101
|
Kohlgruber AC, Donado CA, LaMarche NM, Brenner MB, Brennan PJ. Activation strategies for invariant natural killer T cells. Immunogenetics 2016; 68:649-63. [PMID: 27457886 PMCID: PMC5745583 DOI: 10.1007/s00251-016-0944-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022]
Abstract
Invariant natural killer T (iNKT) cells are a specialized T cell subset that plays an important role in host defense, orchestrating both innate and adaptive immune effector responses against a variety of microbes. Specific microbial lipids and mammalian self lipids displayed by the antigen-presenting molecule CD1d can activate iNKT cells through their semi-invariant αβ T cell receptors (TCRs). iNKT cells also constitutively express receptors for inflammatory cytokines typically secreted by antigen-presenting cells (APCs) after recognition of pathogen-associated molecular patterns (PAMPs), and they can be activated through these cytokine receptors either in combination with TCR signals, or in some cases even in the absence of TCR signaling. During infection, experimental evidence suggests that both TCR-driven and cytokine-driven mechanisms contribute to iNKT cell activation. While the relative contributions of these two signaling mechanisms can vary widely depending on the infectious context, both lipid antigens and PAMPs mediate reciprocal activation of iNKT cells and APCs, leading to downstream activation of multiple other immune cell types to promote pathogen clearance. In this review, we discuss the mechanisms involved in iNKT cell activation during infection, focusing on the central contributions of both lipid antigens and PAMP-induced inflammatory cytokines, and highlight in vivo examples of activation during bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Donado
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nelson M LaMarche
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick J Brennan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
102
|
Lim YX, Ng YL, Tam JP, Liu DX. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases 2016; 4:E26. [PMID: 28933406 PMCID: PMC5456285 DOI: 10.3390/diseases4030026] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Human coronaviruses (HCoVs) are known respiratory pathogens associated with a range of respiratory outcomes. In the past 14 years, the onset of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have thrust HCoVs into spotlight of the research community due to their high pathogenicity in humans. The study of HCoV-host interactions has contributed extensively to our understanding of HCoV pathogenesis. In this review, we discuss some of the recent findings of host cell factors that might be exploited by HCoVs to facilitate their own replication cycle. We also discuss various cellular processes, such as apoptosis, innate immunity, ER stress response, mitogen-activated protein kinase (MAPK) pathway and nuclear factor kappa B (NF-κB) pathway that may be modulated by HCoVs.
Collapse
Affiliation(s)
- Yvonne Xinyi Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Ling Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
103
|
Schmitt H, Sell S, Koch J, Seefried M, Sonnewald S, Daniel C, Winkler TH, Nitschke L. Siglec-H protects from virus-triggered severe systemic autoimmunity. J Exp Med 2016; 213:1627-44. [PMID: 27377589 PMCID: PMC4986536 DOI: 10.1084/jem.20160189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/13/2016] [Indexed: 12/23/2022] Open
Abstract
Siglec-H is a key negative regulator of the type I interferon pathway, reducing the incidence of autoimmunity after viral infection. It is controversial whether virus infections can contribute to the development of autoimmune diseases. Type I interferons (IFNs) are critical antiviral cytokines during virus infections and have also been implicated in the pathogenesis of systemic lupus erythematosus. Type I IFN is mainly produced by plasmacytoid dendritic cells (pDCs). The secretion of type I IFN of pDCs is modulated by Siglec-H, a DAP12-associated receptor on pDCs. In this study, we show that Siglec-H–deficient pDCs produce more of the type I IFN, IFN-α, in vitro and that Siglec-H knockout (KO) mice produce more IFN-α after murine cytomegalovirus (mCMV) infection in vivo. This did not impact control of viral replication. Remarkably, several weeks after a single mCMV infection, Siglec-H KO mice developed a severe form of systemic lupus–like autoimmune disease with strong kidney nephritis. In contrast, uninfected aging Siglec-H KO mice developed a mild form of systemic autoimmunity. The induction of systemic autoimmune disease after virus infection in Siglec-H KO mice was accompanied by a type I IFN signature and fully dependent on type I IFN signaling. These results show that Siglec-H normally serves as a modulator of type I IFN responses after infection with a persistent virus and thereby prevents induction of autoimmune disease.
Collapse
Affiliation(s)
- Heike Schmitt
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabrina Sell
- Nikolaus-Fiebiger-Zentrum, Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julia Koch
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martina Seefried
- Nikolaus-Fiebiger-Zentrum, Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas H Winkler
- Nikolaus-Fiebiger-Zentrum, Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
104
|
Ng CT, Mendoza JL, Garcia KC, Oldstone MBA. Alpha and Beta Type 1 Interferon Signaling: Passage for Diverse Biologic Outcomes. Cell 2016; 164:349-52. [PMID: 26824652 DOI: 10.1016/j.cell.2015.12.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/03/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
Type I interferon (IFN-I) elicits a complex cascade of events in response to microbial infection. Here, we review recent developments illuminating the large number of IFN-I species and describing their unique biologic functions.
Collapse
Affiliation(s)
- Cherie T Ng
- Department of Immunology & Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan L Mendoza
- Department of Molecular & Cellular Physiology and Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular & Cellular Physiology and Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Michael B A Oldstone
- Department of Immunology & Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
105
|
Zhang P, Liu F, Guo F, Zhao Q, Chang J, Guo JT. Characterization of novel hepadnaviral RNA species accumulated in hepatoma cells treated with viral DNA polymerase inhibitors. Antiviral Res 2016; 131:40-8. [PMID: 27083116 DOI: 10.1016/j.antiviral.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
Inhibitors of hepadnaviral DNA polymerases are predicted to inhibit both minus and plus strand of viral DNA synthesis and arrest viral DNA replication at the stage of pregenomic (pg) RNA-containing nucleocapsids. However, analyses of the RNA species of human and duck hepatitis B viruses (HBV and DHBV, respectively) in hepatoma cells treated with viral DNA polymerase inhibitors revealed the genesis of novel RNA species migrating slightly faster than the full-length pgRNA. The DNA polymerase inhibitor-induced accumulation of these RNA species were abolished in the presence of alpha-interferon or HBV nucleocapsid assembly inhibitors. Moreover, they were protected from microccocal nuclease digestion and devoid of a poly-A tail. These characteristics suggest that the novel RNA species are most likely generated from RNase H cleavage of encapsidated pgRNA, after primer translocation and synthesis of the 5' terminal portion of minus strand DNA. In support of this hypothesis, DNA polymerase inhibitor treatment of chicken hepatoma cells transfected with a DHBV genome encoding an RNase H inactive DNA polymerase (E696H) failed to produce such RNA species. Our results thus suggest that the currently available DNA polymerase inhibitors do not efficiently arrest minus strand DNA synthesis at the early stage in hepatocytes. Hence, development of novel antiviral agents that more potently suppress viral DNA synthesis or viral nucleocapsid assembly inhibitors that are mechanistically complementary to the currently available DNA polymerase inhibitors are warranted.
Collapse
Affiliation(s)
- Pinghu Zhang
- Jiangsu Key Laboratory of New Drug Screening & Jiangsu Center for Pharmacodynamics Research and Evaluation & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Fei Liu
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Fang Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Qiong Zhao
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, USA.
| |
Collapse
|
106
|
Paijo J, Döring M, Spanier J, Grabski E, Nooruzzaman M, Schmidt T, Witte G, Messerle M, Hornung V, Kaever V, Kalinke U. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells. PLoS Pathog 2016; 12:e1005546. [PMID: 27058035 PMCID: PMC4825940 DOI: 10.1371/journal.ppat.1005546] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/12/2016] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages.
Collapse
Affiliation(s)
- Jennifer Paijo
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Marius Döring
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Elena Grabski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Mohammed Nooruzzaman
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Tobias Schmidt
- Institute for Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany
| | - Gregor Witte
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Veit Hornung
- Institute for Molecular Medicine, University Hospital, University of Bonn, Bonn, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| |
Collapse
|
107
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
108
|
Gyurkovska V, Ivanovska N. Distinct roles of TNF-related apoptosis-inducing ligand (TRAIL) in viral and bacterial infections: from pathogenesis to pathogen clearance. Inflamm Res 2016; 65:427-37. [PMID: 26943649 DOI: 10.1007/s00011-016-0934-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Apoptotic death of different cells observed during infection is thought to limit overwhelming inflammation in response to microbial challenge. However, the underlying apoptotic death mechanisms have not been well defined. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein belonging to the TNF superfamily, which is involved not only in tumor growth suppression but in infection control and also in the regulation of both innate and adaptive immune responses. FINDINGS In this review, we have summarized data of recent studies on the influence of the TRAIL/TRAIL receptor (TRAIL-R) system on the development of viral and bacterial infections. TRAIL may have a dual function in the immune system being able to kill infected cells and also to participate in the pathogenesis of multiple infections. Moreover, many pathogens have evolved mechanisms to manipulate TRAIL signaling thus increasing pathogen replication. CONCLUSION Present data highlight an essential role for the TRAIL/TRAIL-R system in the regulation and modulation of apoptosis and show that TRAIL has distinct roles in pathogenesis and pathogen elimination. Knowledge of the factors that determine whether TRAIL is helpful or harmful supposes its potential therapeutic implications that are only beginning to be explored.
