101
|
Packham G, Krysov S, Allen A, Savelyeva N, Steele AJ, Forconi F, Stevenson FK. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica 2014; 99:1138-48. [PMID: 24986876 PMCID: PMC4077074 DOI: 10.3324/haematol.2013.098384] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/09/2023] Open
Abstract
Biologists and clinicians agree that the B-cell receptor influences the behavior of chronic lymphocytic leukemia, and promising new drugs are aimed at receptor-associated kinases. Engagement of surface immunoglobulin by antigen is a key driver of malignant cells with outcome influenced by the nature of the cell, the level of stimulation and the microenvironment. Analysis of surface immunoglobulin-mediated signaling in the two major disease subsets defined by IGHV mutational status reveals bifurcation of responses toward proliferation or anergy. Mutated chronic lymphocytic leukemia, generally of relatively good prognosis, is mainly, but not exclusively, driven towards anergy in vivo. In contrast, unmutated chronic lymphocytic leukemia shows less evidence for anergy in vivo retaining more responsiveness to surface immunoglobulin M-mediated signaling, possibly explaining increased tumor progression. Expression and function of surface immunoglobulin M in unmutated chronic lymphocytic leukemia appear rather homogeneous, but mutated chronic lymphocytic leukemia exhibits a highly heterogeneous profile that may relate to further variable clinical behavior within this subset. Anergy should increase susceptibility to apoptosis but, in leukemic cells, this may be countered by overexpression of the B-cell lymphoma-2 survival protein. Maintained anergy spreads to chemokines and adhesion molecules, restraining homing and migration. However, anergy is not necessarily completely benign, being able to reverse and regenerate surface immunoglobulin M-mediated responses. A two-pronged attack on proliferative and anti-apoptotic pathways may succeed. Increased understanding of how chronic lymphocytic leukemia cells are driven to anergy or proliferation should reveal predictive biomarkers of progression and of likely response to kinase inhibitors, which could assist therapeutic decisions.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens/metabolism
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Proliferation
- Clonal Anergy/immunology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Graham Packham
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Serge Krysov
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Alex Allen
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Natalia Savelyeva
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Andrew J Steele
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Freda K Stevenson
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
102
|
|
103
|
Benson MJ, Rodriguez V, von Schack D, Keegan S, Cook TA, Edmonds J, Benoit S, Seth N, Du S, Messing D, Nickerson-Nutter CL, Dunussi-Joannopoulos K, Rankin AL, Ruzek M, Schnute ME, Douhan J. Modeling the clinical phenotype of BTK inhibition in the mature murine immune system. THE JOURNAL OF IMMUNOLOGY 2014; 193:185-97. [PMID: 24899507 DOI: 10.4049/jimmunol.1302570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inhibitors of Bruton's tyrosine kinase (BTK) possess much promise for the treatment of oncologic and autoimmune indications. However, our current knowledge of the role of BTK in immune competence has been gathered in the context of genetic inactivation of btk in both mice and man. Using the novel BTK inhibitor PF-303, we model the clinical phenotype of BTK inhibition by systematically examining the impact of PF-303 on the mature immune system in mice. We implicate BTK in tonic BCR signaling, demonstrate dependence of the T3 B cell subset and IgM surface expression on BTK activity, and find that B1 cells survive and function independently of BTK. Although BTK inhibition does not impact humoral memory survival, Ag-driven clonal expansion of memory B cells and Ab-secreting cell generation are inhibited. These data define the role of BTK in the mature immune system and mechanistically predict the clinical phenotype of chronic BTK inhibition.
Collapse
Affiliation(s)
- Micah J Benson
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140;
| | | | - David von Schack
- Biotherapeutics Clinical Research and Development, Pfizer Inc., Cambridge, MA 02140
| | - Sean Keegan
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| | - Tim A Cook
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| | - Jason Edmonds
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| | - Stephen Benoit
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| | - Nilufer Seth
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| | - Sarah Du
- Biotherapeutics Clinical Research and Development, Pfizer Inc., Cambridge, MA 02140
| | - Dean Messing
- Biotherapeutics Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Cambridge, MA 02140; and
| | | | | | - Andrew L Rankin
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| | - Melanie Ruzek
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| | - Mark E Schnute
- Biotherapeutics Medicinal Chemistry, Pfizer Inc., Cambridge, MA 02140
| | - John Douhan
- Biotherapeutics Immunoscience, Pfizer Inc., Cambridge, MA 02140
| |
Collapse
|
104
|
Cohn M. A stepwise model of polyreactivity of the T cell antigen-receptor (TCR): its impact on the self-nonself discrimination and on related observations (receptor editing, anergy, dual receptor cells). Cell Mol Life Sci 2014; 71:2033-45. [PMID: 24337779 PMCID: PMC11924758 DOI: 10.1007/s00018-013-1540-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
Abstract
The existence of antigen-receptors, BCR, and T cell antigen-receptors, that are "polyreactive", necessitates a rethinking of its effect on two problems faced by the "adaptive" immune system: the self (S)-nonself (NS) discrimination and the determination of effector class. Here, we will concentrate on the impact of polyreactivity on the S-NS discrimination. The anti-S cells interacting with S (i.e., responding to Signal 1) are on the pathway to inactivation. Before irreversibility sets in, these cells can be activated by a second signal (Signal 2) from an effector T-helper (eTh). As these polyreactive anti-S cells express anti-NS specificities, they can be activated by recognition of NS-epitopes in the host's normal immunogenic load with the potential to result in autoimmunity. This problem is delineated using a discrete structural model, the corollaries of which are: (1) a two-step pathway for the purging of anti-S cells (i.e., the S-NS discrimination), and (2) defensible contexts within which to view the phenomena of receptor editing, anergy, and dual receptor cells.
Collapse
Affiliation(s)
- Melvin Cohn
- Conceptual Immunology Group, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|
105
|
Stolp J, Turka LA, Wood KJ. B cells with immune-regulating function in transplantation. Nat Rev Nephrol 2014; 10:389-97. [PMID: 24846332 DOI: 10.1038/nrneph.2014.80] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In transplantation, the contribution of B cells to the rejection or acceptance of the allograft is a topic of major interest. The presence of donor-specific antibodies in transplant recipients is often associated with decreased graft function and rejection, clearly indicating a pathogenetic role of B cells in transplantation. However, data from studies in humans and rodents suggest that under certain conditions, B cells have the capacity to control or regulate the immune response to a transplanted organ. Although a great deal of attention has been focused on B cells in human and murine models of autoimmunity, our understanding of the role of these cells in transplantation is limited at present. Indeed, results in this setting are controversial and seem to depend on the model system used or the clinical situation studied. Here, we review the current understanding of the various phenotypes and roles that have been associated with immune-regulating B cells. We also discuss the mechanisms employed by subsets of these regulatory B cells to control the immune response in transplant recipients and in animal models of transplantation.
Collapse
Affiliation(s)
- Jessica Stolp
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Laurence A Turka
- Transplantation Biology Research Centre, Massachusetts General Hospital, Room 5102, Charlestown, MA 02129, USA
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
106
|
Sanz I. Rationale for B cell targeting in SLE. Semin Immunopathol 2014; 36:365-75. [PMID: 24763533 DOI: 10.1007/s00281-014-0430-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/01/2014] [Indexed: 01/16/2023]
Abstract
B cells are central pathogenic players in systemic lupus erythematosus and multiple other autoimmune diseases through antibody production as well as antibody independent function. At the same time, B cells are known to play important regulatory functions that may protect against autoimmune manifestations. Yet, the functional role of different B cell populations and their contribution to disease remain to be understood. The advent of agents that specifically target B cells, in particular anti-CD20 and ant-BLyS antibodies, have demonstrated the efficacy of this approach for the treatment of human autoimmunity. The analysis of patients treated with these and other B cell agents provides a unique opportunity to understand the correlates of clinical response and the significance of different B cell subsets. Here, we discuss this information and how it could be used to better understand SLE and improve the rational design of B cell-directed therapies in this disease.
Collapse
Affiliation(s)
- Iñaki Sanz
- Division of Rheumatology, Lowance Center for Human Immunology, Georgia Research Alliance Eminent Scholar in Human Immunology, 247 Whitehead Research Bldg. 615 Michael St., Atlanta, GA, 30322, USA,
| |
Collapse
|
107
|
Liu Y, Liu A, Iikuni N, Xu H, Shi FD, La Cava A. Regulatory CD4+ T Cells Promote B Cell Anergy in Murine Lupus. THE JOURNAL OF IMMUNOLOGY 2014; 192:4069-73. [DOI: 10.4049/jimmunol.1302897] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
108
|
Pelanda R. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity? Curr Opin Immunol 2014; 27:53-9. [PMID: 24549093 DOI: 10.1016/j.coi.2014.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Receptor editing, a major mechanism of B cell tolerance, can also lead to allelic inclusion at the immunoglobulin light chain loci and the development of B cells that coexpress two different immunoglobulin light chains and, therefore, two antibody specificities. Most allelically included B cells express two κ chains, although rare dual-λ cells are also observed. Moreover, these cells typically coexpress an autoreactive and a nonautoreactive antibody. Thus, allelically included B cells could operate like 'Trojan horses': expression and function of the nonautoreactive antigen receptors might promote their maturation, activation, and terminal differentiation into effector cells that also express and secrete autoantibodies. Indeed, dual-κ B cells are greatly expanded into effector B cell subsets in some autoimmune mice, thus indicating they might play an important role in disease.
