101
|
Çuburu N, Kim R, Guittard GC, Thompson CD, Day PM, Hamm DE, Pang YYS, Graham BS, Lowy DR, Schiller JT. A Prime-Pull-Amplify Vaccination Strategy To Maximize Induction of Circulating and Genital-Resident Intraepithelial CD8 + Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1250-1264. [PMID: 30635393 DOI: 10.4049/jimmunol.1800219] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Recent insight into the mechanisms of induction of tissue-resident memory (TRM) CD8+ T cells (CD8+ TRM) enables the development of novel vaccine strategies against sexually transmitted infections. To maximize both systemic and genital intraepithelial CD8+ T cells against vaccine Ags, we assessed combinations of i.m. and intravaginal routes in heterologous prime-boost immunization regimens with unrelated viral vectors. Only i.m. prime followed by intravaginal boost induced concomitant strong systemic and intraepithelial genital-resident CD8+ T cell responses. Intravaginal boost with vectors expressing vaccine Ags was far superior to intravaginal instillation of CXCR3 chemokine receptor ligands or TLR 3, 7, and 9 agonists to recruit and increase the pool of cervicovaginal CD8+ TRM Transient Ag presentation increased trafficking of cognate and bystander circulating activated, but not naive, CD8+ T cells into the genital tract and induced in situ proliferation and differentiation of cognate CD8+ TRM Secondary genital CD8+ TRM were induced in the absence of CD4+ T cell help and shared a similar TCR repertoire with systemic CD8+ T cells. This prime-pull-amplify approach elicited systemic and genital CD8+ T cell responses against high-risk human papillomavirus type 16 E7 oncoprotein and conferred CD8-mediated protection to a vaccinia virus genital challenge. These results underscore the importance of the delivery route of nonreplicating vectors in prime-boost immunization to shape the tissue distribution of CD8+ T cell responses. In this context, the importance of local Ag presentation to elicit genital CD8+ TRM provides a rationale to develop novel vaccines against sexually transmitted infections and to treat human papillomavirus neoplasia.
Collapse
Affiliation(s)
- Nicolas Çuburu
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Rina Kim
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Geoffrey C Guittard
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Cynthia D Thompson
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Patricia M Day
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David E Hamm
- Adaptive Biotechnologies, Seattle, WA 98102; and
| | - Yuk-Ying S Pang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
102
|
Abstract
Intravital multiphoton microscopy (MPM) allows the direct visualization of viral infections in real time as they occur in living animals. Here we describe the routes and considerations for murine infection with vaccinia virus (VACV) for imaging, and the preparation of the skin and inner lip (labial mucosa) of infected animals for MPM. Using different recombinant VACVs expressing fluorescent proteins in combination with transgenic fluorescent reporter mice, MPM imaging can be used to examine the movements, interactions, and functions of virus-infected cells or selected immune cell populations after infection.
Collapse
Affiliation(s)
- John P Shannon
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, NIAID, NIH, Bethesda, MD, USA
| | - Glennys V Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
103
|
Lane RS, Lund AW. Non-hematopoietic Control of Peripheral Tissue T Cell Responses: Implications for Solid Tumors. Front Immunol 2018; 9:2662. [PMID: 30498499 PMCID: PMC6249380 DOI: 10.3389/fimmu.2018.02662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first site of pathogen-encounter and also the location of effector function, and mounting evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and resolution of local responses. Just as both effector and memory T cells must adapt to their new interstitial environment upon infiltration, tissues are also remodeled in the context of acute inflammation and disease. In this review, we present the biochemical and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we discuss how tissue remodeling in the context of tumor microenvironments impairs T cell accumulation and function contributing to immune escape and tumor progression.
Collapse
Affiliation(s)
- Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Dermatology, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
104
|
Carlow DA, Tra MC, Ziltener HJ. A cell-extrinsic ligand acquired by activated T cells in lymph node can bridge L-selectin and P-selectin. PLoS One 2018; 13:e0205685. [PMID: 30379850 PMCID: PMC6209203 DOI: 10.1371/journal.pone.0205685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023] Open
Abstract
P-selectin expressed on activated endothelia and platelets supports recruitment of leukocytes expressing P-selectin ligand to sites of inflammation. While monitoring P-selectin ligand expression on activated CD8+ T cells in murine adoptive transfer models, we observed two distinct ligands on responding donor cells, the canonical cell-intrinsic P-selectin ligand PSGL-1 and a second undocumented P-selectin ligand we provisionally named PSL2. PSL2 is unusual among selectin ligands in that it is cell-extrinsic, loaded onto L-selectin expressed by activated T cells but not L-selectin on resting naïve CD8+ T cells. PSL2 display is highest on activated T cells responding in peripheral lymph nodes and low on T cells responding in spleen suggesting that the original source of PSL2 is high endothelial venules, cells known to produce L-selectin ligands. PSL2 is a ligand for both P-selectin and L-selectin and can physically bridge the two selectins. The L-selectin/PSL2 complex can mediate P-selectin-dependent adherence of activated T cells to immobilized P-selectin or to activated platelets, either independently or cooperatively with PSGL-1. PSL2's capacity to bridge between L-selectin on activated T cells and P-selectin reveals an undocumented and unanticipated activity of cell-extrinsic selectin ligands in mediating selectin-selectin connectivity. The timing and circumstances of PSL2 detection on T cells, together with its capacity to support adherence to P-selectin-bearing substrates, are consistent with P-selectin engagement of both PSGL1 and the L-selectin/PSL2 complex during T cell recruitment. Engagement of PSGL-1 and L-selectin/PSL2 would likely deliver distinct signals known to be relevant in this process.
Collapse
Affiliation(s)
- Douglas A. Carlow
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Michelle C. Tra
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hermann J. Ziltener
- The Biomedical Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
105
|
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR. The Role of CXCR3 and Its Chemokine Ligands in Skin Disease and Cancer. Front Med (Lausanne) 2018; 5:271. [PMID: 30320116 PMCID: PMC6167486 DOI: 10.3389/fmed.2018.00271] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Chemokines and their receptors play an important role in the recruitment, activation and differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9, CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced inflammatory responses. Inflammation of the skin resulting from infections or autoimmune disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector, CXCR3+ T cells from the circulation. The relative contributions of the different CXCR3 chemokines and the three variant isoforms of CXCR3 (CXCR3A, CXCR3B, CXCR3alt) to the inflammatory process in human skin requires further investigation. In skin cancers, the CXCR3 receptor can play a dual role whereby expression on tumor cells can lead to cancer metastasis to systemic sites while receptor expression on immune cells can frequently promote anti-tumor immune responses. This review will discuss the biology of CXCR3 and its associated ligands with particular emphasis on the skin during inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Paula T Kuo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Zhen Zeng
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Nazhifah Salim
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Mattarollo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Graham R Leggatt
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
106
|
Loo CP, Nelson NA, Lane RS, Booth JL, Loprinzi Hardin SC, Thomas A, Slifka MK, Nolz JC, Lund AW. Lymphatic Vessels Balance Viral Dissemination and Immune Activation following Cutaneous Viral Infection. Cell Rep 2018; 20:3176-3187. [PMID: 28954233 DOI: 10.1016/j.celrep.2017.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
Lymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface. We found that, in the absence of lymphatic vessels, canonical lymph-node-dependent immune induction was impaired, resulting in exacerbated pathology and compensatory, systemic priming. Furthermore, lymphatic vessels decouple fluid and cellular transport in an interferon-dependent manner, leading to viral sequestration while maintaining dendritic cell transport for immune induction. In conclusion, we found that lymphatic vessels balance immune activation and viral dissemination and act as an "innate-like" component of tissue host viral defense.
Collapse
Affiliation(s)
- Christopher P Loo
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicholas A Nelson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jamie L Booth
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sofia C Loprinzi Hardin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey C Nolz
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
107
|
Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Viruses 2018; 10:v10060337. [PMID: 29925766 PMCID: PMC6024644 DOI: 10.3390/v10060337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.
Collapse
|
108
|
Espinosa-Carrasco G, Le Saout C, Fontanaud P, Michau A, Mollard P, Hernandez J, Schaeffer M. Integrin β1 Optimizes Diabetogenic T Cell Migration and Function in the Pancreas. Front Immunol 2018; 9:1156. [PMID: 29904378 PMCID: PMC5990596 DOI: 10.3389/fimmu.2018.01156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
T cell search behavior is dictated by their need to encounter their specific antigen to eliminate target cells. However, mechanisms controlling effector T cell motility are highly tissue-dependent. Specifically, how diabetogenic T cells encounter their target beta cells in dispersed islets throughout the pancreas (PA) during autoimmune diabetes remains unclear. Using intra-vital 2-photon microscopy in a mouse model of diabetes, we found that CXCR3 chemokine downregulated CD8+ T cell motility specifically within islets, promoting effector cell confinement to their target sites. By contrast, T cell velocity and directionality in the exocrine tissue were enhanced along blood vessels and extracellular matrix fibers. This guided migration implicated integrin-dependent interactions, since integrin blockade impaired exocrine T cell motility. In addition, integrin β1 blockade decreased CD4+ T cell effector phenotype specifically in the PA. Thus, we unveil an important role for integrins in the PA during autoimmune diabetes that may have important implications for the design of new therapies.
