101
|
Gellan Gum Is a Suitable Biomaterial for Manual and Bioprinted Setup of Long-Term Stable, Functional 3D-Adipose Tissue Models. Gels 2022; 8:gels8070420. [PMID: 35877505 PMCID: PMC9315477 DOI: 10.3390/gels8070420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023] Open
Abstract
Due to its wide-ranging endocrine functions, adipose tissue influences the whole body’s metabolism. Engineering long-term stable and functional human adipose tissue is still challenging due to the limited availability of suitable biomaterials and adequate cell maturation. We used gellan gum (GG) to create manual and bioprinted adipose tissue models because of its similarities to the native extracellular matrix and its easily tunable properties. Gellan gum itself was neither toxic nor monocyte activating. The resulting hydrogels exhibited suitable viscoelastic properties for soft tissues and were stable for 98 days in vitro. Encapsulated human primary adipose-derived stem cells (ASCs) were adipogenically differentiated for 14 days and matured for an additional 84 days. Live-dead staining showed that encapsulated cells stayed viable until day 98, while intracellular lipid staining showed an increase over time and a differentiation rate of 76% between days 28 and 56. After 4 weeks of culture, adipocytes had a univacuolar morphology, expressed perilipin A, and secreted up to 73% more leptin. After bioprinting establishment, we demonstrated that the cells in printed hydrogels had high cell viability and exhibited an adipogenic phenotype and function. In summary, GG-based adipose tissue models show long-term stability and allow ASCs maturation into functional, univacuolar adipocytes.
Collapse
|
102
|
Idumah CI. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2033769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
103
|
Chen T, Wu Y, Liu F, Zhang N, Yan B, Zhao J, Zhang H, Chen W, Fan D. Unusual gelation behavior of low-acetyl gellan under microwave field: Changes in rheological and hydration properties. Carbohydr Polym 2022; 296:119930. [DOI: 10.1016/j.carbpol.2022.119930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
104
|
Chen XH, Zhang M, Teng XX, Mujumdar AS. Internal structure design for improved shape fidelity and crispness of 3D printed pumpkin-based snacks after freeze-drying. Food Res Int 2022; 157:111220. [DOI: 10.1016/j.foodres.2022.111220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
105
|
Xanthan gum in aqueous solutions: Fundamentals and applications. Int J Biol Macromol 2022; 216:583-604. [DOI: 10.1016/j.ijbiomac.2022.06.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
106
|
Qin C, Wu C. Inorganic biomaterials‐based bioinks for three‐dimensional bioprinting of regenerative scaffolds. VIEW 2022. [DOI: 10.1002/viw.20210018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
107
|
Pourjalili N, Bagheri Marandi G, Kurdtabar M, Rezanejade Bardajee G. Synthesis and characterization of double network hydrogel based on gellan-gum for drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- N. Pourjalili
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - G. Bagheri Marandi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - M. Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
108
|
Baawad A, Dhameri S, Park J, Murphy K, Kim DS. Rheological properties and decomposition rates of Gellan gum/hyaluronic acid/β-tricalcium phosphate mixtures. Int J Biol Macromol 2022; 211:15-25. [PMID: 35537591 DOI: 10.1016/j.ijbiomac.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/05/2022]
Abstract
The effects of β-tricalcium phosphate (TCP) on the mixture of low acyl gellan gum (LA-GAGR) and hyaluronic acid (HA) were investigated for the rheological properties and decomposition rates. All the tested mixture samples exhibited shear-thinning and typical viscoelastic behaviors. The sample made with 1.0% TCP and 0.30% LA-GAGR had the highest viscosity and loss and storage moduli and displayed gel-like behavior with the highest swelling capacity. The same mixture also exhibited the lowest average cumulative decomposition rate. High concentrations of LA-GAGR and TCP increased the degree of cross-linking of the polysaccharides, and as a result, the mixture was more elastic and less fluidic and decomposed slower. The samples prepared by gradual mixing of LA-GAGR and TCP decomposed slower than the sample prepared by sudden mixing, which indicates the well-dispersed TCP enhanced cross-linking of the polymers. This study demonstrates the possible applicability of natural polysaccharide-based shear-thinning gels for biomedical applications.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Sulaiman Dhameri
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Joshua Park
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Kelsey Murphy
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
109
|
Tatykhanova G, Aseyev V, Vamvakaki M, Khutoryanskiy V, Kudaibergenov S. Ophthalmic drug delivery system based on the complex of gellan and ofloxacin. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2022. [DOI: 10.15328/cb1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Complex formation between a natural polysaccharide – gellan and an antimicrobial drug – ofloxacin was studied in aqueous solution. Conductimetric and potentiometric titration curves revealed that gellan and ofloxacin forms a water-soluble complex of composition 2:1 mol/mol stabilized by ionic and hydrogen bonds. The formation of the gellan-ofloxacin complex was confirmed by FTIR spectroscopy, dynamic light scattering, zeta-potential and thermogravimetric analysis. The average hydrodynamic size of the complex was found 307±5 nm and its zeta-potential was negative and equal to -15 mV. Thin films of the gellan-ofloxacin complex, gelled in 0.3 wt.% of CaCl2, were used to study the release kinetics of ofloxacin in distilled water and phosphate buffer. The drug release kinetics evaluated by UV-Vis spectroscopy at λmax = 289 nm and calculated by the Ritger-Peppas model correspond to non-Fickian diffusion in distilled water and Case II transport (zero-order kinetics) in phosphate buffer. The cumulative release of ofloxacin from the gellan-ofloxacin films was equal to 96±2% and 36±2% in phosphate buffer and distilled water, respectively. It is expected that the gellan-ofloxacin complex is able to form in situ gel on the surface of the eye and to prolong the drug residence time in the tear fluid.
Collapse
|
110
|
Compound hydrogels derived from gelatin and gellan gum regulates the release of anthocyanins in simulated digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
111
|
Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties. Food Res Int 2022; 156:111306. [DOI: 10.1016/j.foodres.2022.111306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/06/2023]
|
112
|
Huang H, Lin J, Wang W, Li S. Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production. Polymers (Basel) 2022; 14:1920. [PMID: 35567089 PMCID: PMC9104527 DOI: 10.3390/polym14091920] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Sphingomonas was established by Yabuuchi et al. in 1990, and has attracted much attention in recent years due to its unique ability to degrade environmental pollutants. Some Sphingomonas species can secrete high-molecular-weight extracellular polymers called sphingans, most of which are acidic heteropolysaccharides. Typical sphingans include welan gum, gellan gum, and diutan gum. Most sphingans have a typical, conserved main chain structure, and differences of side chain groups lead to different rheological characteristics, such as shear thinning, temperature or salt resistance, and viscoelasticity. In petroleum production applications, sphingans, and their structurally modified derivatives can replace partially hydrolyzed polyacrylamide (HPAM) for enhanced oil recovery (EOR) in high-temperature and high-salt reservoirs, while also being able to replace guar gum as a fracturing fluid thickener. This paper focuses on the applications of sphingans and their derivatives in EOR.