Collapse
Affiliation(s)
- Roberta Pelanda
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA.
| |
Collapse
|
109
|
Bonami RH, Sullivan AM, Case JB, Steinberg HE, Hoek KL, Khan WN, Kendall PL. Bruton's tyrosine kinase promotes persistence of mature anti-insulin B cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:1459-70. [PMID: 24453243 DOI: 10.4049/jimmunol.1300125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoreactive B lymphocytes are essential for the development of T cell-mediated type 1 diabetes (T1D). Cytoplasmic Bruton's tyrosine kinase (BTK) is a key component of B cell signaling, and its deletion in T1D-prone NOD mice significantly reduces diabetes. However, the role of BTK in the survival and function of autoreactive B cells is not clear. To evaluate the contributions of BTK, we used mice in which B cells express an anti-insulin BCR (125Tg) and promote T1D, despite being anergic. Crossing Btk deficiency onto 125Tg mice reveals that, in contrast to immature B cells, mature anti-insulin B cells are exquisitely dependent upon BTK, because their numbers are reduced by 95%. BTK kinase domain inhibition reproduces this effect in mature anti-insulin B cells, with less impact at transitional stages. The increased dependence of anti-insulin B cells on BTK became particularly evident in an Igκ locus site-directed model, in which 50% of B cells edit their BCRs to noninsulin specificities; Btk deficiency preferentially depletes insulin binders from the follicular and marginal zone B cell subsets. The persistent few Btk-deficient anti-insulin B cells remain competent to internalize Ag and invade pancreatic islets. As such, loss of BTK does not significantly reduce diabetes incidence in 125Tg/NOD mice as it does in NOD mice with a normal B cell repertoire. Thus, BTK targeting may not impair autoreactive anti-insulin B cell function, yet it may provide protection in an endogenous repertoire by decreasing the relative availability of mature autoreactive B cells.
Collapse
Affiliation(s)
- Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Though type 1 diabetes (T1D) is considered a T cell-mediated autoimmune disorder, recent evidence indicates that B cells play a critical role in disease. This conclusion is based in part on the success of anti-CD20 (rituximab) therapy, which by broadly depleting B cells delays disease progression in non-obese diabetic (NOD) mice and new-onset patients. B cell receptor (BCR) specificity to islet autoantigen is key. NOD mice whose B cell repertoire is biased toward insulin reactivity show increased disease development, while bias away from insulin reactivity largely prevents disease. Although the operative disease-promoting B cell effector function remains undefined, islet-antigen reactive B cells function in antigen presentation to diabetogenic CD4 T cells. Other studies implicate B cells in antigen presentation to CD8 T cells. B cell participation in TID appears predicated on faulty B cell tolerance. Here, we review extant findings implicating B cells in T1D in mice and men.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Autoantibodies/blood
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Progression
- Humans
- Immune Tolerance/drug effects
- Immune Tolerance/immunology
- Immunologic Factors/pharmacology
- Lymphocyte Depletion
- Mice
- Mice, Inbred NOD
- Molecular Targeted Therapy
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/immunology
- Rituximab
Collapse
Affiliation(s)
- Rochelle M Hinman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, P18-8100, Mail Stop 8333, RC1 N, Aurora, CO, 80045-2537, USA,
| | | |
Collapse
|
111
|
|
112
|
Hua Z, Gross AJ, Lamagna C, Ramos-Hernández N, Scapini P, Ji M, Shao H, Lowell CA, Hou B, DeFranco AL. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 192:875-85. [PMID: 24379120 DOI: 10.4049/jimmunol.1300683] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn(-/-) mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR-signaling pathways have been implicated in the production of anti-nuclear Abs in systemic lupus erythematosus and mouse models of it. We used a conditional allele of Myd88 to determine whether the autoimmunity of Lyn(-/-) mice is dependent on TLR/MyD88 signaling in B cells and/or in dendritic cells (DCs). The production of IgG anti-nuclear Abs, as well as the deposition of these Abs in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn(-/-) mice, were completely abolished by selective deletion of Myd88 in B cells, and autoantibody production and glomerulonephritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking MyD88 in B cells or DCs was accompanied by a dramatic decrease in the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn(-/-) mice may depend on GC responses. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCRβ(-/-) TCRδ(-/-) mice) or if T cells were unable to contribute to GC responses as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn(-/-) mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model in which DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell-dependent systemic autoimmunity in Lyn(-/-) mice.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
T(reg) cells are essential for the maintenance of immune homeostasis and prevention of autoimmunity. In humoral immune responses, loss of T(reg) cell function causes increased levels of serum autoantibodies, hyper-IgE, spontaneous generation of germinal centres, and enhanced numbers of specialised T follicular helper cells (T(fh) cells) controlled by the lineage-defining transcription factor BCL-6 (B-cell lymphoma 6). Recent studies have demonstrated that a subset of T(reg) cells [T follicular regulatory (T(freg)) cells] are able to co-opt the follicular T-cell program by gaining expression of BCL-6 and travelling to the follicle where they have an important role in the control of expansion of T(fh) cells and the germinal centre reaction. However, the mechanisms by which they exert this control are still under investigation. In this review, we discuss the effects of T(reg) cells on humoral immunity and the mechanisms by which they exert their regulatory function.
Collapse
Affiliation(s)
- James B Wing
- Department of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Osaka, Japan
| | | |
Collapse
|
114
|
Khan WN, Wright JA, Kleiman E, Boucher JC, Castro I, Clark ES. B-lymphocyte tolerance and effector function in immunity and autoimmunity. Immunol Res 2013; 57:335-53. [DOI: 10.1007/s12026-013-8466-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
115
|
Pathak S, Ma S, Shukla V, Lu R. A role for IRF8 in B cell anergy. THE JOURNAL OF IMMUNOLOGY 2013; 191:6222-30. [PMID: 24218455 DOI: 10.4049/jimmunol.1301169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
B cell central tolerance is a process through which self-reactive B cells are removed from the B cell repertoire. Self-reactive B cells are generally removed by receptor editing in the bone marrow and by anergy induction in the periphery. IRF8 is a critical transcriptional regulator of immune system development and function. A recent study showed that marginal zone B cell and B1 B cell populations are dramatically increased in IRF8-deficient mice, indicating that there are B cell-developmental defects in the absence of IRF8. In this article, we report that mice deficient for IRF8 produced anti-dsDNA Abs. Using a hen egg lysozyme double-transgenic model, we further demonstrate that B cell anergy was breached in IRF8-deficient mice. Although anergic B cells in the IRF8-proficient background were blocked at the transitional stage of development, anergic B cells in the IRF8-deficient background were able to mature further, which allowed them to regain responses to Ag stimulation. Interestingly, our results show that IRF8-deficient B cells were more sensitive to Ag stimulation and were resistant to Ag-induced cell death. Moreover, our results show that IRF8 was expressed at a high level in the anergic B cells, and an elevated level of IRF8 promoted apoptosis in the transitional B cells. Thus, our findings reveal a previously unrecognized function of IRF8 in B cell anergy induction.
Collapse
Affiliation(s)
- Simanta Pathak
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
| | | | | | | |
Collapse
|
116
|
Packard TA, Cambier JC. B lymphocyte antigen receptor signaling: initiation, amplification, and regulation. F1000PRIME REPORTS 2013; 5:40. [PMID: 24167721 PMCID: PMC3790562 DOI: 10.12703/p5-40] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
B lymphocytes and their differentiated daughters are charged with responding to the myriad pathogens in our environment and production of protective antibodies. A sample of the protective antibody produced by each clone is utilized as a component of the cell's antigen receptor (BCR). Transmembrane signals generated upon antigen binding to this receptor provide the primary directive for the cell's subsequent response. In this report, we discuss recent progress and current controversy regarding B cell receptor signal initiation, transduction and regulation.
Collapse
Affiliation(s)
- Thomas A. Packard
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| | - John C. Cambier
- Integrated Department of Immunology, University of Colorado School of Medicine & National Jewish Health1400 Jackson St, Denver, CO 80206
| |
Collapse
|
117
|
Chatterjee P, Agyemang AF, Alimzhanov MB, Degn S, Tsiftsoglou SA, Alicot E, Jones SA, Ma M, Carroll MC. Complement C4 maintains peripheral B-cell tolerance in a myeloid cell dependent manner. Eur J Immunol 2013; 43:2441-2450. [PMID: 23749435 PMCID: PMC4086186 DOI: 10.1002/eji.201343412] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/25/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
Abstract
The factors that allow self-reactive B cells to escape negative selection and become activated remain poorly defined. Using a BCR knock-in mouse strain, we identify a pathway by which B-cell selection to nucleolar self-antigens is complement dependent. Deficiency in complement component C4 led to a breakdown in the elimination of autoreactive B-cell clones at the transitional stage, characterized by a relative increase in their response to a range of stimuli, entrance into follicles, and a greater propensity to form self-reactive GCs. Using mixed BM chimeras, we found that the myeloid compartment was sufficient to restore negative selection in the autoreactive mice. A model is proposed in which in the absence of complement C4, inappropriate clearance of apoptotic debris promotes chronic activation of myeloid cells, allowing the maturation and activation of self-reactive B-cell clones leading to increased spontaneous formation of GCs.