Collapse
Affiliation(s)
- Valeriya Gyurkovska
- Institute of Microbiology, Department of Immunology, 26 G. Bonchev Str., 1113, Sofia, Bulgaria
| | - Nina Ivanovska
- Institute of Microbiology, Department of Immunology, 26 G. Bonchev Str., 1113, Sofia, Bulgaria.
| |
Collapse
|
109
|
Shah M, Anwar MA, Kim JH, Choi S. Advances in Antiviral Therapies Targeting Toll-like Receptors. Expert Opin Investig Drugs 2016; 25:437-53. [DOI: 10.1517/13543784.2016.1154040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
110
|
Xinxian W, Peng J, Guixiang T, Jinjin W, Xiaocong Z, Junqiang H, Xianle Y, Hong L. Effect of common carp (Cyprinus carpio) TLR9 overexpression on the expression of downstream interferon-associated immune factor mRNAs in epithelioma papulosum cyprini cells. Vet Immunol Immunopathol 2016; 170:47-53. [DOI: 10.1016/j.vetimm.2015.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
111
|
Macal M, Tam MA, Hesser C, Di Domizio J, Leger P, Gilliet M, Zuniga EI. CD28 Deficiency Enhances Type I IFN Production by Murine Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1900-9. [PMID: 26773151 DOI: 10.4049/jimmunol.1501658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
Type I IFNs (IFN-I) are key innate mediators that create a profound antiviral state and orchestrate the activation of almost all immune cells. Plasmacytoid dendritic cells (pDCs) are the most powerful IFN-I-producing cells and play important roles during viral infections, cancer, and autoimmune diseases. By comparing gene expression profiles of murine pDCs and conventional DCs, we found that CD28, a prototypic T cell stimulatory receptor, was highly expressed in pDCs. Strikingly, CD28 acted as a negative regulator of pDC IFN-I production upon TLR stimulation but did not affect pDC survival or maturation. Importantly, cell-intrinsic CD28 expression restrained pDC (and systemic) IFN-I production during in vivo RNA and DNA viral infections, limiting antiviral responses and enhancing viral growth early after exposure. Finally, CD28 also downregulated IFN-I response upon skin injury. Our study identified a new pDC regulatory mechanism by which the same CD28 molecule that promotes stimulation in most cells that express it is co-opted to negatively regulate pDC IFN-I production and limit innate responses.
Collapse
Affiliation(s)
- Monica Macal
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Miguel A Tam
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Charles Hesser
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Jeremy Di Domizio
- Service de Dermatologie et vénéréologie, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, Lausanne CH-1011, Switzerland
| | - Psylvia Leger
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| | - Michel Gilliet
- Service de Dermatologie et vénéréologie, Centre Hospitalier Universitaire Vaudois, University Hospital of Lausanne, Lausanne CH-1011, Switzerland
| | - Elina I Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093; and
| |
Collapse
|
112
|
Thaiss CA, Levy M, Itav S, Elinav E. Integration of Innate Immune Signaling. Trends Immunol 2016; 37:84-101. [PMID: 26755064 DOI: 10.1016/j.it.2015.12.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The last decades of research in innate immunology have revealed a multitude of sensing receptors that evaluate the presence of microorganisms or cellular damage in tissues. In the context of a complex tissue, many such sensing events occur simultaneously. Thus, the downstream pathways need to be integrated to launch an appropriate cellular response, to tailor the magnitude of the reaction to the inciting event, and to terminate it in a manner that avoids immunopathology. Here, we provide a conceptual overview of the crosstalk between innate immune receptors in the initiation of a concerted immune reaction to microbial and endogenous triggers. We classify the known interactions into categories of communication and provide examples of their importance in pathogenic infection.
Collapse
Affiliation(s)
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomik Itav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
113
|
Parikh BA, Piersma SJ, Pak-Wittel MA, Yang L, Schreiber RD, Yokoyama WM. Dual Requirement of Cytokine and Activation Receptor Triggering for Cytotoxic Control of Murine Cytomegalovirus by NK Cells. PLoS Pathog 2015; 11:e1005323. [PMID: 26720279 PMCID: PMC4697817 DOI: 10.1371/journal.ppat.1005323] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022] Open
Abstract
Natural killer (NK) cells play a critical role in controlling murine cytomegalovirus (MCMV) and can mediate both cytokine production and direct cytotoxicity. The NK cell activation receptor, Ly49H, is responsible for genetic resistance to MCMV in C57BL/6 mice. Recognition of the viral m157 protein by Ly49H is sufficient for effective control of MCMV infection. Additionally, during the host response to infection, distinct immune and non-immune cells elaborate a variety of pleiotropic cytokines which have the potential to impact viral pathogenesis, NK cells, and other immune functions, both directly and indirectly. While the effects of various immune deficiencies have been examined for general antiviral phenotypes, their direct effects on Ly49H-dependent MCMV control are poorly understood. To specifically interrogate Ly49H-dependent functions, herein we employed an in vivo viral competition approach to show Ly49H-dependent MCMV control is specifically mediated through cytotoxicity but not IFNγ production. Whereas m157 induced Ly49H-dependent degranulation, efficient cytotoxicity also required either IL-12 or type I interferon (IFN-I) which acted directly on NK cells to produce granzyme B. These studies demonstrate that both of these distinct NK cell-intrinsic mechanisms are integrated for optimal viral control by NK cells. Natural killer (NK) cells play a crucial role in the protection of the host against viruses and in particular herpesvirus infections. Through their activation receptors which recognize surface ligands on target cells, NK cells can mediate direct killing (cytotoxicity) of virus-infected cells and produce their signature cytokine IFNγ, but it is unclear to what extent these effector arms contribute to clearance of murine cytomegalovirus (MCMV) infections. Additionally, NK cells are activated through their cytokine receptors but the interplay between the activation and cytokine receptor pathways has not been elucidated. Herein we devised a viral competition assay that allowed direct evaluation of the requirements for NK cell mediated MCMV control. We found that cytotoxicity is the main effector mechanism by which NK cells control virus infection through activation receptors. Complemented by in vitro assays, we delineated the requirements for NK cell cytotoxicity and identified a 2-step mechanism for NK-mediated cytotoxicity. Firstly, NK cells require cytokine signals for the accumulation of cytotolytic proteins. Secondly, direct target cell recognition results in release of the cytolytic cargo and lysis of virus-infected cells. Our study demonstrates the integration of NK activation and cytokine receptor signals are required for effective viral control.
Collapse
Affiliation(s)
- Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melissa A. Pak-Wittel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
114
|
Kim Y, Clements DR, Sterea AM, Jang HW, Gujar SA, Lee PWK. Dendritic Cells in Oncolytic Virus-Based Anti-Cancer Therapy. Viruses 2015; 7:6506-25. [PMID: 26690204 PMCID: PMC4690876 DOI: 10.3390/v7122953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that have a notable role in the initiation and regulation of innate and adaptive immune responses. In the context of cancer, appropriately activated DCs can induce anti-tumor immunity by activating innate immune cells and tumor-specific lymphocytes that target cancer cells. However, the tumor microenvironment (TME) imposes different mechanisms that facilitate the impairment of DC functions, such as inefficient antigen presentation or polarization into immunosuppressive DCs. These tumor-associated DCs thus fail to initiate tumor-specific immunity, and indirectly support tumor progression. Hence, there is increasing interest in identifying interventions that can overturn DC impairment within the TME. Many reports thus far have studied oncolytic viruses (OVs), viruses that preferentially target and kill cancer cells, for their capacity to enhance DC-mediated anti-tumor effects. Herein, we describe the general characteristics of DCs, focusing on their role in innate and adaptive immunity in the context of the TME. We also examine how DC-OV interaction affects DC recruitment, OV delivery, and anti-tumor immunity activation. Understanding these roles of DCs in the TME and OV infection is critical in devising strategies to further harness the anti-tumor effects of both DCs and OVs, ultimately enhancing the efficacy of OV-based oncotherapy.
