101
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
102
|
Chen K, Lu Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:3-11. [PMID: 29289612 DOI: 10.1016/j.dci.2017.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
The silkworm Bombyx mori, an economically important insect that is usually reared indoors, is susceptible to various pathogens, including bacteria, fungi, viruses, and microsporidia. As with other insects, the silkworm lacks an adaptive immune system and relies solely on innate immunity to defend itself against infection. Compared to other intensively studied insects, such as the fruit fly and tobacco hornworm, the principal immune pathways in the silkworm remain unclear. In this article, we review the literature concerning silkworm immune responses to bacteria and fungi and present our perspectives on future research into silkworm immunity.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
103
|
The IMD pathway regulates lysozyme-like proteins (LLPs) in the silkmoth Antheraea mylitta. J Invertebr Pathol 2018; 154:102-108. [DOI: 10.1016/j.jip.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/30/2022]
|
104
|
Hussain A. Reprogramming the virulence: Insect defense molecules navigating the epigenetic landscape of Metarhizium robertsii. Virulence 2018; 9:447-449. [PMID: 29505312 PMCID: PMC7000192 DOI: 10.1080/21505594.2017.1421828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Metarhizium species are the leading bio-control agents well characterized regarding pathogenicity to agricultural, forest, public health, stored grains and urban insect pests. They infect the target host through the tight conidial adherence with the insect cuticle. Conidial binding to the insect cuticle drive the systematic integrated disease development events in target host to impart pathogenesis. However, there is growing evidence that virulence of the pathogen is directly related with proteolytic enzymes including metalloproteinases, chymotrypsin-like proteinases and subtilisin-like proteinases. Successful host pathogenesis is the selection of right set of virulence-related proteinases, which evolved as a result of host-pathogen coevolution.
Collapse
Affiliation(s)
- Abid Hussain
- a Laboratory of Bio-Control and Molecular Biology, Department of Arid Land Agriculture , College of Agricultural and Food Sciences, King Faisal University , Hofuf, Al-Ahsa , Saudi Arabia
| |
Collapse
|
105
|
Liu L, Qu M, Yang J, Yang Q. The physiological differentiation along the midgut of Bombyx mori - inspirations from proteomics and gene expression patterns of the secreted proteins in the ectoperitrophic space. INSECT MOLECULAR BIOLOGY 2018; 27:247-259. [PMID: 29251378 DOI: 10.1111/imb.12368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ectoperitrophic space (EcPS) between the insect midgut epithelial cells and the peritrophic matrix is an unexplored, clean resource for concentrated proteins secreted by the midgut epithelial cells, which offers an ideal opportunity to uncover the midgut functions. In this study, we used Bombyx mori as a model organism and performed comparative proteomic analyses of the secreted proteins in the EcPS at the feeding and wandering stages. A total of 372 proteins were identified from both stages and 70 proteins were predicted to be secreted. Amongst these proteins, 17 secreted digestive proteins were identified and their temporal and spatial transcriptional expression patterns demonstrated that all these proteins were up-regulated at the feeding stage and differentially expressed in different parts of the midgut. Proteins with nutrient reservoir activity and defence activity were found to be up-regulated at the wandering stage. This work is the first to show the presence of digestive enzymes in the EcPS of the insect midgut using a proteomic approach, which provides evidence that suggests a physiological functional differentiation of the insect midgut. It is very clear that the EcPS undergoes dynamic changes in its composition of proteins in response to the changing needs of the insect at different developmental stages.
Collapse
Affiliation(s)
- L Liu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - M Qu
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - J Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Q Yang
- State Key Laboratory of Fine Chemical Engineering and School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
106
|
Yu H, Li ZQ, He L, Ou-Yang YY, Li N, Huang GH. Response analysis of host Spodoptera exigua larvae to infection by Heliothis virescens ascovirus 3h (HvAV-3h) via transcriptome. Sci Rep 2018; 8:5367. [PMID: 29599494 PMCID: PMC5876357 DOI: 10.1038/s41598-018-23715-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Heliothis virescens ascovirus 3 h (HvAV-3h), a dsDNA insect virus, belonging to the family Ascoviridae, can infect caterpillars of several Noctuidae species by ovipositing parasitoid wasps. In order to provide a comprehensive overview of the interactive responses of host larvae after infection by the ascovirus, a transcriptome analysis of Spodoptera exigua to HvAV-3h was conducted from 6 to 168 hours post infection (hpi). Approximately 101.64 Gb of RNA sequencing (RNA-seq) data obtained from infected and uninfected S. exigua larvae were used to perform a de novo transcriptome assembly, which generated approximately 62,258 S. exigua unigenes. Using differential gene expression analysis, it was determined that the majority of host transcripts were down-regulated beginning at 6 hpi and continuing throughout the infection period, although there was an increase in up-regulated unigene number during the 12 to 72 hpi stage. It is noteworthy that the most abundantly enriched pathways in KEGG annotation were Metabolism terms, indicating that the host larval metabolic mechanisms were highly influenced post HvAV-3h infection. In addition, the host cuticle protein encoding unigenes were highly down-regulated in most of the situations, suggesting that the host larval cuticle synthesis were inhibited by the viral infection.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China. .,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.
| |
Collapse
|
107
|
Sadekuzzaman M, Kim Y. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling. PLoS One 2018; 13:e0193282. [PMID: 29466449 PMCID: PMC5821394 DOI: 10.1371/journal.pone.0193282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) mediates both cellular and humoral immune responses in insects. Its mediation of cellular immune responses uses eicosanoids as a downstream signal. However, the cross-talk with two immune mediators was not known in humoral immune responses. This study focuses on cross-talk between two immune mediators in inducing gene expression of anti-microbial peptides (AMPs) of a lepidopteran insect, Spodoptera exigua. Up-regulation of eight AMPs was observed in S. exigua against bacterial challenge. However, the AMP induction was suppressed by injection of an NO synthase inhibitor, L-NAME, while little expressional change was observed on injecting its enantiomer, D-NAME. The functional association between NO biosynthesis and AMP gene expression was further supported by RNA interference (RNAi) against NO synthase (SeNOS), which suppressed AMP gene expression under the immune challenge. The AMP induction was also mimicked by NO alone because injecting an NO analog, SNAP, without bacterial challenge significantly induced the AMP gene expression. Interestingly, an eicosanoid biosynthesis inhibitor, dexamethasone (DEX), suppressed the NO induction of AMP expression. The inhibitory activity of DEX was reversed by the addition of arachidonic acid, a precursor of eicosanoid biosynthesis. AMP expression of S. exigua was also controlled by the Toll/IMD signal pathway. The RNAi of Toll receptors or Relish suppressed AMP gene expression by suppressing NO levels and subsequently reducing PLA2 enzyme activity. These results suggest that eicosanoids are a downstream signal of NO mediation of AMP expression against bacterial challenge.
Collapse
Affiliation(s)
- Md. Sadekuzzaman
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
108
|
Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res 2018; 27:87-101. [PMID: 29435708 DOI: 10.1007/s11248-018-0059-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19-25, https://doi.org/10.1007/s11033-014-3735-z , 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.