Collapse
Affiliation(s)
- Gabriel Espinosa-Carrasco
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Cécile Le Saout
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France
| | - Pierre Fontanaud
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurélien Michau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Patrice Mollard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Javier Hernandez
- INSERM U1183, Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
109
|
Bošnjak B, Permanyer M, Sethi MK, Galla M, Maetzig T, Heinemann D, Willenzon S, Förster R, Heisterkamp A, Kalies S. CRISPR/Cas9 Genome Editing Using Gold-Nanoparticle-Mediated Laserporation. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Marc Permanyer
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Maya K. Sethi
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Melanie Galla
- Institute of Experimental Hematology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Dag Heinemann
- Industrial and Biomedical Optics Department; Laser Zentrum Hannover e.V.; Hollerithallee 8 30419 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
| | - Stefani Willenzon
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
| | - Reinhold Förster
- Institute of Immunology; Hannover Medical School; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
| | - Alexander Heisterkamp
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
- Institut für Quantenoptik; Gottfried Wilhelm Leibniz Universität Hannover; Welfengarten 1 30167 Hannover Germany
| | - Stefan Kalies
- Cluster of Excellence REBIRTH; Carl-Neuberg-Str. 1 30625 Hannover Germany
- Lower Saxony Centre for Biomedical Engineering; Implant Research and Development; Stadtfelddamm 34 30625 Hannover Germany
- Institut für Quantenoptik; Gottfried Wilhelm Leibniz Universität Hannover; Welfengarten 1 30167 Hannover Germany
| |
Collapse
|
110
|
Gonnet J, Perrin H, Hutton AJ, Boccara D, Bonduelle O, Mimoun M, Atlan M, Soria A, Combadière B. Interleukin-32 promotes detachment and activation of human Langerhans cells in a human skin explant model. Br J Dermatol 2018; 179:145-153. [PMID: 29806155 DOI: 10.1111/bjd.16721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cross-talk between skin keratinocytes (KCs) and Langerhans cells (LCs) plays a fundamental role in the body's first line of immunological defences. However, the mechanism behind the interaction between these two major epidermal cells is unknown. Interleukin (IL)-32 is produced in inflammatory skin disorders. We questioned the role of IL-32 in the epidermis. OBJECTIVES We aimed to determine the role of IL-32 produced by KCs on surrounding LCs. METHODS We used an ex vivo human explant model from healthy donors and investigated the role of IL-32 on LC activation using imaging, flow cytometry, reverse transcriptase quantitative polymerase chain reaction and small interfering (si)RNA treatment. RESULTS Modified vaccinia virus ankara (MVA) infection induced KC death alongside the early production of the proinflammatory cytokine IL-32. We demonstrated that IL-32 produced by MVA-infected KCs induced modest but significant morphological changes in LCs and downregulation of adhesion molecules, such as epithelial cell adhesion molecule and very late antigen-4, and CXCL10 production. The treatment of KCs with IL-32-specific siRNA, and anti-IL-32 blocking antibody significantly inhibited LC activation, demonstrating the role of IL-32 in LC activation. We also found that some Toll-like receptor ligands induced a very high level of IL-32 production by KCs, which initiated LC activation. CONCLUSIONS We propose, for the first time, that IL-32 is a molecular link between KCs and LCs in healthy skin, provoking LC migration from the epidermis to the dermis prior to their migration to the draining lymph nodes.
Collapse
Affiliation(s)
- J Gonnet
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - H Perrin
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - A J Hutton
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - D Boccara
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France.,Service de Chirurgie Plastique Reconstructrice, Esthétique, Centre des Brûlés, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux, 75010, Paris, France
| | - O Bonduelle
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - M Mimoun
- Service de Chirurgie Plastique Reconstructrice, Esthétique, Centre des Brûlés, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux, 75010, Paris, France
| | - M Atlan
- Service de Chirurgie Plastique Reconstructrice et Esthétique, Hôpital Tenon, Assistance Publique Hôpitaux de Paris (APHP), 4 Rue de la Chine, 75020, Paris, France
| | - A Soria
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France.,Service de Dermatologie et d'Allergologie, Hôpital Tenon, Hôpitaux Universitaire Est Parisien (HUEP), Assistance Publique Hôpitaux de Paris (APHP), 4 rue de la Chine, 75020, Paris, France
| | - B Combadière
- Sorbonne Universités UPMC Université Paris 06, UMRS CR7, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses-Paris (Cimi-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
111
|
Alejo A, Ruiz-Argüello MB, Pontejo SM, Fernández de Marco MDM, Saraiva M, Hernáez B, Alcamí A. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation. Nat Commun 2018; 9:1790. [PMID: 29724993 PMCID: PMC5934441 DOI: 10.1038/s41467-018-04098-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.
Collapse
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain
| | - M Begoña Ruiz-Argüello
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain.,Progenika Biopharma, 48160, Derio, Spain
| | - Sergio M Pontejo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - María Del Mar Fernández de Marco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,Animal & Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Margarida Saraiva
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.,Institute for Molecular and Cell Biology, 4200-135, Porto, Portugal
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.
| |
Collapse
|
112
|
Gebhardt T, Palendira U, Tscharke DC, Bedoui S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol Rev 2018; 283:54-76. [DOI: 10.1111/imr.12650] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| | - Umaimainthan Palendira
- Centenary Institute; The University of Sydney; Sydney NSW Australia
- Sydney Medical School; The University of Sydney; Sydney NSW Australia
| | - David C. Tscharke
- The John Curtin School of Medical Research; The Australian National University; Canberra ACT Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology; The University of Melbourne at the Peter Doherty Institute for Infection and Immunity; Melbourne Vic. Australia
| |
Collapse
|
113
|
Identification of potential key protein interaction networks of BK virus nephropathy in patients receiving kidney transplantation. Sci Rep 2018; 8:5017. [PMID: 29567951 PMCID: PMC5864740 DOI: 10.1038/s41598-018-23492-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
We aim to identify the key protein interaction networks and implicated pathways of BK virus nephropathy (BKVN) via bioinformatic methods. The microarray data GSE75693 of 30 patients with stable kidney transplantation and 15 with BKVN were downloaded and analyzed by using the limma package to identify differentially expressed genes (DEGs). Then the gene ontology (GO) functional enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were done to investigate the molecular function (MF), biological process (BP), cellular components (CC) and pathways of DEGs. Finally, protein-protein interactions (PPIs) were constructed, and the hub proteins were identified. As a result, 249 up-regulated genes and 253 down-regulated genes of BKVN patients were selected based on criteria of P > 0.01 and fold change >2.0. GO and KEGG showed that DEGs were mainly located in nucleus and cytosol, and were implicated in the immune responses. In the PPI analysis, 26 up-regulated and 8 down-regulated proteins composed the pivotal interaction network. CXCL10, EGF and STAT1 were identified as hub proteins in BKVN. In conclusion, CXCL10, EGF and STAT1 may induce kidney injuries by promoting inflammation and prohibiting reparation of tissue damage in BKVN.
Collapse
|
114
|
Pfannes EK, Weiss L, Hadam S, Gonnet J, Combardière B, Blume-Peytavi U, Vogt A. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption. Skin Pharmacol Physiol 2018; 31:115-124. [DOI: 10.1159/000484443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
|
115
|
Patas K, Willing A, Demiralay C, Engler JB, Lupu A, Ramien C, Schäfer T, Gach C, Stumm L, Chan K, Vignali M, Arck PC, Friese MA, Pless O, Wiedemann K, Agorastos A, Gold SM. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder. Front Immunol 2018. [PMID: 29515587 PMCID: PMC5826233 DOI: 10.3389/fimmu.2018.00291] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.