Collapse
Affiliation(s)
- Haolin Huang
- College of Biotechnology and Pharmaceutical Engineering, Jiangpu Campus, Nanjing Tech University, Nanjing 211816, China;
| | - Junzhang Lin
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (W.W.)
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (W.W.)
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Jiangpu Campus, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
113
|
Youssef AAA, Dudhipala N, Majumdar S. Dual Drug Loaded Lipid Nanocarrier Formulations for Topical Ocular Applications. Int J Nanomedicine 2022; 17:2283-2299. [PMID: 35611213 PMCID: PMC9124492 DOI: 10.2147/ijn.s360740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023] Open
Abstract
Introduction Untreated ocular infections can damage the unique fine structures of the eye with possible visual impairments and blindness. Ciprofloxacin (CIP) ophthalmic solution is prescribed as first-line therapy in ocular bacterial infections. Natamycin (NT) ophthalmic suspension is one of the progenitors in ocular antifungal therapy. Nanostructured lipid carriers (NLCs) have been widely examined for ocular penetration enhancement and distribution to deeper ocular tissues. The objective of the current study was to prepare NLCs loaded with a combination of CIP and NT (CIP-NT-NLCs) and embed them in an in-situ gelling system (CIP-NT-NLCs-IG). This novel formulation will target the co-delivery of CIP and NT for the treatment of mixed ocular infections or as empirical treatment in case of limited access to healthcare diagnostic services. Methods CIP-NT-NLC and CIP-NT-NLC-IG formulations were evaluated based on physicochemical characteristics, in vitro release, and ex vivo transcorneal permeation studies and compared against commercial CIP and NT ophthalmic eye drops. Results and Discussion NLCs formulation (0.1% CIP and 0.3% NT) showed particle size, polydispersity index, and zeta potential of 196.2 ± 1.2 nm, 0.43 ± 0.06, and −28.1 ± 1.4 mV, respectively. Moreover, CIP-NT-NLCs showed entrapment efficiency of 80.9 ± 2.9 and 98.7 ± 1.9% for CIP and NT, respectively. CIP-NT-NLCs-IGformulation with 0.2% w/v gellan gum demonstrated the most favorable viscoelastic characteristics for ocular application. CIP-NT-NLCs and CIP-NT-NLCs-IG formulations exhibited a sustained release pattern for both drugs over 24 h. Moreover, CIP-NT-NLCs and CIP-NT-NLC-IG formulations showed 4.0- and 2.2-folds, and 5.0- and 2.5-folds enhancement in ex vivo transcorneal permeability of CIP and NT, respectively, compared to the control formulations. Conclusion The results suggest that this dual nanoparticulate-based in-situ gelling drug delivery system can serve as a promising topical delivery platform for the treatment of ocular infections.
Collapse
Affiliation(s)
- Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS, 38677, USA
- Correspondence: Soumyajit Majumdar, Department of Pharmaceutics and Drug Delivery,School of Pharmacy, University of Mississippi, 113J TCRC West, Oxford, MS, 38677, USA, Tel +1 662 915-3793, Email
| |
Collapse
|
114
|
Development of stimulus-sensitive electrospun membranes based on novel biodegradable segmented polyurethane as triggered delivery system for doxorubicin. BIOMATERIALS ADVANCES 2022; 136:212769. [PMID: 35929309 DOI: 10.1016/j.bioadv.2022.212769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
Abstract
In this work, redox-sensitive polyurethane urea (PUU) based electrospun membranes have been exploited to chemically tether a pH-sensitive doxorubicin derivative achieved by linking a lipoyl hydrazide to the drug via a hydrazone linkage. First, the lipoyl-hydrazone-doxorubicin derivative labelled as LA-Hy-Doxo has been synthesized and characterized. Then, the molecule has been tethered, via a thiol-disulfide exchange reaction, to the redox-sensitive PUU (PolyCEGS) electrospun membrane. The redox-sensitive PolyCEGS PUU has been produced by using PCL-PEG-PCL polyol and glutathione-tetramethyl ester (GSSG-OMe)4 as a chain extender. The LA-Hy-Doxo tethered electrospun membrane has showed a dually controlled release triggered by acidic and reducing conditions, producing a significant cytotoxic effect in human breast cancer cell lines (MCF-7) which has validated the system for the post-surgical treatment of solid tumors to contrast recurrence.
Collapse
|
115
|
Vilela JAP, Bonsanto FP, Cunha RL. Mechanical properties of gellan gum beads prepared with potassium or calcium ions. J Texture Stud 2022; 53:531-539. [DOI: 10.1111/jtxs.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Joice Aline Pires Vilela
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas SP Brazil
| | - Fabiana Perrechil Bonsanto
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences Federal University of São Paulo (UNIFESP) Diadema SP Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering University of Campinas (UNICAMP) Campinas SP Brazil
| |
Collapse
|
116
|
Le H, Wang X, Wei Y, Zhao Y, Zhang J, Zhang L. Making Polyol Gummies by 3D Printing: Effect of Polyols on 3D Printing Characteristics. Foods 2022; 11:foods11060874. [PMID: 35327296 PMCID: PMC8950482 DOI: 10.3390/foods11060874] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
With growth of confectionery industry, there is a great demand for candy shape, and 3D printing technology is way to achieve it. The printing properties of gummy, which is formed of gelatin and low acyl gellan as gel, maltol, erythritol, sorbitol, and xylitol as sweeteners, were tested in this study. Gummies’ rheological properties, 3D printing properties, and textural qualities were measured using a rheometer, FTIR, and SEM in this study. The strength of the hydrogen bonds will be affected by the addition of polyol, after which the excluded volume effect of polyol and viscosity will become the most important aspect. Polyols increased the gelation temperature (Tgelation), improved the gel network, and improved hydrogen bonding in the gel, according to the findings. Yield stress, shear recovery performance, and gel strength were initially increased, then decreased, when polyol concentration was increased. It had a 40.59 °C gelation temperature, an 82.99% recovery rate, noticeable shear thinning features, high self-supporting performance, and textural qualities when ink with 35 g maltitol and 30 g erythritol gave the best printing performance. This research serves as a foundation for the development of individualized, bespoke 3D printed gummies in the future.
