101
|
Moskalev A, Shaposhnikov M, Snezhkina A, Kogan V, Plyusnina E, Peregudova D, Melnikova N, Uroshlev L, Mylnikov S, Dmitriev A, Plusnin S, Fedichev P, Kudryavtseva A. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One 2014; 9:e86051. [PMID: 24475070 PMCID: PMC3901678 DOI: 10.1371/journal.pone.0086051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Anastasia Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Valeria Kogan
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Ekaterina Plyusnina
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Darya Peregudova
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
| | - Nataliya Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Leonid Uroshlev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergey Mylnikov
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Dmitriev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Sergey Plusnin
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Peter Fedichev
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Anna Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| |
Collapse
|
102
|
Tom M, Manfrin C, Chung SJ, Sagi A, Gerdol M, De Moro G, Pallavicini A, Giulianini PG. Expression of cytoskeletal and molt-related genes is temporally scheduled in the hypodermis of the crayfish Procambarus clarkii during premolt. J Exp Biol 2014; 217:4193-202. [DOI: 10.1242/jeb.109009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The rigid crustacean exoskeleton, the cuticle, is composed of the polysaccharide chitin, structural proteins and mineral deposits. It is periodically replaced to enable growth and its construction is an energy-demanding process. Ecdysis, the shedding event of the old cuticle is preceded by a preparatory phase, termed premolt, in which the present cuticle is partially degraded and a new one is formed underneath it. Procambarus clarkii (Girard), an astacid crustacean, was used here to comprehensively examine the changing patterns of gene expression in the hypodermis underlying the cuticle of the carapace at seven time points along ~14 premolt days. Next generation sequencing was used to construct a multi-tissue P. clarkii transcript sequence assembly to be generally used in a variety of transcriptomic studies. An aimed reference transcriptome was created here for the performance of a digital transcript expression analysis, determining the gene expression profiles in each of the examined premolt stages. The analysis revealed a cascade of sequential expression events of molt-related genes involved in chitin degradation, synthesis and modification, as well as synthesis of collagen and four groups of cuticular structural genes. The novel description of major transcriptional events during premolt and determination of their timing provide temporal markers for future studies of molt progress and regulation. The peaks of expression of the molt-related genes were preceded by expression peaks of cytoskeletal genes hypothesized to be essential for premolt progress by regulating protein synthesis and/or transport probably by remodeling the cytoskeletal structure.
Collapse
Affiliation(s)
- Moshe Tom
- Israel Oceanographic and Limnological Research, Israel
| | | | - Sook J. Chung
- University of Maryland Center for Environmental Science, USA
| | - Amir Sagi
- Ben-Gurion University of the Negev, Israel
| | | | | | | | | |
Collapse
|
103
|
Gan L, Zhuo W, Li J, Wang Y, Sima Y, Xu S. A novel Cph-like gene involved in histogenesis and maintenance of midgut in Bombyx mori. PEST MANAGEMENT SCIENCE 2013; 69:1298-1306. [PMID: 23670814 DOI: 10.1002/ps.3501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/08/2013] [Accepted: 01/29/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Male-biased silkworm larva resistance is useful for sericulture and lepidopteran pest control. According to previous research, the mechanism underlying this resistance might be related to midgut-specific proteins. RESULTS A midgut-specific and novel hypothetical cuticular protein-like (Cph-like) gene was cloned, based on sex-disparity serial analysis of gene expression (SAGE) libraries of the B. mori midgut. The complete cDNA contained 676 bp and encoded 165 amino acid residues. The gene was located on chromosome 19 and it had only one short 75 bp intron. The Cph-like expression level was downregulated by exogenous 20-hydroxyecdysone or starvation, but upregulated by exogenous methoprene or food intake. Knockdown (siRNA) of the Cph-like gene suppressed the appetite and delayed larval development, while it also degraded enterocytes and damaged the midgut morphology. Furthermore, the male-biased cytoplasmic polyhedrosis virus (BmCPV) resistance of larvae was decreased. CONCLUSION The Cph-like gene is a midgut-specific novel gene in B. mori that may participate in histogenesis and midgut maintenance.