Collapse
Affiliation(s)
- Youra Kim
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Derek R Clements
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Andra M Sterea
- Department of Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Hyun Woo Jang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
- Department of Strategy and Organizational Performance, IWK Health Centre, Halifax, NS B3K 6R8, Canada.
| | - Patrick W K Lee
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
115
|
Brennan TV, Lin L, Brandstadter JD, Rendell VR, Dredge K, Huang X, Yang Y. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation. J Clin Invest 2015; 126:207-19. [PMID: 26649979 DOI: 10.1172/jci76566] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/03/2015] [Indexed: 01/04/2023] Open
Abstract
Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies.
Collapse
|
116
|
Gene/environment interactions in the pathogenesis of autoimmunity: New insights on the role of Toll-like receptors. Autoimmun Rev 2015; 14:971-83. [DOI: 10.1016/j.autrev.2015.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022]
|
117
|
Abstract
Detecting pathogenic DNA by intracellular receptors termed "sensors" is critical toward galvanizing host immune responses and eliminating microbial infections. Emerging evidence has challenged the dogma that sensing of viral DNA occurs exclusively in sub-cellular compartments normally devoid of cellular DNA. The interferon-inducible protein IFI16 was shown to bind nuclear viral DNA and initiate immune signaling, culminating in antiviral cytokine secretion. Here, we review the newly characterized nucleus-originating immune signaling pathways, their links to other crucial host defenses, and unique mechanisms by which viruses suppress their functions. We frame these findings in the context of human pathologies associated with nuclear replicating DNA viruses.
Collapse
Affiliation(s)
- Benjamin A Diner
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Krystal K Lum
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Ileana M Cristea
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
118
|
Abstract
The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.
Collapse
Affiliation(s)
- Volker Fensterl
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| | - Saurabh Chattopadhyay
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| | - Ganes C Sen
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| |
Collapse
|
119
|
Type I Interferon Released by Myeloid Dendritic Cells Reversibly Impairs Cytomegalovirus Replication by Inhibiting Immediate Early Gene Expression. J Virol 2015. [PMID: 26202227 DOI: 10.1128/jvi.01459-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cytomegalovirus (CMV) is a ubiquitous beta-herpesvirus whose reactivation from latency is a major cause of morbidity and mortality in immunocompromised hosts. Mouse CMV (MCMV) is a well-established model virus to study virus-host interactions. We showed in this study that the CD8-independent antiviral function of myeloid dendritic cells (mDC) is biologically relevant for the inhibition of MCMV replication in vivo and in vitro. In vivo ablation of CD11c(+) DC resulted in higher viral titers and increased susceptibility to MCMV infection in the first 3 days postinfection. We developed in vitro coculture systems in which we cocultivated MCMV-infected endothelial cells or fibroblasts with T cell subsets and/or dendritic cells. While CD8 T cells failed to control MCMV replication, bone marrow-derived mDC reduced viral titers by a factor of up to 10,000. Contact of mDC with the infected endothelial cells was crucial for their antiviral activity. Soluble factors secreted by the mDC blocked MCMV replication at the level of immediate early (IE) gene expression, yet the viral lytic cycle reinitiated once the mDC were removed from the cells. On the other hand, the mDC did not impair MCMV replication in cells deficient for the interferon (IFN) alpha/beta receptor (IFNAR), arguing that type I interferons were critical for viral control by mDC. In light of our recent observation that type I IFN is sufficient for the induction of latency immediately upon infection, our results imply that IFN secreted by mDC may play an important role in the establishment of CMV latency. IMPORTANCE Numerous studies have focused on the infection of DC with cytomegaloviruses and on the establishment of latency within them. However, almost all of these studies have relied on the infection of DC monocultures in vitro, whereas DC are just one among many cell types present in an infection site in vivo. To mimic this aspect of the in vivo situation, we cocultured DC with infected endothelial cells or fibroblasts. Our data suggest that direct contact with virus-infected endothelial cells activates CD11c(+) DC, which leads to reversible suppression of MCMV replication at the level of IE gene expression by a mechanism that depends on type I IFN. The effect matches the formal definition of viral latency. Therefore, our data argue that the interplay of dendritic cells and infected neighboring cells might play an important role in the establishment of viral latency.
Collapse
|
120
|
Cocita C, Guiton R, Bessou G, Chasson L, Boyron M, Crozat K, Dalod M. Natural Killer Cell Sensing of Infected Cells Compensates for MyD88 Deficiency but Not IFN-I Activity in Resistance to Mouse Cytomegalovirus. PLoS Pathog 2015; 11:e1004897. [PMID: 25954804 PMCID: PMC4425567 DOI: 10.1371/journal.ppat.1004897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
In mice, plasmacytoid dendritic cells (pDC) and natural killer (NK) cells both contribute to resistance to systemic infections with herpes viruses including mouse Cytomegalovirus (MCMV). pDCs are the major source of type I IFN (IFN-I) during MCMV infection. This response requires pDC-intrinsic MyD88-dependent signaling by Toll-Like Receptors 7 and 9. Provided that they express appropriate recognition receptors such as Ly49H, NK cells can directly sense and kill MCMV-infected cells. The loss of any one of these responses increases susceptibility to infection. However, the relative importance of these antiviral immune responses and how they are related remain unclear. In humans, while IFN-I responses are essential, MyD88 is dispensable for antiviral immunity. Hence, a higher redundancy has been proposed in the mechanisms promoting protective immune responses against systemic infections by herpes viruses during natural infections in humans. It has been assumed, but not proven, that mice fail to mount protective MyD88-independent IFN-I responses. In humans, the mechanism that compensates MyD88 deficiency has not been elucidated. To address these issues, we compared resistance to MCMV infection and immune responses between mouse strains deficient for MyD88, the IFN-I receptor and/or Ly49H. We show that selective depletion of pDC or genetic deficiencies for MyD88 or TLR9 drastically decreased production of IFN-I, but not the protective antiviral responses. Moreover, MyD88, but not IFN-I receptor, deficiency could largely be compensated by Ly49H-mediated antiviral NK cell responses. Thus, contrary to the current dogma but consistent with the situation in humans, we conclude that, in mice, in our experimental settings, MyD88 is redundant for IFN-I responses and overall defense against a systemic herpes virus infection. Moreover, we identified direct NK cell sensing of infected cells as one mechanism able to compensate for MyD88 deficiency in mice. Similar mechanisms likely contribute to protect MyD88- or IRAK4-deficient patients from viral infections. Type I interferons (IFN-I) are innate cytokines crucial for vertebrate antiviral defenses. IFN-I exert antiviral effector functions and orchestrate antiviral immunity. IFN-I are induced early after infection, upon sensing of viral particles or infected cells by immune receptors. Intracellular Toll-like receptors (TLR) are selectively expressed in specialized immune cell types such as plasmacytoid dendritic cells (pDC), enabling them to copiously produce IFN-I upon detection of engulfed viral nucleic acids. pDC or intracellular TLR have been reported to be crucial for resistance to experimental infections with many viruses in mice but dispensable for resistance to natural infections in humans. Our aim was to investigate this puzzling difference. Mice deficient for TLR activity mounted strong IFN-I responses despite producing very low IFN-I levels and controlled the infection by a moderate dose of murine cytomegalovirus much better than mice deficient for IFN-I responses. Deficient TLR responses could be compensated by direct recognition of infected cells by natural killer cells. Hence, we identified experimental conditions in mice mimicking the lack of requirement of TLR functions for antiviral defense observed in humans. We used these experimental models to advance our basic understanding of antiviral immunity in a way that might help improve treatments for patients.
Collapse
MESH Headings
- Animals
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Gene Expression Profiling
- Gene Expression Regulation
- Herpesviridae Infections/blood
- Herpesviridae Infections/immunology
- Herpesviridae Infections/metabolism
- Herpesviridae Infections/virology
- Host-Pathogen Interactions
- Immunity, Innate
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/metabolism
- Immunologic Deficiency Syndromes/virology
- Interferon Type I/blood
- Interferon Type I/metabolism
- Interleukin-12/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Mutant Strains
- Muromegalovirus/immunology
- Muromegalovirus/physiology
- Myeloid Differentiation Factor 88/deficiency
- Myeloid Differentiation Factor 88/genetics
- Myeloid Differentiation Factor 88/metabolism
- NK Cell Lectin-Like Receptor Subfamily A/deficiency
- NK Cell Lectin-Like Receptor Subfamily A/genetics
- NK Cell Lectin-Like Receptor Subfamily A/metabolism
- Primary Immunodeficiency Diseases
- Receptor, Interferon alpha-beta/agonists
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- Specific Pathogen-Free Organisms
- Spleen/immunology
- Spleen/metabolism
- Spleen/virology
- Toll-Like Receptor 9/deficiency
- Toll-Like Receptor 9/genetics
- Toll-Like Receptor 9/metabolism
Collapse
Affiliation(s)
- Clément Cocita
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Rachel Guiton
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Gilles Bessou
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Lionel Chasson
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Marilyn Boyron
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Karine Crozat
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Marc Dalod
- Centre d’Immunologie de Marseille-Luminy, UNIV UM2, Aix Marseille Université, Parc Scientifique et Technologique de Luminy, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail:
| |
Collapse
|
121
|
Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates. Viruses 2015; 7:2308-20. [PMID: 25955106 PMCID: PMC4452907 DOI: 10.3390/v7052308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis.