Collapse
|
109
|
Zhan MY, Yang PJ, Rao XJ. Cloning and analysis of peptidoglycan recognition protein-LC and immune deficiency from the diamondback moth, Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21436. [PMID: 29193237 DOI: 10.1002/arch.21436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptidoglycan (PGN) exists in both Gram-negative and Gram-positive bacteria as a component of the cell wall. PGN is an important target to be recognized by the innate immune system of animals. PGN recognition proteins (PGRP) are responsible for recognizing PGNs. In Drosophila melanogaster, PGRP-LC and IMD (immune deficiency) are critical for activating the Imd pathway. Here, we report the cloning and analysis of PGRP-LC and IMD (PxPGRP-LC and PxIMD) from diamondback moth, Plutella xylostella (L.), the insect pest of cruciferous vegetables. PxPGRP-LC gene consists of six exons encoding a polypeptide of 308 amino acid residues with a transmembrane region and a PGRP domain. PxIMD cDNA encodes a polypeptide of 251 amino acid residues with a death domain. Sequence comparisons indicate that they are characteristic of Drosophila PGRP-LC and IMD homologs. PxPGRP-LC and PxIMD were expressed in various tissues and developmental stages. Their mRNA levels were affected by bacterial challenges. The PGRP domain of PxPGRP-LC lacks key residues for the amidase activity, but it can recognize two types of PGNs. Overexpression of full-length and deletion mutants in Drosophila S2 cells induced expression of some antimicrobial peptide genes. These results indicate that PxPGRP-LC and PxIMD may be involved in the immune signaling of P. xylostella. This study provides a foundation for further studies of the immune system of P. xylostella.
Collapse
Affiliation(s)
- Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
110
|
Liu HW, Wang LL, Tang X, Dong ZM, Guo PC, Zhao DC, Xia QY, Zhao P. Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process. J Proteomics 2018; 173:115-125. [DOI: 10.1016/j.jprot.2017.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023]
|
111
|
Zumaya-Estrada FA, Martínez-Barnetche J, Lavore A, Rivera-Pomar R, Rodríguez MH. Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasit Vectors 2018; 11:48. [PMID: 29357911 PMCID: PMC5778769 DOI: 10.1186/s13071-017-2561-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Insects operate complex humoral and cellular immune strategies to fend against invading microorganisms. The majority of these have been characterized in Drosophila and other dipterans. Information on hemipterans, including Triatominae vectors of Chagas disease remains incomplete and fractionated. Results We identified putative immune-related homologs of three Triatominae vectors of Chagas disease, Triatoma pallidipennis, T. dimidiata and T. infestans (TTTs), using comparative transcriptomics based on established immune response gene references, in conjunction with the predicted proteomes of Rhodnius prolixus, Cimex lecticularis and Acyrthosiphon pisum hemimetabolous. We present a compressive description of the humoral and cellular innate immune components of these TTTs and extend the immune information of other related hemipterans. Key homologs of the constitutive and induced immunity genes were identified in all the studied hemipterans. Conclusions Our results in the TTTs extend previous observations in other hemipterans lacking several components of the Imd signaling pathway. Comparison with other hexapods, using published data, revealed that the absence of various Imd canonical components is common in several hemimetabolous species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2561-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Andrés Lavore
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.,Laboratorio de Genética y Genómica Funcional. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México.
| |
Collapse
|
112
|
W Patt M, Conte L, Blaha M, J Plotkin B. Steroid hormones as interkingdom signaling molecules: Innate immune function and microbial colonization modulation. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
113
|
Gasmi L, Jakubowska AK, Ferré J, Ogliastro M, Herrero S. Characterization of two groups of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) C-type lectins and insights into their role in defense against the densovirus JcDV. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21432. [PMID: 29164671 DOI: 10.1002/arch.21432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insect innate immunity relies on numerous soluble and membrane-bound receptors, named pattern recognition proteins (PRPs), which enable the insect to recognize pathogen-associated molecular patterns. C-type lectins are among the best-studied PRPs and constitute the most diverse family of animal lectins. Here we have characterized two groups of Spodoptera exigua C-type lectins that differ in their phylogeny, domain architecture, and expression pattern. One group includes C-type lectins with similar characteristics to other lepidopteran lectins, and a second group includes bracoviral-related lectins (bracovirus-like lectins, Se-BLLs) recently acquired by horizontal gene transfer. Subsequently, we have investigated the potential role of some selected lectins in the susceptibility to Junonia coenia densovirus (JcDV). For this purpose, three of the bracoviral-related lectins were expressed, purified, and their effect on the densovirus infection to two different Spodoptera species was assessed. The results showed that Se-BLL3 specifically reduce the mortality of Spodoptera frugiperda larvae caused by JcDV. In contrast, no such effect was observed with S. exigua larvae. In a previous work, we have also shown that Se-BLL2 increased the tolerance of S. exigua larvae to baculovirus infection. Taken together, these results confirm the implication of two different C-type lectins in antiviral response and reflect the biological relevance of the acquisition of bracoviral genes in Spodoptera spp.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Agata K Jakubowska
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Juan Ferré
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Mylène Ogliastro
- Laboratory Diversity, Genomes and Interactions Microorganisms-Insects (DGIMI), UMR 1333 INRA, University of Montpellier, Montpellier, France
| | - Salvador Herrero
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
114
|
Zhan MY, Yang PJ, Rao XJ. Molecular cloning and analysis of PGRP-L1 and IMD from silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2018; 215:19-30. [DOI: 10.1016/j.cbpb.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
|
115
|
Yang PJ, Zhan MY, Ye C, Yu XQ, Rao XJ. Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2017; 26:665-676. [PMID: 28703893 DOI: 10.1111/imb.12330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern-recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N-acetylmuramoyl-L-alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP-S4, a short-form PGRP from the domesticated silkworm, Bombyx mori. The PGRP-S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP-S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP-S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn2+ . Scanning electron microscopy showed that PGRP-S4 disrupted the bacterial cell surface. PGRP-S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP-S4 has multiple functions in immunity.
Collapse
Affiliation(s)
- P-J Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - M-Y Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - C Ye
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - X-Q Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - X-J Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
116
|
Li R, Yan Z, Wang J, Song Q, Wang Z. De novo characterization of venom apparatus transcriptome of Pardosa pseudoannulata and analysis of its gene expression in response to Bt protein. BMC Biotechnol 2017; 17:73. [PMID: 29115956 PMCID: PMC5678584 DOI: 10.1186/s12896-017-0392-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pardosa pseudoannulata is a prevailing spider species, and has been regarded as an important bio-control agent of insect pests in farmland of China. However, the available genomic and transcriptomic databases of P. pseudoannulata and their venom are limited, which severely hampers functional genomic analysis of P. pseudoannulata. Recently high-throughput sequencing technology has been proved to be an efficient tool for profiling the transcriptome of relevant non-target organisms exposed to Bacillus thuringiensis (Bt) protein through food webs. Results In this study, the transcriptome of the venom apparatus was analyzed. A total of 113,358 non-redundant unigenes were yielded, among which 34,041 unigenes with complete or various length encoding regions were assigned biological function annotations and annotated with gene ontology and karyotic orthologous group terms. In addition, 3726 unigenes involved in response to stimulus and 720 unigenes associated with immune-response pathways were identified. Furthermore, we investigated transcriptomic changes in the venom apparatus using tag-based DGE technique. A total of 1724 differentially expressed genes (DEGs) were detected, while 75 and 372 DEGs were functionally annotated with KEGG pathways and GO terms, respectively. qPCR analyses were performed to verify the DEGs directly or indirectly related to immune and stress responses, including genes encoding heat shock protein, toll-like receptor, GST and NADH dehydrogenase. Conclusion This is the first study conducted to specifically investigate the venom apparatus of P. pseudoannulata in response to Bt protein exposure through tritrophic chain. A substantial fraction of transcript sequences was generated by high-throughput sequencing of the venom apparatus of P. pseudoannulata. Then a comparative transcriptome analysis showing a large number of candidate genes involved in immune response were identified by the tag-based DGE technology. This transcriptome dataset will provide a comprehensive sequence resource for furture molecular genetic research of the venom apparatus of P. pseudoannulata. Electronic supplementary material The online version of this article (10.1186/s12896-017-0392-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Li
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.,Department of Biosciences, Hunan University of Arts and Science, Changde, 415000, China
| | - Zhenzhen Yan
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Juan Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhi Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
117
|
Saha SS, Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. Silkworm model for Francisella novicida infection. Microb Pathog 2017; 113:94-101. [PMID: 29066381 DOI: 10.1016/j.micpath.2017.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
Understanding the virulence and pathogenesis of human pathogens using insect models is an increasingly popular method. Francisella novicida, which is virulent in mice but non-pathogenic to immunocompetent humans, is widely used as an ideal candidate for Francisella research. In this study, we developed a silkworm (Bombyx mori) infection model for F. novicida by inoculating the hemocoels of silkworms with F. novicida. We found that silkworms died within 3-7 days of F. novicida infection. However, the deletion mutant of DotU, the core part of type VI secretion systems, failed to kill silkworm. In whole silkworm bodies, the bacterial load of the DotU deletion mutant was significantly less than that of the wild-type strain. Approximately 10-fold increase in bacterial load was recorded in hemolymph and subcutaneous tissues compared with that in the silk gland, Malpighian tubule, and reproductive organs. The CFU count of the DotU deletion mutant in all organs was similar results to the whole body CFU count. Confocal microscopy further confirmed the arrested growth of the mutant strain within hemocytes. The intracellular growth of F. novicida strains was also analyzed using the silkworm ovary-derived cell line BmN4. In BmN4, both CFU count assay and confocal microscopy revealed extensive growth of the wild-type strain compared with that of the mutant strain. Francisella DotU has already been proven as a virulence factor in mammals, and it was also found to be an essential virulence factor in our silkworm infection model. Therefore, this silkworm infection model is suitable for identifying new virulence factors of Francisella.