Collapse
Affiliation(s)
- Priyadarshini Chatterjee
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
| | - Amma F. Agyemang
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
- Graduate Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Marat B. Alimzhanov
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
| | - Soren Degn
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefanos A. Tsiftsoglou
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Alicot
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah A. Jones
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael C. Carroll
- Program in Cellular and Molecular Medicine, Childrens Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Graduate Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
118
|
Ota T, Doyle-Cooper C, Cooper AB, Doores KJ, Aoki-Ota M, Le K, Schief WR, Wyatt RT, Burton DR, Nemazee D. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates. THE JOURNAL OF IMMUNOLOGY 2013; 191:3179-85. [PMID: 23940273 DOI: 10.4049/jimmunol.1301283] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Broadly neutralizing Abs against HIV protect from infection, but their routine elicitation by vaccination has not been achieved. To generate small animal models to test vaccine candidates, we have generated targeted transgenic ("knock-in") mice expressing, in the physiological Ig H and L chain loci, two well-studied broadly neutralizing Abs: 4E10, which interacts with the membrane proximal external region of gp41, and b12, which binds to the CD4 binding site on gp120. 4E10HL mice are described in the companion article (Doyle-Cooper et al., J. Immunol. 191: 3186-3191). In this article, we describe b12 mice. B cells in b12HL mice, in contrast to the case in 4E10 mice, were abundant and essentially monoclonal, retaining the b12 specificity. In cell culture, b12HL B cells responded avidly to HIV envelope gp140 trimers and to BCR ligands. Upon transfer to wild-type recipients, b12HL B cells responded robustly to vaccination with gp140 trimers. Vaccinated b12H mice, although generating abundant precursors and Abs with affinity for Env, were unable to rapidly generate neutralizing Abs, highlighting the importance of developing Ag forms that better focus responses to neutralizing epitopes. The b12HL and b12H mice should be useful in optimizing HIV vaccine candidates to elicit a neutralizing response while avoiding nonprotective specificities.
Collapse
Affiliation(s)
- Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Chen Y, Zhang J, Hwang KK, Bouton-Verville H, Xia SM, Newman A, Ouyang YB, Haynes BF, Verkoczy L. Common tolerance mechanisms, but distinct cross-reactivities associated with gp41 and lipids, limit production of HIV-1 broad neutralizing antibodies 2F5 and 4E10. THE JOURNAL OF IMMUNOLOGY 2013; 191:1260-75. [PMID: 23825311 DOI: 10.4049/jimmunol.1300770] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Developing an HIV-1 vaccine has been hampered by the inability of immunogens to induce broadly neutralizing Abs (BnAbs) that protect against infection. Previously, we used knockin (KI) mice expressing a prototypical gp41-specific BnAb, 2F5, to demonstrate that immunological tolerance triggered by self-reactivity of the 2F5 H chain impedes BnAb induction. In this study, we generate KI models expressing H chains from two other HIV-1 Abs, 4E10 (another self-/polyreactive, anti-gp41 BnAb) and 48d (an anti-CD4 inducible, nonpolyreactive Ab), and find a similar developmental blockade consistent with central B cell deletion in 4E10, but not in 48d VH KI mice. Furthermore, in KI strains expressing the complete 2F5 and 4E10 Abs as BCRs, we find that residual splenic B cells arrest at distinct developmental stages, yet exhibit uniformly low BCR densities, elevated basal activation, and profoundly muted responses to BCR ligation and, when captured as hybridoma mAb lines, maintain their dual (gp41/lipid) affinities and capacities to neutralize HIV-1, establishing a key role for anergy in suppressing residual 2F5- or 4E10-expressing B cells. Importantly, serum IgGs from naive 2F5 and 4E10 KI strains selectively eliminate gp41 and lipid binding, respectively, suggesting B cells expressing 2F5 or 4E10 as BCRs exhibit specificity for a distinct spectrum of host Ags, including selective interactions by 2F5 BCR(+) B cells (i.e., and not 4E10 BCR(+) B cells) with those mimicked by its gp41 neutralization epitope.
Collapse
Affiliation(s)
- Yao Chen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
121
|
Zhang P, Zhao Y, Sun XH. Notch-regulated periphery B cell differentiation involves suppression of E protein function. THE JOURNAL OF IMMUNOLOGY 2013; 191:726-36. [PMID: 23752615 DOI: 10.4049/jimmunol.1202134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Notch signaling pathway plays important roles in promoting the generation of marginal zone (MZ) B cells at the expense of follicular (FO) B cells during periphery B cell maturation, but the underlying molecular mechanisms are not well understood. We hypothesize that Notch favors the generation of MZ B cells by downregulating E protein activity. In this study, we demonstrated that expression of Id2 and ankyrin-repeat SOCS box-containing protein 2 was elevated in MZ B cells and by Notch signaling. Id2 inhibits the DNA binding activity of E proteins, whereas ankyrin-repeat SOCS box-containing protein 2 facilitates E protein ubiquitination. Next, we examined the phenotypes of splenic B cells in mice expressing constitutively active Notch1 and/or two gain-of-function mutants of E proteins that counteract Id2-mediated inhibition or Notch-induced degradation. We found that upregulation of E proteins promoted the formation of FO B cells, whereas it suppressed the maturation of MZ B cells. In contrast, excessive amounts of Notch1 stimulated the differentiation of MZ B cells and inhibited the production of FO B cells. More interestingly, the effects of Notch1 were reversed by gain of E protein function. Furthermore, high levels of Bcl-6 expression in FO B cells was shown to be diminished by Notch signaling and restored by E proteins. In addition, E proteins facilitated and Notch hindered the differentiation of transitional B cells. Taken together, it appears that Notch regulates peripheral B cell differentiation, at least in part, through opposing E protein function.
Collapse
Affiliation(s)
- Ping Zhang
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
122
|
Stolp J, Mariño E, Batten M, Sierro F, Cox SL, Grey ST, Silveira PA. Intrinsic molecular factors cause aberrant expansion of the splenic marginal zone B cell population in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:97-109. [PMID: 23740954 DOI: 10.4049/jimmunol.1203252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Marginal zone (MZ) B cells are an innate-like population that oscillates between MZ and follicular areas of the splenic white pulp. Differentiation of B cells into the MZ subset is governed by BCR signal strength and specificity, NF-κB activation through the B cell-activating factor belonging to the TNF family (BAFF) receptor, Notch2 signaling, and migration signals mediated by chemokine, integrin, and sphingosine-1-phosphate receptors. An imbalance in splenic B cell development resulting in expansion of the MZ subset has been associated with autoimmune pathogenesis in various murine models. One example is the NOD inbred mouse strain, in which MZ B cell expansion has been linked to development of type 1 diabetes and Sjögren's syndrome. However, the cause of MZ B cell expansion in this strain remains poorly understood. We have determined that increased MZ B cell development in NOD mice is independent of T cell autoimmunity, BCR specificity, BCR signal strength, and increased exposure to BAFF. Rather, mixed bone marrow chimeras showed that the factor(s) responsible for expansion of the NOD MZ subset is B cell intrinsic. Analysis of microarray expression data indicated that NOD MZ and precursor transitional 2-MZ subsets were particularly dysregulated for genes controlling cellular trafficking, including Apoe, Ccbp2, Cxcr7, Lgals1, Pla2g7, Rgs13, S1pr3, Spn, Bid, Cd55, Prf1, and Tlr3. Furthermore, these B cell subsets exhibited an increased steady state dwell time within splenic MZ areas. Our data therefore reveal that precursors of mature B cells in NOD mice exhibit an altered migration set point, allowing increased occupation of the MZ, a niche favoring MZ B cell differentiation.
Collapse
Affiliation(s)
- Jessica Stolp
- Garvan Institute of Medical Research, Immunology Program, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Heparin-induced thrombocytopenia (HIT) is an immune-mediated disorder that can cause fatal arterial or venous thrombosis/thromboembolism. Immune complexes consisting of platelet factor 4 (PF4), heparin, and PF4/heparin-reactive antibodies are central to the pathogenesis of HIT. However, the B-cell origin of HIT antibody production is not known. Here, we show that anti-PF4/heparin antibodies are readily generated in wild-type mice on challenge with PF4/heparin complexes, and that antibody production is severely impaired in B-cell-specific Notch2-deficient mice that lack marginal zone (MZ) B cells. As expected, Notch2-deficient mice responded normally to challenge with T-cell-dependent antigen nitrophenyl-chicken γ globulin but not to the T-cell-independent antigen trinitrophenyl-Ficoll. In addition, wild-type, but not Notch2-deficient, B cells plus B-cell-depleted wild-type splenocytes adoptively transferred into B-cell-deficient μMT mice responded to PF4/heparin complex challenge. PF4/heparin-specific antibodies produced by wild-type mice were IgG2b and IgG3 isotypes. An in vitro class-switching assay showed that MZ B cells were capable of producing antibodies of IgG2b and IgG3 isotypes. Lastly, MZ, but not follicular, B cells adoptively transferred into B-cell-deficient μMT mice responded to PF4/heparin complex challenge by producing PF4/heparin-specific antibodies of IgG2b and IgG3 isotypes. Taken together, these data demonstrate that MZ B cells are critical for PF4/heparin-specific antibody production.