Collapse
Affiliation(s)
- Hao Le
- Food College, Shihezi University, Shihezi 832003, China; (H.L.); (X.W.); (Y.W.); (Y.Z.)
| | - Xiaorui Wang
- Food College, Shihezi University, Shihezi 832003, China; (H.L.); (X.W.); (Y.W.); (Y.Z.)
| | - Yabo Wei
- Food College, Shihezi University, Shihezi 832003, China; (H.L.); (X.W.); (Y.W.); (Y.Z.)
| | - Yunfeng Zhao
- Food College, Shihezi University, Shihezi 832003, China; (H.L.); (X.W.); (Y.W.); (Y.Z.)
| | - Jian Zhang
- Food College, Shihezi University, Shihezi 832003, China; (H.L.); (X.W.); (Y.W.); (Y.Z.)
- Correspondence: (J.Z.); (L.Z.); Tel.: +86-189-9773-1657 (J.Z.); +86-138-1219-2381 (L.Z.)
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (J.Z.); (L.Z.); Tel.: +86-189-9773-1657 (J.Z.); +86-138-1219-2381 (L.Z.)
| |
Collapse
|
117
|
Fan Z, Cheng P, Zhang P, Gao Y, Zhao Y, Liu M, Gu J, Wang Z, Han J. A novel multifunctional Salecan/κ-carrageenan composite hydrogel with anti-freezing properties: Advanced rheology, thermal analysis and model fitting. Int J Biol Macromol 2022; 208:1-10. [PMID: 35299074 DOI: 10.1016/j.ijbiomac.2022.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
The multifunctional hydrogels (HGs) have attracted intensive concern in biomedicine, food, and flexible devices. Nevertheless, chemically crosslinked synthetic HGs are commonly under specific restrictions because of their possible biotoxicity. This study focuses on the employment of physical approaches to prepare novel Salecan/κ-carrageenan composites HGs (CHGs) without changing their basic structures. Comprehensive rheological and thermal studies have been performed to investigate their distinctive properties. The data obtained from the tests and model fitting confirmed that the highest activation energy of CHGs was 172,142.2 J/mol, and the maximum equilibrium creep compliance was 0.0085 1/Pa. The sample recovery rate could reach 92.6%, while the anti-freezing temperature can be as low as -20 °C. It is the first report focusing on novel CHGs made from Salecan and κ-carrageenan with ideal anti-freezing ability, enhanced thermostability, good injectability, self-recovery, and other rheological properties that will provide effective support for various future applications.
Collapse
Affiliation(s)
- Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Ping Cheng
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Pan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yan Gao
- Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, China
| | - Yanna Zhao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jiahui Gu
- Anton Paar (Shanghai) Trading Co., Ltd, Shanghai 201103, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
118
|
Murakami K, Hori K, Uehara F, Salazar SE, Ishihara S, Nakauma M, Funami T, Ono T. Effect of maximal voluntary tongue pressure and mechanical properties of gels on tongue pressure production when squeezing gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
119
|
Wang Y, Yu W, Liu S. Physically cross-linked gellan gum/hydrophobically associated polyacrylamide double network hydrogel for cartilage repair. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
120
|
Su J, Wang L, Dong W, Wei J, Liu X, Yan J, Ren F, Yuan F, Wang P. Fabrication and Characterization of Ultra-High-Pressure (UHP)-Induced Whey Protein Isolate/κ-Carrageenan Composite Emulsion Gels for the Delivery of Curcumin. Front Nutr 2022; 9:839761. [PMID: 35284445 PMCID: PMC8916044 DOI: 10.3389/fnut.2022.839761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The emulsion gels have attracted extensive interests due to their unique physical characters, remarkable stability, and control release properties of flavor and functional components compared to emulsions in liquid. In the current work, whey protein isolate (WPI)/κ-carrageenan (κ-CG) composite emulsion gels were fabricated based on the ultra-high-pressure (UHP) technology, in replacement of the traditional thermal, acid, or enzyme processing. Uniform composite emulsion gels could be fabricated by UHP above 400 MPa with minimum WPI and κ-CG concentrations of 8.0 and 1.0 wt%, respectively. The formation of UHP-induced emulsion gels is mostly attributed to the hydrophobic interaction and hydrogen bonding. The emulsion gels with different textures, rheology properties, and microstructures could be fabricated through adjusting the formulations (WPI concentration, κ-CG concentration, and oil phase fraction) as well as processing under different conditions (pressure and time). Afterward, curcumin-loaded emulsion gels were fabricated and subjected to an in vitro simulated gastrointestinal digestion in order to investigate the gastrointestinal fate of curcumin. In vitro simulated digestion results demonstrated that the UHP treatment significantly retarded the release of curcumin but had little impact on the bioaccessibility of curcumin. The results in this work provide useful information for the construction of emulsion gels through a non-thermal process, which showed great potential for the delivery of heat-sensitive bioactive components.
Collapse
Affiliation(s)
- Jiaqi Su
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Wang
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenxia Dong
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiao Wei
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xi Liu
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinxin Yan
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Fazheng Ren
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fang Yuan
- Beijing Higher Institution Engineering Research Center of Animal Product, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Fang Yuan
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- Pengjie Wang
| |
Collapse
|
121
|
Wollschlaeger JO, Maatz R, Albrecht FB, Klatt A, Heine S, Blaeser A, Kluger PJ. Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels 2022; 8:94. [PMID: 35200476 PMCID: PMC8871916 DOI: 10.3390/gels8020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility. We successfully built stable hydrogels containing up to 1% pea or soy protein. Higher amounts of protein resulted in poor handling properties and unstable gels. The gelation temperature range for agarose and gellan blends is between 23-30 °C, but for XLB blends it is above 55 °C. A change in viscosity and a decrease in the swelling behavior was observed in the polysaccharide-protein gels compared to the pure polysaccharide gels. None of the leachates of the investigated materials had cytotoxic effects on the myoblast cell line C2C12. All polysaccharide-protein blends evaluated turned out as potential candidates for cultured meat. For cell-laden gels, the gellan blends were the most suitable in terms of processing and uniform distribution of cells, followed by agarose blends, whereas no stable cell-laden gels could be formed with XLB blends.