Collapse
Affiliation(s)
- Liping Gan
- Department of Applied Biology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China; National Engineering Laboratory for Modern Silk, Institute of Agricultural Biotechnology and Ecology, Soochow University, Suzhou, China; Biology Department, Chongqing Three Gorges University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
104
|
Liu X, Li F, Li D, Ma E, Zhang W, Zhu KY, Zhang J. Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria. PLoS One 2013; 8:e71970. [PMID: 23977188 PMCID: PMC3747057 DOI: 10.1371/journal.pone.0071970] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/06/2013] [Indexed: 01/25/2023] Open
Abstract
UDP-N-acetylglucosamine pyrophosphorylases (UAP) function in the formation of extracellular matrix by producing N-acetylglucosamine (GlcNAc) residues needed for chitin biosynthesis and protein glycosylation. Herein, we report two UAP cDNA's derived from two different genes (LmUAP1 and LmUAP2) in the migratory locust Locusta migratoria. Both the cDNA and their deduced amino acid sequences showed about 70% identities between the two genes. Phylogenetic analysis suggests that LmUAP1 and LmUAP2 derive from a relatively recent gene duplication event. Both LmUAP1 and LmUAP2 were widely expressed in all the major tissues besides chitin-containing tissues. However, the two genes exhibited different developmental expression patterns. High expression of LmUAP1 was detected during early embryogenesis, then decreased greatly, and slowly increased before egg hatch. During nymphal development, the highest expression of LmUAP1 appeared just after molting but declined in each inter-molting period and then increased before molting to the next stage, whereas LmUAP2 was more consistently expressed throughout all these stages. When the early second- and fifth-instar nymphs (1-day-old) were injected with LmUAP1 double-stranded RNA (dsRNA), 100% mortality was observed 2 days after the injection. When the middle second- and fifth-instar nymphs (3- to 4-day-old) were injected with LmUAP1 dsRNA, 100% mortality was observed during their next molting process. In contrast, when the insects at the same stages were injected with LmUAP2 dsRNA, these insects were able to develop normally and molt to the next stage successfully. It is presumed that the lethality caused by RNAi of LmUAP1 is due to reduced chitin biosynthesis of the integument and midgut, whereas LmUAP2 is not essential for locust development at least in nymph stage. This study is expected to help better understand different functions of UAP1 and UAP2 in the locust and other insect species.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Feng Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Daqi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail: (KYZ); (JZ)
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, People’s Republic of China
- * E-mail: (KYZ); (JZ)
| |
Collapse
|
105
|
Quan G, Ladd T, Duan J, Wen F, Doucet D, Cusson M, Krell PJ. Characterization of a spruce budworm chitin deacetylase gene: stage- and tissue-specific expression, and inhibition using RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:683-691. [PMID: 23628857 DOI: 10.1016/j.ibmb.2013.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/05/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
Chitin deacetylase (CDA) catalyzes the conversion of chitin into chitosan, thereby modifying the physical properties of insect cuticles and peritrophic matrices. A lepidopteran chitin deacetylase gene (CfCDA2) was cloned from the spruce budworm, Choristoneura fumiferana, and found to generate two alternatively spliced transcripts, CfCDA2a and CfCDA2b. Transcriptional analysis using isoform-specific RT-PCR primers indicated that both isoforms were upregulated during the molt. Interestingly, CfCDA2b transcripts were most abundant in the head during the molting stage while those of CfCDA2a were predominant in the epidermis during the feeding period. Injection of CfCDA2-specific dsRNA into C. fumiferana larvae or pre-pupae induced both abnormal phenotypes and high mortality, which resulted from an inability to shed the old cuticle. These results suggest that CfCDA2 plays an important role in the molting process, and that the two alternatively spliced transcripts have different functions during insect development. This is the first detailed characterization of lepidopteran chitin deacetylase gene.
Collapse
Affiliation(s)
- Guoxing Quan
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario P6A 2E5, Canada.