Collapse
|
124
|
Kendall PL, Case JB, Sullivan AM, Holderness JS, Wells KS, Liu E, Thomas JW. Tolerant anti-insulin B cells are effective APCs. THE JOURNAL OF IMMUNOLOGY 2013; 190:2519-26. [PMID: 23396943 DOI: 10.4049/jimmunol.1202104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autoreactive B lymphocytes that are not culled by central tolerance in the bone marrow frequently enter the peripheral repertoire in a state of functional impairment, termed anergy. These cells are recognized as a liability for autoimmunity, but their contribution to disease is not well understood. Insulin-specific 125Tg B cells support T cell-mediated type 1 diabetes in NOD mice, despite being anergic to B cell mitogens and T cell-dependent immunization. Using this model, the potential of anergic, autoreactive B cells to present Ag and activate T cells was investigated. The data show that 1) insulin is captured and rapidly internalized by 125Tg BCRs, 2) these Ag-exposed B cells are competent to activate both experienced and naive CD4(+) T cells, 3) anergic 125Tg B cells are more efficient than naive B cells at activating T cells when Ag is limiting, and 4) 125Tg B cells are competent to generate low-affinity insulin B chain epitopes necessary for activation of diabetogenic anti-insulin BDC12-4.1 T cells, indicating the pathological relevance of anergic B cells in type 1 diabetes. Thus, phenotypically tolerant B cells that are retained in the repertoire may promote autoimmunity by driving activation and expansion of autoaggressive T cells via Ag presentation.
Collapse
Affiliation(s)
- Peggy L Kendall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Andrews SF, Zhang Q, Lim S, Li L, Lee JH, Zheng NY, Huang M, Taylor WM, Farris AD, Ni D, Meng W, Luning Prak ET, Wilson PC. Global analysis of B cell selection using an immunoglobulin light chain-mediated model of autoreactivity. ACTA ACUST UNITED AC 2012; 210:125-42. [PMID: 23267014 PMCID: PMC3549719 DOI: 10.1084/jem.20120525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The nature of the immunoglobulin light chain affects peripheral B cell tolerance and autoreactivity. The important subtleties of B cell tolerance are best understood in a diverse immunoglobulin (Ig) repertoire context encoding a full spectrum of autoreactivity. To achieve this, we used mice expressing Igκ transgenes that confer varying degrees of autoreactivity within a diverse heavy chain (HC) repertoire. These transgenes, coupled with a biomarker to identify receptor-edited cells and combined with expression cloning of B cell receptors, allowed us to analyze tolerance throughout B cell development. We found that both the nature of the autoantigen and the Ig HC versus light chain (LC) contribution to autoreactivity dictate the developmental stage and mechanism of tolerance. Furthermore, although selection begins in the bone marrow, over one third of primary tolerance occurs in the periphery at the late transitional developmental stage. Notably, we demonstrate that the LC has profound effects on tolerance and can lead to exacerbated autoantibody production.
Collapse
Affiliation(s)
- Sarah F Andrews
- Section of Rheumatology, Department of Medicine, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Johnson AC, Davison LM, Giltiay NV, Vareechon C, Li X, Jørgensen TN. Lack of T cells in Act1-deficient mice results in elevated IgM-specific autoantibodies but reduced lupus-like disease. Eur J Immunol 2012; 42:1695-705. [PMID: 22585710 DOI: 10.1002/eji.201142238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Act1 is a negative regulator of B-cell activation factor of the TNF family (BAFF) and CD40L-induced signaling. BALB/C mice lacking Act1 develop systemic autoimmunity resembling systemic lupus erythematosus (SLE) and Sjögren's syndrome (SjS). SLE and SjS are characterized by anti-nuclear IgG autoantibody (ANA-IgG) production and inflammation of peripheral tissues. As autoantibody production can occur in a T-cell dependent or T-cell independent manner, we investigated the role of T-cell help during Act1-mediated autoimmunity. Act1-deficiency was bred onto C57Bl/6 (B6.Act1(-/-) ) mice and B6.TCRβ(-/-) TCRδ(-/-) Act1(-/-) (TKO) mice were generated. While TCRβ/δ-sufficient B6.Act1(-/-) mice developed splenomegaly and lymphadenopathy, hypergammaglobulinemia, elevated levels of ANA-IgG, and kidney pathology, TKO mice failed to develop any such signs of disease. Neither B6.Act1(-/-) nor TKO mice developed SjS-like disease, suggesting that epigenetic interactions on the BALB/C background are responsible for this phenotype in BALB/C.Act1(-/-) mice. Interestingly, BAFF-driven transitional B-cell abnormalities, previously reported in BALB/C.Act1(-/-) mice, were intact in B6.Act1(-/-) mice and largely independent of T cells. In conclusion, T cells are necessary for the development of SLE-like disease in B6.Act1(-/-) mice, but not BAFF-driven transitional B-cell differentiation.
Collapse
Affiliation(s)
- Angela C Johnson
- Department of Immunology NE40, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
127
|
Yu M, Chen Y, He Y, Podd A, Fu G, Wright JA, Kleiman E, Khan WN, Wen R, Wang D. Critical role of B cell lymphoma 10 in BAFF-regulated NF-κB activation and survival of anergic B cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5185-93. [PMID: 23087406 DOI: 10.4049/jimmunol.1102952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anergy is a key physiological mechanism for restraining self-reactive B cells. A marked portion of peripheral B cells are anergic B cells that largely depend on BAFF for survival. BAFF activates the canonical and noncanonical NF-κB pathways, both of which are required for B cell survival. In this study we report that deficiency of the adaptor protein B cell lymphoma 10 (Bcl10) impaired the ability of BAFF to support B cell survival in vitro, and it specifically increased apoptosis in anergic B cells in vivo, dramatically reducing anergic B cells in mice. Bcl10-dependent survival of self-reactive anergic B cells was confirmed in the Ig hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model of B cell anergy. Furthermore, we found that BAFF stimulation induced Bcl10 association with IκB kinase β, a key component of the canonical NF-κB pathway. Consistently, Bcl10-deficient B cells were impaired in BAFF-induced IκBα phosphorylation and formation of nuclear p50/c-Rel complexes. Bcl10-deficient B cells also displayed reduced expression of NF-κB2/p100, severely reducing BAFF-induced nuclear accumulation of noncanonical p52/RelB complexes. Consequently, Bcl10-deficient B cells failed to express Bcl-x(L), a BAFF-induced NF-κB target gene. Taken together, these data demonstrate that Bcl10 controls BAFF-induced canonical NF-κB activation directly and noncanonical NF-κB activation indirectly. The BAFF-R/Bcl10/NF-κB signaling axis plays a critical role in peripheral B cell tolerance by regulating the survival of self-reactive anergic B cells.
Collapse
Affiliation(s)
- Mei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 2012; 489:160-4. [PMID: 22902503 PMCID: PMC3438375 DOI: 10.1038/nature11311] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/11/2012] [Indexed: 01/17/2023]
Abstract
In humans, up to 75% of newly generated B cells and about 30% of mature B cells show some degree of autoreactivity. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model B-cell antigen receptor (BCR) transgenic systems have highlighted the critical role of functional unresponsiveness or ‘anergy’. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B-cell tolerance. However, it remains unclear whether the mature diverse B-cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which BCR signalling rapidly and robustly induces green fluorescent protein expression under the control of the Nur77 regulatory region, antigen-dependent and antigen-independent BCR signalling events in vivo during B-cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure, in turn, tunes the responsiveness of BCR signalling in B cells at least partly by downmodulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or anergy exists in the mature B-cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
129
|
Taylor JJ, Martinez RJ, Titcombe PJ, Barsness LO, Thomas SR, Zhang N, Katzman SD, Jenkins MK, Mueller DL. Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen. ACTA ACUST UNITED AC 2012; 209:2065-77. [PMID: 23071255 PMCID: PMC3478923 DOI: 10.1084/jem.20112272] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Both deletion and anergy shape B cell tolerance to membrane-bound antigens. B cell tolerance to self-antigen is critical to preventing antibody-mediated autoimmunity. Previous work using B cell antigen receptor transgenic animals suggested that self-antigen–specific B cells are either deleted from the repertoire, enter a state of diminished function termed anergy, or are ignorant to the presence of self-antigen. These mechanisms have not been assessed in a normal polyclonal repertoire because of an inability to detect rare antigen-specific B cells. Using a novel detection and enrichment strategy to assess polyclonal self-antigen–specific B cells, we find no evidence of deletion or anergy of cells specific for antigen not bound to membrane, and tolerance to these types of antigens appears to be largely maintained by the absence of T cell help. In contrast, a combination of deleting cells expressing receptors with high affinity for antigen with anergy of the undeleted lower affinity cells maintains tolerance to ubiquitous membrane-bound self-antigens.