Collapse
Affiliation(s)
- Kostas Patas
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Willing
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Cüneyt Demiralay
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreea Lupu
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Immunomodulation Group, Cantacuzino National Research Institute, Bucharest, Romania
| | - Caren Ramien
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Laura Stumm
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Kenneth Chan
- Adaptive Biotechnologies, Seattle, WA, Unites States
| | | | - Petra C Arck
- Experimentelle Feto-Maternale Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Hamburg, Germany
| | - Klaus Wiedemann
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Agorastos Agorastos
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose (INIMS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité - Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health (BIH), Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin (CBF), Berlin, Germany
| |
Collapse
|
116
|
Hobbs SJ, Osborn JF, Nolz JC. Activation and trafficking of CD8 + T cells during viral skin infection: immunological lessons learned from vaccinia virus. Curr Opin Virol 2018; 28:12-19. [PMID: 29080420 PMCID: PMC5835170 DOI: 10.1016/j.coviro.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/07/2017] [Indexed: 01/13/2023]
Abstract
Epicutaneous delivery of vaccinia virus (VacV) by scarification of the skin generates robust and durable protective immunity, which was ultimately responsible for eradicating smallpox from the human race. Therefore, infection of the skin with VacV is often used in experimental model systems to study the activation of adaptive immunity, as well as the development and functional features of immunological memory. Here, we describe recent advances using this viral infection to identify and characterize the mechanisms regulating the activation and trafficking of cytotoxic CD8+ T cells into the inflamed skin, the migratory features of CD8+ T cells within the skin microenvironment, and finally, their subsequent differentiation into tissue-resident memory cells.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jossef F Osborn
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States
| | - Jeffrey C Nolz
- Departments of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
117
|
Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2018; 8:1970. [PMID: 29379506 PMCID: PMC5775283 DOI: 10.3389/fimmu.2017.01970] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (patho)physiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Rik Janssens
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
118
|
Backer RA, Hombrink P, Helbig C, Amsen D. The Fate Choice Between Effector and Memory T Cell Lineages: Asymmetry, Signal Integration, and Feedback to Create Bistability. Adv Immunol 2018; 137:43-82. [DOI: 10.1016/bs.ai.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
119
|
Caldeira-Dantas S, Furmanak T, Smith C, Quinn M, Teos LY, Ertel A, Kurup D, Tandon M, Alevizos I, Snyder CM. The Chemokine Receptor CXCR3 Promotes CD8 + T Cell Accumulation in Uninfected Salivary Glands but Is Not Necessary after Murine Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 200:1133-1145. [PMID: 29288198 DOI: 10.4049/jimmunol.1701272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 01/24/2023]
Abstract
Recent work indicates that salivary glands are able to constitutively recruit CD8+ T cells and retain them as tissue-resident memory T cells, independently of local infection, inflammation, or Ag. To understand the mechanisms supporting T cell recruitment to the salivary gland, we compared T cell migration to the salivary gland in mice that were infected or not with murine CMV (MCMV), a herpesvirus that infects the salivary gland and promotes the accumulation of salivary gland tissue-resident memory T cells. We found that acute MCMV infection increased rapid T cell recruitment to the salivary gland but that equal numbers of activated CD8+ T cells eventually accumulated in infected and uninfected glands. T cell recruitment to uninfected salivary glands depended on chemokines and the integrin α4 Several chemokines were expressed in the salivary glands of infected and uninfected mice, and many of these could promote the migration of MCMV-specific T cells in vitro. MCMV infection increased the expression of chemokines that interact with the receptors CXCR3 and CCR5, but neither receptor was needed for T cell recruitment to the salivary gland during MCMV infection. Unexpectedly, however, the chemokine receptor CXCR3 was critical for T cell accumulation in uninfected salivary glands. Together, these data suggest that CXCR3 and the integrin α4 mediate T cell recruitment to uninfected salivary glands but that redundant mechanisms mediate T cell recruitment after MCMV infection.
Collapse
Affiliation(s)
- Sofia Caldeira-Dantas
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,Life and Health Sciences Research Institute (ICVS)/3B's Associate Laboratory, 4710-057 Braga, Portugal
| | - Thomas Furmanak
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Corinne Smith
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael Quinn
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Leyla Y Teos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Drishya Kurup
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Mayank Tandon
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892; and
| | - Christopher M Snyder
- Department of Immunology and Microbiology, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
120
|
Bergsbaken T, Bevan MJ, Fink PJ. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8 + Tissue-Resident Memory T Cells. Cell Rep 2017; 19:114-124. [PMID: 28380351 DOI: 10.1016/j.celrep.2017.03.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 02/02/2023] Open
Abstract
Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm) cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103-CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN)-β and interleukin-12 (IL-12), which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT) cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103-CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103- Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.
Collapse
Affiliation(s)
- Tessa Bergsbaken
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Michael J Bevan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Pamela J Fink
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
121
|
Lee SJ, Kang SE, Kang EH, Choi BY, Masek-Hammerman K, Syed J, Zhan Y, Neff-Phillips K, Park JK, Lee EY, Lee EB, Song YW. CXCL10/CXCR3 axis is associated with disease activity and the development of mucocutaneous lesions in patients with Behçet's disease. Sci Rep 2017; 7:14720. [PMID: 29116188 PMCID: PMC5677118 DOI: 10.1038/s41598-017-15189-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/16/2017] [Indexed: 01/04/2023] Open
Abstract
The objective of this study was to investigate CXC chemokines and its receptor in patients with Behcet’s disease (BD) and their associations with disease activity. Blood samples were collected from 109 BD patients and 36 age- and sex-matched healthy controls (HCs). Twenty-two follow-up blood samples were collected in BD patients. Serum CXC chemokines (CXCL1, CXCL8, CXCL9, CXCL10, CXCL12, CXCL13 and CXCL16) and cell surface marker expression (CD3, CD4 and CXCR3) in peripheral blood mononuclear cells (PBMCs) were assayed. Clinical features including disease activity were evaluated at the time of blood collection. CXCR3 expression in skin and intestinal lesions from BD patients and HCs was assessed via immunohistochemistry. Serum CXCL10 levels were correlated with disease activity in terms of Behçet’s Disease Current Activity Form (BDCAF) (p < 0.001). In follow-up BD patients, changes in serum CXCL10 levels tended to be correlated with those of BDCAF. The percentage of CXCR3 expression in CD3-positive cells in PBMCs was inversely correlated with serum CXCL10 levels in BD patients (p = 0.022). By immunohistochemistry, the number of CXCR3-positive mononuclear cells was higher in skin and intestinal lesions of BD patients than in those of HCs. These results suggest that the CXCL10/CXCR3 axis may contribute to the pathogenesis of BD.
Collapse
Affiliation(s)
- Sang Jin Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Shin Eui Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Byoong Yong Choi
- Division of Rheumatology, Department of Internal Medicine, Seoul Medical Center, Seoul, Republic of Korea
| | | | - Jameel Syed
- Drug Safety Research and Development, Pfizer Inc, Andover, MA., USA
| | - Yutian Zhan
- Drug Safety Research and Development, Pfizer Inc, Andover, MA., USA
| | | | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yeong Wook Song
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
122
|
Mrass P, Oruganti SR, Fricke GM, Tafoya J, Byrum JR, Yang L, Hamilton SL, Miller MJ, Moses ME, Cannon JL. ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs. Nat Commun 2017; 8:1010. [PMID: 29044117 PMCID: PMC5647329 DOI: 10.1038/s41467-017-01032-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
Effector T cell migration through tissues can enable control of infection or mediate inflammatory damage. Nevertheless, the molecular mechanisms that regulate migration of effector T cells within the interstitial space of inflamed lungs are incompletely understood. Here, we show T cell migration in a mouse model of acute lung injury with two-photon imaging of intact lung tissue. Computational analysis indicates that T cells migrate with an intermittent mode, switching between confined and almost straight migration, guided by lung-associated vasculature. Rho-associated protein kinase (ROCK) is required for both high-speed migration and straight motion. By contrast, inhibition of Gαi signaling with pertussis toxin affects speed but not the intermittent migration of lung-infiltrating T cells. Computational modeling shows that an intermittent migration pattern balances both search area and the duration of contacts between T cells and target cells. These data identify that ROCK-dependent intermittent T cell migration regulates tissue-sampling during acute lung injury. ROCK is associated with T cell movement in lymph nodes. Here the authors use an LPS lung damage model and two-photon imaging to show that CD8+ T cells in lung tissue engage in ROCK-dependent fast linear migration alternating with bursts of slower confined migration that together optimize contact with target cells.
Collapse
Affiliation(s)
- Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sreenivasa Rao Oruganti
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - G Matthew Fricke
- Department of Computer Science, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Justyna Tafoya
- Department of Computer Science, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Mathematics, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janie R Byrum
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lihua Yang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Samantha L Hamilton
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Mark J Miller
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Melanie E Moses
- Department of Computer Science, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.,External Faculty, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
123
|
Meissner EG, Kohli A, Higgins J, Lee Y, Prokunina O, Wu D, Orr C, Masur H, Kottilil S. Rapid changes in peripheral lymphocyte concentrations during interferon-free treatment of chronic hepatitis C virus infection. Hepatol Commun 2017; 1:586-594. [PMID: 29202115 PMCID: PMC5703427 DOI: 10.1002/hep4.1074] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/26/2023] Open
Abstract
Treatment of chronic hepatitis C virus infection with direct acting antivirals results in a rapid decline in viral load and markers of hepatic inflammation, including serum CXCL10 concentration, which is followed in most cases by a sustained virologic response. Whether parallel changes of significance occur in the cellular composition of peripheral blood is relatively unknown. We hypothesized that longitudinal characterization of peripheral blood during treatment would provide insight into cellular migration and immune activation, which would have implications for understanding host immunity both before and after HCV treatment and may relate to HCV clearance. We analyzed longitudinal peripheral innate and adaptive immune cell populations by flow cytometry from 95 subjects enrolled in two direct acting antiviral clinical trials, and examined chemokine receptor expression on T-lymphocytes in 43 patients. Within 1-2 weeks of initiating treatment, significant increases were observed in the concentration of peripheral CD4+ and CD8+ T-lymphocytes, but not monocyte or natural killer cells. In tandem with these changes, the percent of both CD4+ and CD8+ T-lymphocytes with an activated phenotype (HLA-DR+ and CD38+) decreased, and T-lymphocyte surface expression of CXCR3, the chemokine receptor for CXCL10, increased. CONCLUSION Rapid changes in peripheral cellular populations occur during DAA -treatment of HCV infection, which could potentially relate to hepatic efflux of tissue lymphocytes due to altered inflammation and chemokine receptor signaling, providing critical insight into the relationship between host immunity and viral clearance during hepatitis C virus infection.