Collapse
Affiliation(s)
- Jannis O. Wollschlaeger
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Robin Maatz
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
| | - Franziska B. Albrecht
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Simon Heine
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| |
Collapse
|
122
|
Chen J, Cui Y, Ma Y, Zhang S. The gelation behavior of thiolated citrus high-methoxyl pectin induced by sodium phosphate dibasic dodecahydrate. Carbohydr Polym 2022; 277:118849. [PMID: 34893259 DOI: 10.1016/j.carbpol.2021.118849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
The present study found that sodium phosphate dibasic dodecahydrate (Na2HPO4) was capable of inducing the gelation of thiolated citrus high-methoxyl pectin (TCHMP). TCHMP was synthesized by amidation of citrus high-methoxyl pectin. The gel formation exhibited an obvious concentration-dependence, including TCHMP and Na2HPO4 concentration. For Na2HPO4-induced TCHMP gels (TCHMPGs), gel strength and water holding capacity (WHC) increased, while the microcellular network structure was more compact with the increase of TCHMP and Na2HPO4 concentration. Dynamic viscoelastic experiment showed when Na2HPO4 concentration was more than or equal to 0.5 mol/L, TCHMP sols could be transferred into gels within 30 min. Crystal property was not changed while thermal stability was improved after phase transition. Gelling forces analysis indicated that disulfide bonds were the main interaction forces in TCHMPGs. Consequently, TCHMPGs were covalently crosslinked and exhibited satisfactory gel performance. The results provide a theoretical basis for the formation of gels by Na2HPO4 induced TCHMP.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China.
| | - Yanli Cui
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| |
Collapse
|
123
|
|
124
|
Preparation of Gellan Gum-Inorganic Composite Film and Its Metal Ion Accumulation Property. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6020042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gellan gum is one of the water-soluble anionic polysaccharides produced by the bacteria Sphingomonas elodea. In this study, we prepared gellan gum-inorganic composite films by mixing the gellan gum and a silane coupling reagent—3-glycidoxypropyltrimethoxysilane (GPTMS). These gellan gum-GPTMS composite films were stable in an aqueous solution and showed a thermal stability. In addition, these composite films indicated a mechanical strength by the formation of the three-dimensional network of siloxane. We demonstrated the accumulation of metal ions from a metal ion-containing aqueous solution by the composite film. As a result, although the composite film indicated the accumulation of heavy and rare-earth metal ions, the light metal ions, such as Mg(II) and Al(III) ions, did not interact with the composite material. Therefore, the accumulative mechanism of metal ions using a composite film was evaluated by IR measurements. As a consequence, although the accumulation of heavy and rare-earth metal ions occurred at both the −COO− group and the −OH group in the gellan gum, the accumulation of light metal ions occurred only at the −OH group.
Collapse
|
125
|
Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. Inherent and Composite Hydrogels as Promising Materials to Limit Antimicrobial Resistance. Gels 2022; 8:70. [PMID: 35200452 PMCID: PMC8870943 DOI: 10.3390/gels8020070] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 01/25/2023] Open
Abstract
Antibiotic resistance has increased significantly in the recent years, and has become a global problem for human health and the environment. As a result, several technologies for the controlling of health-care associated infections have been developed over the years. Thus, the most recent findings in hydrogel fabrication, particularly antimicrobial hydrogels, could offer valuable solutions for these biomedical challenges. In this review, we discuss the most promising strategies in the development of antimicrobial hydrogels and the application of hydrogels in the treatment of microbial infections. The latest advances in the development of inherently and composite antimicrobial hydrogels will be discussed, as well as hydrogels as carriers of antimicrobials, with a focus on antibiotics, metal nanoparticles, antimicrobial peptides, and biological extracts. The emergence of CRISR-Cas9 technology for removing the antimicrobial resistance has led the necessity of new and performant carriers for delivery of the CRISPR-Cas9 system. Different delivery systems, such as composite hydrogels and many types of nanoparticles, attracted a great deal of attention and will be also discussed in this review.
Collapse
Affiliation(s)
- Rahela Carpa
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Alexei Remizovschi
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Carla Andreea Culda
- Parasitology and Parasitic Diseases Department, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Anca Livia Butiuc-Keul
- Molecular Biology and Biotechnology Department, Faculty of Biology and Geology, Babeş-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (A.L.B.-K.)
- Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
126
|
Gadziński P, Osmałek TZ, Froelich A, Wilmańska O, Nowak A, Tatarek A. Rheological and textural analysis as tools for investigation of drug-polymer and polymer-polymer interactions on the example of low-acyl gellan gum and mesalazine. J Biomater Appl 2022; 36:1400-1416. [PMID: 34994229 DOI: 10.1177/08853282211052755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE In the performed study, the rheological and textural parameters of gellan-based hydrogels were investigated and their dependence on three factors was taken into consideration: (i) The presence of the model drug, (ii) The presence and type of the ionic crosslinking agent, and (iii) the composition of the polymer network. The objective was to compare two analytical methods, regarded as complementary, and define to what extent the obtained results correlate with each other. METHODS The hydrogels contained low-acyl gellan gum or its mixtures with hydroxyethyl cellulose or κ-carrageenan. CaCl2 and MgCl2 were used as gelling agents. Mesalazine was used as a model drug. The rheological analysis included oscillatory stress and frequency sweeping. The texture profile analysis was performed to calculate texture parameters. RESULTS Placebo gels without the addition of gelling agents had the weakest structure. The drug had the strongest ability to increase the stiffness of the polymer network. The weakest structure revealed the placebo samples without the addition of gelling agents. Texture analysis revealed no significant influence of the drug on the strength of the gels, while rheological measurements indicated clear differences. CONCLUSIONS It can be concluded that in the case of some parameters methods correlate, that is, the effect related to gelling ions. However, the rheological analysis seems to be more precise and sensitive to some changes in the mechanical properties of the gels.