Collapse
Affiliation(s)
- Shib Shankar Saha
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan; Department of Pathology and Parasitology, Patuakhali Science and Technology University, Babugonj, Barisal 8210, Bangladesh
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
118
|
Shakeel M, Xu X, Xu J, Zhu X, Li S, Zhou X, Yu J, Xu X, Hu Q, Yu X, Jin F. Identification of immunity-related genes in Plutella xylostella in response to fungal peptide destruxin A: RNA-Seq and DGE analysis. Sci Rep 2017; 7:10966. [PMID: 28887550 PMCID: PMC5591186 DOI: 10.1038/s41598-017-11298-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
Plutella xylostella has become the major lepidopteran pest of Brassica owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects. However, the interaction mechanism of destruxin A with the immune system of P. xylostella at genomic level is still not well understood. Here, we identified 129 immunity-related genes, including pattern recognition receptors, signal modulators, few members of main immune pathways (Toll, Imd, and JAK/STAT), and immune effectors in P. xylostella in response to destruxin A at three different time courses (2 h, 4 h, and 6 h). It is worthy to mention that the immunity-related differentially expressed genes (DEGs) analysis exhibited 30, 78, and 72 up-regulated and 17, 13, and 6 down-regulated genes in P. xylostella after destruxin A injection at 2 h, 4 h, and 6 h, respectively, compared to control. Interestingly, our results revealed that the expression of antimicrobial peptides that play a vital role in insect immune system was up-regulated after the injection of destruxin A. Our findings provide a detailed information on immunity-related DEGs and reveal the potential of P. xylostella to limit the infection of fungal peptide destruxin A by increasing the activity of antimicrobial peptides.
Collapse
Affiliation(s)
- Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Jin Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | | | | | | | - Qiongbo Hu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoqiang Yu
- School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China.
| |
Collapse
|
119
|
Mai T, Chen S, Lin X, Zhang X, Zou X, Feng Q, Zheng S. 20-hydroxyecdysone positively regulates the transcription of the antimicrobial peptide, lebocin, via BmEts and BmBR-C Z4 in the midgut of Bombyx mori during metamorphosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:10-18. [PMID: 28390932 DOI: 10.1016/j.dci.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 03/03/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Metamorphosis is an essential physiological process in insects. This process is triggered by 20-hydroxyecydsone (20E). Lebocin, an antimicrobial peptide of Lepidoptera insects, was significantly up-regulated in the midgut, but not in the fat body of Bombyx mori during metamorphosis. In this study, the expression regulation of lebocin in B. mori midgut was studied. The results showed that B. mori lebocin and its activator BmEts were not responsive to bacterial infection in the midgut, instead, the expression of both genes was up-regulated by 20E treatment. The transcription factor BR-C Z4 in the 20E signal pathway enhanced lebocin promoter activity by directly binding to an upstream cis-response element of the promoter. In the fat body, the mRNA level of B. mori lebocin was decreased when the insect transformed from larval to pupal stage and was increased by immune challenge. The expression profiles of lebocin in Lepidopteran Spodoptera litura was also analyzed and the similar results were observed, S. litura lebocin was significantly up-regulated during midgut regeneration and mainly present in the new-formed intestinal cells of the midgut. All results together suggest that during metamorphosis 20E may activate lebocin expression via BmBR-C Z4 and BmEts in the midgut, where the antimicrobial peptide was produced to protect the midgut from infection.
Collapse
Affiliation(s)
- Taoyi Mai
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuna Chen
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xianyu Lin
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Zhang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaopeng Zou
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
120
|
Yang MC, Yang HT, Li J, Sun JJ, Bi WJ, Niu GJ, Zhang Q, Shi XZ, Zhao XF, Wang JX. Scavenger receptor C promotes bacterial clearance in kuruma shrimp Marsupenaeus japonicus by enhancing hemocyte phagocytosis and AMP expression. FISH & SHELLFISH IMMUNOLOGY 2017; 67:254-262. [PMID: 28602682 DOI: 10.1016/j.fsi.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Scavenger receptors (SRs) comprise a large family of structurally diverse glycoproteins located on the cell membrane and function as pattern-recognition receptors (PRRs) participating in innate immunity in different species. Class C scavenger receptor (SRC) has been only identified in invertebrates and its biological functions still need to be researched. In this study, we characterized the anti-bacterial function of a SRC from kuruma shrimp Marsupenaeus japonicus (MjSRC). The mRNA level of MjSRC was up-regulated significantly in hemocytes of kuruma shrimp challenged by Vibrio anguillarum or Staphylococcus aureus. The recombinant extracellular domains (MAM and CCP domains) of MjSRC have the ability of binding different bacteria and glycans in vitro. After knockdown of MjSRC, the bacterial clearance ability and phagocytic rate of hemocyte decreased significantly in vivo. Meanwhile, overexpression of MjSRC in shrimp enhanced the clearance ability and phagocytic rate of hemocytes. Further study found that MjSRC could regulate the expression of several antimicrobial peptides (AMPs). All these results indicate that MjSRC plays important roles in antibacterial immunity in kuruma shrimp by enhancing hemocyte phagocytosis and AMP expression.
Collapse
Affiliation(s)
- Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jing Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen-Jie Bi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
121
|
Characterization of a Gloverin-Like Antimicrobial Peptide Isolated from Muga Silkworm, Antheraea assamensis. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
122
|
Whitten MMA, Coates CJ. Re-evaluation of insect melanogenesis research: Views from the dark side. Pigment Cell Melanoma Res 2017; 30:386-401. [PMID: 28378380 DOI: 10.1111/pcmr.12590] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Melanins (eumelanin and pheomelanin) are synthesized in insects for several purposes including cuticle sclerotization and color patterning, clot formation, organogenesis, and innate immunity. Traditional views of insect immunity detail the storage of pro-phenoloxidases inside specialized blood cells (hemocytes) and their release upon recognition of foreign bodies. Activated phenoloxidases convert monophenols into reactive quinones in a two-step enzymatic reaction, and until recently, the mechanism of tyrosine hydroxylation remained a mystery. Herein, we present our interpretations of these enzyme-substrate complexes. The resultant melanins are deposited onto the surface of microbes to immobilize, agglutinate, and suffocate them. Phenoloxidase activity and melanin production are not limited to the blood (hemolymph) or cuticle, as recent evidence points to more diverse, sophisticated interactions in the gut and with the resident symbionts. This review offers insight into the somewhat neglected areas of insect melanogenesis research, particularly in innate immunity, its role in beneficial insects such as pollinators, the functional versatility of phenoloxidases, and the limitations of common experimental approaches that may impede progress inadvertently.