Collapse
Affiliation(s)
- Eric G. Meissner
- Division of Infectious DiseasesDepartment of Microbiology and Immunology, Medical University of South CarolinaCharlestonSC
- Critical Care Medicine DepartmentNIH Clinical CenterBethesdaMD
| | - Anita Kohli
- St. Joseph's Hospital and Medical CenterDepartment of Hepatology, Creighton University School of MedicinePhoenixAZ
| | - Jeanette Higgins
- Applied and Developmental Research DirectorateLeidos Biomedical Research, Inc., Frederick National Laboratory for Cancer ResearchFrederickMD
| | - Yu‐Jin Lee
- Laboratory of ImmunoregulationNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMD
| | - Olga Prokunina
- Laboratory of ImmunoregulationNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMD
| | - David Wu
- Laboratory of ImmunoregulationNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMD
| | - Cody Orr
- Division of Infectious DiseasesDepartment of Microbiology and Immunology, Medical University of South CarolinaCharlestonSC
| | - Henry Masur
- Critical Care Medicine DepartmentNIH Clinical CenterBethesdaMD
| | - Shyam Kottilil
- Laboratory of ImmunoregulationNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMD
- Division of Clinical Care and ResearchInstitute of Human Virology, University of MarylandBaltimoreMD
| |
Collapse
|
124
|
Deletion of the K1L Gene Results in a Vaccinia Virus That Is Less Pathogenic Due to Muted Innate Immune Responses, yet Still Elicits Protective Immunity. J Virol 2017; 91:JVI.00542-17. [PMID: 28490586 DOI: 10.1128/jvi.00542-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
All viruses strategically alter the antiviral immune response to their benefit. The vaccinia virus (VACV) K1 protein has multiple immunomodulatory effects in tissue culture models of infection, including NF-κB antagonism. However, the effect of K1 during animal infection is poorly understood. We determined that a K1L-less vaccinia virus (vΔK1L) was less pathogenic than wild-type VACV in intranasal and intradermal models of infection. Decreased pathogenicity was correlated with diminished virus replication in intranasally infected mice. However, in intradermally inoculated ears, vΔK1L replicated to levels nearly identical to those of VACV, implying that the decreased immune response to vΔK1L infection, not virus replication, dictated lesion size. Several lines of evidence support this theory. First, vΔK1L induced slightly less edema than vK1L, as revealed by histopathology and noninvasive quantitative ultrasound technology (QUS). Second, infiltrating immune cell populations were decreased in vΔK1L-infected ears. Third, cytokine and chemokine gene expression was decreased in vΔK1L-infected ears. While these results identified the biological basis for smaller lesions, they remained puzzling; because K1 antagonizes NF-κB in vitro, antiviral gene expression was expected to be higher during vΔK1L infection. Despite these diminished innate immune responses, vΔK1L vaccination induced a protective VACV-specific CD8+ T cell response and protected against a lethal VACV challenge. Thus, vΔK1L is the first vaccinia virus construct reported that caused a muted innate immune gene expression profile and decreased immune cell infiltration in an intradermal model of infection yet still elicited protective immunity.IMPORTANCE The vaccinia virus (VACV) K1 protein inhibits NF-κB activation among its other antagonistic functions. A virus lacking K1 (vΔK1L) was predicted to be less pathogenic because it would trigger a more robust antiviral immune response than VACV. Indeed, vΔK1L was less pathogenic in intradermally infected mouse ear pinnae. However, vΔK1L infection unexpectedly elicited dramatically reduced infiltration of innate immune cells into ears. This was likely due to decreased expression of cytokine and chemokine genes in vΔK1L-infected ears. As such, our finding contradicted observations from cell culture systems. Interestingly, vΔK1L conferred protective immunity against lethal VACV challenge. This suggests that the muted immune response triggered during vΔK1L infection remained sufficient to mount an effective protective response. Our results highlight the complexity and unpredictable nature of virus-host interactions, a relationship that must be understood to better comprehend virus pathogenesis or to manipulate viruses for use as vaccines.
Collapse
|
125
|
Gadhamsetty S, Marée AFM, Beltman JB, de Boer RJ. A Sigmoid Functional Response Emerges When Cytotoxic T Lymphocytes Start Killing Fresh Target Cells. Biophys J 2017; 112:1221-1235. [PMID: 28355549 PMCID: PMC5375173 DOI: 10.1016/j.bpj.2017.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/19/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL)-mediated killing involves the formation of a synapse with a target cell, followed by delivery of perforin and granzymes. Previously, we derived a general functional response for CTL killing while considering that CTLs form stable synapses (i.e., single-stage) and that the number of conjugates remains at steady state. However, the killing of target cells sometimes requires multiple engagements (i.e., multistage). To study how multistage killing and a lack of steady state influence the functional response, we here analyze a set of differential equations as well as simulations employing the cellular Potts model, in both cases describing CTLs that kill target cells. We find that at steady state the total killing rate (i.e., the number of target cells killed by all CTLs) is well described by the previously derived double saturation function. Compared to single-stage killing, the total killing rate during multistage killing saturates at higher CTL and target cell densities. Importantly, when the killing is measured before the steady state is approached, a qualitatively different functional response emerges for two reasons: First, the killing signal of each CTL gets diluted over several targets and because this dilution effect is strongest at high target cell densities; this can result in a peak in the dependence of the total killing rate on the target cell density. Second, the total killing rate exhibits a sigmoid dependence on the CTL density when killing is a multistage process, because it takes typically more than one CTL to kill a target. In conclusion, a sigmoid dependence of the killing rate on the CTLs during initial phases of killing may be indicative of a multistage killing process. Observation of a sigmoid functional response may thus arise from a dilution effect and is not necessarily due to cooperative behavior of the CTLs.
Collapse
Affiliation(s)
| | - Athanasius F M Marée
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Joost B Beltman
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
126
|
CXCL10/CXCR3-Dependent Mobilization of Herpes Simplex Virus-Specific CD8 + T EM and CD8 + T RM Cells within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and Disease. J Virol 2017; 91:JVI.00278-17. [PMID: 28468883 DOI: 10.1128/jvi.00278-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency within the sensory neurons of the trigeminal ganglia (TG). HSV-specific memory CD8+ T cells play a critical role in preventing HSV-1 reactivation from TG and subsequent virus shedding in tears that trigger recurrent corneal herpetic disease. The CXC chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3 (CXCR3) chemokine pathway promotes T cell immunity to many viral pathogens, but its importance in CD8+ T cell immunity to recurrent herpes has been poorly elucidated. In this study, we determined how the CXCL10/CXCR3 pathway affects TG- and cornea-resident CD8+ T cell responses to recurrent ocular herpesvirus infection and disease using a well-established murine model in which HSV-1 reactivation was induced from latently infected TG by UV-B light. Following UV-B-induced HSV-1 reactivation, a significant increase in both the number and function of HSV-specific CXCR3+ CD8+ T cells was detected in TG and corneas of protected C57BL/6 (B6) mice, but not in TG and corneas of nonprotected CXCL10-/- or CXCR3-/- deficient mice. This increase was associated with a significant reduction in both virus shedding and recurrent corneal herpetic disease. Furthermore, delivery of exogenous CXCL10 chemokine in TG of CXCL10-/- mice, using the neurotropic adeno-associated virus type 8 (AAV8) vector, boosted the number and function of effector memory CD8+ T cells (TEM) and tissue-resident memory CD8+ T cells (TRM), but not of central memory CD8+ T cells (TCM), locally within TG, and improved protection against recurrent herpesvirus infection and disease in CXCL10-/- deficient mice. These findings demonstrate that the CXCL10/CXCR3 chemokine pathway is critical in shaping CD8+ T cell immunity, locally within latently infected tissues, which protects against recurrent herpesvirus infection and disease.IMPORTANCE We determined how the CXCL10/CXCR3 pathway affects CD8+ T cell responses to recurrent ocular herpesvirus infection and disease. Using a well-established murine model, in which HSV-1 reactivation in latently infected trigeminal ganglia was induced by UV-B light, we demonstrated that lack of either CXCL10 chemokine or its CXCR3 receptor compromised the mobilization of functional CD8+ TEM and CD8+ TRM cells within latently infected trigeminal ganglia following virus reactivation. This lack of T cell mobilization was associated with an increase in recurrent ocular herpesvirus infection and disease. Inversely, augmenting the amount of CXCL10 in trigeminal ganglia of latently infected CXCL10-deficient mice significantly restored the number of local antiviral CD8+ TEM and CD8+ TRM cells associated with protection against recurrent ocular herpes. Based on these findings, a novel "prime/pull" therapeutic ocular herpes vaccine strategy is proposed and discussed.