Collapse
Affiliation(s)
- Justin J Taylor
- Department of Medicine and 2 Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Aviszus K, Macleod MKL, Kirchenbaum GA, Detanico TO, Heiser RA, St Clair JB, Guo W, Wysocki LJ. Antigen-specific suppression of humoral immunity by anergic Ars/A1 B cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:4275-83. [PMID: 23008448 DOI: 10.4049/jimmunol.1201818] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Autoreactive anergic B lymphocytes are considered to be dangerous because of their potential for activation and recruitment into autoimmune responses. However, they persist for days and constitute ∼5% of the B cell pool. We assessed their functional potential in the Ars/A1 transgene model, where anergic B cells express a dual-reactive Ag receptor that binds, in addition to a self-Ag, the hapten p-azophenylarsonate (Ars). When Ars/A1 B cells were transferred into adoptive recipients that were immunized with foreign proteins covalently conjugated with Ars, endogenous IgG immune responses to both were selectively and severely diminished, and the development of T helper cells was impaired. Approximately 95% inhibition of the anti-Ars response was attained with ∼4000 transferred Ars/A1 B cells through redundant mechanisms, one of which depended on their expression of MHC class II but not upon secretion of IL-10 or IgM. This Ag-specific suppressive activity implicates the autoreactive anergic B cell as an enforcer of immunological tolerance to self-Ags.
Collapse
Affiliation(s)
- Katja Aviszus
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Fournier EM, Velez MG, Leahy K, Swanson CL, Rubtsov AV, Torres RM, Pelanda R. Dual-reactive B cells are autoreactive and highly enriched in the plasmablast and memory B cell subsets of autoimmune mice. ACTA ACUST UNITED AC 2012; 209:1797-812. [PMID: 22927551 PMCID: PMC3457739 DOI: 10.1084/jem.20120332] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dual–light chain–expressing B cells in autoimmune prone mice increase with age, contribute to the memory and plasma cell compartments, and are autoreactive. Rare dual-reactive B cells expressing two types of Ig light or heavy chains have been shown to participate in immune responses and differentiate into IgG+ cells in healthy mice. These cells are generated more often in autoreactive mice, leading us to hypothesize they might be relevant in autoimmunity. Using mice bearing Igk allotypic markers and a wild-type Ig repertoire, we demonstrate that the generation of dual-κ B cells increases with age and disease progression in autoimmune-prone MRL and MRL/lpr mice. These dual-reactive cells express markers of activation and are more frequently autoreactive than single-reactive B cells. Moreover, dual-κ B cells represent up to half of plasmablasts and memory B cells in autoimmune mice, whereas they remain infrequent in healthy mice. Differentiation of dual-κ B cells into plasmablasts is driven by MRL genes, whereas the maintenance of IgG+ cells is partly dependent on Fas inactivation. Furthermore, dual-κ B cells that differentiate into plasmablasts retain the capacity to secrete autoantibodies. Overall, our study indicates that dual-reactive B cells significantly contribute to the plasmablast and memory B cell populations of autoimmune-prone mice suggesting a role in autoimmunity.
Collapse
Affiliation(s)
- Emilie M Fournier
- Integrated Department of Immunology, National Jewish Health and University of Colorado, Denver School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Getahun A, Smith MJ, Kogut I, van Dyk LF, Cambier JC. Retention of anergy and inhibition of antibody responses during acute γ herpesvirus 68 infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2965-74. [PMID: 22904300 DOI: 10.4049/jimmunol.1201407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The majority of the human population becomes infected early in life by the gammaherpesvirus EBV. Some findings suggest that there is an association between EBV infection and the appearance of pathogenic Abs found in lupus. Gammaherpesvirus 68 infection of adult mice (an EBV model) was shown to induce polyclonal B cell activation and hypergammaglobulinemia, as well as increased production of autoantibodies. In this study, we explored the possibility that this breach of tolerance reflects loss of B cell anergy. Our findings show that, although anergic B cells transiently acquire an activated phenotype early during infection, they do not become responsive to autoantigen, as measured by the ability to mobilize Ca2+ following AgR cross-linking or mount Ab responses following immunization. Indeed, naive B cells also acquire an activated phenotype during acute infection but are unable to mount Ab responses to either T cell-dependent or T cell-independent Ags. In acutely infected animals, Ag stimulation leads to upregulation of costimulatory molecules and relocalization of Ag-specific B cells to the B-T cell border; however, these cells do not proliferate or differentiate into Ab-secreting cells. Adoptive-transfer experiments show that the suppressed state is reversible and is dictated by the environment in the infected host. Finally, B cells in infected mice deficient of CD4+ T cells are not suppressed, suggesting a role for CD4+ T cells in enforcing unresponsiveness. Thus, rather than promoting loss of tolerance, gammaherpesvirus 68 infection induces an immunosuppressed state, reminiscent of compensatory anti-inflammatory response syndrome.
Collapse
Affiliation(s)
- Andrew Getahun
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
133
|
Potula HHSK, Xu Z, Zeumer L, Sang A, Croker BP, Morel L. Cyclin-dependent kinase inhibitor Cdkn2c deficiency promotes B1a cell expansion and autoimmunity in a mouse model of lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:2931-40. [PMID: 22896639 DOI: 10.4049/jimmunol.1200556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lupus-prone NZM2410 mice present an expanded B1a cell population that we have mapped to the Sle2c1 lupus susceptibility locus. The expression of Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18(Ink4c) and located within Sle2c1, is significantly lower in B6.Sle2c1 B cells than in B6 B cells. To test the hypothesis that the B1a cell expansion in B6.Sle2c1 mice was due to a defective p18 expression, we analyzed the B1a cell phenotypes of p18-deficient C57BL/6 mice. We found a dose-dependent negative correlation between the number of B1a cells and p18 expression in B cells, with p18-deficient mice showing an early expansion of the peritoneal B1a cell pool. p18 deficiency enhanced the homeostatic expansion of B1a cells but not of splenic conventional B cells, and the elevated number of B6.Sle2c1 B1a cells was normalized by cyclin D2 deficiency. These data demonstrated that p18 is a key regulator of the size of the B1a cell pool. B6.p18(-/-) mice produced significant amounts of anti-DNA IgM and IgG, indicating that p18 deficiency contributes to humoral autoimmunity. Finally, we have shown that Sle2c1 increases lpr-associated lymphadenopathy and T cell-mediated pathology. B6.p18(-/-).lpr mice showed a greater lymphadenopathy than B6.Sle2c1.lpr mice, but their renal pathology was intermediate between that of B6.lpr and B6.Sle2c1.lpr mice. This indicated that p18-deficiency synergizes, at least partially, with lpr-mediated pathology. These results show that Cdkn2c contributes to lupus susceptibility by regulating the size of the B1a cell compartment and hence their contribution to autoimmunity.
Collapse
Affiliation(s)
- Hari-Hara S K Potula
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
134
|
CD22 and Siglec-G in B cell function and tolerance. Trends Immunol 2012; 33:413-20. [PMID: 22677186 DOI: 10.1016/j.it.2012.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/31/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022]
Abstract
The immune system has evolved into two main arms: the primitive innate arm that is the first line of defense but relatively short-lived and broad acting; and the advanced adaptive arm that generates immunological memory, allowing rapid, specific recall responses. T cell-independent type-2 (TI-2) antigens (Ags) invoke innate immune responses. However, due to its 'at the ready' nature, how the innate arm of the immune system maintains tolerance to potentially abundant host TI-2 Ags remains elusive. Therefore, it is important to define the mechanisms that establish innate immune tolerance. This review highlights recent insights into B cell tolerance to theoretical self TI-2 Ags, and examines how the B cell-restricted sialic acid binding Ig-like lectins (Siglecs), CD22 and Siglec-G, might contribute to this process.
Collapse
|
135
|
Cherukuri A, Salama AD, Carter C, Smalle N, McCurtin R, Hewitt EW, Hernandez-Fuentes M, Clark B, Baker RJ. An analysis of lymphocyte phenotype after steroid avoidance with either alemtuzumab or basiliximab induction in renal transplantation. Am J Transplant 2012; 12:919-31. [PMID: 22390816 DOI: 10.1111/j.1600-6143.2011.03891.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several studies have analyzed the phenotype of repopulated T-lymphocytes following alemtuzumab induction; however there has been less scrutiny of the reconstituted B-cell compartment. In the context of a randomized controlled trial (RCT) comparing alemtuzumab induction with tacrolimus monotherapy against basiliximab induction with tacrolimus and mycophenolate mofetil (MMF) therapy in renal transplantation, we analyzed the peripheral B- and T-lymphocyte phenotypes of patients at a mean of 25 +/- 2 months after transplantation. We examined the relationship between peripheral lymphocyte phenotype and graft function. Patients who received alemtuzumab had significantly higher numbers of B cells including naïve, transitional and regulatory subsets. In contrast, the CD4(+) T-cell compartment was dominated by a memory cell phenotype. Following either basiliximab or alemtuzumab induction patients with lower numbers of B cells or B subsets had significantly worse graft function. For alemtuzumab there was also a correlation between these subsets the stability of graft function and the presence of HLA-specific antibodies. These results demonstrate that a significant expansion of regulatory type B cells is associated with superior graft function and that this pattern is more common after alemtuzumab induction. This phenomenon requires further prospective study to see whether this phenotype could be used to customize immunotherapy.
