101
|
Zhang X, Chytil P, Etrych T, Liu W, Rodrigues L, Winter G, Filippov SK, Papadakis CM. Binding of HSA to Macromolecular pHPMA Based Nanoparticles for Drug Delivery: An Investigation Using Fluorescence Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7998-8006. [PMID: 29949376 DOI: 10.1021/acs.langmuir.8b01015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphilic poly( N-(2-hydroxypropyl)methacrylamide) copolymers ( pHPMA) bearing cholesterol side groups in phosphate buffer saline self-assemble into nanoparticles (NPs) which can be used as tumor-targeted drug carriers. It was previously shown by us that human serum albumin (HSA) interacts weakly with the NPs. However, the mechanism of this binding could not be resolved due to overlapping of signals from the complex system. Here, we use fluorescence labeling to distinguish the components and to characterize the binding: On the one hand, a fluorescent dye was attached to pHPMA, so that the diffusion behavior of the NPs could be studied in the presence of HSA using fluorescence lifetime correlation spectroscopy. On the other hand, quenching of the intrinsic fluorescence of HSA revealed the origin of the binding, which is mainly the complexation between HSA and cholesterol side groups. Furthermore, a binding constant was obtained.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Physik-Department, Physik weicher Materie , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Petr Chytil
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Weiwei Liu
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universität München , Butenandtstr. 5 , 81377 Munich , Germany
| | - Leticia Rodrigues
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universität München , Butenandtstr. 5 , 81377 Munich , Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Ludwig-Maximilians-Universität München , Butenandtstr. 5 , 81377 Munich , Germany
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovského nám. 2 , 162 06 Prague 6 , Czech Republic
| | - Christine M Papadakis
- Physik-Department, Physik weicher Materie , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| |
Collapse
|
102
|
TEMPO-oxidized starch nanoassemblies of negligible toxicity compared with polyacrylic acids for high performance anti-cancer therapy. Int J Pharm 2018; 547:520-529. [PMID: 29886098 DOI: 10.1016/j.ijpharm.2018.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022]
Abstract
There is an urgent need for developing nanocarrier of excellent biocompatibility which can selectively release drugs at desired locations that can increase intratumoral drug concentration and reduce side effects. Herein, we developed a highly biocompatible nanocarrier made of oxidized starch in delivering doxorubicin (DOX) for enhanced anti-cancer therapy. The 30% oxidized starch can spontaneously self-assemble into 30-50 nm spherical nanoassemblies under physiological concentrations. DO30 nanoassemblies possessed negligible toxicity in several cell lines and ICR mice, in contrast to severe toxicity of synthetic polyacrylic acid (PAA), both of which are carboxyl-abundant polymers. The biocompatible DO30 was further decorated with cyclic RGD (Arg-Gly-Asp-Phe-Cys) peptides via PEG linker to target αvβ3 integrin overexpressed on HepG2 cells. RGD-PEG-DO30/DOX demonstrated an enhanced tumor-targeting ability and anti-cancer property in vitro and in vivo. In general, RGD-oxidized starch nanoassemblies showed a great potential as a new type of safe and effective nanocarrier for anti-cancer therapy.
Collapse
|
103
|
Blau R, Epshtein Y, Pisarevsky E, Tiram G, Dangoor SI, Yeini E, Krivitsky A, Eldar-Boock A, Ben-Shushan D, Gibori H, Scomparin A, Green O, Ben-Nun Y, Merquiol E, Doron H, Blum G, Erez N, Grossman R, Ram Z, Shabat D, Satchi-Fainaro R. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Am J Cancer Res 2018; 8:3437-3460. [PMID: 30026858 PMCID: PMC6037036 DOI: 10.7150/thno.23853] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Complete tumor removal during surgery has a great impact on patient survival. To that end, the surgeon should detect the tumor, remove it and validate that there are no residual cancer cells left behind. Residual cells at the incision margin of the tissue removed during surgery are associated with tumor recurrence and poor prognosis for the patient. In order to remove the tumor tissue completely with minimal collateral damage to healthy tissue, there is a need for diagnostic tools that will differentiate between the tumor and its normal surroundings. Methods: We designed, synthesized and characterized three novel polymeric Turn-ON probes that will be activated at the tumor site by cysteine cathepsins that are highly expressed in multiple tumor types. Utilizing orthotopic breast cancer and melanoma models, which spontaneously metastasize to the brain, we studied the kinetics of our polymeric Turn-ON nano-probes. Results: To date, numerous low molecular weight cathepsin-sensitive substrates have been reported, however, most of them suffer from rapid clearance and reduced signal shortly after administration. Here, we show an improved tumor-to-background ratio upon activation of our Turn-ON probes by cathepsins. The signal obtained from the tumor was stable and delineated the tumor boundaries during the whole surgical procedure, enabling accurate resection. Conclusions: Our findings show that the control groups of tumor-bearing mice, which underwent either standard surgery under white light only or under the fluorescence guidance of the commercially-available imaging agents ProSense® 680 or 5-aminolevulinic acid (5-ALA), survived for less time and suffered from tumor recurrence earlier than the group that underwent image-guided surgery (IGS) using our Turn-ON probes. Our "smart" polymeric probes can potentially assist surgeons' decision in real-time during surgery regarding the tumor margins needed to be removed, leading to improved patient outcome.