Collapse
|
122
|
Wang PF, Xiong XY, Chen J, Wang YC, Duan W, Yang QW. Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment. J Neuroinflammation 2015; 12:80. [PMID: 25928750 PMCID: PMC4422156 DOI: 10.1186/s12974-015-0301-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/13/2015] [Indexed: 01/13/2023] Open
Abstract
Increasing evidence suggests that toll-like receptors (TLRs) play an important role in cerebral ischemia-reperfusion injury. The endogenous ligands released from ischemic neurons activate the TLR signaling pathway, resulting in the production of a large number of inflammatory cytokines, thereby causing secondary inflammation damage following cerebral ischemia. However, the preconditioning for minor cerebral ischemia or the preconditioning with TLR ligands can reduce cerebral ischemic injury by regulating the TLR signaling pathway following ischemia in brain tissue (mainly, the inhibition of the TLR4/NF-κB signaling pathway and the enhancement of the interferon regulatory factor-dependent signaling), resulting in TLR ischemic tolerance. Additionally, recent studies found that postconditioning with TLR ligands after cerebral ischemia can also reduce ischemic damage through the regulation of the TLR signaling pathway, showing a significant therapeutic effect against cerebral ischemia. These studies suggest that the ischemic tolerance mediated by TLRs can serve as an important target for the prevention and treatment of cerebral ischemia. On the basis of describing the function and mechanism of TLRs in mediating cerebral ischemic damage, this review focuses on the mechanisms of cerebral ischemic tolerance induced by the preconditioning and postconditioning of TLRs and discusses the clinical application of TLRs for ischemic tolerance.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China. .,Department of Neurology, Weihai municipal Hospital, Weihai, 264200, China.
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Jing Chen
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Yan-Chun Wang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital & the Second Affiliated Hospital, the Third Military Medical University, No. 183, Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|
123
|
Biron CA, Tarrio ML. Immunoregulatory cytokine networks: 60 years of learning from murine cytomegalovirus. Med Microbiol Immunol 2015; 204:345-54. [PMID: 25850988 DOI: 10.1007/s00430-015-0412-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Innate immunity defends against infection but also mediates immunoregulatory effects shaping innate and adaptive responses. Studies of murine cytomegalovirus (MCMV) infections have helped elucidate the mechanisms inducing, as well as the elicited soluble and cellular networks contributing to, innate immunity. Specialized receptors are engaged by infection-induced structures to stimulate production of key innate cytokines. These then stimulate cytokine and cellular responses such as activation of natural killer (NK) cells to mediate elevated killing by type 1 interferon (IFN) and/or to produce the pro-inflammatory and antiviral cytokine IFN-γ by interleukin 12 (IL-12). An inter-systemic loop, with IL-6 inducing glucocorticoid release, negatively regulates these early cytokine responses. As infections advance into periods of overlapping innate and adaptive responses, however, the cells are intrinsically conditioned to modify the biological effects of exposure to individual cytokines. Some pathways are turned off to inhibit an existing, whereas others are broadened for acquisition of a new, response function. Remarkably, extended NK cell proliferation during MCMV infection is associated with epigenetic modifications shifting the state of the inhibitory cytokine IL-10 gene from closed to open and results in their becoming equipped to produce this cytokine. When induced, NK cell IL-10 negatively regulates the magnitude of adaptive responses to protect against immune pathology. Thus, innate immunoregulatory cytokine networks are integral to pro-inflammatory and defense functions, but responding cells have the flexibility to undergo cell intrinsic conditioning with changing network characteristics to result in a new negative immunoregulatory function, and consequently, both promote beneficial and limit detrimental immune responses.
Collapse
Affiliation(s)
- Christine A Biron
- Department of Molecular Microbiology and Immunology, The Division of Biology and Medicine and The Warren Alpert Medical School, Brown University, 171 Meeting Street, Providence, RI, 02912, USA,
| | | |
Collapse
|
124
|
Shahrakyvahed A, Sanchooli J, Sanadgol N, Arababadi MK, Kennedy D. TLR9: an important molecule in the fight against hepatitis B virus. Postgrad Med J 2015; 90:396-401. [PMID: 24942353 DOI: 10.1136/postgradmedj-2013-132309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is the most prevalent infectious agent that can induce severe liver disease. Patients infected with long-term HBV, including chronic, asymptomatic and occult forms, cannot clear HBV from infected hepatocytes completely. It is not clear why some people can clear the infection while others cannot. Furthermore, the main mechanisms responsible for progression of the infections are not fully understood. It has been hypothesised that differences in genetic and immunological parameters between patients and subjects who successfully clear HBV infections are responsible for inducing the long-term forms of the infection. Previous investigations showed that Toll-like receptors (TLRs) play important roles in immune responses, especially innate immunity, against viral infections, including hepatitis B. TLR9 detects intracellular viral dsDNA, which results in the activation of an immune response against HBV. However, defects in this system may result in an attenuated response ultimately leading to long-term HBV infections. Targeting the defects in TLR9 or reactivating the downstream pathways that are normally switched on by TLR9 in response to HBV infection is a new approach to the treatment of long-term HBV infection. However, the pathways and defects seen in patients with long-term HBV need to be thoroughly explored before therapeutics can be applied in the clinical setting. Furthermore, the apparently multigenic nature of long-term HBV infection suggests that treatment of patients may need to be personalised.
Collapse
Affiliation(s)
- Aziz Shahrakyvahed
- Department of Nursing, Faculty of Nursing and Midwifery, Zabol University of Medical Sciences, Zabol, Iran
| | - Javad Sanchooli
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran Faculty of Pharmacy and Pharmaceutical Science Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Derek Kennedy
- School of Natural Sciences, Eskitis Institute for Drug Discovery, Griffith University Nathan, Queensland, Australia
| |
Collapse
|
125
|
Brinkmann MM, Dağ F, Hengel H, Messerle M, Kalinke U, Čičin-Šain L. Cytomegalovirus immune evasion of myeloid lineage cells. Med Microbiol Immunol 2015; 204:367-82. [PMID: 25776081 DOI: 10.1007/s00430-015-0403-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Abstract
Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | | | | | | | | | | |
Collapse
|
126
|
Abstract
Virus genomes are condensed and packaged inside stable proteinaceous capsids that serve to protect them during transit from one cell or host organism, to the next. During virus entry, capsid shells are primed and disassembled in a complex, tightly-regulated, multi-step process termed uncoating. Here we compare the uncoating-programs of DNA viruses of the pox-, herpes-, adeno-, polyoma-, and papillomavirus families. Highlighting the chemical and mechanical cues virus capsids respond to, we review the conformational changes that occur during stepwise disassembly of virus capsids and how these culminate in the release of viral genomes at the right time and cellular location to assure successful replication.
Collapse
|
127
|
CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog 2015; 11:e1004641. [PMID: 25654642 PMCID: PMC4412112 DOI: 10.1371/journal.ppat.1004641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
CD200 receptor (CD200R) negatively regulates peripheral and mucosal innate immune responses. Viruses, including herpesviruses, have acquired functional CD200 orthologs, implying that viral exploitation of this pathway is evolutionary advantageous. However, the role that CD200R signaling plays during herpesvirus infection in vivo requires clarification. Utilizing the murine cytomegalovirus (MCMV) model, we demonstrate that CD200R facilitates virus persistence within mucosal tissue. Specifically, MCMV infection of CD200R-deficient mice (CD200R(-/-)) elicited heightened mucosal virus-specific CD4 T cell responses that restricted virus persistence in the salivary glands. CD200R did not directly inhibit lymphocyte effector function. Instead, CD200R(-/-) mice exhibited enhanced APC accumulation that in the mucosa was a consequence of elevated cellular proliferation. Although MCMV does not encode an obvious CD200 homolog, productive replication in macrophages induced expression of cellular CD200. CD200 from hematopoietic and non-hematopoietic cells contributed independently to suppression of antiviral control in vivo. These results highlight the CD200-CD200R pathway as an important regulator of antiviral immunity during cytomegalovirus infection that is exploited by MCMV to establish chronicity within mucosal tissue.