Collapse
|
127
|
Mpina M, Maurice NJ, Yajima M, Slichter CK, Miller HW, Dutta M, McElrath MJ, Stuart KD, De Rosa SC, McNevin JP, Linsley PS, Abdulla S, Tanner M, Hoffman SL, Gottardo R, Daubenberger CA, Prlic M. Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations. THE JOURNAL OF IMMUNOLOGY 2017; 199:107-118. [PMID: 28576979 DOI: 10.4049/jimmunol.1601989] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αβ-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design.
Collapse
Affiliation(s)
- Maxmillian Mpina
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | - Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Masanao Yajima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Chloe K Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Hannah W Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Mukta Dutta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - John P McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania; and
| | - Marcel Tanner
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | | | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Claudia A Daubenberger
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; .,University of Basel, Basel, 4001 Switzerland
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
128
|
García-Hernández MDLL, Uribe-Uribe NO, Espinosa-González R, Kast WM, Khader SA, Rangel-Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol 2017; 8:563. [PMID: 28567040 PMCID: PMC5434117 DOI: 10.3389/fimmu.2017.00563] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Multiple solid cancers contain tertiary lymphoid organs (TLO). However, it is unclear whether they promote tumor rejection, facilitate tumor evasion, or simply whether they are a byproduct of chronic inflammation. We hypothesize that although chronic inflammation induces TLO formation, the tumor milieu can modulate TLO organization and functions in prostate cancer. Therefore, our study seeks to elucidate the cellular and molecular signatures in unique prostatectomy specimens from evanescent carcinoma patients to identify markers of cancer regression, which could be harnessed to modulate local immunosuppression or potentially enhance TLO function. METHODS We used multicolor immunofluorescence to stain prostate tissues, collected at different stages of cancer progression (prostatic intraepithelial neoplasia, intermediate and advanced cancer) or from patients with evanescent prostate carcinoma. Tissues were stained with antibodies specific for pro-inflammatory molecules (cyclooxygenase 2, CXCL10, IL17), tumor-infiltrating immune cells (mature DC-LAMP+ dendritic cells, CD3+ T cells, CD3+Foxp3+ regulatory T cells (Treg), T bet+ Th1 cells, granzyme B+ cytotoxic cells), and stromal cell populations (lymphatic vessels, tumor neovessels, high endothelial venules (HEV), stromal cells), which promote prostate tumor growth or are critical components of tumor-associated TLO. RESULTS Generally, inflammatory cells are located at the margins of tumors. Unexpectedly, we found TLO within prostate tumors from patients at different stages of cancer and in unique samples from patients with spontaneous cancer remission. In evanescent prostate carcinomas, accumulation of Treg was compromised, while Tbet+ T cells and CD8 T cells were abundant in tumor-associated TLO. In addition, we found a global decrease in tumor neovascularization and the coverage by cells positive for cyclooxygenase 2 (COX2). Finally, consistent with tumor regression, prostate stem cell antigen was considerably reduced in TLO and tumor areas from evanescent carcinoma patients. CONCLUSION Collectively, our results suggest that COX2 and Treg are attractive therapeutic targets that can be harnessed to enhance TLO-driven tumor immunity against prostate cancer. Specially, the presence of HEV and lymphatics indicate that TLO can be used as a platform for delivery of cell-based and/or COX2 blocking therapies to improve control of tumor growth in prostate cancer.
Collapse
Affiliation(s)
| | - Norma Ofelia Uribe-Uribe
- Department of Anatomy and Anatomical Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Ricardo Espinosa-González
- Department of Anatomy and Anatomical Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in Saint Louis, St. Louis, MO, USA
| | | |
Collapse
|
129
|
Halle S, Halle O, Förster R. Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends Immunol 2017; 38:432-443. [PMID: 28499492 DOI: 10.1016/j.it.2017.04.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are critical in the elimination of infected or malignant cells and are emerging as a major therapeutic target. How CTLs recognize and kill harmful cells has been characterized in vitro but little is known about these processes in the living organism. Here we review recent insights into CTL-mediated killing with an emphasis on in vivo CTL biology. Specifically, we focus on the possible rate-limiting steps determining the efficiency of CTL-mediated killing. We also highlight the need for cell-based datasets that permit the quantification of CTL dynamics, including CTL location, migration, and killing rates. A better understanding of these factors is required to predict protective CD8 T cell immunity in vivo and to design optimized vaccination protocols.
Collapse
Affiliation(s)
- Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | - Olga Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
130
|
Schwarz J, Bierbaum V, Vaahtomeri K, Hauschild R, Brown M, de Vries I, Leithner A, Reversat A, Merrin J, Tarrant T, Bollenbach T, Sixt M. Dendritic Cells Interpret Haptotactic Chemokine Gradients in a Manner Governed by Signal-to-Noise Ratio and Dependent on GRK6. Curr Biol 2017; 27:1314-1325. [PMID: 28457871 DOI: 10.1016/j.cub.2017.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable "roads" ensure optimal guidance in vivo.
Collapse
Affiliation(s)
- Jan Schwarz
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Veronika Bierbaum
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Kari Vaahtomeri
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Translational Cancer Biology Program, Wihuri Research Institute, 00014 Helsinki, Finland
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Markus Brown
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Medizinische Universität Wien, 1090 Vienna, Austria
| | - Ingrid de Vries
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alexander Leithner
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Anne Reversat
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Teresa Tarrant
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | - Tobias Bollenbach
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Universität zu Köln, Institut für Theoretische Physik, 50937 Cologne, Germany.
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
131
|
Abstract
Multiphoton microscopy has revealed important insights into cellular behavior in vivo. However, its application in infectious settings often encounters technical, safety and regulatory limitations that prevent its wider use with highly virulent human pathogens. Herein, we present a method that renders multiphoton microscopy in vivo compatible with biosafety level 3 regulations and present an example of its application and potential to visualize a Mycobacterium tuberculosis infection of the mouse lung.
Collapse
|
132
|
Rosato PC, Beura LK, Masopust D. Tissue resident memory T cells and viral immunity. Curr Opin Virol 2017; 22:44-50. [PMID: 27987416 PMCID: PMC5346042 DOI: 10.1016/j.coviro.2016.11.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/23/2016] [Indexed: 11/17/2022]
Abstract
Tissue resident memory T cells (TRM) constitute a recently identified T cell lineage that is responsible for frontline defense against viral infections. In contrast to central and effector memory T cells, which constitutively recirculate between tissues and blood, TRM reside permanently within tissues. As the main surveyors of non-lymphoid tissues, TRM are positioned to rapidly respond upon reinfection at barrier sites. During a viral reinfection, TRM trigger the local tissue environment to activate and recruit immune cells and establish an antiviral state. Consistent with this function, there is empirical evidence that TRM accelerate control in the event of reinfection or possible reactivation of latent infections in solid organs and barrier tissues. Here we review recent literature highlighting the protective functions of TRM in multiple viral challenge models and contextualize the implications of these findings for vaccine development.
Collapse
Affiliation(s)
- Pamela C Rosato
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, United States
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, United States; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
133
|
Hickman HD. New insights into antiviral immunity gained through intravital imaging. Curr Opin Virol 2017; 22:59-63. [PMID: 28081484 DOI: 10.1016/j.coviro.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Viral infections pose an ongoing challenge for mankind. Much of our knowledge of the immune response to viral infections comes from ex vivo analyses of infected animals, which provide important yet static information about events occurring within the host. Recently, a relatively new technique known as intravital microscopy (IVM) has been applied to the study of antiviral immunity. Intravital imaging affords a unique, real-time view of both viral dynamics and the ensuing immune response (along with their interplay) in the living animal. This review details some of the newest observations about the antiviral immune response gained using IVM.
Collapse
Affiliation(s)
- Heather D Hickman
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
134
|
Slaney CY, von Scheidt B, Davenport AJ, Beavis PA, Westwood JA, Mardiana S, Tscharke DC, Ellis S, Prince HM, Trapani JA, Johnstone RW, Smyth MJ, Teng MW, Ali A, Yu Z, Rosenberg SA, Restifo NP, Neeson P, Darcy PK, Kershaw MH. Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clin Cancer Res 2016; 23:2478-2490. [PMID: 27965307 DOI: 10.1158/1078-0432.ccr-16-1860] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/16/2022]
Abstract
Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model.Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors.Results: ACTIV therapy induced durable complete remission of a variety of Her2+ tumors, some in excess of 150 mm2, in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient.Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR.