Collapse
Affiliation(s)
- Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| | - Tomasz Zbigniew Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| | - Oliwia Wilmańska
- Student's Research Group of Pharmaceutical Technology, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences,Poznań, Poland
| | - Agata Nowak
- Student's Research Group of Pharmaceutical Technology, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences,Poznań, Poland
| | - Adam Tatarek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
127
|
Cui B, Chen W, Liang H, Li J, Wu D, Ye S, Li B. A novel κ-carrageenan/konjac gum thermo-irreversible gel improved by gellan gum and Ca2+. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
128
|
Kanyuck K, Mills T, Norton I, Norton-Welch A. Release of glucose and maltodextrin DE 2 from gellan gum gels and the impacts of gel structure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
129
|
Rheological behaviors and texture properties of semi-interpenetrating networks of hydroxypropyl methylcellulose and gellan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
130
|
Development and in-vitro in-vivo characterization of in-situ gelling sustained-release nevirapine suspension. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
131
|
Choudhary S, Sharma K, Bhatti MS, Sharma V, Kumar V. DOE-based synthesis of gellan gum-acrylic acid-based biodegradable hydrogels: screening of significant process variables and in situ field studies. RSC Adv 2022; 12:4780-4794. [PMID: 35425477 PMCID: PMC8981380 DOI: 10.1039/d1ra08786j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
The current study uses the free radical graft copolymerization of acrylic acid as a monomer, N,N-methylene-bis-(acrylamide) as a crosslinker and ammonium persulfate as an initiator to synthesise GG-cl-poly(AA) hydrogels based on gellan gum utilising response surface methodology (RSM). A full factorial design was used to obtain the greatest percent swelling (Ps), and key process variables were determined using the Pareto chart. To make the procedure cost-effective, a multiple regression model employing ANOVA projected a linear model with a maximum percentage swelling of 556 at the lowest concentration of all three studied factors. As a result, the sequential experimental design was successful in obtaining two-fold increases in the percentage swelling in a systematic way. An RSM-based central composite design was used to optimize the percentage swelling of the three most important synthesis parameters: initiator concentration, monomer concentration, and crosslinker concentration. The best process conditions are 7.3 mM L−1 initiator, 44 μM L−1 monomer, and 21.6 mM L−1 crosslinker. The effective synthesis of GG-cl-poly(AA) was validated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, field emission scanning electron microscopy (FE-SEM), and 1H-nuclear magnetic resonance. The swelling behavior of GG-cl-poly(AA) in water and saline solutions, as well as its water retention capability, was investigated. In comparison to distilled water, the swelling potential of optimized hydrogel was shown to be significantly reduced in saline solutions. The addition of GG-cl-poly(AA) significantly improved the moisture properties of plant growth media (clay, sandy, and clay–soil combination), implying that it has great potential in moisture stress agriculture. GG-cl-poly(AA) biodegradation was studied by soil burial and vermicomposting methods. The composting approach showed 89.95% deterioration after 22 days, while the soil burial method showed 86.71% degradation after 22 days. The synthesized hydrogel may be beneficial for agricultural applications because of its considerable degradation behaviour, strong water retention capacity, low cost, and environmental friendliness. We use free radical graft copolymerization of acrylic acid as a monomer, N,N-methylene-bis-(acrylamide) as a crosslinker and ammonium persulfate as an initiator to synthesise GG-cl-poly(AA) hydrogels based on gellan gum utilising response surface methodology.![]()
Collapse
Affiliation(s)
- Sonal Choudhary
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh-160014, India
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh, India 160011
| | - Manpreet S. Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh-160014, India
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Jammu and Kashmir, 190006, India
- Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein ZA9300, South Africa
| |
Collapse
|
132
|
LEAL AR, HOLANDA LEO, SOARES FCM, COSTA JND, NASCIMENTO LGL, CARMO JSD, SILVA WCD, MARQUES LF, SOUSA PHMD. Effect of gellan gum concentration on the physicochemical, rheological and sensory properties of acerola smoothie. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.05721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | | | | | - Wende Carla da SILVA
- Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Brasil
| | | | | |
Collapse
|
133
|
Huang Y, Yang N, Zhang Y, Hou J, Gao Y, Tian L, Jin Z, Shen Y, Guo S. The gelling behavior of gellan in the presence of different sodium salts. Int J Biol Macromol 2021; 193:768-777. [PMID: 34717982 DOI: 10.1016/j.ijbiomac.2021.10.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
It is well known that metal ions have great effects on gelling behaviors of gellan aqueous systems, however, the effects of their co-ions - anions have rarely been studied. Herein, we investigated the effects of four kinds of sodium salts with different anions (NaCl, CH3COONa, Na2C2O4 and Na3C6H5O7) on gelling behaviors of gellan aqueous systems in terms of gelling temperature and gel hardness. It was found that, when [Na+] was low (20 mM), the salt with Cl- or CH3COO- favored the gelling of gellan aqueous systems, while the salt with C2O42- or C6H5O73- took adverse effects probably because C2O42- or C6H5O73- could react with divalent cations (Ca2+ and Mg2+) in gellan to form precipitates or chelates and break their interactions with gellan (salt bridges). When [Na+] was high (50 or 80 mM), all the four kinds of salts facilitated gelling due to the shielding effects of high concentrations of Na+ on the negative charges along the gellan chains, and followed the order of: Cl- > CH3COO- > C2O42- > C6H5O73-. This study demonstrates the effects of anion kind of salts on gelling behaviors of gellan aqueous systems and provides references for the application of gellan.
Collapse
Affiliation(s)
- Yali Huang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqiong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingwen Hou
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yadong Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu Tian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
134
|
Tang Y, Hu M, Tang F, Huang R, Wang H, Wu D, Lan P. Easily-injectable shear-thinning hydrogel provides long-lasting submucosal barrier for gastrointestinal endoscopic surgery. Bioact Mater 2021; 15:44-52. [PMID: 35386335 PMCID: PMC8940951 DOI: 10.1016/j.bioactmat.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Submucosal injection material has shown protective effect against gastrointestinal injury during endoscopic surgery in clinic. However, the protective ability of existing submucosal injection material is strictly limited by their difficult injectability and short barrier time. Herein, we report a shear-thinning gellan gum hydrogel that simultaneously has easy injectability and long-lasting barrier function, together with good hemostatic property and biocompatibility. Shear-thinning property endows our gellan gum hydrogel with excellent endoscopic injection performance, and the injection pressure of our gellan gum hydrogel is much lower than that of the small molecule solution (50 wt% dextrose) when injected through the endoscopic needle. More importantly, our gellan gum hydrogel shows much stronger barrier retention ability than normal saline and sodium hyaluronate solution in the ex vivo and in vivo models. Furthermore, our epinephrine-containing gellan gum hydrogel has a satisfactory hemostatic effect in the mucosal lesion resection model of pig. These results indicate an appealing application prospect for gellan gum hydrogel utilizing as a submucosal injection material in endoscopic surgery. Submucosal injection materials are widely used in endoscopic surgery to protect against gastrointestinal injury. Gellan gum hydrogel with shear-thinning character is a novel submucosal injection material. Gellan gum hydrogel simultaneously has easy injectability and long-lasting barrier performance in vivo. Epinephrine-containing gellan gum hydrogel has a satisfactory hemostatic effect.