Collapse
Affiliation(s)
- A Cherukuri
- Renal Transplant Unit, University of Leeds, Leeds, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Ledesma-Soto Y, Blanco-Favela F, Fuentes-Pananá EM, Tesoro-Cruz E, Hernández-González R, Arriaga-Pizano L, Legorreta-Haquet MV, Montoya-Diaz E, Chávez-Sánchez L, Castro-Mussot ME, Chávez-Rueda AK. Increased levels of prolactin receptor expression correlate with the early onset of lupus symptoms and increased numbers of transitional-1 B cells after prolactin treatment. BMC Immunol 2012; 13:11. [PMID: 22404893 PMCID: PMC3353839 DOI: 10.1186/1471-2172-13-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background Prolactin is secreted from the pituitary gland and other organs, as well as by cells such as lymphocytes. Prolactin has an immunostimulatory effect and is associated with autoimmune diseases that are characterised by abnormal B cell activation, such as systemic lupus erythematosus (SLE). Our aim was to determine if different splenic B cell subsets express the prolactin receptor and if the presence of prolactin influences these B cell subsets and correlates with development of lupus. Results Using real-time PCR and flow cytometry, we found that different subsets of immature (transitional) and mature (follicular, marginal zone) B cells express different levels of the prolactin receptor and are differentially affected by hyperprolactinaemia. We found that transitional B cells express the prolactin receptor at higher levels compared to mature B cells in C57BL/6 mice and the lupus-prone MRL/lpr and MRL mouse strains. Transitional-1 (T1) B cells showed a higher level of prolactin receptor expression in both MRL/lpr and MRL mice compared to C57BL/6 mice. Hyperprolactinaemia was induced using metoclopramide, which resulted in the development of early symptoms of SLE. We found that T1 B cells are the main targets of prolactin and that prolactin augments the absolute number of T1 B cells, which reflects the finding that this B cell subpopulation expresses the highest level of the prolactin receptor. Conclusions We found that all B cell subsets express the prolactin receptor but that transitional B cells showed the highest prolactin receptor expression levels. Hyperprolactinaemia in mice susceptible to lupus accelerated the disease and increased the absolute numbers of T1 and T3 B cells but not of mature B cells, suggesting a primary effect of prolactin on the early stages of B cell maturation in the spleen and a role of prolactin in B cell differentiation, contributing to SLE onset.
Collapse
Affiliation(s)
- Yadira Ledesma-Soto
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN Siglo XXI, IMSS, Av Cuauhtemoc 330, Col. Doctores, Mexico, D.F. CP06720, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Liubchenko GA, Appleberry HC, Holers VM, Banda NK, Willis VC, Lyubchenko T. Potentially autoreactive naturally occurring transitional T3 B lymphocytes exhibit a unique signaling profile. J Autoimmun 2012; 38:293-303. [PMID: 22365785 DOI: 10.1016/j.jaut.2011.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/23/2011] [Accepted: 12/08/2011] [Indexed: 12/01/2022]
Abstract
B lymphocytes exhibit phenotypic differences that correlate with their developmental or functional stages and affect humoral immune responses. One recently described subset of naturally occurring immature transitional type 3 (T3) B lymphocytes is believed to consist of potentially autoimmune cells whose signaling properties have not been studied in detail. This study characterizes intracellular signaling in T3 B cells in wildtype C57BL/6 mice. Protein phosphorylation and Ca(2+) responses upon B-cell antigen receptor (BCR) engagement were measured by multicolor flow cytometry. We observed high baseline signaling activity and reduced BCR-mediated responses in T3 cells, which confirmed their anergy - a functional state in which lymphocytes recognize chronically present self-antigens but cannot produce immune response due to intrinsic signaling inhibition. Our results also revealed a previously unknown T3-specific phosphorylation pattern of 24 key signaling molecules involved in BCR signal transduction. These characteristics reflect the balance between stimulatory and inhibitory BCR signaling pathways in anergy. Results obtained in the collagen-induced arthritis model demonstrate the loss of anergy in T3 B cells during the onset of the disease. Our findings provide rationale for further investigating alterations in B-cell signaling patterns as earliest functional biomarkers of changes in the immune tolerance of autoreactive B cells.
Collapse
Affiliation(s)
- Ganna A Liubchenko
- Division of Rheumatology, University of Colorado Denver School of Medicine, Mail Stop B115, 1775 Aurora Ct., Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
138
|
Hassaballa AE, Palmer VL, Anderson DK, Kassmeier MD, Nganga VK, Parks KW, Volkmer DL, Perry GA, Swanson PC. Accumulation of B1-like B cells in transgenic mice over-expressing catalytically inactive RAG1 in the periphery. Immunology 2012; 134:469-86. [PMID: 22044391 DOI: 10.1111/j.1365-2567.2011.03509.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
During their development, B lymphocytes undergo V(D)J recombination events and selection processes that, if successfully completed, produce mature B cells expressing a non-self-reactive B-cell receptor (BCR). Primary V(D)J rearrangements yield self-reactive B cells at high frequency, triggering attempts to remove, silence, or reprogramme them through deletion, anergy induction, or secondary V(D)J recombination (receptor editing), respectively. In principle, expressing a catalytically inactive V(D)J recombinase during a developmental stage in which V(D)J rearrangement is initiated may impair this process. To test this idea, we generated transgenic mice expressing a RAG1 active site mutant (dnRAG1 mice); RAG1 transcript was elevated in splenic, but not bone marrow, B cells in dnRAG1 mice relative to wild-type mice. The dnRAG1 mice accumulate splenic B cells with a B1-like phenotype that exhibit defects in B-cell activation, and are clonally diverse, yet repertoire restricted with a bias toward Jκ1 gene segment usage. The dnRAG1 mice show evidence of impaired B-cell development at the immature-to-mature transition, immunoglobulin deficiency, and poorer immune responses to thymus-independent antigens. Interestingly, dnRAG1 mice expressing the anti-dsDNA 3H9H56R heavy chain fail to accumulate splenic B1-like cells, yet retain peritoneal B1 cells. Instead, these mice show an expanded marginal zone compartment, but no difference is detected in the frequency of heavy chain gene replacement. Taken together, these data suggest a model in which dnRAG1 expression impairs secondary V(D)J recombination. As a result, selection and/or differentiation processes are altered in a way that promotes expansion of B1-like B cells in the spleen.
Collapse
Affiliation(s)
- Ashraf E Hassaballa
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Vossenkämper A, Lutalo PMK, Spencer J. Translational Mini-Review Series on B cell subsets in disease. Transitional B cells in systemic lupus erythematosus and Sjögren's syndrome: clinical implications and effects of B cell-targeted therapies. Clin Exp Immunol 2012; 167:7-14. [PMID: 22132879 PMCID: PMC3248081 DOI: 10.1111/j.1365-2249.2011.04460.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2011] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and Sjögren's syndrome are autoimmune disorders which are characterized by a disturbed B cell homeostasis which leads ultimately to dysfunction of various organs. One of the B cell subsets that appear in abnormal numbers is the population of transitional B cells, which is increased in the blood of patients with SLE and Sjögren's syndrome. Transitional B cells are newly formed B cells. In mice, transitional B cells undergo selection checks for unwanted specificity in the bone marrow and the spleen in order to eliminate autoreactive B cells from the circulating naive B cell population. In humans, the exact anatomical compartments and mechanisms of the specificity check-points for transitional B cells remain unclear, but appear to be defective in SLE and Sjögren's syndrome. This review aims to highlight the current understanding of transitional B cells and their defects in the two disorders before and after B cell-targeted therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- B-Cell Activating Factor/immunology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Disease Models, Animal
- Double-Blind Method
- Humans
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/therapy
- Lymphocyte Count
- Lymphocyte Depletion/methods
- Lymphoid Tissue/immunology
- Lymphoid Tissue/pathology
- Lymphopoiesis
- Mice
- Rituximab
- Sjogren's Syndrome/immunology
- Sjogren's Syndrome/pathology
- Sjogren's Syndrome/therapy
Collapse
Affiliation(s)
- A Vossenkämper
- Centre for Immunology and Infectious Disease, Barts and The London School of Medicine and Dentistry, Blizard Institute, London, UK.