Collapse
|
104
|
Li J, Meng X, Deng J, Lu D, Zhang X, Chen Y, Zhu J, Fan A, Ding D, Kong D, Wang Z, Zhao Y. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17117-17128. [PMID: 29722261 DOI: 10.1021/acsami.8b06299] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoparticulate antitumor photodynamic therapy (PDT) has been suffering from the limited dose accumulation in tumor. Herein, we report dually hypoxia- and singlet oxygen-responsive polymeric micelles to efficiently utilize the photosensitizer deposited in the disease site and hence facilely improve PDT's antitumor efficacy. Tailored methoxy poly(ethylene glycol)-azobenzene-poly(aspartic acid) copolymer conjugate with imidazole as the side chains was synthesized. The conjugate micelles (189 ± 19 nm) obtained by self-assembly could efficiently load a model photosensitizer, chlorin e6 (Ce6) with a loading of 4.1 ± 0.5% (w/w). The facilitated cellular uptake of micelles was achieved by the triggered azobenzene collapse that provoked poly(ethylene glycol) shedding; rapid Ce6 release was enabled by imidazole oxidation that induced micelle disassembly. In addition, the singlet oxygen-mediated cargo release not only addressed the limited diffusion range and short half-life of singlet oxygen but also decreased the oxygen level, which could in turn enhance internalization and increase the intracellular Ce6 concentration. The hypoxia-induced dePEGylation and singlet oxygen-triggered Ce6 release was demonstrated both in aqueous buffer and in Lewis lung carcinoma (LLC) cells. The cellular uptake study demonstrated that the dually responsive micelles could deliver significantly more Ce6 to the cells, which resulted in a substantially improved cytotoxicity. This concurred well with the superior in vivo antitumor ability of micelles in a LLC tumor-bearing mouse model. This study presented an intriguing nanoplatform to realize interactively triggered photosensitizer delivery and improved antitumor PDT efficacy.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xuan Meng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Jian Deng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Di Lu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Xin Zhang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanrui Chen
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Jundong Zhu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Aiping Fan
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
105
|
Krivitsky A, Krivitsky V, Polyak D, Scomparin A, Eliyahu S, Gibori H, Yeini E, Pisarevsky E, Blau R, Satchi-Fainaro R. Molecular Weight-Dependent Activity of Aminated Poly(α)glutamates as siRNA Nanocarriers. Polymers (Basel) 2018; 10:E548. [PMID: 30966582 PMCID: PMC6415365 DOI: 10.3390/polym10050548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) can contribute immensely to the area of personalized medicine by its ability to target any gene of interest. Nevertheless, its clinical use is limited by lack of efficient delivery systems. Polymer therapeutics can address many of the challenges encountered by the systemic delivery of RNAi, but suffer from inherent drawbacks such as polydispersity and batch to batch heterogeneity. These characteristics may have far-reaching consequences when dealing with therapeutic applications, as both the activity and the toxicity may be dependent on the length of the polymer chain. To investigate the consequences of polymers' heterogeneity, we have synthesized two batches of aminated poly(α)glutamate polymers (PGAamine), differing in their degree of polymerization, but not in the monomer units or their conjugation. Isothermal titration calorimetry study was conducted to define the binding affinity of these polymers with siRNA. Molecular dynamics simulation revealed that Short PGAamine:siRNA polyplexes exposed a higher amount of amine moieties to the surroundings compared to Long PGAamine. This resulted in a higher zeta potential, leading to faster degradation and diminished gene silencing. Altogether, our study highlights the importance of an adequate physico-chemical characterization to elucidate the structure⁻function-activity relationship, for further development of tailor-designed RNAi delivery vehicles.
Collapse
Affiliation(s)
- Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Vadim Krivitsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
| | - Dina Polyak
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shay Eliyahu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
106
|
Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704307. [PMID: 29389049 DOI: 10.1002/adma.201704307] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Indexed: 05/18/2023]
Abstract
Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed.
Collapse
Affiliation(s)
- Joël Bourquin
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Ana Milosevic
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Roman Lehner
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Fabian Blank
- Respiratory Medicine, Department of Biomedical Research, University of Bern, Murtenstrasse 50, 3008, Bern
| | - Alke Petri-Fink
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
107
|
El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine (Lond) 2018; 13:953-971. [DOI: 10.2217/nnm-2017-0336] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Significant preclinical and clinical research has explored the use of magnetic iron oxide nanoparticles (MNPs) for medical theranostics. Herein, we provide an overview of the optimal ‘design-to-perform’ MNPs used in cancer therapeutics, specifically focusing on magnetic hyperthermia, magnetic drug targeting, and targeting delivery. An account of the progress made in the clinic using MNPs is then analyzed. We place special emphasis on past and present magnetic nanoformulations used in clinical settings or yet to be clinically approved. Regrettably, as of now, no MNP drug delivery system is employed in the clinic. Thus, identifying current limitations, misconceptions and challenges will definitely impact the clinical success of MNP delivery theranostic systems and their promising future potential in medicine.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- Department of Basic Sciences, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| |
Collapse
|
108
|
Linhardt A, König M, Iturmendi A, Henke H, Brüggemann O, Teasdale I. Degradable, Dendritic Polyols on a Branched Polyphosphazene Backbone. Ind Eng Chem Res 2018; 57:3602-3609. [PMID: 29568158 PMCID: PMC5857928 DOI: 10.1021/acs.iecr.7b05301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Abstract
Herein, we present the design, synthesis, and characterization of fully degradable, hybrid, star-branched dendritic polyols. First multiarmed polyphosphazenes were prepared as a star-branched scaffold which upon functionalization produced globular branched hydroxyl-functionalized polymers with over 1700 peripheral functional end groups. These polyols with unique branched architectures could be prepared with controlled molecular weights and relatively narrow dispersities. Furthermore, the polymers are shown to undergo hydrolytic degradation to low molecular weight degradation products, the rate of which could be controlled through postpolymerization functionalization of the phosphazene backbone.
Collapse
Affiliation(s)
- Anne Linhardt
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Michael König
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes
Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
109
|
Vossen LI, Markovsky E, Eldar-Boock A, Tschiche HR, Wedepohl S, Pisarevsky E, Satchi-Fainaro R, Calderón M. PEGylated dendritic polyglycerol conjugate targeting NCAM-expressing neuroblastoma: Limitations and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1169-1179. [PMID: 29471169 DOI: 10.1016/j.nano.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/19/2018] [Accepted: 02/10/2018] [Indexed: 12/17/2022]
Abstract
Neural cell adhesion molecule (NCAM) is found to be a stem-cell marker in several tumor types and its overexpression is known to correlate with increased metastatic capacity. To combine extravasation- and ligand-dependent targeting to NCAM overexpressing-cells in the tumor microenvironment, we developed a PEGylated NCAM-targeted dendritic polyglycerol (PG) conjugate. Here, we describe the synthesis, physico-chemical characterization and biological evaluation of a PG conjugate bearing the mitotic inhibitor paclitaxel (PTX) and an NCAM-targeting peptide (NTP). PG-NTP-PTX-PEG was evaluated for its ability to inhibit neuroblastoma progression in vitro and in vivo as compared to non-targeted derivatives and free drug. NCAM-targeted conjugate inhibited the migration of proliferating endothelial cells, suggesting it would be able to inhibit tumor angiogenesis. The targeting conjugate provided an improved binding and uptake on IMR-32 cells compared to non-targeted control. However, these results did not translate to our in vivo model on orthotopic neuroblastoma bearing mice.
Collapse
Affiliation(s)
- Laura Isabel Vossen
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany
| | - Ela Markovsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Harald Rune Tschiche
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany
| | - Evgeny Pisarevsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany.
| |
Collapse
|
110
|
Krivitsky A, Polyak D, Scomparin A, Eliyahu S, Ofek P, Tiram G, Kalinski H, Avkin-Nachum S, Feiner Gracia N, Albertazzi L, Satchi-Fainaro R. Amphiphilic poly(α)glutamate polymeric micelles for systemic administration of siRNA to tumors. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:303-315. [PMID: 29127036 DOI: 10.1016/j.nano.2017.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023]
Abstract
RNAi therapeutics carried a great promise to the area of personalized medicine: the ability to target "undruggable" oncogenic pathways. Nevertheless, their efficient tumor targeting via systemic administration had not been resolved yet. Amphiphilic alkylated poly(α)glutamate amine (APA) can serve as a cationic carrier to the negatively-charged oligonucleotides. APA polymers complexed with siRNA to form round-shaped, homogenous and reproducible nano-sized polyplexes bearing ~50 nm size and slightly negative charge. In addition, APA:siRNA polyplexes were shown to be potent gene regulators in vitro. In light of these preferred physico-chemical characteristics, their performance as systemically-administered siRNA nanocarriers was investigated. Intravenously-injected APA:siRNA polyplexes accumulated selectively in tumors and did not accumulate in the lungs, heart, liver or spleen. Nevertheless, the polyplexes failed to induce specific mRNA degradation, hence neither reduction in tumor volume nor prolonged mice survival was seen.