Collapse
|
135
|
Wen C, Sun Z, Elfaruk MS, Putta A, Pang J, Janaswamy S. Effect of charge balancing cations on the viscoelastic and thermal properties of welan. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
136
|
Natural Gums as Oleogelators. Int J Mol Sci 2021; 22:ijms222312977. [PMID: 34884775 PMCID: PMC8657646 DOI: 10.3390/ijms222312977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
The natural gums used as high molecular weight oleogelators are mainly polysaccharides that deliver a broad spectrum of possible utilization methods when structuring liquid fats to solid forms. The review discusses a natural gums’ structuring and gelling behavior to capture the oil droplets and form the water/oil gelling emulsions basing on their structural conformation, internal charge, and polymeric characteristics. The specific parameters and characteristics of natural gums based oleogels are also discussed. In the future, oleogels may eliminate saturated and trans fats from food products and allow the production of low-fat products, thus reducing the environmental damage caused by the excessive use of palm oil. The increasing knowledge of molecular interaction in polysaccharide chains of natural gums allows to apply more sustainable and wiser strategies towards product formulation. Innovative solutions for using oleogels based on natural polysaccharide biopolymers let incorporate them into the food matrix and replace fats completely or create blends containing the source of fats and the addition of the oleogel. The profound insight into molecular characteristics of natural gums in the function of being oleogelators is presented.
Collapse
|
137
|
Rheological investigation of a versatile salecan/curdlan gel matrix. Int J Biol Macromol 2021; 193:2202-2209. [PMID: 34780896 DOI: 10.1016/j.ijbiomac.2021.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Hydrogel, as a three-dimensional material with high water content, has unique physicochemical and variable mechanical properties. Natural polysaccharide-based composite hydrogels are very popular within medical industry as these viscoelastic materials are non-toxic, biodegradable, bioabsorbable, and biocompatible. This research investigates the engineering of novel composite hydrogels from natural polysaccharides salecan and curdlan without any structural modification and chemical crosslinking. The scanning electron microscopy, Fourier transform infrared spectroscopy and various rheological methods were employed to investigate the morphology, molecular interaction, and flow behavior of the samples respectively. The key rheological parameters were compared using the Power Law, Herschel-Bulkley and Arrhenius models. This is the first study reporting a novel composite hydrogel made from Salecan and Curdlan with ideal elasticity, enhanced thermostability, good injectability, self-recovery and other rheological properties that will pave the way for application in different fields.
Collapse
|
138
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Oliveira JM. Methacrylated Gellan Gum/Poly-l-lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomater Sci Eng 2021; 7:4898-4913. [PMID: 34533303 DOI: 10.1021/acsbiomaterials.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell encapsulation strategies using hydrogel beads have been considered as an alternative to immunosuppression in cell-based therapies. They rely on layer-by-layer (LbL) deposition of polymers to tune beads' permeability, creating a physical barrier to the host immune system. However, the LbL approach can also create diffusion barriers, hampering the flow of essential nutrients and therapeutic cell products. In this work, the polyelectrolyte complex (PEC) methodology was used to circumvent the drawbacks of the LbL strategy by inducing hydrogel bead formation through the interaction of anionic methacrylated gellan gum (GG-MA) with cationic poly-l-lysine (PLL). The interfacial complexation between both polymers resulted in beads with a cell-friendly GG-MA hydrogel core surrounded by a PEC semipermeable membrane. The beads showed great in vitro stability over time, a semi-permeable behavior, and supported human adipose-derived stem cell encapsulation. Additionally, and regarding immune recognition, the in vitro and in vivo studies pointed out that the hydrogel beads behave as an immunocompatible system. Overall, the engineered beads showed great potential for hydrogel-mediated cell therapies, when immunoprotection is required, as when treating different metabolic disorders.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Elina Garet
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| |
Collapse
|
139
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
140
|
Liu X, Tian Y, Wu Y, Chen F, Mu Y, Minus ML, Zheng Y. Fully Biomass-Based Hybrid Hydrogel for Efficient Solar Desalination with Salt Self-Cleaning Property. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42832-42842. [PMID: 34469114 DOI: 10.1021/acsami.1c11636] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar-driven interfacial steam generation provides an opportunity for solar harvesting and freshwater yield as a promising and eco-friendly technology. Here, we demonstrate a sustainable, nontoxic, and highly efficient fully biomass-based GG/CI hydrogel evaporator consisting of gellan gum (GG) hydrogel as the matrix and cuttlefish ink (CI) as the photothermal material. Induced by the ice-template method and freeze-drying method, vertically aligned microchannels are generated along the ice crystal growth direction. Efficient photothermal conversion is enabled by the natural black cuttlefish ink powder and enhanced by the light trapping effect within vertical microchannels. The hydrophilic property of the gellan gum hydrogel and water capillary force in those microchannels boost water pumping to the top interfacial evaporation region. Effective rapid salt self-cleaning behavior is achieved due to the rapid ion diffusion within vertical microchannels. An evaporation rate of 3.1 kg m-2 h-1 under one sun irradiance is demonstrated by this fully biomass-based GG/CI hydrogel evaporator. This work offers a promising alternative for eco-friendly and sustainable freshwater generation with abundant natural biomasses.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yanpei Tian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yanzi Wu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Fangqi Chen
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ying Mu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Marilyn L Minus
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yi Zheng
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
141
|
Safronov AP, Zubarev AY, Mikhnevich EA, Rusinova EV. A kinetic model for magnetostriction of a ferrogel with physical networking. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200315. [PMID: 34275357 DOI: 10.1098/rsta.2020.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 06/13/2023]
Abstract
Kinetics of magnetostriction of ferrogel with physical networking based on natural polysaccharide guar gum with embedded strontium hexaferrite magnetic particles were studied in the uniform magnetic field 420 mT. An ellipsoidal sample was elongated by 37% along the applied field and contracted by 15% in the transverse direction, while its volume was kept constant. The characteristic time of magnetostriction was 440 s. Dynamic mechanical analysis in an oscillatory mode showed that the deformation of ferrogel is mostly elastic rather than viscous. Its storage modulus was almost constant in a frequency range of 0.1-100 Hz and by at least an order of magnitude larger than the loss modulus. Meanwhile, a developed theoretical model based on the elasto-viscous behaviour of the ferrogel failed to estimate correctly the experimental value of its magnetostriction. Calculated values of the elongation of ferrogel in the field were several orders of magnitude lower than those observed in the experiment for the ferrogel with physical networking. Consistency between the experiment and the theory was achieved using the alternative consideration based on the deformation of a liquid droplet of ferrofluid. The applicability of such an approach was discussed concerning structural relaxation properties of the ferrogel with physical networking. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.