| | | | | |
Collapse
|
140
|
Shahaf G, Gross AJ, Sternberg-Simon M, Kaplan D, DeFranco AL, Mehr R. Lyn deficiency affects B-cell maturation as well as survival. Eur J Immunol 2011; 42:511-21. [PMID: 22057631 DOI: 10.1002/eji.201141940] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/02/2023]
Abstract
Lyn, an Src-family protein tyrosine kinase expressed in B lymphocytes, contributes to initiation of BCR signaling and is also responsible for feedback inhibition of BCR signaling. Lyn-deficient mice have a decreased number of follicular B cells and also spontaneously develop a lupus-like autoimmunity. We used flow cytometric analysis, BrdU labeling and our mathematical models of B-cell population dynamics, to analyze how Lyn deficiency impacts B-cell maturation and survival. We found that Lyn-deficient transitional 1 (T1) cells develop normally, but T2 cells develop primarily from the T1 subset in the spleen and fail to also develop directly from BM immature B cells. Lyn-deficient T2 cells either mature to the follicular B-cell type at a close to normal rate, or die in this compartment rather than access the T3 anergic subset. The ≈ 40% of WT follicular cells that were short-lived exited primarily by joining the T3 anergic subset, whereas the ≈ 15% Lyn(-/-) follicular cells that were not long lived had a high death rate and died in this compartment rather than entering the T3 subset. We hypothesize that exaggerated BCR signaling resulting from weak interactions with self-antigens is largely responsible for these alterations in Lyn-deficient B cells.
Collapse
Affiliation(s)
- Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
141
|
Quantitative differences in CD45 expression unmask functions for CD45 in B-cell development, tolerance, and survival. Proc Natl Acad Sci U S A 2011; 109:E3-12. [PMID: 22135465 DOI: 10.1073/pnas.1117374108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The receptor-like tyrosine phosphatase CD45 positively regulates antigen receptor signaling by dephosphorylating the inhibitory tyrosine of the src family kinases. CD45-deficient mice fail to fully unmask the role of CD45 in B cells because of the expression of a partially redundant tyrosine phosphatase, CD148. However, mice that are doubly deficient in CD45 and CD148 exhibit a very early block in B-cell development, thereby obscuring later roles for CD45. To overcome these limitations, here we take advantage of an allelic series of mice in which CD45 expression is titrated broadly (0-180%). Although high expression of CD45 inhibits T-cell receptor (TCR) signaling, we show that CD45 plays a purely positive regulatory role during B-cell receptor (BCR) signaling. In concert with exaggerated BCR signaling, increasing CD45 expression drives enhanced receptor editing in the bone marrow and profound loss of follicular and marginal zone B cells in the spleen. In the context of the IgHEL/sHEL model of B-cell tolerance, such high CD45 expression transforms anergy into deletion. Unexpectedly, elimination of the autoantigen sHEL in this model system in order to block clonal deletion fails to rescue survival of mature B cells. Rather, high CD45 expression reduces B-cell activating factor receptor (BAFFR) expression and inhibits B-cell activating factor (BAFF)-induced B-cell survival in a cell-intrinsic manner. Taken together, our findings reveal how CD45 function diverges in T cells and B cells, as well as how autoreactive B cells are censored as they transit development.
Collapse
|
142
|
O'Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li QZ, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 2011; 35:746-56. [PMID: 22078222 DOI: 10.1016/j.immuni.2011.10.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/16/2011] [Accepted: 10/13/2011] [Indexed: 12/17/2022]
Abstract
Anergic B cells are characterized by impaired signaling and activation after aggregation of their antigen receptors (BCR). The molecular basis of this impairment is not understood. In studies reported here, Src homology-2 (SH2)-containing inositol 5-phosphatase SHIP-1 and its adaptor Dok-1 were found to be constitutively phosphorylated in anergic B cells, and activation of this inhibitory circuit was dependent on Src-family kinase activity and consequent to biased BCR immunoreceptor tyrosine-based activation motif (ITAM) monophosphorylation. B cell-targeted deletion of SHIP-1 caused severe lupus-like disease. Moreover, absence of SHIP-1 in B cells led to loss of anergy as indicated by restoration of BCR signaling, loss of anergic surface phenotype, and production of autoantibodies. Thus, chronic BCR signals maintain anergy in part via ITAM monophosphorylation-directed activation of an inhibitory signaling circuit involving SHIP-1 and Dok-1.
Collapse
Affiliation(s)
- Shannon K O'Neill
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Oldham AL, Miner CA, Wang HC, Webb CF. The transcription factor Bright plays a role in marginal zone B lymphocyte development and autoantibody production. Mol Immunol 2011; 49:367-79. [PMID: 21963220 DOI: 10.1016/j.molimm.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Previous data suggested that constitutive expression of the transcription factor Bright (B cell regulator of immunoglobulin heavy chain transcription), normally tightly regulated during B cell differentiation, was associated with autoantibody production. Here we show that constitutive Bright expression results in skewing of mature B lineage subpopulations toward marginal zone cells at the expense of the follicular subpopulation. C57Bl/6 transgenic mice constitutively expressing Bright in B lineage cells generated autoantibodies that were not the result of global increases in immunoglobulin or of breaches in key tolerance checkpoints typically defective in other autoimmune mouse models. Rather, autoimmunity correlated with increased numbers of marginal zone B cells and alterations in the phenotype and gene expression profiles of lymphocytes within the follicular B cell compartment. These data suggest a novel role for Bright in the normal development of mature B cell subsets and in autoantibody production.
Collapse
Affiliation(s)
- Athenia L Oldham
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
144
|
Vossenkämper A, Spencer J. Transitional B cells: how well are the checkpoints for specificity understood? Arch Immunol Ther Exp (Warsz) 2011; 59:379-84. [PMID: 21789626 DOI: 10.1007/s00005-011-0135-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/26/2011] [Indexed: 12/18/2022]
Abstract
It is crucial for the immune system to minimise the number of circulating mature self-reactive B cells, in order to reduce the potential for the development of autoantibody-related autoimmune diseases. Studies of animal models have identified two major checkpoints that ensure that such cells do not contribute to the naïve B cell repertoire. The first is in the bone marrow as B cells develop and the second is in the spleen; B cells that are released from the bone marrow as transitional B cells go through more stringent selection in the spleen before they develop into mature naïve B cells. Transitional B cells and their maturation have mostly been studied in mice. However, recent studies characterised human transitional B cells and found considerable differences to current models. In this review, we will consider these differences alongside known differences in mouse and human splenic function and ask whether human transitional B cells might develop along a different pathway.
Collapse
Affiliation(s)
- Anna Vossenkämper
- Centre for Immunology and Infectious Disease, Barts and The London School of Medicine and Dentistry, Blizard Institute, UK.
| | | |
Collapse
|
145
|
Clark MR, Tanaka A, Powers SE, Veselits M. Receptors, subcellular compartments and the regulation of peripheral B cell responses: the illuminating state of anergy. Mol Immunol 2011; 48:1281-6. [PMID: 21144589 PMCID: PMC3089810 DOI: 10.1016/j.molimm.2010.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/13/2010] [Accepted: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Signals through the B cell antigen receptor (BCR) are necessary but not sufficient for cellular activation. Co-stimulatory signals must be provided through other immune recognition receptor systems, such as MHC class II/CD40 and the toll-like receptor (TLR) 9 that can only productively acquire their ligands in the processive environment of specialized late endosomes (MHC class II containing compartment or MIIC). It has long been appreciated that the BCR, by effectively capturing complex antigens and delivering them to late endosomes, is the link between activation events on the cell surface and those dependent on late endosomes. However, it has become increasingly apparent that the BCR also directs the translocation of MHC class II and TLR9 into the MIIC and that the endocytic flow of these receptors coincides with that of the BCR. This likely ensures close apposition of receptor complexes within the MIIC and the efficient transfer of ligands from the BCR to MHC class II and TLR9. This complex orchestration of receptor endocytic movement is dependent upon the quality of signals elicited through the BCR. Failure to activate specific signaling pathways, such as occurs in anergic B cells, prevents the entry of the BCR and TLR9 into the MIIC and abrogates TLR9 activation. Like anergy, this block in endocytic trafficking is rapidly reversible. These findings indicate that cellular responsiveness can be determined by mechanisms that control the subcellular location of important immune recognition receptors.