Collapse
Affiliation(s)
- Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Dina Polyak
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Shay Eliyahu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
111
|
Zhang X, Niebuur BJ, Chytil P, Etrych T, Filippov SK, Kikhney A, Wieland DCF, Svergun DI, Papadakis CM. Macromolecular pHPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment. Biomacromolecules 2018; 19:470-480. [PMID: 29381335 DOI: 10.1021/acs.biomac.7b01579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticles (NPs) that form by self-assembly of amphiphilic poly(N-(2-hydroxypropyl)-methacrylamide) (pHPMA) copolymers bearing cholesterol side groups are potential drug carriers for solid tumor treatment. Here, we investigate their behavior in solutions of human serum albumin (HSA) in phosphate buffered saline. Mixed solutions of NPs, from polymer conjugates with or without the anticancer drug doxorubicin (Dox) bound to them, and HSA at concentrations up to the physiological value are characterized by synchrotron small-angle X-ray scattering and isothermal titration calorimetry. When Dox is absent, a small amount of HSA molecules bind to the cholesterol groups that form the core of the NPs by diffusing through the loose pHPMA shell or get caught in meshes formed by the pHPMA chains. These interactions are strongly hindered by the presence of Dox, which is distributed in the pHPMA shell, meaning that the delivery of Dox by the NPs in the human body is not affected by the presence of HSA.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Technische Universität München , Physik-Department, Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- Technische Universität München , Physik-Department, Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Petr Chytil
- Institute of Macromolecular Chemistry , Czech Academy of Sciences, v. v. i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Tomas Etrych
- Institute of Macromolecular Chemistry , Czech Academy of Sciences, v. v. i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry , Czech Academy of Sciences, v. v. i., Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Alexey Kikhney
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - D C Florian Wieland
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Christine M Papadakis
- Technische Universität München , Physik-Department, Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
112
|
Hajfathalian M, Bouché M, Cormode DP. Polyphosphazene-Based Nanoparticles as Contrast Agents. ACS SYMPOSIUM SERIES 2018:77-100. [DOI: 10.1021/bk-2018-1298.ch004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Department of Radiology, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
- Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St., 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
113
|
Xu L, Yang J, Liu Y, Shi L, Wu C, Jin H, Jin X, Su Y, Zhu X. Short-term urea cycle inhibition in rat liver cells induced by polyethylene glycol. Biomater Sci 2018; 6:2896-2904. [DOI: 10.1039/c8bm00668g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We illuminate the biological effect of PEG on a specific cellular pathway: the urea cycle at a molecular level.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Jiapei Yang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yumin Liu
- Instrumental Analysis Center
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Chenwei Wu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Hua Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yue Su
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
114
|
Aichhorn S, Linhardt A, Halfmann A, Nadlinger M, Kirchberger S, Stadler M, Dillinger B, Distel M, Dohnal A, Teasdale I, Schöfberger W. A pH-sensitive Macromolecular Prodrug as TLR7/8 Targeting Immune Response Modifier. Chemistry 2017; 23:17721-17726. [PMID: 28758266 PMCID: PMC5763314 DOI: 10.1002/chem.201702942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 11/09/2022]
Abstract
The chemical synthesis and biological activity of novel functionalized imidazoquinoline derivatives (ImQ) to generate Toll-like receptor (TLR) 7/8 specific prodrugs are presented. In vivo activity of ImQs to induce inflammation was confirmed in zebrafish larvae. After covalent ligation to fully biodegradable polyphosphazenes (ImQ-polymer), the macromolecular prodrugs were designed to undergo intracellular pH-sensitive release of ImQs to induce inflammation through binding to endosomal TLR7/8 (danger signal). We showed ImQ dissociation from prodrugs at a pH 5 pointing towards endosomal prodrug degradability. ImQ-polymers strongly activated ovalbumin-specific T cells in murine splenocytes as shown by increased proliferation and expression of the IL-2 receptor (CD25) on CD8+ T cells accompanied by strong IFN-γ release. ImQ prodrugs presented here are suggested to form the basis of novel nanovaccines, for example, for intravenous or intratumoral cancer immunotherapeutic applications to trigger physiological antitumor immune responses.
Collapse
Affiliation(s)
- Stefan Aichhorn
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Anne Linhardt
- Institute of Polymer ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Angela Halfmann
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Markus Nadlinger
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Stefanie Kirchberger
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Manuela Stadler
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Barbara Dillinger
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Martin Distel
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Alexander Dohnal
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Wolfgang Schöfberger
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| |
Collapse
|
115
|
Molecular insights for the biological interactions between polyethylene glycol and cells. Biomaterials 2017; 147:1-13. [DOI: 10.1016/j.biomaterials.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 09/02/2017] [Indexed: 12/13/2022]
|
116
|
Breibeck J, Skerra A. The polypeptide biophysics of proline/alanine-rich sequences (PAS): Recombinant biopolymers with PEG-like properties. Biopolymers 2017; 109. [PMID: 29076532 PMCID: PMC5813227 DOI: 10.1002/bip.23069] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/14/2022]
Abstract
PAS polypeptides comprise long repetitive sequences of the small L‐amino acids proline, alanine and/or serine that were developed to expand the hydrodynamic volume of conjugated pharmaceuticals and prolong their plasma half‐life by retarding kidney filtration. Here, we have characterized the polymer properties both of the free polypeptides and in fusion with the biopharmaceutical IL‐1Ra. Data from size exclusion chromatography, dynamic light scattering, circular dichroism spectroscopy and quantification of hydrodynamic and polar properties demonstrate that the biosynthetic PAS polypeptides exhibit random coil behavior in aqueous solution astonishingly similar to the chemical polymer poly‐ethylene glycol (PEG). The solvent‐exposed PAS peptide groups, in the absence of secondary structure, account for strong hydrophilicity, with negligible contribution by the Ser side chains. Notably, PAS polypeptides exceed PEG of comparable molecular mass in hydrophilicity and hydrodynamic volume while exhibiting lower viscosity. Their uniform monodisperse composition as genetically encoded polymers and their biological nature, offering biodegradability, render PAS polypeptides a promising PEG mimetic for biopharmaceutical applications.