Collapse
Affiliation(s)
- Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Bianca von Scheidt
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander J Davenport
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer A Westwood
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - David C Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sarah Ellis
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ricky W Johnstone
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Aesha Ali
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Steven A Rosenberg
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Paul Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Australia
| |
Collapse
|
135
|
Muschaweckh A, Buchholz VR, Fellenzer A, Hessel C, König PA, Tao S, Tao R, Heikenwälder M, Busch DH, Korn T, Kastenmüller W, Drexler I, Gasteiger G. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J Exp Med 2016; 213:3075-3086. [PMID: 27899444 PMCID: PMC5154944 DOI: 10.1084/jem.20160888] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/19/2016] [Accepted: 10/28/2016] [Indexed: 11/04/2022] Open
Abstract
Tissue-resident memory CD8+ T cells (TRM) constitute a major component of the immune-surveillance system in nonlymphoid organs. Local, noncognate factors are both necessary and sufficient to support the programming of TRM cell fate in tissue-infiltrating T cells. Recent evidence suggests that TCR signals received in infected nonlymphoid tissues additionally contribute to TRM cell formation. Here, we asked how antigen-dependent pathways influence the generation of skin-resident memory T cells that arise from a polyclonal repertoire of cells induced by infection with an antigenically complex virus and recombinant vaccine vector. We found that CD8+ T cells of different specificities underwent antigen-dependent competition in the infected tissue, which shaped the composition of the local pool of TRM cells. This local cross-competition was active for T cells recognizing antigens that are coexpressed by infected cells. In contrast, TRM cell development remained largely undisturbed by the presence of potential competitors when antigens expressed in the same tissue were segregated through infection with antigenically distinct viral quasispecies. Functionally, local cross-competition might serve as a gatekeeping mechanism to regulate access to the resident memory niche and to fine-tune the local repertoire of antiviral TRM cells.
Collapse
Affiliation(s)
- Andreas Muschaweckh
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany.,Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Anne Fellenzer
- Institute of Medical Microbiology and Hygiene and Forschungszentrum für Immuntherapie, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Christian Hessel
- Institute of Medical Microbiology and Hygiene and Forschungszentrum für Immuntherapie, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Paul-Albert König
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany.,Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Sha Tao
- Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Mathias Heikenwälder
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Wolfgang Kastenmüller
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany.,Institute of Experimental Immunology, Universität Bonn, 53105 Bonn, Germany
| | - Ingo Drexler
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany .,Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Georg Gasteiger
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany .,Institute of Medical Microbiology and Hygiene and Forschungszentrum für Immuntherapie, University of Mainz Medical Center, 55131 Mainz, Germany.,Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany
| |
Collapse
|
136
|
Abboud G, Desai P, Dastmalchi F, Stanfield J, Tahiliani V, Hutchinson TE, Salek-Ardakani S. Tissue-specific programming of memory CD8 T cell subsets impacts protection against lethal respiratory virus infection. J Exp Med 2016; 213:2897-2911. [PMID: 27879287 PMCID: PMC5154936 DOI: 10.1084/jem.20160167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/09/2016] [Accepted: 10/21/2016] [Indexed: 11/07/2022] Open
Abstract
Abboud et al. reveal the striking and unexpected spatial organization of central- versus effector-like memory cells within the infected lung tissue and how cooperation between these two subsets contributes to host defense. How tissue-specific anatomical distribution and phenotypic specialization are linked to protective efficacy of memory T cells against reinfection is unclear. Here, we show that lung environmental cues program recently recruited central-like memory cells with migratory potentials for their tissue-specific functions during lethal respiratory virus infection. After entering the lung, some central-like cells retain their original CD27hiCXCR3hi phenotype, enabling them to localize near the infected bronchiolar epithelium and airway lumen to function as the first line of defense against pathogen encounter. Others, in response to local cytokine triggers, undergo a secondary program of differentiation that leads to the loss of CXCR3, migration arrest, and clustering within peribronchoarterial areas and in interalveolar septa. Here, the immune system adapts its response to prevent systemic viral dissemination and mortality. These results reveal the striking and unexpected spatial organization of central- versus effector-like memory cells within the lung and how cooperation between these two subsets contributes to host defense.
Collapse
Affiliation(s)
- Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Pritesh Desai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Farhad Dastmalchi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Jessica Stanfield
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Vikas Tahiliani
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Tarun E Hutchinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| |
Collapse
|
137
|
Singular role for T-BET+CXCR3+ regulatory T cells in protection from autoimmune diabetes. Proc Natl Acad Sci U S A 2016; 113:14103-14108. [PMID: 27872297 PMCID: PMC5150376 DOI: 10.1073/pnas.1616710113] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foxp3+ regulatory T (Treg) cells are crucial for restraining inflammation in a variety of autoimmune diseases, including type 1 diabetes (T1D). However, the transcriptional and functional phenotypes of Treg cells within the pancreatic lesion remain poorly understood. Here we characterized pancreas-infiltrating Treg cells in the NOD mouse model of T1D and uncovered a substantial enrichment of the Treg subpopulation expressing the chemokine receptor CXCR3. Accumulation of CXCR3+ Treg cells within pancreatic islets was dependent on the transcription factor T-BET, and genetic ablation of T-BET increased the onset and penetrance of disease, abrogating the sex bias normally seen in the NOD model. Both male and female mice lacking T-BET+ Treg cells showed a more aggressive insulitic infiltrate, reflected most prominently by elevated production of type 1 cytokines. Our results suggest the possibility of fine therapeutic targeting of Treg cells, in a tissue- and cell-subset-specific fashion, as a more focused immunotherapy for T1D.
Collapse
|
138
|
Gaylo A, Schrock DC, Fernandes NRJ, Fowell DJ. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning. Front Immunol 2016; 7:428. [PMID: 27790220 PMCID: PMC5063845 DOI: 10.3389/fimmu.2016.00428] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.
Collapse
Affiliation(s)
- Alison Gaylo
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Dillon C. Schrock
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Ninoshka R. J. Fernandes
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
139
|
Lundberg J, Jussing E, Liu Z, Meng Q, Rao M, Samén E, Grankvist R, Damberg P, Dodoo E, Maeurer M, Holmin S. Safety of Intra-Arterial Injection With Tumor-Activated T Cells to the Rabbit Brain Evaluated by MRI and SPECT/CT. Cell Transplant 2016; 26:283-292. [PMID: 27725029 DOI: 10.3727/096368916x693347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most severe form of malignant gliomas. The prognosis is poor with current combinations of pharmaceutical, radiotherapy, and surgical therapy. A continuous search for new treatments has therefore been ongoing for many years. Therapy with tumor-infiltrating lymphocytes (TILs) is a clinically promising strategy to treat various cancers, including GBM. An endovascular intra-arterial injection of TILs as a method of delivery may, instead of intravenous infusion, result in better retention of effector cells within the tumor. Prior to clinical trials of intra-arterial injections with any cells, preclinical safety data with special emphasis on embolic-ischemic events are necessary to obtain. We used native rabbits as a model for intra-arterial injections with routine clinical catheter material and a clinical angiography suite. We selectively infused a total dose of 20 million activated T cells at a cell concentration of 4,000 cells/μl over 8 min of injection time. The rabbits were evaluated for ischemic lesions by 9.4 T magnetic resonance imaging (MRI) (n = 6), and for tracking of injected cells, single-photon emission computed tomography/computed tomography (SPECT/CT) was used (n = 2). In this study, we show that we can selectively infuse activated T cells to a CNS volume of 3.5 cm3 (estimated from the volumetric MRI) without catastrophic embolic-ischemic adverse events. We had one adverse event with a limited basal ganglia infarction, probably due to catheter-induced mechanical occlusion of one of the lateral lenticulostriatal arteries. The cells pass through the native brain without leaving SPECT signals. The cells then, over the first hours, end up in the liver to a large extent and to a lesser degree by the spleen, pancreas, and kidneys. Virtually no uptake could be detected in the lungs. This indicates a difference in biodistribution as opposed to other cell types when infused intravenously.
Collapse
|
140
|
Li R, Zhang N, Tian M, Ran Z, Zhu M, Zhu H, Han F, Yin J, Zhong J. Temporary CXCR3 and CCR5 antagonism following vaccination enhances memory CD8 T cell immune responses. Mol Med 2016; 22:497-507. [PMID: 27447731 PMCID: PMC5072403 DOI: 10.2119/molmed.2015.00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Although current vaccination strategies have been successful at preventing a variety of human diseases, attempts at vaccinating against some pathogens such as AIDS and tuberculosis (TB) have been more problematic, largely in that abnormally high numbers of antigen specific CD8+ T cells are required for protection. This study assessed the effect of temporarily dampening the chemokine receptor CXCR3 and CCR5 after vaccination on host immune responses by the administration of TAK-779, a small molecule CXCR3 and CCR5 antagonists commonly used to inhibit HIV infection. Our results showed that the use of TAK-779 enhanced memory CD8+ T cell immune responses both qualitatively and quantitatively. Treatment with TAK-779 following vaccination of an influenza virus antigen resulted in enhanced memory generation with more CD8+CD127+ memory precursor and fewer terminally differentiated effector CD8+CD69+ T cells. These memory T cells were able to become IFN-γ-secreting effector cells when re-encountered the same antigen, which can further enhance the efficacy of vaccination. The mice vaccinated in the presence of TAK-779 were better protected upon influenza virus challenge than the control. These results showed that vaccination while temporarily inhibiting chemokine receptor CXCR3 and CCR5 by TAK-779 could be a promising strategy to generate large number of protective memory CD8+ T cells.