Collapse
|
128
|
Hcmv-miR-UL112 attenuates NK cell activity by inhibition type I interferon secretion. Immunol Lett 2015; 163:151-6. [DOI: 10.1016/j.imlet.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 01/02/2023]
|
129
|
Mathias CB, Guernsey LA, Zammit D, Brammer C, Wu CA, Thrall RS, Aguila HL. Pro-inflammatory role of natural killer cells in the development of allergic airway disease. Clin Exp Allergy 2014; 44:589-601. [PMID: 24397722 DOI: 10.1111/cea.12271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/25/2013] [Accepted: 12/17/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural Killer (NK) cells have been implicated in the development of allergic airway inflammation. However, the in vivo role of NK cells has not been firmly established due to the lack of animal models with selective deficiencies in NK cells. OBJECTIVE To determine the specific contribution of NK cells in a murine model of allergic airway disease (AAD). METHODS The role of NK cells in AAD was studied using NK-deficient (NKD) mice, perforin(-/-) mice, and mice depleted of Ly49A/D/G(+) NK cell subsets in an ovalbumin-induced model of allergic airway disease (OVA-AAD). RESULTS Induction of OVA-AAD in C57BL/6 wild-type (WT) mice resulted in the expansion of airway NK cells and the development of pronounced airway eosinophilia. In the absence of NK cells or specific subsets of NK cells, either in NKD mice, or after the depletion of Ly49A/D/G(+) NK cells, the development of OVA-AAD was significantly impaired as seen by decreased airway inflammation and eosinophilia, decreased secretion of the Th2 cytokines IL-4, IL-5 and IL-13 and diminished OVA-specific antibody production. Furthermore, while OVA-exposure induced a dramatic expansion of dendritic cells (DCs) in WT mice, their induction was significantly attenuated in NKD mice. Development of OVA-AAD in perforin(-/-) mice suggested that the proinflammatory role of NK cells is not dependent on perforin-mediated cytotoxicity. Lastly, induction of allergic disease by OVA-specific CD4 T cells from WT but not NK-depleted or NKD mice in RAG(-/-) recipients, demonstrates that NK cells are essential for T cell priming. CONCLUSIONS AND CLINICAL RELEVANCE Our data demonstrate that conventional NK cells play an important and distinct role in the development of AAD. The presence of activated NK cells has been noted in patients with asthma. Understanding the mechanisms by which NK cells regulate allergic disease is therefore an important component of treatment approaches.
Collapse
Affiliation(s)
- C B Mathias
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA; Department of Pharmaceutical and Administrative Sciences, Western New England University, Springfield, MA, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Tahoori MT, Pourfathollah AA, Soleimani M, Vasheghani-Farahani E, Mohammadzadeh A, Amari A, Hashemi SM, Mossahebi-Mohammadi M. Fibroblasts feeder niche and Flt3 Ligand as a novel inducer of plasmacytoid dendritic cells development in vitro. Int Immunopharmacol 2014; 24:474-480. [PMID: 25445955 DOI: 10.1016/j.intimp.2014.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Plasmacytoid dendritic cell (pDC), plays central role in antiviral immunity. The aim of this study was to assess the effect of Flt3 ligand (FL) alone or with L929 fibroblast feeder or L929 conditioned media on differentiation of mouse bone marrow (BM) cells into pDC in vitro. Murine BM cells were cultured with FL or with L929 or conditioned media for 9days. The differentiated cells were analyzed using flow cytometry for PDCA-1, B220 and CXCR4. The relative expression of Stat3, CXCR4, CXCR7, IFN-β, TGF-β and Runx2 in differentiated cells determined by real time PCR. The development of pDC showed up to 19% increase after co-culture of BM cells with fibroblast feeder. Upregulation of Stat3, Runx2 and CXCR4 due to the presence of fibroblast feeder with FL in culture results in improved pDC development. Furthermore, 30% L929 supernatant along with Flt3 ligand was able to derive pDC up to 8.9% in comparison with FL alone, which was 6.6% in vitro. Thus, for the first time we introduced L929 fibroblast feeder as a niche producer of M-CSF and probably other growth factors and chemokines, which promotes the development of pDC in vitro along with FL, similar to in vivo niche.
Collapse
Affiliation(s)
- Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Soleimani
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran Iran; Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | - Adel Mohammadzadeh
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Afshin Amari
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
131
|
Mutnal MB, Hu S, Schachtele SJ, Lokensgard JR. Infiltrating regulatory B cells control neuroinflammation following viral brain infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:6070-80. [PMID: 25385825 DOI: 10.4049/jimmunol.1400654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated the existence of a subset of B lymphocytes, regulatory B cells (Bregs), which modulate immune function. In this study, in vivo and in vitro experiments were undertaken to elucidate the role of these Bregs in controlling neuroinflammation following viral brain infection. We used multicolor flow cytometry to phenotype lymphocyte subpopulations infiltrating the brain, along with in vitro cocultures to assess their anti-inflammatory and immunoregulatory roles. This distinctive subset of CD19(+)CD1d(hi)CD5(+) B cells was found to infiltrate the brains of chronically infected animals, reaching highest levels at the latest time point tested (30 d postinfection). B cell-deficient Jh(-/-) mice were found to develop exacerbated neuroimmune responses as measured by enhanced accumulation and/or retention of CD8(+) T cells within the brain, as well as increased levels of microglial activation (MHC class II). Conversely, levels of Foxp3(+) regulatory T cells were found to be significantly lower in Jh(-/-) mice when compared with wild-type (Wt) animals. Further experiments showed that in vitro-generated IL-10-secreting Bregs (B10) were able to inhibit cytokine responses from microglia following stimulation with viral Ags. These in vitro-generated B10 cells were also found to promote proliferation of regulatory T cells in coculture studies. Finally, gain-of-function experiments demonstrated that reconstitution of Wt B cells into Jh(-/-) mice restored neuroimmune responses to levels exhibited by infected Wt mice. Taken together, these results demonstrate that Bregs modulate T lymphocyte as well as microglial cell responses within the infected brain and promote CD4(+)Foxp3(+) T cell proliferation in vitro.
Collapse
Affiliation(s)
- Manohar B Mutnal
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Shuxian Hu
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Scott J Schachtele
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - James R Lokensgard
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
132
|
Toll-like receptor 6 V327M polymorphism is associated with an increased risk of Klebsiella pneumoniae infection. Pediatr Infect Dis J 2014; 33:e310-5. [PMID: 24797996 DOI: 10.1097/inf.0000000000000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Klebsiella pneumoniae is a common cause of nosocomial pneumonia, especially in children. Toll-like receptors plays an important role in defense against this pathogen. The impact of human TLR6 polymorphisms on susceptibility to K. pneumoniae infection is poorly understood. The aim of the present work was to determine whether single nucleotide polymorphisms in TLR6 are associated with altered immune responses to K. pneumoniae. METHODS The TLR6 coding region was sequenced in 126 K. pneumoniae culture-positive patients and 142 hospitalized K. pneumoniae culture-negative controls. RESULTS The frequency of V327M polymorphism was found to be significantly higher in patients than that in controls (16.7% vs. 7.7%). In vitro studies showed that V327M polymorphism did not impair TLR6 expression in transfected HEK 293T cells. Further studies demonstrated that V327M polymorphism was associated with increased IL-8 mRNA expression in transfected HEK 293T cells when stimulated with K. pneumoniae and the specific ligand for TLR2/TLR6 heterodimers known as Pam2CSK4. The present data showed V327M polymorphism to be associated with increased apoptosis of HEK 293T cells when challenged with K. pneumoniae. CONCLUSIONS Taken together, these data indicated that TLR6 V327M may be involved in mediating deleterious inflammatory responses and modulating host susceptibility to K. pneumoniae. These results provide new insight into the pathophysiologic role of TLR6 V327M in the innate immune response to bacterial infection in human.
Collapse
|
133
|
Tomasello E, Pollet E, Vu Manh TP, Uzé G, Dalod M. Harnessing Mechanistic Knowledge on Beneficial Versus Deleterious IFN-I Effects to Design Innovative Immunotherapies Targeting Cytokine Activity to Specific Cell Types. Front Immunol 2014; 5:526. [PMID: 25400632 PMCID: PMC4214202 DOI: 10.3389/fimmu.2014.00526] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFN-I) were identified over 50 years ago as cytokines critical for host defense against viral infections. IFN-I promote anti-viral defense through two main mechanisms. First, IFN-I directly reinforce or induce de novo in potentially all cells the expression of effector molecules of intrinsic anti-viral immunity. Second, IFN-I orchestrate innate and adaptive anti-viral immunity. However, IFN-I responses can be deleterious for the host in a number of circumstances, including secondary bacterial or fungal infections, several autoimmune diseases, and, paradoxically, certain chronic viral infections. We will review the proposed nature of protective versus deleterious IFN-I responses in selected diseases. Emphasis will be put on the potentially deleterious functions of IFN-I in human immunodeficiency virus type 1 (HIV-1) infection, and on the respective roles of IFN-I and IFN-III in promoting resolution of hepatitis C virus (HCV) infection. We will then discuss how the balance between beneficial versus deleterious IFN-I responses is modulated by several key parameters including (i) the subtypes and dose of IFN-I produced, (ii) the cell types affected by IFN-I, and (iii) the source and timing of IFN-I production. Finally, we will speculate how integration of this knowledge combined with advanced biochemical manipulation of the activity of the cytokines should allow designing innovative immunotherapeutic treatments in patients. Specifically, we will discuss how induction or blockade of specific IFN-I responses in targeted cell types could promote the beneficial functions of IFN-I and/or dampen their deleterious effects, in a manner adapted to each disease.