Collapse
|
123
|
Romoli O, Saviane A, Bozzato A, D'Antona P, Tettamanti G, Squartini A, Cappellozza S, Sandrelli F. Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin. Sci Rep 2017; 7:1048. [PMID: 28432358 PMCID: PMC5430696 DOI: 10.1038/s41598-017-01162-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 01/19/2023] Open
Abstract
The domesticated silkworm Bombyx mori has an innate immune system, whose main effectors are the antimicrobial peptides (AMPs). Silkworm strains are commonly grouped into four geographical types (Japanese, Chinese, European and Tropical) and are generally characterised by a variable susceptibility to infections. To clarify the genetic and molecular mechanisms on which the different responses to infections are based, we exposed one silkworm strain for each geographical area to oral infections with the silkworm pathogens Enterococcus mundtii or Serratia marcescens. We detected a differential susceptibility to both bacteria, with the European strain displaying the lowest sensitivity to E. mundtii and the Indian one to S. marcescens. We found that all the strains were able to activate the AMP response against E. mundtii. However, the highest tolerance of the European strain appeared to be related to the specific composition of its AMP cocktail, containing more effective variants such as a peculiar Cecropin B6 isoform. The resistance of the Indian strain to S. marcescens seemed to be associated with its prompt capability to activate the systemic transcription of AMPs. These data suggest that B. mori strains with distinct genetic backgrounds employ different strategies to counteract bacterial infections, whose efficacy appears to be pathogen-dependent.
Collapse
Affiliation(s)
- Ottavia Romoli
- Department of Biology, University of Padova, Padova, Italy
| | - Alessio Saviane
- CREA - Honey Bee and Silkworm Research Unit, Padova Seat, Padova, Italy
| | - Andrea Bozzato
- Department of Biology, University of Padova, Padova, Italy
| | - Paola D'Antona
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | | | | |
Collapse
|
124
|
Xing L, Yuan C, Wang M, Lin Z, Shen B, Hu Z, Zou Z. Dynamics of the Interaction between Cotton Bollworm Helicoverpa armigera and Nucleopolyhedrovirus as Revealed by Integrated Transcriptomic and Proteomic Analyses. Mol Cell Proteomics 2017; 16:1009-1028. [PMID: 28404795 DOI: 10.1074/mcp.m116.062547] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/17/2017] [Indexed: 01/23/2023] Open
Abstract
Over the past decades, Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been widely used for biocontrol of cotton bollworm, which is one of the most destructive pest insects in agriculture worldwide. However, the molecular mechanism underlying the interaction between HearNPV and host insects remains poorly understood. In this study, high-throughput RNA-sequencing was integrated with label-free quantitative proteomics analysis to examine the dynamics of gene expression in the fat body of H. armigera larvae in response to challenge with HearNPV. RNA sequencing-based transcriptomic analysis indicated that host gene expression was substantially altered, yielding 3,850 differentially expressed genes (DEGs), whereas no global transcriptional shut-off effects were observed in the fat body. Among the DEGs, 60 immunity-related genes were down-regulated after baculovirus infection, a finding that was consistent with the results of quantitative real-time RT-PCR. Gene ontology and functional classification demonstrated that the majority of down-regulated genes were enriched in gene cohorts involved in energy, carbohydrate, and amino acid metabolic pathways. Proteomics analysis identified differentially expressed proteins in the fat body, among which 76 were up-regulated, whereas 373 were significantly down-regulated upon infection. The down-regulated proteins are involved in metabolic pathways such as energy metabolism, carbohydrate metabolism (CM), and amino acid metabolism, in agreement with the RNA-sequence data. Furthermore, correlation analysis suggested a strong association between the mRNA level and protein abundance in the H. armigera fat body. More importantly, the predicted gene interaction network indicated that a large subset of metabolic networks was significantly negatively regulated by viral infection, including CM-related enzymes such as aldolase, enolase, malate dehydrogenase, and triose-phosphate isomerase. Taken together, transcriptomic data combined with proteomic data elucidated that baculovirus established systemic infection of host larvae and manipulated the host mainly by suppressing the host immune response and down-regulating metabolism to allow viral self-replication and proliferation. Therefore, this study provided important insights into the mechanism of host-baculovirus interaction.
Collapse
Affiliation(s)
- Longsheng Xing
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,§University of Chinese Academy of Sciences, Beijing 100049
| | - Chuanfei Yuan
- §University of Chinese Academy of Sciences, Beijing 100049.,¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Manli Wang
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhe Lin
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Benchang Shen
- ‖Guangzhou Medical University, Guangzhou 510182, China
| | - Zhihong Hu
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhen Zou
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; .,§University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
125
|
Lin H, Lin X, Zhu J, Yu XQ, Xia X, Yao F, Yang G, You M. Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). BMC Genomics 2017; 18:162. [PMID: 28196471 PMCID: PMC5309989 DOI: 10.1186/s12864-017-3583-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/10/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. RESULTS A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin. Moreover, some SPIs contained additional non-inhibitor domains, including spondin_N, reeler, and other modules, which may be involved in protein-protein interactions. Gene expression profiling showed gene-differential, stage- and sex-specific expression patterns of SPIs, suggesting that SPIs may be involved in multiple physiological processes in P. xylostella. CONCLUSIONS This is the most comprehensive investigation so far on SPI genes in P. xylostella. The characterized features and expression patterns of P. xylostella SPIs indicate that the SPI family genes may be involved in innate immunity of this species. Our findings provide valuable information for uncovering further biological roles of SPI genes in P. xylostella.
Collapse
Affiliation(s)
- Hailan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Xijian Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Jiwei Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,School of Biological Sciences, University of Missouri, Kansas City, MO, 64110-2499, USA
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Fengluan Yao
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian-Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Integrated Pest Management of Fujian and Taiwan, China Ministry of Agriculture, Fuzhou, 350002, China.
| |
Collapse
|
126
|
The Effects of Destruxin A on Relish and Rel Gene Regulation to the Suspected Immune-Related Genes of Silkworm. Molecules 2016; 22:molecules22010041. [PMID: 28036076 PMCID: PMC6155765 DOI: 10.3390/molecules22010041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022] Open
Abstract
Destruxin A (DA), a cyclodepsipeptidic mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has anti-immunity activity against insects, but the mechanism of immune regulation is not clear yet. In our previous experiment, the significant expression changes of Bm_nscaf2838_045, Bm_nscaf2674_066, and Bm_nscaf2767_133 genes in a silkworm’s hemocytes were found, which suggested that these genes might be involved in insect’s innate immunity. In the current experiment, the silkworm cell line Bm12 was used to survey the expression levels of these genes after the cells were treated with DA and the transcription factors BmRel, BmRelish1 and BmRelish2 were silenced by specific siRNA. The results indicated that, after the cells were treated by DA, the gene expression level of BmRelish2 was significantly downregulated, but BmRel and BmRelish1 were not changed. The results also showed that the gene expression levels of Bm_nscaf2838_045 and Bm_nscaf2674_066 had similar phenomena, i.e., downregulation with individual BmRelish1 gene silence or DA treatment, upregulation with combination of BmRelish1 gene silence and DA treatment, upregulation with individual BmRelish2 gene silence, and downregulation with combination of BmRelish2 gene silence plus DA treatment, but no changes in the BmRel gene silence combined with DA treatment. For the Bm_nscaf2767_133 gene, the downregulated expressions were found in individual BmRelish2 gene silence or DA treatment, upregulation in the combination treatment of BmRelish2 gene silence plus DA, and the individual treatment of BmRel or BmRelish1 silence. It is suggested that expressions of the Bm_nscaf2838_045 and Bm_nscaf2674_066 genes are closely related to the Imd signal pathway, but Bm_nscaf2767_133 genes might involve in both Toll and Imd pathways. Furthermore, the BmRelish1 gene acts as an activator and the BmRelish2 gene acts as a repressor for both Bm_nscaf2838_045 and Bm_nscaf2674_066 gene expressions. It also implies that DA may participate in the splicing process of BmRelish where BmRelish2 was promoted. Our research will provide new insights on the understanding of the activity mechanisms of destruxins.