Collapse
Affiliation(s)
- A P Safronov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
- Institute of Electrophysics UB RAS, Ekaterinburg, 620016, Russia
| | - A Yu Zubarev
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
- M.N. Mikheev Institute of Metal Physics UB RAS, Ekaterinburg, Russia
| | - E A Mikhnevich
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
| | - E V Rusinova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin Ave, 51, Ekaterinburg, 620083, Russia
| |
Collapse
|
142
|
Baawad A, Rice C, Hamil T, Murphy K, Park J, Kim DS. Molecular weight effects of low acyl gellan gum on antioxidant capacity and rheological properties. J Food Sci 2021; 86:4275-4287. [PMID: 34435362 DOI: 10.1111/1750-3841.15887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 02/02/2023]
Abstract
The current study investigated the antioxidant capacity of enzymatically cleaved low acyl gellan gum (LA-GAGR) fragments, named midi-GAGR (MWv : 1.2 × 105 Da) and mini-GAGR (MWv : 2.5 × 104 Da). Three different methods-hydroxide assay, superoxide assay, and DPPH assay-were used to measure the antioxidant capacity of the low acyl gellan gum fragments. Both mini-GAGR and midi-GAGR showed similar antioxidant capacities, 27.1% and 25.6%, respectively, for hydroxide radicals, whereas ascorbic acid showed 9.8%. For superoxide radicals, the fragments scavenged 41.7% (mini) and 35.6% (midi) of free radicals compared to 10.6% removal by ascorbic acid. Mini- and midi-GAGR displayed modest scavenging capabilities with DPPH radicals (8.5% and 6.6%, respectively) as compared to ascorbic acid (96.3%). Both midi- and mini-GAGR showed less gel-like behaviors than LA-GAGR. Midi-GAGR was observed to have a transition from liquid to gel at 63 rad/s. PRACTICAL APPLICATION: The results in the manuscript are helpful when gellan gum and its derivatives are directly applied to food processing as a dietary fiber supplement or a stabilizer for functional beverages. The antioxidant capacity results can be used to promote the functionality of gellan gum as a food additive and for controlling cell adhesion and growth on gellan gum scaffolds. The rheology results will be useful for synthesis of scaffolds for bone tissue generation and facilitating clinical treatments when gellan gum is injected as an adsorbent or a filler for treating bone fractures. In the pharmaceutical industry, they are useful when controlling the therapeutic effects of drug delivery systems.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| | - Clayton Rice
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| | - Kelsey Murphy
- Department of Neurosciences, University of Toledo, Ohio, USA
| | - Joshua Park
- Department of Neurosciences, University of Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Ohio, USA
| |
Collapse
|
143
|
Torres-Figueroa AV, Pérez-Martínez CJ, Encinas JC, Burruel-Ibarra S, Silvas-García MI, García Alegría AM, del Castillo-Castro T. Thermosensitive Bioadhesive Hydrogels Based on Poly( N-isopropylacrilamide) and Poly(methyl vinyl ether- alt-maleic anhydride) for the Controlled Release of Metronidazole in the Vaginal Environment. Pharmaceutics 2021; 13:pharmaceutics13081284. [PMID: 34452245 PMCID: PMC8402040 DOI: 10.3390/pharmaceutics13081284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
The development of thermosensitive bioadhesive hydrogels as multifunctional platforms for the controlled delivery of microbicides is a valuable contribution for the in situ treatment of vagina infections. In this work, novel semi-interpenetrating network (s-IPN) hydrogels were prepared by the entrapment of linear poly(methyl vinyl ether-alt-maleic anhydride) (PVME-MA) chains within crosslinked 3D structures of poly(N-isopropylacrylamide) (PNIPAAm). The multifunctional platforms were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal techniques, rheological analysis, swelling kinetic measurements, and bioadhesion tests on porcine skin. The hydrogels exhibited an interconnected porous structure with defined boundaries. An elastic, solid-like behavior was predominant in all formulations. The swelling kinetics were strongly dependent on temperature (25 °C and 37 °C) and pH (7.4 and 4.5) conditions. The s-IPN with the highest content of PVME-MA displayed a significantly higher detachment force (0.413 ± 0.014 N) than the rest of the systems. The metronidazole loading in the s-IPN improved its bioadhesiveness. In vitro experiments showed a sustained release of the antibiotic molecules from the s-IPN up to 48 h (94%) in a medium simulating vaginal fluid, at 37 °C. The thermosensitive and bioadhesive PNIPAAm/PVME-MA systems showed a promising performance for the controlled release of metronidazole in the vaginal environment.
Collapse
Affiliation(s)
- Ana V. Torres-Figueroa
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Cinthia J. Pérez-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - J. Carmelo Encinas
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Silvia Burruel-Ibarra
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - María I. Silvas-García
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Alejandro M. García Alegría
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - Teresa del Castillo-Castro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
- Correspondence:
| |
Collapse
|
144
|
Lee S, Choi J, Youn J, Lee Y, Kim W, Choe S, Song J, Reis RL, Khang G. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering. Biomolecules 2021; 11:1184. [PMID: 34439850 PMCID: PMC8394129 DOI: 10.3390/biom11081184] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogel is in the spotlight as a useful biomaterial in the field of drug delivery and tissue engineering due to its similar biological properties to a native extracellular matrix (ECM). Herein, we proposed a ternary hydrogel of gellan gum (GG), silk fibroin (SF), and chondroitin sulfate (CS) as a biomaterial for cartilage tissue engineering. The hydrogels were fabricated with a facile combination of the physical and chemical crosslinking method. The purpose of this study was to find the proper content of SF and GG for the ternary matrix and confirm the applicability of the hydrogel in vitro and in vivo. The chemical and mechanical properties were measured to confirm the suitability of the hydrogel for cartilage tissue engineering. The biocompatibility of the hydrogels was investigated by analyzing the cell morphology, adhesion, proliferation, migration, and growth of articular chondrocytes-laden hydrogels. The results showed that the higher proportion of GG enhanced the mechanical properties of the hydrogel but the groups with over 0.75% of GG exhibited gelling temperatures over 40 °C, which was a harsh condition for cell encapsulation. The 0.3% GG/3.7% SF/CS and 0.5% GG/3.5% SF/CS hydrogels were chosen for the in vitro study. The cells that were encapsulated in the hydrogels did not show any abnormalities and exhibited low cytotoxicity. The biochemical properties and gene expression of the encapsulated cells exhibited positive cell growth and expression of cartilage-specific ECM and genes in the 0.5% GG/3.5% SF/CS hydrogel. Overall, the study of the GG/SF/CS ternary hydrogel with an appropriate content showed that the combination of GG, SF, and CS can synergistically promote articular cartilage defect repair and has considerable potential for application as a biomaterial in cartilage tissue engineering.