Collapse
Affiliation(s)
- Elena Tomasello
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Emeline Pollet
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Thien-Phong Vu Manh
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Gilles Uzé
- UMR 5235, Centre National de la Recherche Scientifique (CNRS), University Montpellier II , Montpellier , France
| | - Marc Dalod
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| |
Collapse
|
134
|
Del Prete A, Luganini A, Scutera S, Rossi S, Anselmo A, Greco D, Landolfo S, Badolato R, Gribaudo G, Sozzani S, Musso T. Interferon-α production by plasmacytoid dendritic cells is dispensable for an effective anti-cytomegalovirus response in adaptor protein-3-deficient mice. J Interferon Cytokine Res 2014; 35:232-8. [PMID: 25333950 DOI: 10.1089/jir.2013.0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adaptor protein-3 (AP-3) is a heterotetrameric complex, which regulates vesicular trafficking. Mutations of the β3A subunit cause the Hermansky-Pudlak syndrome type 2 (HPS-2), a rare genetic disease characterized by albinism, platelet defects, and recurrent infections. Likewise, pearl mice, which lack functional AP-3, show several HPS-2 defects. The AP-3 absence results in defective toll-like receptor trafficking and signaling in dendritic cells (DC), but its effect on the efficiency of the in vivo antiviral response is unclear. We evaluated the impact of AP-3 deficiency on the distribution of DC subsets, interferon (IFN) production, and the susceptibility to murine cytomegalovirus (MCMV) infection. Pearl mice showed a distribution and frequency of conventional (cDC) and plasmacytoid DC (pDC) similar to that of wild-type mice both before and after MCMV infection. Moreover, pearl mice controlled MCMV infection even at high virus doses and showed a normal production of IFN-α. Since pDC, but not cDC, from pearl mice showed an impaired IFN-α and tumor necrosis factor-α production in response to prototypic DNA (MCMV and Herpes Simplex virus) or RNA (Vesicular Stomatitis virus) viruses in vitro, it is likely that MCMV infection can be controlled in vivo independently of an efficient production of IFN-α by pDC, and that the AP-3 complex has a minimal impact on protective antiviral responses.
Collapse
Affiliation(s)
- Annalisa Del Prete
- 1 Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Priyathilaka TT, Elvitigala DAS, Whang I, Lim BS, Jeong HB, Yeo SY, Choi CY, Lee J. Molecular characterization and transcriptional analysis of non-mammalian type Toll like receptor (TLR21) from rock bream (Oplegnathus fasciatus). Gene 2014; 553:105-16. [PMID: 25300254 DOI: 10.1016/j.gene.2014.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 01/02/2023]
Abstract
Toll-like receptors (TLRs) are a large family of pattern recognition receptors, which are involved in triggering host immune responses against various pathogens by detecting their evolutionarily conserved pathogen associated molecular patterns (PAMPs). TLR21 is a non-mammalian type TLR, which recognizes unmethylated CpG DNA, and is considered as a functional homolog of mammalian TLR9. In this study, we attempted to identify and characterize a novel TLR21 counterpart from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at molecular level. The complete coding sequence of RbTLR21 was 2919bp in length, which encodes a polypeptide of 973 amino acids with a predicted molecular mass of 112kDa and a theoretical isoelectric point of 8.6. The structure of the deduced RbTLR21 protein is similar to that of the members of typical TLR family, and includes the ectodomain, which consists of 16 leucine rich repeats (LRRs), a transmembrane domain, and a cytoplasmic Toll/interleukin-1 receptor (TIR) domain. According to the pairwise sequence analysis data, RbTLR21 was homologous to that of the orange-spotted grouper (Epinephelus coioides) with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 is closely related to E. coioides TLR21. The RbTLR21 was ubiquitously expressed in all the tissues tested, but the highest expression was found in spleen. Additionally, upon stimulation with Streptococcus iniae, rock bream iridovirus (RBIV), and Edwardsiella tarda, RbTLR21 mRNA was significantly up-regulated in spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed an ortholog of the TLR21 family and may be important in mounting host immune responses against pathogenic infections.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bong-Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Hyung-Bok Jeong
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Sang-Yeob Yeo
- Department of Biotechnology, Division of Applied Chemistry & Biotechnology, Hanbat National University, Daejeon 305-719, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
136
|
M27 expressed by cytomegalovirus counteracts effective type I interferon induction of myeloid cells but not of plasmacytoid dendritic cells. J Virol 2014; 88:13638-50. [PMID: 25231302 DOI: 10.1128/jvi.00216-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED In healthy individuals, the functional immune system effectively confines human cytomegalovirus (CMV) replication, while viral immune evasion and persistence preclude sterile immunity. Mouse CMV (MCMV) is a well-established model to study the delicate CMV-host balance. Effective control of MCMV infection depends on the induction of protective type I interferon (IFN-I) responses. Nevertheless, it is unclear whether in professional antigen-presenting cell subsets MCMV-encoded evasins inhibit the induction of IFN-I responses. Upon MCMV treatment, enhanced expression of MCMV immediate-early and early proteins was detected in bone marrow cultures of macrophages and myeloid dendritic cells compared with plasmacytoid dendritic cell cultures, whereas plasmacytoid dendritic cells mounted more vigorous IFN-I responses. Experiments with Toll-like receptor (TLR)- and/or RIG-I like helicase (RLH)-deficient cell subsets revealed that upon MCMV treatment of myeloid cells, IFN-I responses were triggered independently of TLR and RLH signaling, whereas in plasmacytoid dendritic cells, IFN-I induction was strictly TLR dependent. Macrophages and myeloid dendritic cells treated with either UV-inactivated MCMV or live MCMV that lacked the STAT2 antagonist M27 mounted significantly higher IFN-I responses than cells treated with live wild-type MCMV. In contrast, plasmacytoid dendritic cells responded similarly to UV-inactivated and live MCMV. These experiments illustrated that M27 not only inhibited IFN-I-mediated receptor signaling, but also evaded the induction of IFN responses in myeloid dendritic cells. Furthermore, we found that additional MCMV-encoded evasins were needed to efficiently shut off IFN-I responses of macrophages, but not of myeloid dendritic cells, thus further elucidating the subtle adjustment of the host-pathogen balance. IMPORTANCE MCMV may induce IFN-I responses in fibroblasts and epithelial cells, as well as in antigen-presenting cell subsets. We focused on the analysis of IFN-I responses of antigen-presenting cell subsets, including plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, which are all triggered by MCMV to mount IFN-I responses. Interestingly, myeloid dendritic cells and macrophages, but not plasmacytoid dendritic cells, are readily MCMV infected and support viral gene expression. As expected from previous studies, plasmacytoid dendritic cells sense MCMV Toll-like receptor 9 (TLR9) dependently, whereas in myeloid cells, IFN-I induction is entirely TLR and RLH independent. MCMV-encoded M27 does not impair the IFN-I induction of plasmacytoid dendritic cells, while in myeloid dendritic cells, it reduces IFN-I responses. In macrophages, M27 plus other, not yet identified evasins profoundly inhibit the induction of IFN-I responses. Collectively, these results illustrate that MCMV has evolved diverse mechanisms to differentially modulate IFN-I responses in single immune cell subsets.
Collapse
|
137
|
Kang YJ, Choi SH, Kim KH. Preventive and therapeutic effects of auxotrophic Edwardsiella tarda mutant harboring CpG 1668 motif-enriched plasmids against scuticociliatosis in olive flounder (Paralichthys olivaceus). Exp Parasitol 2014; 144:34-8. [DOI: 10.1016/j.exppara.2014.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/03/2014] [Indexed: 01/22/2023]
|
138
|
Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, Blanco JC. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014; 9:811-829. [PMID: 25620999 DOI: 10.2217/fvl.14.70] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.