Collapse
Affiliation(s)
- Joscha Breibeck
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany.,XL-protein GmbH, Lise-Meitner-Str. 30, 85354, Freising, Germany
| |
Collapse
|
117
|
Ferber S, Tiram G, Sousa-Herves A, Eldar-Boock A, Krivitsky A, Scomparin A, Yeini E, Ofek P, Ben-Shushan D, Vossen LI, Licha K, Grossman R, Ram Z, Henkin J, Ruppin E, Auslander N, Haag R, Calderón M, Satchi-Fainaro R. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. eLife 2017; 6:25281. [PMID: 28976305 PMCID: PMC5644959 DOI: 10.7554/elife.25281] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier. dPGS is able to cross the BBB, bind to P/L-selectins and accumulate selectively in intracranial tumors. We show that dPGS has dual targeting properties, as we found that P-selectin is not only expressed on tumor endothelium but also on glioblastoma cells. We delivered dPGS-PTX in combination with a peptidomimetic of the anti-angiogenic protein thrombospondin-1 (TSP-1 PM). This combination resulted in a remarkable synergistic anticancer effect on intracranial human and murine glioblastoma via induction of Fas and Fas-L, with no side effects compared to free PTX or temozolomide. This study shows that our unique therapeutic approach offers a viable alternative for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Sousa-Herves
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laura Isabel Vossen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, Evanston, United States
| | - Eytan Ruppin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Computer Science, University of Maryland, College Park, United States
| | - Noam Auslander
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Department of Computer Science, University of Maryland, College Park, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
118
|
Shafei A, El-Bakly W, Sobhy A, Wagdy O, Reda A, Aboelenin O, Marzouk A, El Habak K, Mostafa R, Ali MA, Ellithy M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother 2017; 95:1209-1218. [PMID: 28931213 DOI: 10.1016/j.biopha.2017.09.059] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
In metastatic breast cancer (MBC), the conventional doxorubicin (DOX) has various problems due to lack of selectivity with subsequent therapeutic failure and adverse effects. DOX- induced cardiotoxicity is a major problem that necessitates the presence of new forms to decrease the risk of associated morbidity. Nanoparticles (NPs) are considered an important approach to selectively increase drug accumulation inside tumor cells and thus decreasing the associated side effects. Tumor cells develop resistance to chemotherapeutic agents through multiple mechanisms, one of which is over expression of efflux transporters. Various NPs have been investigated to overcome efflux mediated resistance. To date, only liposomal doxorubicin (LD) and pegylated liposomal doxorubicin (PLD) have entered phase II and III clinical trials and FDA- approved for clinical use in MBC. This review addresses the effects of LD and PLD on the hematological and palmar-plantar erythrodysesthesia (PPE) in anthracycline naïve and pretreated MBC patients. For evidence, studies to be included in this review were identified through PubMed, Cochrane and Google scholar databases. The results derived from: four phase III clinical trials that compared LD with the conventional DOX in naïve MBC patients, and ten non-comparative clinical trials investigated LD and PLD as monotherapy or combination in pretreated MBC. This work confirmed the cardiac tolerability profile of LD and PLD versus DOX, while hematological and skin toxicities were more common. Other DOX-NPs in preclinical trials were discussed in a chronological order. Finally, the modern preclinical development framework for DOX includes exosomal DOX (exo-DOX). Exosomal NPs are non-toxic, non-immunogenic, and can be engineered to have high cargo loading capacity and targeting specificity. These NPs have not been investigated clinically. Our study shows that the full clinical potentiality of DOX-NPs remains to be addressed to move the field forward.
Collapse
Affiliation(s)
- Ayman Shafei
- Biomedical Research Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Wesam El-Bakly
- Pharmacology Department, Faculty of Medicine, Ain Shams University, Egypt.
| | | | | | | | | | | | | | - Randa Mostafa
- Biomedical Research Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Mahmoud A Ali
- Biomedical Research Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Mahmoud Ellithy
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Egypt
| |
Collapse
|
119
|
Hackl CM, Schoenhacker-Alte B, Klose MHM, Henke H, Legina MS, Jakupec MA, Berger W, Keppler BK, Brüggemann O, Teasdale I, Heffeter P, Kandioller W. Synthesis and in vivo anticancer evaluation of poly(organo)phosphazene-based metallodrug conjugates. Dalton Trans 2017; 46:12114-12124. [PMID: 28862707 DOI: 10.1039/c7dt01767g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within this work we aimed to improve the pharmacodynamics and toxicity profile of organoruthenium and -rhodium complexes which had previously been found to be highly potent in vitro but showed unselective activity in vivo. Different organometallic complexes were attached to a degradable poly(organo)phosphazene macromolecule, prepared via controlled polymerization techniques. The conjugation to hydrophilic polymers was designed to increase the aqueous solubility of the typically poorly soluble metal-based half-sandwich compounds with the aim of a controlled, pH-triggered release of the active metallodrug. The synthesized conjugates and their characteristics have been thoroughly studied by means of 31P NMR and UV-Vis spectroscopy, ICP-MS analyses and SEC coupled to ICP-MS. In order to assess their potential as possible anticancer drug candidates, the complexes, as well as their respective macromolecular prodrug formulations were tested against three different cancer cell lines in cell culture. Subsequently, the anticancer activity and organ distribution of the poly(organo)phosphazene drug conjugates were explored in vivo in mice bearing CT-26 colon carcinoma. Our investigations revealed a beneficial influence of this macromolecular prodrug by a significant reduction of adverse effects compared to the free metallodrugs.
Collapse
Affiliation(s)
- Carmen M Hackl
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Beatrix Schoenhacker-Alte
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Matthias H M Klose
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Maria S Legina
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| |
Collapse
|
120
|
Chen C, Tao R, Ding D, Kong D, Fan A, Wang Z, Zhao Y. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. Eur J Pharm Sci 2017. [DOI: 10.1016/j.ejps.2017.06.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
121
|
Eldar-Boock A, Blau R, Ryppa C, Baabur-Cohen H, Many A, Vicent MJ, Kratz F, Sanchis J, Satchi-Fainaro R. Integrin-targeted nano-sized polymeric systems for paclitaxel conjugation: a comparative study. J Drug Target 2017; 25:829-844. [PMID: 28737432 DOI: 10.1080/1061186x.2017.1358727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The generation of rationally designed polymer therapeutics via the conjugation of low molecular weight anti-cancer drugs to water-soluble polymeric nanocarriers aims to improve the therapeutic index. Here, we focus on applying polymer therapeutics to target two cell compartments simultaneously - tumour cells and angiogenic endothelial cells. Comparing different polymeric backbones carrying the same therapeutic agent and targeting moiety may shed light on any correlation between the choice of polymer and the anti-cancer activity of the conjugate. Here, we compared three paclitaxel (PTX)-bound conjugates with poly-l-glutamic acid (PGA, 4.9 mol%), 2-hydroxypropylmethacrylamide (HPMA, 1.2 mol%) copolymer, or polyethyleneglycol (PEG, 1:1 conjugate). PGA and HPMA copolymers are multivalent polymers that allow the conjugation of multiple compounds within the same polymer backbone, while PEG is a bivalent commercially available Food and Drug Administration (FDA)-approved polymer. We further conjugated PGA-PTX and PEG-PTX with the integrin αvβ3-targeting moiety RGD (5.5 mol% and 1:1 conjugate, respectively). We based our selection on the overexpression of integrin αvβ3 on angiogenic endothelial cells and several types of cancer cells. Our findings suggest that the polymer structure has major effect on the conjugate's activity on different tumour compartments. A multivalent PGA-PTX-E-[c(RGDfK)2] conjugate displayed a stronger inhibitory effect on the endothelial compartment, showing a 50% inhibition of the migration of human umbilical vein endothelial cell cells, while a PTX-PEG-E-[c(RGDfK)2] conjugate possessed enhanced anti-cancer activity on MDA-MB-231 tumour cells (IC50 = 20 nM versus IC50 300 nM for the PGA conjugate).