Collapse
|
127
|
Yang MC, Shi XZ, Yang HT, Sun JJ, Xu L, Wang XW, Zhao XF, Wang JX. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp. PLoS Pathog 2016; 12:e1006127. [PMID: 28027319 PMCID: PMC5222524 DOI: 10.1371/journal.ppat.1006127] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/09/2017] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. Shrimp aquaculture is a major industry in many coastal countries, where it contributes significantly to socio-economic development. However, during the rapid expansion of shrimp industry, a succession of previously unknown diseases, especially viral diseases, have emerged in farmed shrimp and spread rapidly across international boundaries, which have significant effects on shrimp production. Since 1994, it has been estimated that annual losses globally caused by viral diseases have been as high as $US3 billion. White spot syndrome, caused by white spot syndrome virus (WSSV), is the most serious disease in shrimp aquaculture. Here, we reveal that a scavenger receptor in kuruma shrimp, Marsupenaeus japonicus (MjSRC) functions as the pattern recognition receptor for WSSV. MjSRC binds to WSSV and initiates phagocytosis of the virus, ultimately leading to degradation of WSSV in the lysosomes of hemocytes. This is the first report of the MjSRC antiviral mechanism, which may be used as a control strategy to prevent WSSV infection in shrimp.
Collapse
Affiliation(s)
- Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Ling Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
128
|
Smartt CT, Shin D, Anderson SL. The Effect of West Nile Virus Infection on the Midgut Gene Expression of Culex pipiens quinquefasciatus Say (Diptera: Culicidae). INSECTS 2016; 7:insects7040076. [PMID: 27999244 PMCID: PMC5198224 DOI: 10.3390/insects7040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/27/2016] [Accepted: 12/06/2016] [Indexed: 12/23/2022]
Abstract
The interaction of the mosquito and the invading virus is complex and can result in physiological and gene expression alterations in the insect. The association of West Nile virus (WNV) and Culex pipiens quinquefasciatus mosquitoes results in measurable changes in gene expression; 22 gene products were shown previously to have altered expression. Sequence analysis of one product, CQ G1A1, revealed 100% amino acid identity to gram negative bacteria binding proteins (CPQGBP) in Cx. p. quinquefasciatus, Aedes aegypti (70%) and Anopheles gambiae (63%) that function in pathogen recognition. CQ G1A1 also was differentially expressed following WNV infection in two populations of Cx. p. quinquefasciatus colonized from Florida with known differences in vector competence for WNV and showed spatial and temporal gene expression differences in midgut, thorax, and carcass tissues. These data suggest gene expression of CQ G1A1 is influenced by WNV infection and the WNV infection-controlled expression differs between populations and tissues.
Collapse
Affiliation(s)
- Chelsea T Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| | - Dongyoung Shin
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| | - Sheri L Anderson
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida-IFAS, 200 9th Street Southeast, Vero Beach, FL 32962, USA.
| |
Collapse
|
129
|
Cloning, Expression, and Characterization of Prophenoloxidases from Asian Corn Borer, Ostrinia furnacalis (Gunée). J Immunol Res 2016; 2016:1781803. [PMID: 28078308 PMCID: PMC5203920 DOI: 10.1155/2016/1781803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
Insect phenoloxidase (PO) belongs to the type 3 copper protein family and possesses oxidoreductase activities. PO is typically synthesized as a zymogen called prophenoloxidase (PPO) and requires the proteolytic activation to function. We here cloned full-length cDNA for 3 previously unidentified PPOs, which we named OfPPO1a, OfPPO1b, and OfPPO3, from Asian corn borer, Ostrinia furnacalis (Gunée), in addition to the previously known OfPPO2. These conceptual PPOs and OfPPO2 all contain two common copper-binding regions, two potential proteolytic activation sites, a plausible thiol-ester site, and a conserved C-terminal region but lack a secretion signal peptide sequence at the N-terminus. O. furnacalis PPOs were highly similar to other insect PPOs (42% to 79% identity) and clustered well with other lepidopteran PPOs. RT-PCR assay showed the transcripts of the 4 OfPPOs were all detected at the highest level in hemocytes and at the increased amounts after exposure to infection by bacteria and fungi. Additionally, we established an Escherichia coli (E. coli) expression system to produce recombinant O. furnacalis PPO proteins for future use in investigating their functions. These insights could provide valuable information for better understanding the activation and functioning mechanisms of O. furnacalis PPOs.
Collapse
|
130
|
Tanaka H, Sagisaka A. Identification and functional analysis of pointed homologs in Bombyx mori. Gene 2016; 604:22-32. [PMID: 27988233 DOI: 10.1016/j.gene.2016.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Using gene-knockdown techniques, we searched for endogenous Ets family proteins involved in the regulation of Escherichia coli-dependent lebocin promoter activation in the E. coli-responsive silkworm cell line NIAS-Bm-aff3. Results showed that the gene knockdown of BmPointeds (BmPNTs), Drosophila Pointed orthologs, enhanced E. coli-dependent lebocin promoter activation, suggesting that endogenous BmPNTs repress the activation of this promoter. Furthermore, we found that i) the BmPNT gene produced at least two alternative splicing isoforms, BmPNT1 and BmPNT2, both of which function as repressors; ii) BmPNTs were not associated with an already-reported repressor element, most proximal GGAA/T motif (EtsRE3), in lebocin promoter, which plays a role in the repression of E. coli- and BmRelish1-dependent lebocin promoter activation; iii) although BmPNTs did not directly affect BmRelish1-dependent lebocin promoter activation, they were able to directly repress its activation on the promoter lacking EtsRE3, probably because of competitive inhibition of binding of BmRelish1 to κB sites by BmPNTs; and iv) BmPNTs were mainly expressed in larval hemocytes, and the gene expression levels of BmPNT2, but not of BmPNT1, were decreased in response to E. coli and Bacillus subtilis. These findings suggest that endogenous BmPNTs are directly and indirectly involved in the repression of E. coli-mediated lebocin promoter activation in NIAS-Bm-aff3 cells.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Insect-Microbe Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan.
| | - Aki Sagisaka
- Insect-Microbe Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan
| |
Collapse
|
131
|
Zhan MY, Shahzad T, Yang PJ, Liu S, Yu XQ, Rao XJ. A single-CRD C-type lectin is important for bacterial clearance in the silkworm. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:330-339. [PMID: 27519466 DOI: 10.1016/j.dci.2016.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
C-type lectins (CTLs) depend on the carbohydrate-recognition domain (CRD) to recognize carbohydrates by a Ca(2+)-dependent mechanism. In animals, CTLs play critical roles in pathogen recognition, activation of the complement system and signaling pathways. Immulectins (Dual-CRD CTLs) in lepidopteran are involved in recognizing pathogens. However, little is known about the immune-related functions of insect single-CRD CTLs. Here, we reported the characterization of C-type lectin-S3 (CTL-S3), a single-CRD CTL from the domesticated silkmoth Bombyx mori (Lepidoptera: Bombycidae). The ORF of CTL-S3 gene is 672 bp, which encodes a putative protein of 223 amino acids. CTL-S3 gene was expressed in a variety of tissues. Levels of CTL-S3 mRNA in fertilized eggs and whole larvae were elevated upon bacterial challenges. CTL-S3 was secreted to larval hemolymph. The recombinant protein (rCTL-S3) binds to bacterial cell wall components and bacteria. CTL-S3 inhibited the growth of Bacillus subtilis and caused agglutination of Staphylococcus aureus. More importantly, CTL-S3 facilitated the rapid clearance of Escherichia coli and Staphylococcus aureus from the body cavity of larvae. Taken together, our results suggested that CTL-S3 may function as an opsonin in larval hemolymph to enhance the clearance of pathogens.