Collapse
Affiliation(s)
- Mira C Patel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Kari Ann Shirey
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Alfredo Garzino-Demo
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA ; Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
139
|
Wang JQ, Jeelall YS, Ferguson LL, Horikawa K. Toll-Like Receptors and Cancer: MYD88 Mutation and Inflammation. Front Immunol 2014; 5:367. [PMID: 25132836 PMCID: PMC4116802 DOI: 10.3389/fimmu.2014.00367] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/16/2014] [Indexed: 01/05/2023] Open
Abstract
Pattern recognition receptors (PRRs) expressed on immune cells are crucial for the early detection of invading pathogens, in initiating early innate immune response and in orchestrating the adaptive immune response. PRRs are activated by specific pathogen-associated molecular patterns that are present in pathogenic microbes or nucleic acids of viruses or bacteria. However, inappropriate activation of these PRRs, such as the Toll-like receptors (TLRs), due to genetic lesions or chronic inflammation has been demonstrated to be a major cause of many hematological malignancies. Gain-of-function mutations in the TLR adaptor protein MYD88 found in 39% of the activated B cell type of diffuse large B cell lymphomas and almost 100% of Waldenström’s macroglobulinemia further highlight the involvement of TLRs in these malignancies. MYD88 mutations result in the chronic activation of TLR signaling pathways, thus the constitutive activation of the transcription factor NFκB to promote cell survival and proliferation. These recent insights into TLR pathway driven malignancies warrant the need for a better understanding of TLRs in cancers and the development of novel anti-cancer therapies targeting TLRs. This review focuses on TLR function and signaling in normal or inflammatory conditions, and how mutations can hijack the TLR signaling pathways to give rise to cancer. Finally, we discuss how potential therapeutic agents could be used to restore normal responses to TLRs and have long lasting anti-tumor effects.
Collapse
Affiliation(s)
- James Q Wang
- Department of Immunology, John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Yogesh S Jeelall
- Department of Immunology, John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Laura L Ferguson
- Department of Immunology, John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Keisuke Horikawa
- Department of Immunology, John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| |
Collapse
|
140
|
Alexandre YO, Cocita CD, Ghilas S, Dalod M. Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol 2014; 5:378. [PMID: 25120535 PMCID: PMC4114203 DOI: 10.3389/fmicb.2014.00378] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022] Open
Abstract
Infection of mice with murine cytomegalovirus (MCMV) recapitulates many physiopathological characteristics of human CMV infection and enables studying the interactions between a virus and its natural host. Dendritic cells (DC) are mononuclear phagocytes linking innate and adaptive immunity which are both necessary for MCMV control. DC are critical for the induction of cellular immunity because they are uniquely efficient for the activation of naïve T cells during their first encounter with a pathogen. DC are equipped with a variety of innate immune recognition receptors (I2R2) allowing them to detect pathogens or infections and to engulf molecules, microorganisms or cellular debris. The combinatorial engagement of I2R2 during infections controls DC maturation and shapes their response in terms of cytokine production, activation of natural killer (NK) cells and functional polarization of T cells. Several DC subsets exist which express different arrays of I2R2 and are specialized in distinct functions. The study of MCMV infection helped deciphering the physiological roles of DC subsets and their molecular regulation. It allowed the identification and first in vivo studies of mouse plasmacytoid DC which produce high level of interferons-α/β early after infection. Despite its ability to infect DC and dampen their functions, MCMV induces very robust, efficient and long-lasting CD8 T cell responses. Their priming may rely on the unique ability of uninfected XCR1+ DC to cross-present engulfed viral antigens and thus to counter MCMV interference with antigen presentation. A balance appears to have been reached during co-evolution, allowing controlled replication of the virus for horizontal spread without pathological consequences for the immunocompetent host. We will discuss the role of the interplay between the virus and DC in setting this balance, and how advancing this knowledge further could help develop better vaccines against other intracellular infectious agents.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Clément D Cocita
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Sonia Ghilas
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| |
Collapse
|
141
|
Wang J, Shah D, Chen X, Anderson RR, Wu MX. A micro-sterile inflammation array as an adjuvant for influenza vaccines. Nat Commun 2014; 5:4447. [PMID: 25033973 PMCID: PMC4391636 DOI: 10.1038/ncomms5447] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022] Open
Abstract
There is an urgent need of adjuvants for cutaneous vaccination. Here we report that micro-sterile inflammation induced at inoculation sites can augment immune responses to influenza vaccines in animal models. The inoculation site is briefly illuminated with a handheld, non-ablative fractional laser before the vaccine is intradermally administered, which creates an array of self-healing microthermal zones (MTZs) in the skin. The dying cells in the MTZs send “danger” signals that attract a large number of antigen-presenting cells, in particular, plasmacytoid dendritic cells (pDCs) around each MTZ forming a micro-sterile inflammation array. A pivotal role for pDCs in the adjuvanticity is ascertained by significant abrogation of the immunity after systemic depletion of pDCs, local application of a TNF-α inhibitor, or null mutation of IFN regulatory factor7 (IRF7). In contrast to conventional adjuvants that cause persistent inflammation and skin lesions, micro-sterile inflammation enhances efficacy of influenza vaccines, yet with diminished adverse effects.
Collapse
Affiliation(s)
- Ji Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA
| | - Dilip Shah
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA
| | - Xinyuan Chen
- Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA
| | - R Rox Anderson
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA [2] Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, Massachusetts 02139, USA
| | - Mei X Wu
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital (MGH), Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114, USA [2] Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, Massachusetts 02139, USA
| |
Collapse
|
142
|
Yesudhas D, Gosu V, Anwar MA, Choi S. Multiple roles of toll-like receptor 4 in colorectal cancer. Front Immunol 2014; 5:334. [PMID: 25076949 PMCID: PMC4097957 DOI: 10.3389/fimmu.2014.00334] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor (TLR) signaling has been implicated in the inflammatory responses in intestinal epithelial cells (IECs). Such inflammatory signals mediate complex interactions between commensal bacteria and TLRs and are required for IEC proliferation, immune response, repair, and homeostasis. The upregulation of certain TLRs in colorectal cancer (CRC) tissues suggests that TLRs may play an essential role in the prognosis of chronic and inflammatory diseases that ultimately culminate in CRC. Here, we provide a comprehensive review of the literature on the involvement of the TLR pathway in the initiation, progression, and metastasis of CRC, as well as inherited genetic variation and epigenetic regulation. The differential expression of TLRs in epithelial cells has also been discussed. In particular, we emphasize the physiological role of TLR4 in CRC development and pathogenesis, and propose novel and promising approaches for CRC therapeutics with the aid of TLR ligands.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Vijayakumar Gosu
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University , Suwon , South Korea
| |
Collapse
|
143
|
Hervas-Stubbs S, Riezu-Boj JI, Mancheño U, Rueda P, Lopez L, Alignani D, Rodríguez-García E, Thieblemont N, Leclerc C. Conventional but not plasmacytoid dendritic cells foster the systemic virus-induced type I IFN response needed for efficient CD8 T cell priming. THE JOURNAL OF IMMUNOLOGY 2014; 193:1151-61. [PMID: 24973449 DOI: 10.4049/jimmunol.1301440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are considered to be the principal type-I IFN (IFN-I) source in response to viruses, whereas the contribution of conventional DCs (cDCs) has been underestimated because, on a per-cell basis, they are not considered professional IFN-I-producing cells. We have investigated their respective roles in the IFN-I response required for CTL activation. Using a nonreplicative virus, baculovirus, we show that despite the high IFN-I-producing abilities of pDCs, in vivo cDCs but not pDCs are the pivotal IFN-I producers upon viral injection, as demonstrated by selective pDC or cDC depletion. The pathway involved in the virus-triggered IFN-I response is dependent on TLR9/MyD88 in pDCs and on stimulator of IFN genes (STING) in cDCs. Importantly, STING is the key molecule for the systemic baculovirus-induced IFN-I response required for CTL priming. The supremacy of cDCs over pDCs in fostering the IFN-I response required for CTL activation was also verified in the lymphocytic choriomeningitis virus model, in which IFN-β promoter stimulator 1 plays the role of STING. However, when the TLR-independent virus-triggered IFN-I production is impaired, the pDC-induced IFNs-I have a primary impact on CTL activation, as shown by the detrimental effect of pDC depletion and IFN-I signaling blockade on the residual lymphocytic choriomeningitis virus-triggered CTL response detected in IFN-β promoter stimulator 1(-/-) mice. Our findings reveal that cDCs play a major role in the TLR-independent virus-triggered IFN-I production required for CTL priming, whereas pDC-induced IFNs-I are dispensable but become relevant when the TLR-independent IFN-I response is impaired.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain;
| | - Jose-Ignacio Riezu-Boj
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Uxua Mancheño
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Paloma Rueda
- Inmunología y Genética Aplicada, S.A., Madrid 28037, Spain
| | - Lissette Lopez
- Inmunología y Genética Aplicada, S.A., Madrid 28037, Spain
| | - Diego Alignani
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Estefanía Rodríguez-García
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Nathalie Thieblemont
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8147, Université René Descartes Paris V, Hôpital Necker, Paris F-75015, France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris F-75015, France; and INSERM, Unité 1041, Paris F-75015, France
| |
Collapse
|
144
|
Bi J, Zhang Q, Liang D, Xiong L, Wei H, Sun R, Tian Z. T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology 2014; 59:1715-25. [PMID: 24319005 DOI: 10.1002/hep.26968] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED Uncontrolled natural killer (NK) cell activation during the early response to acute viral infection can lead to severe immunopathology, and the mechanisms NK cells use to achieve self-tolerance in such contexts are currently unclear. Here, NK cells up-regulated a coinhibitory receptor, T-cell Ig and ITIM domain (TIGIT), during challenge with the viral double-stranded RNA (dsRNA) analog poly I:C. Blocking TIGIT by antibody treatment in vivo or a genetic deficiency in Tigit enhanced NK cell activation and aggravated liver injury in a poly I:C/D-GalN-induced model of acute fulminant hepatitis, suggesting that TIGIT is normally required for protecting against NK cell-mediated liver injury. Furthermore, adoptively transferring Tigit(-/-) NK cells into NK cell-deficient Nfil3(-/-) mice also resulted in elevated liver injury. Reconstituting Kupffer cell-depleted mice with poliovirus receptor (PVR/CD155, a TIGIT ligand)-silenced Kupffer cells led to aggravated liver injury in a TIGIT-dependent manner. Blocking TIGIT in an NK-Kupffer cell coculture in vitro enhanced NK cell activation and interferon-gamma (IFN-γ) production in a PVR-dependent manner. We also found that TIGIT was up-regulated selectively on NK cells and protected against liver injury in an acute adenovirus infection model in both an NK cell- and Kupffer cell-dependent manner. Knocking down PVR in Kupffer cells resulted in aggravated liver injury in response to adenovirus infection in a TIGIT-dependent manner. CONCLUSION TIGIT negatively regulates NK-Kupffer cell crosstalk and alleviates liver injury in response to poly I:C/D-GalN challenge or acute adenovirus infection, suggesting a novel mechanism of NK cell self-tolerance in liver homeostasis during acute viral infection.