Collapse
Affiliation(s)
- Anat Eldar-Boock
- a Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Rachel Blau
- a Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | | | - Hemda Baabur-Cohen
- a Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Ariel Many
- c Sourasky Medical Center , Lis Maternity Hospital , Tel Aviv , Israel
| | - María Jesús Vicent
- d Polymer Therapeutics Lab , Centro de Investigación Príncipe Felipe , Valencia , Spain
| | | | - Joaquin Sanchis
- d Polymer Therapeutics Lab , Centro de Investigación Príncipe Felipe , Valencia , Spain
| | - Ronit Satchi-Fainaro
- a Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
122
|
Dumoga S, Rai Y, Bhatt AN, Tiwari AK, Singh S, Mishra AK, Kakkar D. Block Copolymer Based Nanoparticles for Theranostic Intervention of Cervical Cancer: Synthesis, Pharmacokinetics, and in Vitro/in Vivo Evaluation in HeLa Xenograft Models. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22195-22211. [PMID: 28608677 DOI: 10.1021/acsami.7b04982] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymer-based nanoparticles have proven to be viable carriers of therapeutic agents. In this study, we have developed nanoparticles (NPs) from polypeptide-polyethylene glycol based triblock and diblock copolymers. The synthesized block copolymers poly(ethylene glycol)-b-poly(glutamic acid)-b-poly(ethylene glycol) (GEG) and poly(ethylene glycol)-b-poly(glutamic acid) (EG) conjugated with folic acid for targeting specificity (EGFA) have been used to encapsulate methotrexate (MTX) to form M-GEG and M-EGFA NPs aimed at passive and active targeting of cervical carcinoma. In-vitro SRB cytotoxicity and hemolysis assays revealed that these NPs were cytocompatible to healthy human cells and hemocompatible to human RBCs. Cellular uptake by FACS demonstrated their prompt internalization by human cervical carcinoma (HeLa) cells and points toward an apoptotic mechanism of cell kill as confirmed by AO/EB staining as well as histological analysis of explanted HeLa tumors. Pharmacokinetics and biodistribution studies were performed in New Zealand albino rabbits and HeLa xenografted Athymic mice models, respectively, by radiolabeling these NPs with 99mTc. Passive tumor accumulation and active targeting of MTX-loaded polymeric nanoparticles to folate expressing cells were confirmed by intravenous administration of these 99mTc-labeled M-GEG and M-EGFA NPs in HeLa tumor bearing nude mice and clearly visualized by whole-body gamma-SPECT images of these mice. Survival studies of these xenografted mice established the antiproliferative effect of these MTX-loaded NPs while corroborating the targeting effect of folic acid. These studies proved that the M-GEG NPs and M-EGFA NPs could be effective alternatives to conventional chemotherapy along with simultaneous diagnostic abilities and thus potentially viable theranostic options for human cervical carcinoma.
Collapse
Affiliation(s)
- Shweta Dumoga
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization , Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054, India
- Department of Chemistry, University of Delhi , Delhi 110007, India
| | - Yogesh Rai
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization , Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054, India
| | - Anant Narayan Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization , Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054, India
| | - Anjani Kumar Tiwari
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization , Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054, India
| | - Surendra Singh
- Department of Chemistry, University of Delhi , Delhi 110007, India
| | - Anil K Mishra
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization , Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054, India
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization , Brig. S.K. Mazumdar Road, Timarpur, Delhi 110054, India
| |
Collapse
|
123
|
Baabur-Cohen H, Vossen LI, Krüger HR, Eldar-boock A, Yeini E, Landa-Rouben N, Tiram G, Wedepohl S, Markovsky E, Leor J, Calderón M, Satchi-Fainaro R. In vivo comparative study of distinct polymeric architectures bearing a combination of paclitaxel and doxorubicin at a synergistic ratio. J Control Release 2017; 257:118-131. [DOI: 10.1016/j.jconrel.2016.06.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 12/19/2022]
|
124
|
Sayed E, Haj-Ahmad R, Ruparelia K, Arshad MS, Chang MW, Ahmad Z. Porous Inorganic Drug Delivery Systems-a Review. AAPS PharmSciTech 2017; 18:1507-1525. [PMID: 28247293 DOI: 10.1208/s12249-017-0740-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 11/30/2022] Open
Abstract
Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.
Collapse
|
125
|
Chanburee S, Tiyaboonchai W. Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers. J Biomed Mater Res B Appl Biomater 2017; 106:734-741. [DOI: 10.1002/jbm.b.33884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Sanipon Chanburee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences; Naresuan University; Phitsanulok 65000 Thailand
- The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on High Education, Ministry of Education; Phitsanulok Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences; Naresuan University; Phitsanulok 65000 Thailand
- The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on High Education, Ministry of Education; Phitsanulok Thailand
- The Center of Excellence in Medical Biotechnology, Naresuan University; Phitsanulok 65000 Thailand
| |
Collapse
|
126
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
127
|
Xin K, Li M, Lu D, Meng X, Deng J, Kong D, Ding D, Wang Z, Zhao Y. Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:80-91. [PMID: 27957858 DOI: 10.1021/acsami.6b09425] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Catechol-Fe3+ coordinated micelles show the potential for achieving on-demand drug delivery and magnetic resonance imaging in a single nanoplatform. Herein, we developed bioinspired coordination-cross-linked amphiphilic polymeric micelles loaded with a model anticancer agent, doxorubicin (Dox). The nanoscale micelles could tolerate substantial dilution to a condition below the critical micelle concentration (9.4 ± 0.3 μg/mL) without sacrificing the nanocarrier integrity due to the catechol-Fe3+ coordinated core cross-linking. Under acidic conditions (pH 5.0), the release rate of Dox was significantly faster compared to that at pH 7.4 as a consequence of coordination collapse and particle de-cross-linking. The cell viability study in 4T1 cells showed no toxicity regarding placebo cross-linked micelles. The micelles with improved stability showed a dramatically increased Dox accumulation in tumors and hence the enhanced suppression of tumor growth in a 4T1 tumor-bearing mouse model. The presence of Fe3+ endowed the micelles T1-weighted MRI capability both in vitro and in vivo without the incorporation of traditional toxic paramagnetic contrast agents. The current work presented a simple "three birds with one stone" approach to engineer the robust theranostic nanomedicine platform.