Collapse
Affiliation(s)
- Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Toufeeq Shahzad
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
132
|
Woestmann L, Kvist J, Saastamoinen M. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection. J Evol Biol 2016; 30:501-511. [PMID: 27864861 PMCID: PMC5347902 DOI: 10.1111/jeb.13007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life‐history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15‐min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight‐induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity‐related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight‐induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade‐off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up‐regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.
Collapse
Affiliation(s)
- L Woestmann
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - J Kvist
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - M Saastamoinen
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
133
|
Wu K, Yang B, Huang W, Dobens L, Song H, Ling E. Gut immunity in Lepidopteran insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:65-74. [PMID: 26872544 DOI: 10.1016/j.dci.2016.02.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future.
Collapse
Affiliation(s)
- Kai Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wuren Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Leonard Dobens
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
134
|
Tanaka H, Sagisaka A, Suzuki N, Yamakawa M. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:566-579. [PMID: 27227900 DOI: 10.1111/imb.12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites.
Collapse
Affiliation(s)
- H Tanaka
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - A Sagisaka
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - N Suzuki
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - M Yamakawa
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Ibaraki, Japan
| |
Collapse
|
135
|
Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis. PLoS One 2016; 11:e0162659. [PMID: 27644092 PMCID: PMC5028029 DOI: 10.1371/journal.pone.0162659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/28/2016] [Indexed: 12/23/2022] Open
Abstract
Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.
Collapse
|
136
|
Gao G, Xu XX, Yu J, Li LM, Ju WY, Jin FL, Freed S. IDENTIFICATION AND MOLECULAR CHARACTERIZATION OF TWO SERINE PROTEASES AND THEIR POTENTIAL INVOLVEMENT IN PROPHENOLOXIDASE ACTIVATION IN Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:25-39. [PMID: 27306978 DOI: 10.1002/arch.21337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/16/2016] [Indexed: 06/06/2023]
Abstract
The proteolytic activation of prophenoloxidase (proPO) is a humoral defense mechanism in insects and crustaceans. Phenoloxidase (PO) is produced as an inactive precursor namely, proPO and is activated via specific proteolytic cleavage by proPO-activating proteinase. The current research reports two novel serine proteinase genes (PxSP1-768 bp and PxSP2-816 bp) from Plutella xylostella, encoding 255 and 271 amino acid residues, respectively. Tissue distribution analyses by semiquantitative reverse transcription-PCR (RT-PCR) revealed the resultant genes to be primarily expressed in the hemocytes, while quantitative-RT-PCR (qRT-PCR) assay showed that transcription level of PxSP1 and PxSP2 increased significantly after injection of the fungal pathogen Beauveria bassiana. Purified recombinant fusion proteins of PxSP2 and PxSP1 were injected to New Zealand white rabbits and polyclonal antibodies were generated with the titers of 1:12,800. After silencing the expression of PxSP2 by RNAi, the PO activity decreased significantly. The results show that PxSP2 is involved in prophenoloxidase activation in P. xylostella.
Collapse
Affiliation(s)
- Gang Gao
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Xiao-Xia Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Jing Yu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Lin-Miao Li
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Wen-Yan Ju
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Feng-Liang Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Shoaib Freed
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
137
|
Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis). PLoS One 2016; 11:e0161384. [PMID: 27575006 PMCID: PMC5019359 DOI: 10.1371/journal.pone.0161384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions.
Collapse
|
138
|
Lv M, Mohamed AA, Zhang L, Zhang P, Zhang L. A Family of CSαβ Defensins and Defensin-Like Peptides from the Migratory Locust, Locusta migratoria, and Their Expression Dynamics during Mycosis and Nosemosis. PLoS One 2016; 11:e0161585. [PMID: 27556587 PMCID: PMC4996505 DOI: 10.1371/journal.pone.0161585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022] Open
Abstract
Insect defensins are effector components of the innate defense system. During infection, these peptides may play a role in the control of pathogens by providing protective antimicrobial barriers between epithelial cells and the hemocoel. The cDNAs encoding four defensins of the migratory locust, Locusta migratoria, designated LmDEF 1, 3–5, were identified for the first time by transcriptome-targeted analysis. Three of the members of this CSαβ defensin family, LmDEF 1, 3, and 5, were detected in locust tissues. The pro regions of their sequences have little-shared identities with other insect defensins, though the predicted mature peptides align well with other insect defensins. Phylogenetic analysis indicates a completely novel position of both LmDEF 1 and 3, compared to defensins from hymenopterans. The expression patterns of the genes encoding LmDEFs in the fat body and salivary glands were studied in response to immune-challenge by the microsporidian pathogen Nosema locustae and the fungus Metarhizium anisopliae after feeding or topical application, respectively. Focusing on Nosema-induced immunity, qRT-PCR was employed to quantify the transcript levels of LmDEFs. A higher transcript abundance of LmDEF5 was distributed more or less uniformly throughout the fat body along time. A very low baseline transcription of both LmDEFs 1 and 3 in naïve insects was indicated, and that transcription increases with time or is latent in the fat body or salivary glands of infected nymphs. In the salivary glands, expression of LmDEF3 was 20-40-times higher than in the fat body post-microbial infection. A very low expression of LmDEF3 could be detected in the fat body, but eventually increased with time up to a maximum at day 15. Delayed induction of transcription of these peptides in the fat body and salivary glands 5–15 days post-activation and the differential expression patterns suggest that the fat body/salivary glands of this species are active in the immune response against pathogens. The ability of N. locustae to induce salivary glands as well as fat body expression of defensins raises the possibility that these AMPs might play a key role in the development and/or tolerance of parasitic infections.
Collapse
Affiliation(s)
- Mingyue Lv
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Amr Ahmed Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Liwei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Pengfei Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
| | - Long Zhang
- Department of Entomology, Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
139
|
Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. Symbiosis with Francisella tularensis provides resistance to pathogens in the silkworm. Sci Rep 2016; 6:31476. [PMID: 27507264 PMCID: PMC4979039 DOI: 10.1038/srep31476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is a highly virulent facultative intracellular pathogen found in a wide range of animals, including arthropods, and environments. This bacterium has been known for over 100 years, but the lifestyle of F. tularensis in natural reservoirs remains largely unknown. Thus, we established a novel natural host model for F. tularensis using the silkworm (Bombyx mori), which is an insect model for infection by pathogens. F. tularensis established a symbiosis with silkworms, and bacteria were observed in the hemolymph. After infection with F. tularensis, the induction of melanization and nodulation, which are immune responses to bacterial infection, were inhibited in silkworms. Pre-inoculation of silkworms with F. tularensis enhanced the expression of antimicrobial peptides and resistance to infection by pathogenic bacteria. These results suggest that silkworms acquire host resistance via their symbiosis with F. tularensis, which may have important fitness benefits in natural reservoirs.