Collapse
Affiliation(s)
- Seongwon Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Joohee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Younghun Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Seungho Choe
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Jeongeun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal;
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea; (S.L.); (J.C.); (J.Y.); (Y.L.); (W.K.); (S.C.); (J.S.)
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Korea
| |
Collapse
|
145
|
Effect of agar and gellan gum on structured guava (Psidium guajava L.): Rheological behavior and gastrointestinal digestion in vitro. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
146
|
Mechanical Property of Polypropylene Gels Associated with That of Molten Polypropylenes. Gels 2021; 7:gels7030099. [PMID: 34449615 PMCID: PMC8395817 DOI: 10.3390/gels7030099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023] Open
Abstract
This study aims to understand the fundamental mechanical relationship between polypropylene (PP)-gels and solid PPs without solvent through mechanical and thermal analyses, by which the mechanical similarities between molten PPs and PP gels were found, leading to the reliable estimate of the mechanical properties of semi-crystalline gels. The gelation of syndiotactic and isotactic polypropylenes (sPP and iPP) was found when PPs were dissolved in 1,2,3,4-tetrahydronaphthalene (tetralin). Interestingly, it was found that the storage modulus of sPP-gel became higher than that of iPP-gel at low PP concentration (<~40 wt%). The result was distinctly different from the result of neat solid PPs (without solvent), where the modulus of solid sPP is generally significantly lower than that of solid iPP. Such inversion behavior in the mechanical property of semi-crystalline gels had not been reported and discussed before. By further investigation of the storage moduli of neat sPP and iPP, it was found that the storage modulus of sPP became higher than that of iPP above the melting points of PP, which was similar to the behavior of the storage moduli observed in the diluted PP-gels. Such similarity between PP-gels and PP melts was also observed within iPP samples with different molecular weights.
Collapse
|
147
|
Li X, Guo C, Yang X, Guo Y. Acid-induced mixed methylcellulose and casein gels: Structures, physical properties and formation mechanism. Food Chem 2021; 366:130561. [PMID: 34284189 DOI: 10.1016/j.foodchem.2021.130561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
In this study, caseins and methylcellulose (MC) were selected as building materials to prepare a class of mixed gels by adding glucono-δ-lactone (GDL) to induce the gelation of composite MC/casein systems, where the casein concentration was fixed at 8.0% (w/v) and the MC concentration varied from 0 to 1.0% (w/v). It was found that with increasing amount of MC addition (0-0.4%), the mixed gels exhibited a structural conversion from a casein-dominant gel network to a "water-in-water emulsion structure", with the caseins as the continuous gelling phase and the MC as the dispersed phase; further MC addition (0.4-1.0%, w/v) caused a more significant phase separation phenomenon. The structural conversion was in consistent with the determination result of gel hardness. Furthermore, by a combination of confocal laser scanning microscope (CLSM) and rheological studies, the structural evolution process of the mixed gels was revealed to explore the underlying formation mechanism of the mixed gels.
Collapse
Affiliation(s)
- Xiaofei Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, PR China
| | - Chuo Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, PR China
| | - Xi Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, PR China; National Research & Development Center of Apple Processing Technology, PR China.
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, PR China; National Research & Development Center of Apple Processing Technology, PR China.
| |
Collapse
|
148
|
Mithra K, Jena SS. Surfactant head group and concentration influence on structure and dynamics of gellan gum hydrogels: Crossover from stretched to compressed exponential. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- K Mithra
- Department of Physics and Astronomy National Institute of Technology Rourkela Odisha India
| | - Sidhartha S Jena
- Department of Physics and Astronomy National Institute of Technology Rourkela Odisha India
| |
Collapse
|
149
|
Chemical modification strategies for viscosity-dependent processing of gellan gum. Carbohydr Polym 2021; 269:118335. [PMID: 34294345 DOI: 10.1016/j.carbpol.2021.118335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
Recently, the hydrogel-forming polysaccharide gellan gum (GG) has gained popularity as a versatile biomaterial for tissue engineering purposes. Here, we examine the modification strategies suitable for GG to overcome processing-related limitations. We emphasize the thorough assessment of the viscoelastic and mechanical properties of both precursor solutions and final hydrogels. The investigated modification strategies include purification, oxidation, reductive chain scission, and blending. We correlate polymer flow and hydrogel forming capabilities to viscosity-dependent methods including casting, injection and printing. Native GG and purified NaGG are shear thinning and feasible for printing, being similar in gelation and compression behavior. Oxidized GGox possesses reduced viscosity, higher toughness, and aldehydes as functional groups, while scissored GGsciss has markedly lower molecular weight. To exemplify extrudability, select modification products are printed using an extrusion-based bioprinter utilizing a crosslinker bath. Our robust modification strategies have widened the processing capabilities of GG without affecting its ability to form hydrogels.
Collapse
|
150
|
Ahmed H, Stokke BT. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach. LAB ON A CHIP 2021; 21:2232-2243. [PMID: 33903873 DOI: 10.1039/d1lc00111f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micron-sized alginate hydrogel beads are extensively employed as an encapsulation medium for biochemical and biomedical applications. Here we report on the microfluidic assisted fabrication of calcium alginate (Ca-alginate) beads by on-chip picoinjection of aqueous calcium chloride (CaCl2) in emulsified aqueous sodium alginate (Na-alginate) droplets or by picoinjection of Na-alginate solution in emulsified aqueous CaCl2 droplets. There is no added chelator to reduce the Ca activity in either of the two strategies. The two fabrication strategies are implemented using a flow-focusing and picoinjection modules in a single PDMS chip. Aqueous alginate solution was emulsified and infused with CaCl2 solution as the squeezed droplet pass the picoinjection channel; consequently, monodisperse, spherical, and structurally homogeneous Ca-alginate beads were obtained. Monodisperse alginate microgel populations with a mean diameter in the range of 8 to 28 μm and standard deviation less than 1 μm were successfully generated using microfluidic channels with various dimensions and controlling the flow parameters. Monodisperse but also non-spherical particles with diameters 6 to 15 μm were also fabricated when picoinjecting Na-alginate solution in emulsified aqueous CaCl2 droplets. The Ca-alginate microbeads fabricated with tailormade size in the range from sub-cellular and upwards were in both strategies realized without any use of chelators or change in pH conditions, which is considered a significant advantage for further exploitation as encapsulation process for improved enzymatic activity and cell viability.
Collapse
Affiliation(s)
- Husnain Ahmed
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|