| | | | | | | | | | | | | |
Collapse
|
106
|
Yu N, Nachman RJ, Smagghe G. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen Comp Endocrinol 2013; 188:196-203. [PMID: 23524001 DOI: 10.1016/j.ygcen.2013.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 01/06/2023]
Abstract
Sulfakinins (SK) are multifunctional neuropeptides widely found in insects that are structurally and functionally homologous to the mammalian gastrin/cholecystokinin (CCK) neuropeptides. CCK is involved in various biological processes such as the feeding regulation where it induces satiety. In this project we characterized SK and SK receptor (SKR) of an important pest and model beetle insect, the red flour beetle Tribolium castaneum, with the aim to better understand the SK signaling pathway and its function in food intake. The sk gene encoded a SK precursor with 113 amino acids and the skr gene a seven-transmembrane SKR with 554 amino acids. Both genes were expressed in the larval, pupal and adult stages with different expression levels in tested tissues. By RNA interference, sk dsRNA and skr dsRNA reduced the expression of the corresponding target gene by 80-90% and 30-50%, respectively, and stimulated food intake in the larvae. In parallel, we injected insects with a SK analog reducing food intake. In conclusion, the data are discussed in relation to the SK signaling pathway and its physiological-endocrinological role in regulating food intake and potential usage in the control of important pest insects.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | | | | |
Collapse
|
107
|
Chaudhari SS, Arakane Y, Specht CA, Moussian B, Kramer KJ, Muthukrishnan S, Beeman RW. Retroactive maintains cuticle integrity by promoting the trafficking of Knickkopf into the procuticle of Tribolium castaneum. PLoS Genet 2013; 9:e1003268. [PMID: 23382702 PMCID: PMC3561106 DOI: 10.1371/journal.pgen.1003268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
Molting, or the replacement of the old exoskeleton with a new cuticle, is a complex developmental process that all insects must undergo to allow unhindered growth and development. Prior to each molt, the developing new cuticle must resist the actions of potent chitinolytic enzymes that degrade the overlying old cuticle. We recently disproved the classical dogma that a physical barrier prevents chitinases from accessing the new cuticle and showed that the chitin-binding protein Knickkopf (Knk) protects the new cuticle from degradation. Here we demonstrate that, in Tribolium castaneum, the protein Retroactive (TcRtv) is an essential mediator of this protective effect of Knk. TcRtv localizes within epidermal cells and specifically confers protection to the new cuticle against chitinases by facilitating the trafficking of TcKnk into the procuticle. Down-regulation of TcRtv resulted in entrapment of TcKnk within the epidermal cells and caused molting defects and lethality in all stages of insect growth, consistent with the loss of TcKnk function. Given the ubiquity of Rtv and Knk orthologs in arthropods, we propose that this mechanism of new cuticle protection is conserved throughout the phylum. The outer shell of an insect serves both as protective skin and rigid exoskeleton that must be periodically replaced with a new, larger one during development. During this molting process, the inner layers of the old exoskeleton are digested and recycled, while the outer layers are discarded. Secretion of the new skin necessarily commences before the partial recycling and shedding of the old shell. This creates a problem for the insect, namely how to protect the new skin from digestive enzymes intended for the old shell that closely enwraps it. Previously we showed that such protection is afforded by the Knickkopf (Knk) protein, which is secreted from the epidermis and infiltrates the new skin, rendering it resistant to enzymatic degradation. In this work, we show that another protein, called Retroactive (Rtv), ensures the proper trafficking of Knk into the newly secreted skin. Rtv remains inside the epidermal cells, while directing the transport of Knk to the cell surface and ensuring its export into the new skin. Digestive enzymes are then secreted and target the old exoskeleton while leaving the new one intact. This dependence of Knk on Rtv function is probably true for all insects and other arthropods.
Collapse
Affiliation(s)
- Sujata S. Chaudhari
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail: (SSC); (RWB)
| | - Yasuyuki Arakane
- Division of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Charles A. Specht
- Department of Medicine, University of Massachusetts, Worcester, Massachusetts, United States of America
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Tübingen, Germany
| | - Karl J. Kramer
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, United States of America
| | | | - Richard W. Beeman
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, United States of America
- * E-mail: (SSC); (RWB)
| |
Collapse
|
108
|
Broehan G, Kroeger T, Lorenzen M, Merzendorfer H. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics 2013; 14:6. [PMID: 23324493 PMCID: PMC3560195 DOI: 10.1186/1471-2164-14-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/02/2013] [Indexed: 11/24/2022] Open
Abstract
Background The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. Most are integral membrane proteins that transport a broad spectrum of substrates across lipid membranes. In insects, ABC transporters are of special interest because of their role in insecticide resistance. Results We have identified 73 ABC transporter genes in the genome of T. castaneum, which group into eight subfamilies (ABCA-H). This coleopteran ABC family is significantly larger than those reported for insects in other taxonomic groups. Phylogenetic analysis revealed that this increase is due to gene expansion within a single clade of subfamily ABCC. We performed an RNA interference (RNAi) screen to study the function of ABC transporters during development. In ten cases, injection of double-stranded RNA (dsRNA) into larvae caused developmental phenotypes, which included growth arrest and localized melanization, eye pigmentation defects, abnormal cuticle formation, egg-laying and egg-hatching defects, and mortality due to abortive molting and desiccation. Some of the ABC transporters we studied in closer detail to examine their role in lipid, ecdysteroid and eye pigment transport. Conclusions The results from our study provide new insights into the physiological function of ABC transporters in T. castaneum, and may help to establish new target sites for insect control.