Collapse
Affiliation(s)
- Keting Xin
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Man Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Di Lu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Xuan Meng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Jun Deng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | | | | | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, China
| |
Collapse
|
128
|
Henke H, Brüggemann O, Teasdale I. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600644] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry; Johannes Kepler University Linz; Altenberger Straße 69 4040 Linz Austria
| |
Collapse
|
129
|
Wang C, Chen S, Yu Q, Hu F, Yuan H. Taking advantage of the disadvantage: employing the high aqueous instability of amorphous calcium carbonate to realize burst drug release within cancer cells. J Mater Chem B 2017; 5:2068-2073. [DOI: 10.1039/c6tb02826h] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The high aqueous instability of amorphous calcium carbonate (ACC), which will lead to a burst release of its payload, has generally been recognized as the major obstacle for its further application in nanomedicine.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qin Yu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Hong Yuan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
130
|
Jafari SM, Faridi Esfanjani A, Katouzian I, Assadpour E. Release, Characterization, and Safety of Nanoencapsulated Food Ingredients. NANOENCAPSULATION OF FOOD BIOACTIVE INGREDIENTS 2017:401-453. [DOI: 10.1016/b978-0-12-809740-3.00010-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
131
|
Worm M, Leibig D, Dingels C, Frey H. Cleavable Polyethylene Glycol: 3,4-Epoxy-1-butene as a Comonomer to Establish Degradability at Physiologically Relevant pH. ACS Macro Lett 2016; 5:1357-1363. [PMID: 35651218 DOI: 10.1021/acsmacrolett.6b00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyethylene glycol (PEG) has been used for decades to improve the pharmacokinetic properties of protein drugs, and several PEG-protein conjugates are approved by the FDA. However, the nondegradability of PEG restricts its use to a limiting molecular weight to permit renal excretion. In this work, we introduce a simple strategy to overcome the nondegradability of PEG by incorporating multiple pH-sensitive vinyl ether moieties into the polyether backbone. Copolymerization of 3,4-epoxy-1-butene (EPB) with ethylene oxide via anionic ring-opening polymerization (AROP) provides access to allyl moieties that can be isomerized to pH-cleavable propenyl units (isoEPB). Well-defined P(EPB-co-EG) copolymers (Đ = 1.05-1.11) with EPB contents of ∼4 mol% were synthesized in a molecular weight range of 3000 to 10000 g mol-1. 1H NMR kinetic studies served to investigate acidic hydrolysis in a pH range of 4.4 to 5.4 and even allowed to distinguish between the hydrolysis rates of (E)- and (Z)-isoEPB units, demonstrating faster hydrolysis of the (Z)-isomer. SEC analysis of degradation products revealed moderate dispersities Đ of 1.6 to 1.8 and consistent average molecular weights Mn of ∼1000 g mol-1. The presence of a defined hydroxyl end group permits attachment to other functional molecules. The novel pH-degradable PEGs combine various desirable properties such as excellent long-term storage stability and cleavage in a physiologically relevant pH-range that render them promising candidates for biomedical application.
Collapse
Affiliation(s)
- Matthias Worm
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Daniel Leibig
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger
Weg 9, D-55128 Mainz, Germany
| | - Carsten Dingels
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
132
|
Zhang P, Guo Z, Zhang D, Liu C, Chen G, Zhuang R, Song M, Wu H, Zhang X. A Novel Copolymer-Based Functional SPECT/MR Imaging Agent for Asialoglycoprotein Receptor Targeting. Mol Imaging 2016; 15:15/0/1536012116667327. [PMID: 27941121 PMCID: PMC5470137 DOI: 10.1177/1536012116667327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/18/2015] [Accepted: 07/24/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to develop a copolymer-based single-photon emission computed tomography/magnetic resonance (SPECT/MR) dual-modality imaging agent that can be labeled with both technetium-99m (99mTc) and gadolinium (Gd) and target asialoglycoprotein receptor (ASGPR) via galactose. Monomers of N-p-vinylbenzyl-6-(2-(4-dimethylamino)benzaldehydehydrazono) nicotinate (VNI) for labeling of 99mTc, 5,8-bis(carboxymethyl)-3-oxo-11-(2-oxo-2-((4-vinylbenzyl)amino)ethyl)-1-(4-vinylphenzyl)-2,5,8,11-tetraazatridecan-13-oic acid (V2DTPA) for labeling of Gd, and vinylbenzyl-O-β-d-galactopyranosyl-d-gluconamide (VLA) for targeting ASGPR were synthesized, respectively. Then the copolymer P(VLA-co-VNI-co-V2DTPA) (pVLND2) was synthesized and characterized by gel permeation chromatography, dynamic light scattering, and high-performance liquid chromatography analysis. After labeling with 99mTc and Gd simultaneously, the radiochemical purity, toxicity, relaxivity (r1), and in vivo SPECT/MR imaging in mice were evaluated. Single-photon emission computed tomography/magnetic resonance imaging and biodistribution results showed that pVLND2 could target ASGPR well. The significantly improved signal to noise ratio was observed in mice liver during MR imaging. All the results suggest that this novel kind of copolymer has the potential to be further developed as a functional SPECT/MR imaging agent.
Collapse
Affiliation(s)
- Pu Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhide Guo
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Deliang Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Chang Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Guibing Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Rongqiang Zhuang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Manli Song
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
133
|
Rudnick-Glick S, Corem-Salkmon E, Grinberg I, Margel S. Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model. J Nanobiotechnology 2016; 14:80. [PMID: 27919267 PMCID: PMC5139040 DOI: 10.1186/s12951-016-0233-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/26/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Most primary and metastatic bone tumors demonstrate increased osteoclast activity and bone resorption. Current treatment is based on a combination of surgery, radiotherapy and chemotherapy. Severe side effects are associated with chemotherapy due to use of high dosage and nonspecific uptake. Bisphosphonates have a strong affinity to Ca2+ ions and are widely used in the treatment of bone disorders. RESULTS We have engineered a unique biodegradable bisphosphonate nanoparticle (NPs) bearing two functional surface groups: (1) primary amine groups for covalent attachment of a dye/drug (e.g. NIR dye Cy 7 or doxorubicin); (2) bisphosphonate groups for targeting and chelation to bone hydroxyapatite. In addition, these engineered NPs contain high polyethyleneglycol (PEG) concentration in order to increase their blood half life time. In vitro experiments on Saos-2 human osteosarcoma cell line, demonstrated that at a tenth of the concentration, doxorubicin-conjugated bisphosphonate NPs achieved a similar uptake to free doxorubicin. In vivo targeting experiments using the NIR fluorescence bisphosphonate NPs on both Soas-2 human osteosarcoma xenograft mouse model and orthotopic bone metastases mCherry-labeled 4T1 breast cancer mouse model confirmed specific targeting. In addition, therapeutic in vivo experiments using doxorubicin-conjugated bisphosphonate NPs demonstrated a 40% greater inhibition of tumor growth in Saos-2 human osteosarcoma xenograft mouse model when compared to free doxorubicin. CONCLUSIONS In this research we have shown the potential use of doxorubicin-conjugated BP NPs for the targeting and treatment of primary and metastatic bone tumors. The targeted delivery of doxorubicin to the tumor significantly increased the efficacy of the anti-cancer drug, thus enabling the effective use of a lower concentration of doxorubicin. Furthermore, the targeting ability of the BP NPs in an orthotopic xenograft mouse model reinforced our findings that these BP NPs have the potential to be used for the treatment of primary and metastatic bone cancer.