Collapse
Affiliation(s)
- Rui Li
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Nan Zhang
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Miaomiao Tian
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Zihan Ran
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Mingjun Zhu
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Haiyan Zhu
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangting Han
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Juan Yin
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering, School of Life Sciences
| |
Collapse
|
141
|
Klein M, Schmalzing M, Almanzar G, Benoit S, Hamm H, Tony HP, Goebeler M, Prelog M. Contribution of CD8+ T cells to inflammatory cytokine production in systemic sclerosis (SSc). Autoimmunity 2016; 49:532-546. [PMID: 27560622 DOI: 10.1080/08916934.2016.1217997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Only limited attention has been paid to the role of CD8 + T cells in the etiopathogenesis and progression of systemic sclerosis (SSc). CD8 + T cells may have autoantigen-specific and pro-inflammatory but also immunomodulatory properties. To investigate the differentiation of CD8 + T cells, staining of cell surface factors and of chemokine receptors were performed. In addition, the cytokine-producing ability of circulating CD8 + T cells and their sensitivity to suppression by regulatory T cells (Tregs) were compared between patients with diffuse (dcSSc) or limited cutaneous SSc (lcSSc) and healthy individuals. We identified CD8 + T cells as producers of pro-inflammatory type-2 cytokines with a significant contribution of memory CD8 + T cells. Memory CD8 + T cells of SSc patients stayed unaltered after suppression with autologous Tregs. Expression of chemokine receptors was significantly correlated with intracellular cytokine production in CD8 + T cells with a clear dichotomy of type 1 and type 2 cytokines. High levels of intracellular cytokines, such as interleukin-(IL)-4, IL-13 and tumor-necrosis-factor-alpha (TNFalpha) were positively associated with the presence of Scl-70 or anti-centromere antibodies and negatively with the administration of glucocorticoids. Administration of glucocorticoids was positively associated with higher IFNgamma production. Lack of anti-centromere antibodies and therapy with methotrexate were positively associated with higher intracellular IL-10 production. CD8 + T cells may significantly contribute to inflammation in SSc. Our findings suggest to not only focus on T helper cells in the development of therapeutic strategies but also to consider the role of CD8 + T cells in the etiopathogenesis and perpetuation of SSc.
Collapse
Affiliation(s)
- Matthias Klein
- a Department of Pediatrics, Pediatric Rheumatology and Special Immunology , University Hospital Wuerzburg , Wuerzburg , Germany
| | - Marc Schmalzing
- b Department of Internal Medicine II, Division of Rheumatology and Clinical Immunology , University Hospital Wuerzburg , Wuerzburg , Germany , and
| | - Giovanni Almanzar
- a Department of Pediatrics, Pediatric Rheumatology and Special Immunology , University Hospital Wuerzburg , Wuerzburg , Germany
| | - Sandrine Benoit
- c Department of Dermatology, Venereology and Allergology , University Hospital Wuerzburg , Wuerzburg , Germany
| | - Henning Hamm
- c Department of Dermatology, Venereology and Allergology , University Hospital Wuerzburg , Wuerzburg , Germany
| | - Hans-Peter Tony
- b Department of Internal Medicine II, Division of Rheumatology and Clinical Immunology , University Hospital Wuerzburg , Wuerzburg , Germany , and
| | - Matthias Goebeler
- c Department of Dermatology, Venereology and Allergology , University Hospital Wuerzburg , Wuerzburg , Germany
| | - Martina Prelog
- a Department of Pediatrics, Pediatric Rheumatology and Special Immunology , University Hospital Wuerzburg , Wuerzburg , Germany
| |
Collapse
|
142
|
Gilchuk P, Hill TM, Guy C, McMaster SR, Boyd KL, Rabacal WA, Lu P, Shyr Y, Kohlmeier JE, Sebzda E, Green DR, Joyce S. A Distinct Lung-Interstitium-Resident Memory CD8(+) T Cell Subset Confers Enhanced Protection to Lower Respiratory Tract Infection. Cell Rep 2016; 16:1800-9. [PMID: 27498869 DOI: 10.1016/j.celrep.2016.07.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/14/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022] Open
Abstract
The nature and anatomic location of the protective memory CD8(+) T cell subset induced by intranasal vaccination remain poorly understood. We developed a vaccination model to assess the anatomic location of protective memory CD8(+) T cells and their role in lower airway infections. Memory CD8(+) T cells elicited by local intranasal, but not systemic, vaccination with an engineered non-replicative CD8(+) T cell-targeted antigen confer enhanced protection to a lethal respiratory viral challenge. This protection depends on a distinct CXCR3(LO) resident memory CD8(+) T (Trm) cell population that preferentially localizes to the pulmonary interstitium. Because they are positioned close to the mucosa, where infection occurs, interstitial Trm cells act before inflammation can recruit circulating memory CD8(+) T cells into the lung tissue. This results in a local protective immune response as early as 1 day post-infection. Hence, vaccine strategies that induce lung interstitial Trm cells may confer better protection against respiratory pathogens.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sean R McMaster
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Whitney A Rabacal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pengcheng Lu
- Vanderbilt Technologies for Advanced Genomics Analyses and Research Design, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yu Shyr
- Vanderbilt Technologies for Advanced Genomics Analyses and Research Design, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric Sebzda
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sebastian Joyce
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
143
|
IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Proc Natl Acad Sci U S A 2016; 113:8502-7. [PMID: 27402748 DOI: 10.1073/pnas.1600713113] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Memory γδ T cells are important for the clearance of Listeria monocytogenes infection in the intestinal mucosa. However, the mechanisms by which memory γδ T cells provide protection against secondary oral infection are poorly understood. Here we used a recombinant strain of L. monocytogenes that efficiently invades the intestinal epithelium to show that Vγ4(+) memory γδ T cells represent a resident memory (Trm) population in the mesenteric lymph nodes (MLNs). The γδ Trm exhibited a remarkably static pattern of migration that radically changed following secondary oral L. monocytogenes infection. The γδ Trms produced IL-17A early after rechallenge and formed organized clusters with myeloid cells surrounding L. monocytogenes replication foci only after a secondary oral infection. Antibody blocking studies showed that in addition to IL-17A, the chemokine receptor C-X-C chemokine receptor 3 (CXCR3) is also important to enable the local redistribution of γδ Trm cells and myeloid cells specifically near the sites of L. monocytogenes replication within the MLN to restrict bacterial growth and spread. Our findings support a role for γδ Trms in orchestrating protective immune responses against intestinal pathogens.
Collapse
|
144
|
Capece T, Kim M. The Role of Lymphatic Niches in T Cell Differentiation. Mol Cells 2016; 39:515-23. [PMID: 27306645 PMCID: PMC4959015 DOI: 10.14348/molcells.2016.0089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022] Open
Abstract
Long-term immunity to many viral and bacterial pathogens requires CD8(+) memory T cell development, and the induction of long-lasting CD8(+) memory T cells from a naïve, undifferentiated state is a major goal of vaccine design. Formation of the memory CD8(+) T cell compartment is highly dependent on the early activation cues received by naïve CD8(+) T cells during primary infection. This review aims to highlight the cellularity of various niches within the lymph node and emphasize recent evidence suggesting that distinct types of T cell activation and differentiation occur within different immune contexts in lymphoid organs.