Collapse
Affiliation(s)
- Marcus R Clark
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
146
|
Porakishvili N, Memon A, Vispute K, Kulikova N, Clark EA, Rai KR, Nathwani A, Damle RN, Chiorazzi N, Lydyard PM. CD180 functions in activation, survival and cycling of B chronic lymphocytic leukaemia cells. Br J Haematol 2011; 153:486-98. [PMID: 21443749 DOI: 10.1111/j.1365-2141.2011.08605.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously showed that approximately 60% of B chronic lymphocytic leukaemia (B-CLL) cells express surface CD180, an orphan receptor of the Toll-like receptor family. Here we investigated the ability of anti-CD180 monoclonal antibody (mAb) to induce activation, cell cycling, survival and signalling in B-CLL cells and normal B cells. Upon addition of anti-CD180 mAb, alone or in combination with anti-CD40 mAb or recombinant IL-4 (rIL-4), expression of CD86, Ki-67, uptake of DiOC(6) , phosphorylation of signalling protein kinases and Ca(2+) flux were measured in B-CLL cells from untreated patients and normal B cells from age-matched volunteers. Normal B cells and approximately 50% of CD180(+) B-CLL clones responded to CD180 ligation by activation, cycling and increased survival comparable with, or superior to, those induced by anti-CD40 mAb or rIL-4 (Responder B-CLL). Non-responder CD180(+) B-CLL clones failed to respond to CD180 mAb and responded poorly to CD40 mAb and rIL-4. Anti-CD180 mAb induced phosphorylation of ZAP70/Syk, Erk, p38MAPK and Akt in normal B cells and Responder B-CLL cells. In contrast, Erk, p38MAPK and Akt were not phosphorylated in Non-responder B-CLL cells indicating a block in signalling and possible anergy. CD180 may provide powerful expansion and survival signals for Responder B-CLL cells and have an important prognostic value.
Collapse
|
147
|
Quách TD, Manjarrez-Orduño N, Adlowitz DG, Silver L, Yang H, Wei C, Milner EC, Sanz I. Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4640-8. [PMID: 21398610 PMCID: PMC3095097 DOI: 10.4049/jimmunol.1001946] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
B cell anergy represents an important mechanism of peripheral immunological tolerance for mature autoreactive B cells that escape central tolerance enforced by receptor editing and clonal deletion. Although well documented in mice, the extent of its participation in human B cell tolerance remains to be fully established. In this study, we characterize the functional behavior of strictly defined human naive B cells separated on the basis of their surface IgM (sIgM) expression levels. We demonstrate that cells with lower sIgM levels (IgM(lo)) are impaired in their ability to flux calcium in response to either anti-IgM or anti-IgD cross-linking and contain a significantly increased frequency of autoreactive cells compared with naive B cells with higher levels of sIgM. Phenotypically, in healthy subjects, IgM(lo) cells are characterized by the absence of activation markers, reduction of costimulatory molecules (CD19 and CD21), and increased levels of inhibitory CD22. Functionally, IgM(lo) cells display significantly weaker proliferation, impaired differentiation, and poor Ab production. In aggregate, the data indicate that hyporesponsiveness to BCR cross-linking associated with sIgM downregulation is present in a much larger fraction of all human naive B cells than previously reported and is likely to reflect a state of anergy induced by chronic autoantigen stimulation. Finally, our results indicate that in systemic lupus erythematosus patients, naive IgM(lo) cells display increased levels of CD95 and decreased levels of CD22, a phenotype consistent with enhanced activation of autoreactive naive B cells in this autoimmune disease.
Collapse
Affiliation(s)
- Tâm D. Quách
- University of Rochester School of Medicine and Dentistry, Department of Medicine-Division of Clinical Immunology and Rheumatology. Rochester, New York 14642
| | - Nataly Manjarrez-Orduño
- University of Rochester School of Medicine and Dentistry, Department of Medicine-Division of Clinical Immunology and Rheumatology. Rochester, New York 14642
| | - Diana G. Adlowitz
- University of Rochester School of Medicine and Dentistry, Department of Medicine-Division of Clinical Immunology and Rheumatology. Rochester, New York 14642
| | - Lin Silver
- University of Rochester School of Medicine and Dentistry, Department of Medicine-Division of Clinical Immunology and Rheumatology. Rochester, New York 14642
| | - Hongmei Yang
- University of Rochester School of Medicine and Dentistry, Department of Biostatistics and Computational Biology. Rochester, New York 14642
| | - Chungwen Wei
- University of Rochester School of Medicine and Dentistry, Department of Medicine-Division of Clinical Immunology and Rheumatology. Rochester, New York 14642
| | - Eric C.B. Milner
- University of Rochester School of Medicine and Dentistry, Department of Medicine-Division of Clinical Immunology and Rheumatology. Rochester, New York 14642
| | - Iñaki Sanz
- University of Rochester School of Medicine and Dentistry, Department of Medicine-Division of Clinical Immunology and Rheumatology. Rochester, New York 14642
| |
Collapse
|
148
|
Saha S, Tieng A, Pepeljugoski KP, Zandamn-Goddard G, Peeva E. Prolactin, systemic lupus erythematosus, and autoreactive B cells: lessons learnt from murine models. Clin Rev Allergy Immunol 2011; 40:8-15. [PMID: 19937157 DOI: 10.1007/s12016-009-8182-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The predominant prevalence of autoimmune diseases in women of reproductive age has led to the investigation of the effects of sex hormones on immune regulation and in autoimmune diseases, in particular the prototypic systemic autoimmune disease lupus. The female hormone prolactin has receptors beyond the reproductive axis including immune cells, and it is thought to promote autoimmunity in human and murine lupus. Induced hyperprolactinemia in experimental lupus models, regardless of gender, exacerbates disease activity and leads to premature death. Prolactin treatment in mice that are not prone to develop lupus leads to the development of a lupus-like phenotype. Persistent mild-moderate hyperprolactinemia alters the selection of the naïve B cell repertoire. Recent studies demonstrate that prolactin impairs all three mechanisms of B cell tolerance induction (negative selection, receptor editing, and anergy) and thereby contributes to the pathogenesis of autoimmunity. The effects of prolactin are genetically determined as shown by the differential response to the hormone in the different mice strains. Bromocriptine, a drug that inhibits prolactin secretion, abrogates some of the immune effects of this hormone. Further research is required to elucidate molecular mechanisms involved in immune effects of prolactin and to develop novel targeted treatments for SLE patients with prolactin-responsive disease.
Collapse
Affiliation(s)
- Subhrajit Saha
- Albert Einstein College of Medicine, Montefiore Hospital, DTC Bldg 440, 111 E 210th St, Bronx, NY 10467, USA
| | | | | | | | | |
Collapse
|
149
|
Ota T, Ota M, Duong BH, Gavin AL, Nemazee D. Liver-expressed Igkappa superantigen induces tolerance of polyclonal B cells by clonal deletion not kappa to lambda receptor editing. ACTA ACUST UNITED AC 2011; 208:617-29. [PMID: 21357741 PMCID: PMC3058582 DOI: 10.1084/jem.20102265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Analysis of tolerance in a polyclonal wild-type B cell population demonstrates apoptosis of cells reactive to antigen expressed on liver membrane. Little is know about the nature of peripheral B cell tolerance or how it may vary in distinct lineages. Although autoantibody transgenic studies indicate that anergy and apoptosis are involved, some studies claim that receptor editing occurs. To model peripheral B cell tolerance in a normal, polyclonal immune system, we generated transgenic mice expressing an Igκ–light chain–reactive superantigen targeted to the plasma membrane of hepatocytes (pAlb mice). In contrast to mice expressing κ superantigen ubiquitously, in which κ cells edit efficiently to λ, in pAlb mice, κ B cells underwent clonal deletion. Their κ cells failed to populate lymph nodes, and the remaining splenic κ cells were anergic, arrested at a semi-mature stage without undergoing receptor editing. In the liver, κ cells recognized superantigen, down-regulated surface Ig, and expressed active caspase 3, suggesting ongoing apoptosis at the site of B cell receptor ligand expression. Some, apparently mature, κ B1 and follicular B cells persisted in the peritoneum. BAFF (B cell–activating factor belonging to the tumor necrosis factor family) overexpression rescued splenic κ B cell maturation and allowed κ cells to populate lymph nodes. Our model facilitates analysis of tissue-specific autoimmunity, tolerance, and apoptosis in a polyclonal B cell population. The results suggest that deletion, not editing, is the major irreversible pathway of tolerance induction among peripheral B cells.
Collapse
Affiliation(s)
- Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
150
|
Bertilaccio MTS, Scielzo C, Muzio M, Caligaris-Cappio F. An overview of chronic lymphocytic leukaemia biology. Best Pract Res Clin Haematol 2011; 23:21-32. [PMID: 20620968 DOI: 10.1016/j.beha.2009.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by accumulation of CD5(+) monoclonal B cells in primary and secondary lymphoid tissues. Genetic defects and stimuli originating from the microenvironment concur to the selection and expansion of the malignant clone. Several lines of evidence, including molecular and functional analysis of the monoclonal immunoglobulin, support the hypothesis that stimulation through the B-cell receptor affects life and death of leukaemic cells. The microenvironment also has a critical role in the survival and accumulation of leukaemic cells within lymphoid organs where signals delivered from the surrounding cells are likely crucial in inducing proliferation. Nevertheless, several major biological issues still remain to be solved including regulation of the balance between proliferation and survival of leukaemic cells and the links between emerging gene abnormalities and microenvironment. In this context, mouse models are helpful tools in understanding disease mechanisms and in evaluating the efficacy of novel therapeutic agents.
Collapse
Affiliation(s)
- M T S Bertilaccio
- Laboratory of Lymphoid Malignancies, Division of Molecular Oncology, Istituto Scientifico San Raffaele, Milan, Italy.
| | | | | | | |
Collapse
|