Collapse
Affiliation(s)
- S. Rudnick-Glick
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - E. Corem-Salkmon
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - I. Grinberg
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - S. Margel
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat Gan, Israel
| |
Collapse
|
134
|
Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf B Biointerfaces 2016; 148:460-473. [DOI: 10.1016/j.colsurfb.2016.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
135
|
Chanburee S, Tiyaboonchai W. Mucoadhesive nanostructured lipid carriers (NLCs) as potential carriers for improving oral delivery of curcumin. Drug Dev Ind Pharm 2016; 43:432-440. [PMID: 27808665 DOI: 10.1080/03639045.2016.1257020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To examine effects of polymer types on the mucoadhesive properties of polymer-coated nanostructured lipid carriers (NLCs). Experiment: Curcumin-loaded NLCs were prepared using a warm microemulsion technique followed by coating particle surface with mucoadhesive polymers: polyethylene glycol400 (PEG400), polyvinyl alcohol (PVA), and chitosan (CS). The physicochemical properties and entrapment efficacy were examined. In vitro mucoadhesive studies were assessed by wash-off test. In addition, the stability of mucoadhesive NLCs in gastrointestinal fluids and the pattern of drug release were also investigated. FINDINGS The obtained nanoparticles showed spherical shape with size ranging between 200 nm and 500 nm and zeta potential between -37 and -9 mV depending on the type of polymer coating. Up to 80% drug entrapment efficacy was observed. In vitro mucoadhesive studies revealed that PEG-NLCs and PVA-NLCs were adhered strongly to freshly porcine intestinal mucosa, more than 2-fold mucoadhesive compared to CS-NLCs and uncoated-NLCs. The particle size of all polymer-coated NLCs could be maintained in both simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) suggesting good physical stability in physiological fluid. In contrast, uncoated-NLCs showed particle aggregation in SGF. In vitro dissolution studies revealed a fast release characteristic.
Collapse
Affiliation(s)
- Sanipon Chanburee
- a Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Naresuan University , Phitsanulok , Thailand.,b The Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Commission on Higher Education, Ministry of Education , Bangkok , Thailand
| | - Waree Tiyaboonchai
- a Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Naresuan University , Phitsanulok , Thailand.,b The Center of Excellence for Innovation in Chemistry (PERCH-CIC) , Commission on Higher Education, Ministry of Education , Bangkok , Thailand.,c The Center of Excellence in Medical Biotechnology , Naresuan University , Phitsanulok , Thailand
| |
Collapse
|
136
|
Okholm AH, Kjems J. DNA nanovehicles and the biological barriers. Adv Drug Deliv Rev 2016; 106:183-191. [PMID: 27276176 DOI: 10.1016/j.addr.2016.05.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
DNA is emerging as a smart material to construct nanovehicles for targeted drug delivery. The programmability of Watson-Crick base paring enables construction of defined and dynamic DNA nanostructures of almost arbitrary shape and DNA can readily be functionalized with a variety of molecular modules. The applications of DNA nanostructures are still in its infancy, but one of the high expectations are to deliver solutions for targeted therapy. Nucleic acids, however, do not easily enter cells unassisted and biological barriers and harsh nucleolytic conditions in the human body must also be overcome. Here, we highlight recent strategies for DNA nanostructures in drug delivery, DNA nanovehicles, to facilitate targeting and crossing of the biological barriers. In light of this, we discuss future solutions and challenges for DNA nanovehicles to unravel their great potential to facilitate targeted drug delivery.
Collapse
Affiliation(s)
- Anders H Okholm
- Department of Molecular Biology and Genetics, University of Aarhus, C. F. Møllers Allé 3, 8000 Aarhus C, Denmark; Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, University of Aarhus, C. F. Møllers Allé 3, 8000 Aarhus C, Denmark; Center for DNA Nanotechnology and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
137
|
Wojnilowicz M, Tortora M, Bobay BG, Santiso E, Caruso M, Micheli L, Venanzi M, Menegatti S, Cavalieri F. A combined approach for predicting the cytotoxic effect of drug-nanoaggregates. J Mater Chem B 2016; 4:6516-6523. [PMID: 32263696 DOI: 10.1039/c6tb02105k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a combined spectroscopic and computational approach aimed to elucidate the mechanism of formation and activity of etoposide nanoaggregates upon release from dextran-etoposide conjugates. Etoposide is an anticancer drug that inhibits cell growth by blocking Topoisomerase II, the key enzyme involved in re-ligation of the DNA chains during the replication process. In silico and spectroscopic analysis indicate that released etoposide nanoaggregates have a different structure, stability, and bioactivity, which depend on the pH experienced during the release. Molecular dynamics simulation and in silico docking of etoposide dimers suggest that the aggregation phenomena inhibit etoposide bioactivity, yet without drastically preventing Topoisomerase II binding. We correlated the diminished cytotoxic activity exerted by dextran-etoposide conjugates on the A549 lung cancer cells, compared to the free drug, to the formation and stability of drug nanoaggregates.
Collapse
Affiliation(s)
- M Wojnilowicz
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Travan A, Scognamiglio F, Borgogna M, Marsich E, Donati I, Tarusha L, Grassi M, Paoletti S. Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications. Carbohydr Polym 2016; 150:408-18. [DOI: 10.1016/j.carbpol.2016.03.088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 02/08/2023]
|
139
|
Shatsberg Z, Zhang X, Ofek P, Malhotra S, Krivitsky A, Scomparin A, Tiram G, Calderón M, Haag R, Satchi-Fainaro R. Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. J Control Release 2016; 239:159-68. [PMID: 27569663 DOI: 10.1016/j.jconrel.2016.08.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive forms of all cancers. The median survival with current standard-of-care radiation and chemotherapy is about 14months. GBM is difficult to treat due to heterogeneity in cancer cell population. MicroRNA-based drugs have rapidly become a vast and burgeoning field due to the ability of a microRNA (miRNA) to target many genes involved in key cellular pathways. However, in vivo delivery of miRNA remains a crucial challenge for its therapeutic success. To bypass this shortcoming, we designed polymeric nanogels (NGs), which are based on a polyglycerol-scaffold, as a new strategy of miRNA delivery for GBM therapy. We focused on miR-34a, which is known for its key role in important oncogenic pathways and its tumor suppression ability in GBM and other cancers. We evaluated the capability of six NG derivatives to complex with miR-34a, neutralize its negative charge and deliver active miRNA to the cell cytoplasm. Human U-87 MG GBM cells treated with our NG-miR-34a nano-polyplexes showed remarkable downregulation of miR-34a target genes, which play key roles in the regulation of apoptosis and cell cycle arrest, and induce inhibition of cells proliferation and migration. Administration of NG-miR-34a nano-polyplexes to human U-87 MG GBM-bearing SCID mice significantly inhibited tumor growth as opposed to treatment with NG-negative control miR polyplex or saline. The comparison between different polyplexes highlighted the key features for the rational design of polymeric delivery systems for oligonucleotides. Taken together, we expect that this new therapeutic approach will pave the way for safe and efficient therapies for GBM.