Collapse
Affiliation(s)
- Jiacheng Bi
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
145
|
Toll-Like Receptors: Novel Molecular Targets for Antiviral Immunotherapy. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
146
|
Swiecki M, Wang Y, Riboldi E, Kim AHJ, Dzutsev A, Gilfillan S, Vermi W, Ruedl C, Trinchieri G, Colonna M. Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:4409-16. [PMID: 24683186 DOI: 10.4049/jimmunol.1303135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasmacytoid dendritic cells (pDC) produce IFN-I in response to viruses and are routinely identified in mice by SiglecH expression. SiglecH is a sialic acid-binding Ig-like lectin that has an immunomodulatory role during viral infections. In this study, we evaluated the impact of SiglecH deficiency on cytokine responses in the presence and absence of pDC. We found that lack of SiglecH enhanced IFN-I responses to viral infection, regardless of whether pDC were depleted. We also examined the expression pattern of SiglecH and observed that it was expressed by specialized macrophages and progenitors of classical dendritic cells and pDC. Accordingly, marginal zone macrophages and pDC precursors were eliminated in newly generated SiglecH-diphtheria toxin receptor (DTR)-transgenic (Tg) mice but not in CLEC4C-DTR-Tg mice after diphtheria toxin (DT) treatment. Using two bacterial models, we found that SiglecH-DTR-Tg mice injected with DT had altered bacterial uptake and were more susceptible to lethal Listeria monocytogenes infection than were DT-treated CLEC4C-DTR-Tg mice. Taken together, our findings suggest that lack of SiglecH may affect cytokine responses by cell types other than pDC during viral infections, perhaps by altering viral distribution or burden, and that cell depletion in SiglecH-DTR-Tg mice encompasses more than pDC.
Collapse
Affiliation(s)
- Melissa Swiecki
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Rabenstein H, Behrendt AC, Ellwart JW, Naumann R, Horsch M, Beckers J, Obst R. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3507-17. [PMID: 24639353 DOI: 10.4049/jimmunol.1302725] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class II-restricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.
Collapse
Affiliation(s)
- Hannah Rabenstein
- Institute for Immunology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
148
|
Pattern and Predictors of Interpersonal Violence Among Adolescent Female Students in Egypt. J Community Health 2014; 39:1085-91. [DOI: 10.1007/s10900-014-9855-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
149
|
Della Chiesa M, Marcenaro E, Sivori S, Carlomagno S, Pesce S, Moretta A. Human NK cell response to pathogens. Semin Immunol 2014; 26:152-60. [PMID: 24582551 DOI: 10.1016/j.smim.2014.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
Abstract
NK cells represent important effectors of the innate immunity in the protection of an individual from microbes. During an NK-mediated anti-microbial response, the final fate (survival or death) of a potential infected target cell depends primarily on the type and the number of receptor/ligand interactions occurring at the effector/target immune synapse. The identification of an array of receptors involved in NK cell triggering has been crucial for a better understanding of the NK cell biology. In this context, NCR play a predominant role in NK cell activation during the process of natural cytotoxicity. Regarding the NK-mediated pathogen recognition and NK cell activation, an emerging concept is represented by the involvement of TLRs and activating KIRs. NK cells express certain TLRs in common with other innate cell types. This would mean that specific TLR ligands are able to promote the simultaneous and synergistic stimulation of these innate cells, providing a coordinated mechanism for regulating the initiation and amplification of immune responses. Evidences have been accumulated indicating that viral infections may have a significant impact on NK cell maturation, promoting the expansion of phenotypically and functionally aberrant NK cell subpopulations. For example, during chronic HIV-infection, an abnormal expansion of a dysfunctional CD56neg NK cell subset has been detected that may explain, at least in part, the defective NK cell-mediated antiviral activity. An analogous imbalance of NK cell subsets has been detected in patients receiving HSCT to cure high risk leukemias and experiencing HCMV infection/reactivation. Remarkably, NK cells developing after CMV reactivation may contain "memory-like" or "long-lived" NK cells that could exert a potent anti-leukemia effect.
Collapse
Affiliation(s)
- Mariella Della Chiesa
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Emanuela Marcenaro
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Simona Sivori
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Simona Carlomagno
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Silvia Pesce
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
| | - Alessandro Moretta
- DI.ME.S. Dipartimento di Medicina Sperimentale and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy.
| |
Collapse
|
150
|
Mao X, Lai X, Yu B, He J, Yu J, Zheng P, Tian G, Zhang K, Chen D. Effects of dietary threonine supplementation on immune challenge induced by swine Pseudorabies live vaccine in weaned pigs. Arch Anim Nutr 2014; 68:1-15. [PMID: 24422657 DOI: 10.1080/1745039x.2013.869988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The present study was conducted to determine whether dietary threonine supplementation can improve immunity of weaned pigs challenged by swine Pseudorabies live vaccine (SPLV). Thirty crossbred piglets weaned at 21 days of age were randomly assigned to three groups receiving diets containing true ileal digestible threonine (TIDT) at 0.74, 0.89 and 1.11% for 14 days. On day 8, all pigs were injected intramuscularly with SPLV or sterile 0.9% NaCl solution. SPLV injection enhanced serum IgA, IgM, IgG, IFN-γ, IL-1β, TNF-α and IL-10 concentrations (p < 0.05) and stimulated the relative mRNA abundance of Toll-like receptors (TLR3, TLR7 or TLR9) in different tissues (p < 0.05). Under no challenge, increasing dietary TIDT levels enhanced serum IgG (p < 0.05), IgM (p = 0.07) and IFN-γ (p < 0.05) concentration, tended to decrease serum IL-1β, TNF-α and IL-10 concentration, and regulated relative mRNA abundance of TLR3, TLR7 or TLR9 in different tissues (p < 0.05). However, there was a synergistic role for increasing the serum IL-10 concentration between dietary TIDT levels and SPLV injection (p < 0.05). Under SPLV challenge, increasing dietary TIDT levels attenuated the increase of the serum IFN-γ concentration, and the increase of the relative mRNA abundance of TLR3, TLR7 and TLR9 in the different tissues (p < 0.05). These results suggest that an appropriate dietary threonine supplementation could improve the immune status of weaned pigs injected with SPLV by down-regulating the expression of TLR3, TLR7 and TLR9 in tissues, and thus regulating T-helper cytokine secretion.
Collapse
Affiliation(s)
- Xiangbing Mao
- a Animal Nutrition Institute , Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University , Ya'an , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|