Collapse
Affiliation(s)
- Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
140
|
Chen K, Zhou L, Chen F, Peng Y, Lu Z. Peptidoglycan recognition protein-S5 functions as a negative regulator of the antimicrobial peptide pathway in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:126-135. [PMID: 27012996 DOI: 10.1016/j.dci.2016.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Prophenoloxidase (proPO), immune deficiency (IMD), and Toll are the major signaling pathways leading to melanization and antimicrobial peptide production in insect hemolymph. Peptidoglycan recognition proteins (PGRPs) act as receptors and negative regulators in these pathways, and some PGRPs exhibit antimicrobial activity. Previously, we demonstrated that silkworm PGRP-S5 recognizes peptidoglycans (PGs) and triggers activation of the proPO pathway. It also acts as a bactericide, via its amidase activity (Chen et al., 2014). Here, we generated a C177S site-mutated silkworm PGRP-S5 protein that lacked amidase activity but retained its PG-binding capacity. Functional studies showed that the mutation caused loss of its receptor function for activation of the proPO pathway, suggesting that processing of PG by PGRP-S5 is necessary for formation of the pathway initiation complex. Further, we found that PGRP-S5 negatively regulates antimicrobial peptides generation in an amidase-dependent manner, likely through the IMD pathway. Thus, silkworm PGRP-S5 acts as a sensor, a modulator, and an effector in the silkworm humoral immune system.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yachun Peng
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
141
|
Rao XJ, Wu P, Shahzad T, Liu S, Chen L, Yang YF, Shi Q, Yu XQ. Characterization of a dual-CRD galectin in the silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:149-159. [PMID: 26944801 DOI: 10.1016/j.dci.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Galectins (S-type lectins) are an ancient family of lectins with the β-galactoside binding activity. In mammals, galectins play essential roles in many biological processes, such as development, immune homeostasis and tumor progression. However, few studies have been devoted to their functions in insects. Here, we characterized the only dual-CRD galectin in the silkworm Bombyx mori (BmGalectin-4). BmGalectin-4 cDNA possesses an open reading frame of 1089 bp, which encodes a putative galectin of 363 amino acids containing tandem carbohydrate recognition domains (CRDs). BmGalectin-4 was expressed in various tissues but the protein was most abundant in fertilized eggs. Its transcript level in fertilized eggs was upregulated upon bacterial challenge. Recombinant BmGalectin-4 purified from Escherichia coli bound to bacterial cell wall components and bacterial cells. In addition, the recombinant protein induced bacterial agglutination, but did not have antibacterial activity against selected microorganisms. Taken together, our results suggest that BmGalectin-4 may function as a pattern recognition receptor primarily in silkworm fertilized eggs.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Peng Wu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Toufeeq Shahzad
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Ling Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yun-Fan Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Qiao Shi
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
142
|
Tanaka H, Sagisaka A. INVOLVEMENT OF PEPTIDOGLYCAN RECOGNITION PROTEIN L6 IN ACTIVATION OF IMMUNE DEFICIENCY PATHWAY IN THE IMMUNE RESPONSIVE SILKWORM CELLS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:143-156. [PMID: 26991439 DOI: 10.1002/arch.21326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
The immune deficiency (Imd) signaling pathway is activated by Gram-negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram-negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP-LC and PGRP-LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram-negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram-negative bacteria in an immune responsive silkworm cell line, Bm-NIAS-aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP-L6) is involved in the activation of E. coli or E. coli-PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP-L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP-L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP-L6 binds to DAP-type PGNs, although it also binds to lysine-type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP-L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Aki Sagisaka
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
143
|
Yang Z, Zhou K, Liu H, Wu A, Mei L, Liu Q. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda. PLoS One 2016; 11:e0151016. [PMID: 26977926 PMCID: PMC4792459 DOI: 10.1371/journal.pone.0151016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/23/2016] [Indexed: 01/11/2023] Open
Abstract
Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.
Collapse
Affiliation(s)
- Zhouning Yang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Ke Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Hao Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Andong Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Long Mei
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Qingzhen Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
144
|
Shu M, Mang D, Fu GS, Tanaka S, Endo H, Kikuta S, Sato R. Mechanisms of nodule-specific melanization in the hemocoel of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:10-23. [PMID: 26707571 DOI: 10.1016/j.ibmb.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/26/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
In the insect immune system, nodules are known to be a product of the cellular response against microorganisms and may be a preferential target for melanization. However, the mechanism of nodule-preferential melanization remains to be explored. In this study, we identified several mechanisms of nodule-preferential melanization by analyzing congregation and the activation of several factors involved in the prophenoloxidase (proPO)-activating system in the silkworm, Bombyx mori. Microorganism-binding assays revealed that B. mori larval plasma have an effective invading microorganism-surveillance network consisting of at least six pattern-recognition receptors (PRRs). We also found that a hemolymph serine proteinase, BmHP14, can bind to Saccharomyces cerevisiae. Pull-down assays showed that PRR C-type lectins form protein complexes with serine proteinase homologs, BmSPH1 and BmSPH2, which leads to the activated forms of BmSPH1 and BmSPH2 being gathered on microorganisms and trapped in nodules. Immunostaining analysis revealed that most factors in the proPO-activating system and some factors in the triggering system for antimicrobial peptide production exist in the granules of hemocytes which can gather in nodules. Western blot analysis showed that factors in the proPO-activating system are congregated in formed nodules by their concentration in plasma and aggregating hemocytes.
Collapse
Affiliation(s)
- Min Shu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Gege Sun Fu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shiho Tanaka
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Haruka Endo
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
145
|
Zhao W, Lu L, Yang P, Cui N, Kang L, Cui F. Organ-specific transcriptome response of the small brown planthopper toward rice stripe virus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:60-72. [PMID: 26678499 DOI: 10.1016/j.ibmb.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/15/2015] [Accepted: 11/30/2015] [Indexed: 05/13/2023]
Abstract
Rice stripe virus (RSV) causes rice stripe disease and is transmitted by the small brown planthopper (Laodelphax striatellus, SBPH) in a persistent, circulative, and propagative manner. The alimentary canal and salivary gland of SBPH play important roles in viral replication and transmission. However, little is known about the underlying molecular functions of these two organs in the interaction between RSV and SBPH. In this study, organ-specific transcriptomes of the alimentary canal and salivary gland were analyzed in viruliferous and naïve SBPH. The number of differentially expressed unigenes in the alimentary canal was considerably greater than that in the salivary gland after RSV infection, and only 23 unigenes were co-regulated in the two organs. In the alimentary canal, genes involved in lysosome, digestion and detoxification were activated upon RSV infection, whereas the genes related to DNA replication and repair were suppressed. RSV activated RNA transport and repressed the MAPK, mTOR, Wnt, and TGF-beta signaling pathways in the salivary gland. The overall immune reaction toward RSV was much stronger in the salivary gland than in the alimentary canal. RSV activated the pattern recognition molecules and Toll pathway in the salivary gland but inhibited these two reactions in the alimentary canal. The responses from reactive oxygen and the immune-responsive effectors were stronger in the salivary gland than in the alimentary canal after RSV infection. These findings provide clues on the roles of the two organs in confronting RSV infection and aid in the understanding of the interaction between RSV and SBPHs.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lixia Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Na Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
146
|
Reassessing ecdysteroidogenic cells from the cell membrane receptors' perspective. Sci Rep 2016; 6:20229. [PMID: 26847502 PMCID: PMC4742824 DOI: 10.1038/srep20229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the
developmental timing of their immature life stages. These cells have been
historically considered as carrying out a single function in insects, namely the
biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing
body of evidence shows that PG cells receive multiple cues during insect development
so we tested the hypothesis that they carry out more than just one function in
insects. We characterised the molecular nature and developmental profiles of cell
membrane receptors in PG cells of Bombyx mori during the final larval stage
and determined what receptors decode nutritional, developmental and physiological
signals. Through iterative approaches we identified a complex repertoire of cell
membrane receptors that are expressed in intricate patterns and activate previously
unidentified signal transduction cascades in PG cells. The expression patterns of
some of these receptors explain precisely the mechanisms that are known to control
ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and
wingless signalling pathways and the expression of innate immunity-related receptors
such as phagocytosis receptors, receptors for microbial ligands and Toll-like
receptors call for a re-evaluation of the role these cells play in insects.