Collapse
Affiliation(s)
- Tara Capece
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642,
USA
| |
Collapse
|
145
|
Kariminik A, Dabiri S, Yaghobi R. Polyomavirus BK Induces Inflammation via Up-regulation of CXCL10 at Translation Levels in Renal Transplant Patients with Nephropathy. Inflammation 2016; 39:1514-9. [DOI: 10.1007/s10753-016-0385-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
146
|
Khan TN, Mooster JL, Kilgore AM, Osborn JF, Nolz JC. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J Exp Med 2016; 213:951-66. [PMID: 27217536 PMCID: PMC4886364 DOI: 10.1084/jem.20151855] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/06/2016] [Indexed: 12/05/2022] Open
Abstract
CD8+ T cells activated during viral infection migrate to infected skin in an antigen-independent manner. Local recognition of antigens drives the differentiation into Trm CD8+ T cells. Tissue-resident memory (Trm) CD8+ T cells are functionally distinct from their circulating counterparts and are potent mediators of host protection against reinfection. Whether local recognition of antigen in nonlymphoid tissues during infection can impact the formation of Trm populations remains unresolved. Using skin infections with vaccinia virus (VacV)–expressing model antigens, we found that local antigen recognition had a profound impact on Trm formation. Activated CD8+ T cells trafficked to VacV-infected skin in an inflammation-dependent, but antigen-independent, manner. However, after viral clearance, there was a subsequent ∼50-fold increase in Trm formation when antigen was present in the tissue microenvironment. Secondary antigen stimulation in nonlymphoid tissue caused CD8+ T cells to rapidly express CD69 and be retained at the site of infection. Finally, Trm CD8+ T cells that formed during VacV infection in an antigen-dependent manner became potent stimulators of localized antigen-specific inflammatory responses in the skin. Thus, our studies indicate that the presence of antigen in the nonlymphoid tissue microenvironment plays a critical role in the formation of functional Trm CD8+ T cell populations, a finding with relevance for both vaccine design and prevention of inflammatory disorders.
Collapse
Affiliation(s)
- Tahsin N Khan
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Jana L Mooster
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Augustus M Kilgore
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Jossef F Osborn
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239 Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR 97239 Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
147
|
Siddiqui I, Erreni M, van Brakel M, Debets R, Allavena P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: importance of the chemokine gradient. J Immunother Cancer 2016; 4:21. [PMID: 27096098 PMCID: PMC4836203 DOI: 10.1186/s40425-016-0125-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background Adoptive T-cell based immunotherapies constitute a promising approach to treat cancer, however, a major problem is to obtain effective and long-lasting anti-tumor responses. Lack of response may be due to insufficient trafficking of specific T cells to tumors. A key requirement for efficient migration of cytotoxic T cells is that they express chemokine receptors that match the chemokines produced by tumor or tumor-associated cells. Methods In this study, we investigated whether the in vivo tumor trafficking of activated T cells could be enhanced by the expression of the chemokine receptor CX3CR1. Two human colorectal cancer cell lines were used to set up a xenograft tumor model in immunodeficient mice; the NCI-H630, constitutively expressing the chemokine ligand CX3CL1 (Fractalkine), and the RKO cell line, transduced to express CX3CL1. Results Human primary T cells were transduced with the receptor CX3CR1-eGFP. Upon in vivo adoptive transfer of genetically modified CX3CR1-T cells in mice bearing NCI-H630 tumors, enhanced lymphocyte migration and tumor trafficking were observed, compared to mice receiving Mock-T cells, indicating improved homing ability towards ligand-expressing tumor cells. Furthermore, significant inhibition of tumor growth was found in mice receiving modified CX3CR1-T cells. In contrast, tumors formed by RKO cells transduced with the ligand (RKO-CX3CL1) were not affected, nor more infiltrated upon transfer of CX3CR1-T lymphocytes, likely because high levels of the chemokine were shed by tumor cells in the systemic circulation, thus nullifying the blood-tissue chemokine gradient. Conclusions This study demonstrates that ectopic expression of CX3CR1 enhanced the homing of adoptively transferred T cells towards CX3CL1-producing tumors, resulting in increased T cell infiltration in tumor tissues and decreased tumor growth. Our results also establish that a correct chemokine gradient between the systemic circulation and the tumor is an essential requirement in adoptive T-cell based immunotherapy to efficiently recruit T cell effectors at the correct sites. Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0125-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Imran Siddiqui
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, 20089 Rozzano, Milan Italy ; Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Marco Erreni
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, 20089 Rozzano, Milan Italy
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department Medical Oncology, Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, 20089 Rozzano, Milan Italy
| |
Collapse
|
148
|
Manipulating leukocyte interactions in vivo through optogenetic chemokine release. Blood 2016; 127:e35-41. [PMID: 27057000 DOI: 10.1182/blood-2015-11-684852] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
Light-mediated release of signaling ligands, such as chemoattractants, growth factors, and cytokines is an attractive strategy for investigation and therapeutic targeting of leukocyte communication and immune responses. We introduce a versatile optogenetic method to control ligand secretion, combining UV-conditioned endoplasmic reticulum-to-Golgi trafficking and a furin-processing step. As proof of principle, we achieved light-triggered chemokine secretion and demonstrated that a brief pulse of chemokine release can mediate a rapid flux of leukocyte contacts with target cells in vitro and in vivo. This approach opens new possibilities for dynamic investigation of leukocyte communication in vivo and may confer the potential to control the local release of soluble mediators in the context of immune cell therapies.
Collapse
|
149
|
Witte E, Kokolakis G, Witte K, Warszawska K, Friedrich M, Christou D, Kirsch S, Sterry W, Volk HD, Sabat R, Wolk K. Interleukin-29 induces epithelial production of CXCR3A ligands and T-cell infiltration. J Mol Med (Berl) 2016; 94:391-400. [PMID: 26612594 DOI: 10.1007/s00109-015-1367-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Psoriasis is considered as a model for chronic immune-mediated disorders. Th17-cells are pivotal players in those diseases. Recently, we demonstrated that Th17-cells produce interleukin (IL)-29 and that IL-29 is highly present in psoriatic lesions. Whether IL-29, with its action on epithelial cells and melanocytes, contributes to psoriasis pathogenesis, was unknown so far. Analysis of IL-29-treated human keratinocytes revealed induction of the chemokines CXCL10, CXCL11, and, to a much lesser extent, CXCL9. Unlike these CXCR3A ligands, known to attract Th1-, CD8(+), NK-, and Th1/Th17 transient cells, no influence was found on chemokines attracting other immune cell populations or on molecules modulating the CXCR3A/CXCR3A ligand interaction. CXCR3A ligand expression was also induced by IL-29 in melanocytes and in epidermis models and explanted skin. Regarding other psoriasis-relevant cytokines, interferon-γ and, less potently, tumor necrosis factor-α and IL-1β shared and strengthened IL-29's capacity. Murine IL-29 counterpart injected into mouse skin provoked local CXCL10 and CXCL11 expression, T-cell infiltration, and, in consequence, skin swelling. The elevated IL-29 expression in psoriatic lesions was associated with upregulation of CXCR3A ligands compared to non-lesional skin of these patients and to the skin of healthy donors and atopic dermatitis patients, which lack IL-29 production. Importantly, neutralization of IL-29 reduced CXCR3A ligand levels in explant cultures of psoriatic lesions. Finally, elevated blood CXCL11 levels were found in psoriasis that might be useful for monitoring lesional activity of the IL-29 axis. In summary, the Th17-cytokine IL-29 induces specific chemokines and, in consequence, provokes skin infiltration of potentially pathogenic T-cells. KEY MESSAGES IL-29 selectively induces CXCR3A-binding chemokines (CXCL9, CXCL10, CXCL11) in skin cells. Murine IL-29 counterpart induces skin T-cell infiltration and inflammation in mice. CXCR3A ligands are IL-29-dependently increased in lesional skin of psoriasis patients. CXCR3A ligand levels in psoriatic skin correlate with epidermal T-cell numbers. Increased blood CXCL11 levels in psoriasis may be a biomarker for local IL-29 action.
Collapse
Affiliation(s)
- Ellen Witte
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany
| | - Katrin Witte
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, University Hospital Charité, Berlin, Germany
| | - Katarzyna Warszawska
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany
| | - Markus Friedrich
- Department of Dermatology and Allergy, University Hospital Charité, Berlin, Germany
| | - Demetrios Christou
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany
| | - Stefan Kirsch
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology and Allergy, University Hospital Charité, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, University Hospital Charité, Berlin, Germany
- Institute of Medical Immunology, University Hospital Charité, Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany
- Research Center Immunosciences, University Hospital Charité, Berlin, Germany
- Interdisciplinary Group Molecular Immunopathology, University Hospital Charité, Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, University Hospital Charité, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, University Hospital Charité, Berlin, Germany.
- Research Center Immunosciences, University Hospital Charité, Berlin, Germany.
| |
Collapse
|
150
|
Stolp B, Melican K. Microbial pathogenesis revealed by intravital microscopy: pros, cons and cautions. FEBS Lett 2016; 590:2014-26. [PMID: 26938770 DOI: 10.1002/1873-3468.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Intravital multiphoton imaging allows visualization of infections and pathogenic mechanisms within intact organs in their physiological context. Today, most organs of mice and rats are applicable to in vivo or ex vivo imaging, opening completely new avenues for many researchers. Advances in fluorescent labeling of pathogens and infected cells, as well as improved small animal models for human pathogens, led to the increased application of in vivo imaging in infectious diseases research in recent years. Here, we review the latest literature on intravital or ex vivo imaging of viral and bacterial infections and critically discuss requirements, benefits and drawbacks of applied animal models, labeling strategies, and imaged organs.
Collapse
Affiliation(s)
- Bettina Stolp
- Heidelberg University Hospital, Center of Infectious Diseases, Integrative Virology, Heidelberg, Germany
| | - Keira Melican
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|