI: 10.1155/2015/246012] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Abstract
Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.
Collapse
Affiliation(s)
- Nurit Beyth
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Avi Domb
- Department of Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, 91120 Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad 500 037, India
| | - Ronen Hazan
- Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
- IYAR, The Israeli Institute for Advanced Research, Tel Aviv, Israel
| |
Collapse
|
121
|
Bioactivity of Chitosan Derivatives. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
122
|
Liu F, Sun C, Yang W, Yuan F, Gao Y. Structural characterization and functional evaluation of lactoferrin–polyphenol conjugates formed by free-radical graft copolymerization. RSC Adv 2015. [DOI: 10.1039/c4ra10802g] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Covalent modifications of lactoferrin with EGCG, chlorogenic acid and gallic acid were performed by adopting a free-radical grafting procedure in aqueous media and they affect both structural and functional properties of the protein.
Collapse
Affiliation(s)
- Fuguo Liu
- Beijing Key Laboratory of Functional Food From Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Cuixia Sun
- Beijing Key Laboratory of Functional Food From Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Wei Yang
- Beijing Key Laboratory of Functional Food From Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Fang Yuan
- Beijing Key Laboratory of Functional Food From Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Yanxiang Gao
- Beijing Key Laboratory of Functional Food From Plant Resources
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- China
| |
Collapse
|
123
|
Bioactivity of Chitosan Derivative. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_17-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|