Collapse
Affiliation(s)
- Gunnar Broehan
- Department of Biology/Chemistry, Animal Physiology, University of Osnabrück, Osnabrück 49069, Germany
| | | | | | | |
Collapse
|
109
|
Heustis RJ, Ng HK, Brand KJ, Rogers MC, Le LT, Specht CA, Fuhrman JA. Pharyngeal polysaccharide deacetylases affect development in the nematode C. elegans and deacetylate chitin in vitro. PLoS One 2012; 7:e40426. [PMID: 22808160 PMCID: PMC3396651 DOI: 10.1371/journal.pone.0040426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/06/2012] [Indexed: 12/05/2022] Open
Abstract
Chitin (β-1,4-linked-N-acetylglucosamine) provides structural integrity to the nematode eggshell and pharyngeal lining. Chitin is synthesized in nematodes, but not in plants and vertebrates, which are often hosts to parasitic roundworms; hence, the chitin metabolism pathway is considered a potential target for selective interventions. Polysaccharide deacetylases (PDAs), including those that convert chitin to chitosan, have been previously demonstrated in protists, fungi and insects. We show that genes encoding PDAs are distributed throughout the phylum Nematoda, with the two paralogs F48E3.8 and C54G7.3 found in C. elegans. We confirm that the genes are somatically expressed and show that RNAi knockdown of these genes retards C. elegans development. Additionally, we show that proteins from the nematode deacetylate chitin in vitro, we quantify the substrate available in vivo as targets of these enzymes, and we show that Eosin Y (which specifically stains chitosan in fungal cells walls) stains the C. elegans pharynx. Our results suggest that one function of PDAs in nematodes may be deacetylation of the chitinous pharyngeal lining.
Collapse
Affiliation(s)
- Ronald J Heustis
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
110
|
Rosa C, Kamita SG, Falk BW. RNA interference is induced in the glassy winged sharpshooter Homalodisca vitripennis by actin dsRNA. PEST MANAGEMENT SCIENCE 2012; 68:995-1002. [PMID: 22345053 DOI: 10.1002/ps.3253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/14/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND The glassy winged sharpshooter, Homalodisca vitripennis, is an unusually robust and efficient leafhopper vector of Xylella fastidiosa. X. fastidiosa is the causative agent of Pierce's disease, almond scorch, citrus variegated chlorosis and other serious plant diseases. The present study was conducted to establish whether RNA interference (RNAi) was induced in nymphal H. vitripennis that were injected with actin dsRNAs and other dsRNAs. RESULTS A dramatic reduction in target H. vitripennis actin mRNAs and the formation of small interfering RNAs (siRNAs), hallmarks of RNAi, were found following the injection of actin dsRNAs. Quantitative reverse transcription PCR indicated an 80% reduction in actin mRNA levels by 5 days post-injection. Western blot analysis showed a dramatic drop in actin protein levels by 3 days post-injection. Biological effects such as incomplete nymphal-adult ecdysis and > 95% mortality were also found following the injection of fifth-instar nymphs with actin dsRNA. Dramatic reductions in target mRNA levels were also found following the injection of other dsRNAs into fifth-instar H. vitripennis. CONCLUSION The findings indicate that RNAi is induced in post-embryonic leafhoppers by dsRNA. The present system can be used to screen potential gene-silencing targets that can be used for reducing the vector competence of H. vitripennis and other leafhoppers.