Collapse
|
147
|
Co-expression of Dorsal and Rel2 Negatively Regulates Antimicrobial Peptide Expression in the Tobacco Hornworm Manduca sexta. Sci Rep 2016; 6:20654. [PMID: 26847920 PMCID: PMC4742911 DOI: 10.1038/srep20654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor κB (NF-κB) plays an essential role in regulation of innate immunity. In mammals, NF-κB factors can form homodimers and heterodimers to activate gene expression. In insects, three NF-κB factors, Dorsal, Dif and Relish, have been identified to activate antimicrobial peptide (AMP) gene expression. However, it is not clear whether Dorsal (or Dif) and Relish can form heterodimers. Here we report the identification and functional analysis of a Dorsal homologue (MsDorsal) and two Relish short isoforms (MsRel2A and MsRel2B) from the tobacco hornworm, Manduca sexta. Both MsRel2A and MsRel2B contain only a Rel homology domain (RHD) and lack the ankyrin-repeat inhibitory domain. Overexpression of the RHD domains of MsDorsal and MsRel2 in Drosophila melanogaster S2 and Spodoptera frugiperda Sf9 cells can activate AMP gene promoters from M. sexta and D. melanogaster. We for the first time confirmed the interaction between MsDorsal-RHD and MsRel2-RHD, and suggesting that Dorsal and Rel2 may form heterodimers. More importantly, co-expression of MsDorsal-RHD with MsRel2-RHD suppressed activation of several M. sexta AMP gene promoters. Our results suggest that the short MsRel2 isoforms may form heterodimers with MsDorsal as a novel mechanism to prevent over-activation of antimicrobial peptides.
Collapse
|
148
|
Lacerda AF, Pelegrini PB, de Oliveira DM, Vasconcelos ÉAR, Grossi-de-Sá MF. Anti-parasitic Peptides from Arthropods and their Application in Drug Therapy. Front Microbiol 2016; 7:91. [PMID: 26903970 PMCID: PMC4742531 DOI: 10.3389/fmicb.2016.00091] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Africa, Asia, and Latin America are regions highly affected by endemic diseases, such as Leishmaniasis, Malaria, and Chagas' disease. They are responsible for the death of 1000s of patients every year, as there is not yet a cure for them and the drugs used are inefficient against the pathogenic parasites. During the life cycle of some parasitic protozoa, insects become the most important host and disseminator of the diseases triggered by these microorganisms. As infected insects do not develop nocive symptoms, they can carry the parasites for long time inside their body, enabling their multiplication and life cycle completion. Eventually, parasites infect human beings after insect's transmission through their saliva and/or feces. Hence, host insects and general arthropods, which developed a way to coexist with such parasites, are a promising source for the prospection of anti-parasitic compounds, as alternative methods for the treatment of protozoa-related diseases. Among the molecules already isolated and investigated, there are proteins and peptides with high activity against parasites, able to inhibit parasite activity in different stages of development. Although, studies are still taking their first steps, initial results show new perspectives on the treatment of parasitic diseases. Therefore, in this report, we describe about peptides from host insect sources with activity against the three most endemic parasites: Leishmania sp., Plasmodium sp., and Trypanosomes. Moreover, we discuss the future application insect peptides as anti-parasitic drugs and the use of non-hosts insect transcriptomes on the prospection of novel molecules for the treatment of parasitic neglected diseases.
Collapse
Affiliation(s)
- Ariane F. Lacerda
- Plant-Pest Interaction Laboratory, PBI, Genetic Resources and Biotechnology, Brazilian Agriculture Research CorporationBrasilia, Brazil
- Post-Graduation Program in Biochemistry and Molecular Biology, Federal University of Rio Grande do NorteNatal, Brazil
| | - Patrícia B. Pelegrini
- Plant-Pest Interaction Laboratory, PBI, Genetic Resources and Biotechnology, Brazilian Agriculture Research CorporationBrasilia, Brazil
| | - Daiane M. de Oliveira
- Plant-Pest Interaction Laboratory, PBI, Genetic Resources and Biotechnology, Brazilian Agriculture Research CorporationBrasilia, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Faculty of Health Sciences, University of BrasiliaBrasilia, Brazil
| | - Érico A. R. Vasconcelos
- Plant-Pest Interaction Laboratory, PBI, Genetic Resources and Biotechnology, Brazilian Agriculture Research CorporationBrasilia, Brazil
- Department of Health Sciences, Integrated College of Educational Union’s Central PlateauGama, Brazil
| | - Maria F. Grossi-de-Sá
- Plant-Pest Interaction Laboratory, PBI, Genetic Resources and Biotechnology, Brazilian Agriculture Research CorporationBrasilia, Brazil
- Post-Graduation Program in Biochemistry and Molecular Biology, Federal University of Rio Grande do NorteNatal, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Faculty of Health Sciences, University of BrasiliaBrasilia, Brazil
- Post-Graduation Program in Genomics Science and Biotechnology, Catholic University of BrasiliaBrasilia, Brazil
| |
Collapse
|
149
|
Satyavathi VV, Narra D, Nagaraju J. Noduler an immune protein augments infection-induced cell proliferation through cross-talking with p38 MAPK. Immunobiology 2016; 221:387-97. [DOI: 10.1016/j.imbio.2015.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/02/2015] [Accepted: 09/10/2015] [Indexed: 12/01/2022]
|
150
|
Cheng T, Lin P, Huang L, Wu Y, Jin S, Liu C, Xia Q. Genome-Wide Analysis of Host Responses to Four Different Types of Microorganisms in Bombyx Mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew020. [PMID: 27382132 PMCID: PMC4933498 DOI: 10.1093/jisesa/iew020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/26/2016] [Indexed: 05/19/2023]
Abstract
Several pathogenic microorganisms have been used to investigate the genome-wide transcriptional responses of Bombyx mori to infection. However, studies have so far each focused on one microorganism, and systematic genome-wide comparison of transcriptional responses to different pathogenic microorganisms has not been undertaken. Here, we surveyed transcriptional responses of B. mori to its natural bacterial, viral, and fungal pathogens, Bacillus bombyseptieus, B. mori nucleopolyhedrovirus (BmNPV), and Beauveria bassiana, respectively, and to nonpathogenic Escherichia coli, by microarray analysis. In total, the expression of 2,436, 1,804, 1,743, and 912 B. mori genes was modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Notably, the expression of 620, 400, 177, or 165 of these genes was only modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, or E. coli, respectively. In contrast to the expression of genes related to juvenile hormone synthesis and metabolism, that of genes encoding juvenile hormone binding proteins was microorganism-specific. Three basal metabolic pathways were modulated by infection with any of the four microorganisms, and 3, 14, 5, and 2 metabolic pathways were specifically modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Interestingly, BmNPV infection modulated the JAK/STAT signaling pathway, whereas both the Imd and Toll signaling pathways were modulated by infection with B. bombyseptieus, B. bassiana, or E. coli These results elucidate potential molecular mechanisms of the host response to different microorganisms, and provide a foundation for further work on host-pathogen interaction.
Collapse
Affiliation(s)
- Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China and
| | - Ping Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China and
| | - Lulin Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China and
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China and
| | - Shengkai Jin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China and
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China and
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China and
| |
Collapse
|