Collapse
Affiliation(s)
- Cristina Rosa
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | | |
Collapse
|
111
|
Arakane Y, Lomakin J, Gehrke SH, Hiromasa Y, Tomich JM, Muthukrishnan S, Beeman RW, Kramer KJ, Kanost MR. Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins. PLoS Genet 2012; 8:e1002682. [PMID: 22570623 PMCID: PMC3343089 DOI: 10.1371/journal.pgen.1002682] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/12/2012] [Indexed: 12/16/2022] Open
Abstract
Insect cuticle is composed primarily of chitin and structural proteins. To study the function of structural cuticular proteins, we focused on the proteins present in elytra (modified forewings that become highly sclerotized and pigmented covers for the hindwings) of the red flour beetle, Tribolium castaneum. We identified two highly abundant proteins, TcCPR27 (10 kDa) and TcCPR18 (20 kDa), which are also present in pronotum and ventral abdominal cuticles. Both are members of the Rebers and Riddiford family of cuticular proteins and contain RR2 motifs. Transcripts for both genes dramatically increase in abundance at the pharate adult stage and then decline quickly thereafter. Injection of specific double-stranded RNAs for each gene into penultimate or last instar larvae had no effect on larval–larval, larval–pupal, or pupal–adult molting. The elytra of the resulting adults, however, were shorter, wrinkled, warped, fenestrated, and less rigid than those from control insects. TcCPR27-deficient insects could not fold their hindwings properly and died prematurely approximately one week after eclosion, probably because of dehydration. TcCPR18-deficient insects exhibited a similar but less dramatic phenotype. Immunolocalization studies confirmed the presence of TcCPR27 in the elytral cuticle. These results demonstrate that TcCPR27 and TcCPR18 are major structural proteins in the rigid elytral, dorsal thoracic, and ventral abdominal cuticles of the red flour beetle, and that both proteins are required for morphogenesis of the beetle's elytra. Primitive insects have two pairs of membranous flight wings, but during the evolution of the beetle lineage the forewings lost their flight function and became modified as hard, rigid covers called elytra for protection of soft body parts of the abdomen and also the delicate flexible hindwings, which retained their flight function. This transformation is manifested by a greatly thickened and rigid (sclerotized) exoskeletal cuticle secreted by the forewing epidermis. We demonstrate that this evolutionary modification is accompanied by the incorporation of two highly abundant structural proteins into the elytral cuticle, namely TcCPR18 and TcCPR27. Depletion of these proteins by RNA interference results in malformation and weakening of the elytra, culminating in insect death. These proteins are also abundant in hard cuticle from other regions such as the pronotum and ventral abdomen, but are absent in soft cuticles, and therefore may function as key determinants of rigid cuticle. Expression of such proteins at high levels in the modified forewing appears to have been a fundamental evolutionary step in the transformation of the membranous wing into a thickened and rigid elytron in the Coleoptera.
Collapse
Affiliation(s)
- Yasuyuki Arakane
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- Division of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
- * E-mail:
| | - Joseph Lomakin
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Stevin H. Gehrke
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, United States of America
| | - Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - John M. Tomich
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | | | - Richard W. Beeman
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, United States of America
| | - Karl J. Kramer
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, United States of America
| | - Michael R. Kanost
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
112
|
Mamidala P, Wijeratne AJ, Wijeratne S, Kornacker K, Sudhamalla B, Rivera-Vega LJ, Hoelmer A, Meulia T, Jones SC, Mittapalli O. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug. BMC Genomics 2012; 13:6. [PMID: 22226239 PMCID: PMC3273426 DOI: 10.1186/1471-2164-13-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/06/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. RESULTS We performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. CONCLUSIONS We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius.
Collapse
Affiliation(s)
- Praveen Mamidala
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, OH 44691, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Wang S, Samakovlis C. Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr Top Dev Biol 2012; 98:35-63. [PMID: 22305158 DOI: 10.1016/b978-0-12-386499-4.00002-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Grainy head (Grh) family of transcription factors is characterized by a unique DNA-binding domain that binds to a conserved consensus sequence. Nematodes and flies have a single grh gene, whereas mice and humans have evolved three genes encoding Grainy head-like (Grhl) factors. We review the biological function of Grh in different animals and the mechanisms modulating its activity. grh and grhl genes play a remarkably conserved role in epithelial organ development and extracellular barrier repair after tissue damage. Recent studies in flies and vertebrates suggest that Grh factors may be primary determinants of cell adhesion and epithelial tissue formation. Grh proteins can dimerize and act as activators or repressors in different developmental contexts. In flies, tissue-specific, alternative splicing generates different Grh isoforms with different DNA-binding specificities and functions. Grh activity is also modulated by receptor tyrosine kinases: it is phosphorylated by extracellular signal regulated kinase, and this phosphorylation is selectively required for epidermal barrier repair. Two mechanisms have been proposed to explain the repressive function of Grh on target gene transcription. First, Grh can target the Polycomb silencing complex to specific response elements. Second, it can directly compete for DNA binding with transcriptional activators. Understanding the molecular mechanisms of gene regulation by Grh factors is likely to elucidate phylogenetically conserved mechanisms of epithelial cell morphogenesis and regeneration upon tissue damage.
Collapse
Affiliation(s)
- Shenqiu Wang
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
114
|
Qu M, Yang Q. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis - gene organization, expression pattern and physiological significance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:923-931. [PMID: 21933709 DOI: 10.1016/j.ibmb.2011.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 08/25/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Abstract
Insect chitin synthase A (CHSA) catalyzes chitin biosynthesis in tissues that develop from ectoderm. Since only one gene copy encodes CHSA, we hypothesized that CHSA is very likely to exist as isoforms through alternative splicing, and the functions of these isoforms may be tissue-specific. Besides the known alternative splicing exons in the mid-ORF region, we report here the alternative exons (OfCHSA-2a and OfCHSA-2b) of OfCHSA, the chitin synthase A from the lepidopteran pest Ostrinia furnacalis. Sequence analysis of the 5' upstream region of the transcription start site indicated that presences of two independent promoters for controlling the expression of OfCHSA-2a/b. Both OfCHSA-2a and OfCHSA-2b transcripts were preferentially expressed in the epidermis. During growth and development of O. furnacalis, OfCHSA-2a was mainly expressed during larval-larval molting and larval-pupal transformation, as well as in newly-laid eggs, while OfCHSA-2b was expressed only during the larval-larval molting. Gene silencing of OfCHSA-2a caused incomplete molting, while silencing of OfCHSA-2b exclusively influenced the head cuticle formation of the 3rd instar larval. Since O. furnacalis is phylogenetically close to the model insect Bombyx mori, the same undiscovered alternative splicing exon was also identified in BmCHSA by gDNA sequence alignment. This work may lead to greater understanding of the mechanism by which a single copy of the CHSA gene could fulfill various functions with tissue specificity.
Collapse
Affiliation(s)
- Mingbo Qu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | |
Collapse
|
115
|
Soares MPM, Silva-Torres FA, Elias-Neto M, Nunes FMF, Simões ZLP, Bitondi MMG. Ecdysteroid-dependent expression of the tweedle and peroxidase genes during adult cuticle formation in the honey bee, Apis mellifera. PLoS One 2011; 6:e20513. [PMID: 21655217 PMCID: PMC3105072 DOI: 10.1371/journal.pone.0020513] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/02/2011] [Indexed: 12/16/2022] Open
Abstract
Cuticle renewal is a complex biological process that depends on the cross talk between hormone levels and gene expression. This study characterized the expression of two genes encoding cuticle proteins sharing the four conserved amino acid blocks of the Tweedle family, AmelTwdl1 and AmelTwdl2, and a gene encoding a cuticle peroxidase containing the Animal haem peroxidase domain, Ampxd, in the honey bee. Gene sequencing and annotation validated the formerly predicted tweedle genes, and revealed a novel gene, Ampxd, in the honey bee genome. Expression of these genes was studied in the context of the ecdysteroid-coordinated pupal-to-adult molt, and in different tissues. Higher transcript levels were detected in the integument after the ecdysteroid peak that induces apolysis, coinciding with the synthesis and deposition of the adult exoskeleton and its early differentiation. The effect of this hormone was confirmed in vivo by tying a ligature between the thorax and abdomen of early pupae to prevent the abdominal integument from coming in contact with ecdysteroids released from the prothoracic gland. This procedure impaired the natural increase in transcript levels in the abdominal integument. Both tweedle genes were expressed at higher levels in the empty gut than in the thoracic integument and trachea of pharate adults. In contrast, Ampxd transcripts were found in higher levels in the thoracic integument and trachea than in the gut. Together, the data strongly suggest that these three genes play roles in ecdysteroid-dependent exoskeleton construction and differentiation and also point to a possible role for the two tweedle genes in the formation of the cuticle (peritrophic membrane) that internally lines the gut.
Collapse
Affiliation(s)
- Michelle P. M. Soares
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda A. Silva-Torres
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francis M. F. Nunes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
116
|
Willis JH. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:189-204. [PMID: 20171281 PMCID: PMC2872936 DOI: 10.1016/j.ibmb.2010.02.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 05/03/2023]
Abstract
The availability of whole genome sequences of several arthropods has provided new insights into structural cuticular proteins (CPs), in particular the distribution of different families, the recognition that these proteins may comprise almost 2% of the protein coding genes of some species, and the identification of features that should aid in the annotation of new genomes and EST libraries as they become available. Twelve CP families are described: CPR (named after the Rebers and Riddiford Consensus); CPF (named because it has a highly conserved region consisting of about forty-four amino acids); CPFL (like the CPFs in a conserved C-terminal region); the TWDL family, named after a picturesque phenotype of one mutant member; four families in addition to TWDL with a preponderance of low complexity sequence that are not member of the families listed above. These were named after particular diagnostic features as CPLCA, CPLCG, CPLCW, CPLCP. There are also CPG, a lepidopteran family with an abundance of glycines, the apidermin family, named after three proteins in Apis mellifera, and CPAP1 and CPAP3, named because they have features analogous to peritrophins, namely one or three chitin-binding domains. Also described are common motifs and features. Four unusual CPs are discussed in detail. Data that facilitated the analysis of sequence variation of single CP genes in natural populations are analyzed.
Collapse
Affiliation(s)
- Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
117
|
Broehan G, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S, Merzendorfer H. Chymotrypsin-like peptidases from Tribolium castaneum: a role in molting revealed by RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:274-283. [PMID: 19897036 DOI: 10.1016/j.ibmb.2009.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 10/30/2009] [Accepted: 10/31/2009] [Indexed: 05/28/2023]
Abstract
Chymotrypsin-like peptidases (CTLPs) of insects are primarily secreted into the gut lumen where they act as digestive enzymes. We studied the gene family encoding CTLPs in the genome of the red flour beetle, Tribolium castaneum. Using an extended search pattern, we identified 14 TcCTLP genes that encode peptidases with S1 specificity pocket residues typically found in chymotrypsin-like enzymes. We further analyzed the expression patterns of seven TcCTLP genes at various developmental stages. While some TcCTLP genes were exclusively expressed in feeding larval and adult stages (TcCTLP-5A/B, TcCTLP-6A), others were also detected in non-feeding embryonic (TcCTLP-5C, TcCTLP-6D) and pupal stages (TcCTLP-5C, TcCTLP-6C/D/E). TcCTLP genes were expressed predominantly in the midgut, where they presumably function in digestion. However, TcCTLP-6C and TcCTLP-5C also showed considerable expression in the carcass. The latter two genes might therefore encode peptidases that act as molting fluid enzymes. To test this hypothesis, we performed western blots using protein extracts from larval exuviae. The extracts reacted with antibodies to TcCTLP-5C and TcCTLP-6E suggesting that the corresponding peptidases are secreted into the molting fluid. Finally, we performed systemic RNAi experiments. While injections of five TcCTLP-dsRNAs into penultimate larvae did not affect growth or development, injection of dsRNA for TcCTLP-5C and TcCTLP-6C resulted in severe molting defects.
Collapse
Affiliation(s)
- Gunnar Broehan
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
118
|
Gorman MJ, Arakane Y. Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:267-73. [PMID: 20080183 PMCID: PMC2854195 DOI: 10.1016/j.ibmb.2010.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/22/2009] [Accepted: 01/06/2010] [Indexed: 05/08/2023]
Abstract
Newly synthesized insect cuticle is soft and pale but becomes stronger (sclerotized) and often darker (pigmented) over several hours or days. The first step in the sclerotization and pigmentation pathways is the hydroxylation of tyrosine to produce 3,4-dihydroxyphenylalanine (DOPA). Tyrosine hydroxylase (TH) is known to catalyze this reaction during pigmentation, but a role for TH in sclerotization has not been documented. The goal of this study was to determine whether TH is required for cuticle sclerotization in the red flour beetle, Tribolium castaneum. We used quantitative RT-PCR to verify that TH expression occurs at the time of cuticle tanning and immunohistochemistry to confirm that TH is expressed in the epithelial cells underlying sclerotized cuticle. In addition, we found that a reduction in TH function (mediated by RNA interference) resulted in a decrease in cuticle pigmentation and a decrease in the hardness of both pigmented and colorless cuticle. These results demonstrate a requirement for TH in sclerotization as well as brown pigmentation of insect cuticle.
Collapse
Affiliation(s)
- Maureen J Gorman
- Department of Biochemistry, Kansas State University, 141 Chalmers, Manhattan, KS 66506, USA.
| | | |
Collapse
|
119
|
Chen L, Ma W, Wang X, Niu C, Lei C. Analysis of pupal head proteome and its alteration in diapausing pupae of Helicoverpa armigera. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:247-252. [PMID: 19852966 DOI: 10.1016/j.jinsphys.2009.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 05/28/2023]
Abstract
The proteomic approach has proven to be an useful tool for understanding insect diapause processes. Using 2D gel electrophoresis and matrix assisted laser/desorption ionization (MALDI) time of flight (TOF), we identified 24 proteins in the head of Helicoverpa armigera pupae with diverse functional characteristics, including cytoskeleton proteins, heat-shock proteins, insect development regulation factors, ATPases, proteins regulating signal pathway and enzymes involved in metabolism, etc. A proteomic comparison between nondiapausing and diapausing pupae revealed three proteins that were present only in nondiapausing pupae, and six proteins represented >or=2.0-fold or <or=0.5-fold changes. The differentially expressed proteins, including heat-shock protein 90, chitin deacetylase, alpha-tubulin and transitional endoplasmic reticulum ATPase, etc. were reported for the first time in H. armigera. Identification of these proteins will enable us to further characterize the regulated functions of diapause in this important species.
Collapse
Affiliation(s)
- Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | |
Collapse
|
120
|
Zhao Y, Park RD, Muzzarelli RAA. Chitin deacetylases: properties and applications. Mar Drugs 2010; 8:24-46. [PMID: 20161969 PMCID: PMC2817921 DOI: 10.3390/md8010024] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 12/01/2022] Open
Abstract
Chitin deacetylases, occurring in marine bacteria, several fungi and a few insects, catalyze the deacetylation of chitin, a structural biopolymer found in countless forms of marine life, fungal cell and spore walls as well as insect cuticle and peritrophic matrices. The deacetylases recognize a sequence of four GlcNAc units in the substrate, one of which undergoes deacetylation: the resulting chitosan has a more regular deacetylation pattern than a chitosan treated with hot NaOH. Nevertheless plain chitin is a poor substrate, but glycolated, reprecipitated or depolymerized chitins are good ones. The marine Vibrio sp. colonize the chitin particles and decompose the chitin thanks to the concerted action of chitinases and deacetylases, otherwise they could not tolerate chitosan, a recognized antibacterial biopolymer. In fact, chitosan is used to prevent infections in fishes and crustaceans. Considering that chitin deacetylases play very important roles in the biological attack and defense systems, they may find applications for the biological control of fungal plant pathogens or insect pests in agriculture and for the biocontrol of opportunistic fungal human pathogens.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Agriculture Chemistry, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea; E-Mail:
(Y.Z.)
| | - Ro-Dong Park
- Department of Agriculture Chemistry, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea; E-Mail:
(Y.Z.)
| | | |
Collapse
|
121
|
Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. J Virol 2009; 84:2547-55. [PMID: 20032185 DOI: 10.1128/jvi.01860-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several expressed sequence tags (ESTs) with homology to chitin deacetylase-like protein (CDA) were selected from a group of Helicoverpa armigera genes whose expression changed after infection with H. armigera single nucleopolyhedrovirus (HearNPV). Some of these ESTs coded for a midgut protein containing a chitin deacetylase domain (CDAD). The expressed protein, HaCDA5a, did not show chitin deacetylase activity, but it showed a strong affinity for binding to chitin. Sequence analysis showed the lack of any chitin binding domain, described for all currently known peritrophic membrane (PM) proteins. HaCDA5a has previously been detected in the H. armigera PM. Such localization, together with its downregulation after pathogen infection, led us to hypothesize that this protein might be responsible for the homeostasis of the PM structure and that, by reduction of its expression, the insect may reduce PM permeability, decreasing the entrance of baculovirus. To test this hypothesis, we constructed a recombinant nucleopolyhedrovirus to express HaCDA5a in insect cells and tested its influence on PM permeability as well as the influence of HaCDA5a expression on the performance of the baculovirus. The experiments showed that HaCDA5a increased PM permeability, in a concentration-dependent manner. Bioassays on Spodoptera frugiperda and Spodoptera exigua larvae revealed that NPV expressing HaCDA5a was more infective than its parental virus. However, no difference in virulence was observed when the viruses were injected intrahemocoelically. These findings support the downregulation of a midgut-specific CDA-like protein as a possible mechanism used by H. armigera to reduce susceptibility to baculovirus by decreasing PM permeability.
Collapse
|