Collapse
Affiliation(s)
- Zohar Shatsberg
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xuejiao Zhang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
140
|
Liu D, Bielawski CW. Synthesis of Degradable Poly[(Ethylene Glycol)-co-(Glycolic Acid)] via the Post-Polymerization Oxyfunctionalization of Poly(Ethylene Glycol). Macromol Rapid Commun 2016; 37:1587-1592. [PMID: 27461401 DOI: 10.1002/marc.201600336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/02/2016] [Indexed: 01/28/2023]
Abstract
To enhance the limited degradability of poly(ethylene glycol) (PEG), a straightforward method of synthesizing poly[(ethylene glycol)-co-(glycolic acid)] (P(EG-co-GA)) via a ruthenium-catalyzed, post-polymerization oxyfunctionalization of various PEGs is developed. Using this method, a set of copolymers with GA compositions of up to 8 mol% are prepared with minimal reduction in molecular weight (<10%) when compared to their commercially available starting materials. The P(EG-co-GA) copolymers are shown to undergo hydrolysis under mild conditions.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea. .,Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
141
|
Rapeekan J, Songtipya P, Lee DS, Manokruang K. Binding interactions between lysozyme and injectable hydrogels derived from albumin-pH/thermo responsive poly(amino urethane) conjugates in aqueous solution. Colloids Surf B Biointerfaces 2016; 146:558-66. [PMID: 27423103 DOI: 10.1016/j.colsurfb.2016.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
Injectable hydrogels are alternative materials for drug and protein delivery in biomedical applications, which can potentially eliminate the need of surgical implantation in the treatment procedures. Prior to administration, such hydrogels, in a liquid state, must demonstrate good interactions with the incorporated molecules to maintain the sustain release of active agents and to avoid unappreciative burst release. The injectable hydrogels derived from BSA-pH/temperature responsive poly(amino urethane) conjugates have been reported to demonstrated good sustainability for delivery of lysozyme, both in vitro and in vivo. However, the interactions between such conjugates and the loading lysozyme were not fully understood. In this present work, we reported the binding interactions between the studied complex systems, BSA-pH/temperature responsive poly(amino urethane) conjugates (CONJ1 and CONJ2) and lysozyme. Fluorescence spectroscopy in a combination with thermodynamic analysis exhibited that the binding between the conjugates and lysozyme occurred through static quenching and the binding interactions in the complexes were mainly van der Waals forces and hydrogen bonds. The binding constants (KA) determined at 300, 308 and 318K of CONJ1 to lysozyme were 7.96×10(4), 6.45×10(4) and 3.20×10(4)M(-1), respectively and those of CONJ2 to lysozyme were 2.63×10(4), 2.53×10(4) and 1.19×10(4)M(-1), respectively. FTIR analysis showed that the complexes between the conjugates and lysozyme demonstrated sufficiently small deviation in the conformational structures from the native lysozyme. In addition, the morphology revealed by TEM and AFM imaging portrayed the behavior of complex formation in such a way that the conjugates, before complex formation, displayed the core-shell structures. After the complex formation, a number of lysozyme particles were noticeably entrapped as if they penetrated into the preformed core-shell conjugates.
Collapse
Affiliation(s)
| | - Ponusa Songtipya
- Department of Material Product Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon Gyeonggi-do, 16419, South Korea
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
142
|
Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist Updat 2016; 27:39-58. [PMID: 27449597 DOI: 10.1016/j.drup.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/01/2016] [Accepted: 06/09/2016] [Indexed: 12/12/2022]
Abstract
The progress in medical research has led to the understanding that cancer is a large group of heterogeneous diseases, with high variability between and within individuals. This variability sprouted the ambitious goal to improve therapeutic outcomes, while minimizing drug adverse effects through stratification of patients by the differences in their disease markers, in a personalized manner, as opposed to the strategy of "one therapy fits all". Nanotheranostics, composed of nanoparticles (NPs) carrying therapeutic and/or diagnostics probes, have the potential to revolutionize personalized medicine. There are different modalities to combine these two distinct fields into one system for a synergistic outcome. The addition of a nanocarrier to a theranostic system holds great promise. Nanocarriers possess high surface area, enabling sophisticated functionalization with imaging agents, thus gaining enhanced diagnostic ability in real-time. Yet, most of the FDA-approved theranostic approaches are based on small molecules. The theranostic approaches that are reviewed herein are paving the road towards personalized medicine through all stages of patient care: starting from screening and diagnostics, proceeding to treatment and ending with treatment follow-up. Our current review provides a broad background and highlights new insights for the rational design of theranostic nanosystems for desired therapeutic niches, while summoning the hurdles on their way to become first-line diagnostics and therapeutics for cancer patients.
Collapse
Affiliation(s)
- Rachel Blau
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
143
|
González-Béjar M, Francés-Soriano L, Pérez-Prieto J. Upconversion Nanoparticles for Bioimaging and Regenerative Medicine. Front Bioeng Biotechnol 2016; 4:47. [PMID: 27379231 PMCID: PMC4904131 DOI: 10.3389/fbioe.2016.00047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/23/2016] [Indexed: 02/05/2023] Open
Abstract
Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles (NPs) can be administrated and targeted to desired tissues or organs and subsequently be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. NPs can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion NPs have relevant properties such as (i) low toxicity, (ii) capability to absorb light in an optical region where absorption in tissues is minimal and penetration is optimal (note they can also be designed to emit in the near-infrared region), and (iii) they can be used in multiplexing and multimodal imaging. An overview on the potentiality of upconversion materials in regenerative medicine is given.
Collapse
Affiliation(s)
- María González-Béjar
- Departamento de Química Orgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Valencia, Spain
| | - Laura Francés-Soriano
- Departamento de Química Orgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Valencia, Spain
| | - Julia Pérez-Prieto
- Departamento de Química Orgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Valencia, Spain
| |
Collapse
|
144
|
El-Boubbou K, Ali R, Bahhari HM, AlSaad KO, Nehdi A, Boudjelal M, AlKushi A. Magnetic Fluorescent Nanoformulation for Intracellular Drug Delivery to Human Breast Cancer, Primary Tumors, and Tumor Biopsies: Beyond Targeting Expectations. Bioconjug Chem 2016; 27:1471-83. [PMID: 27269304 DOI: 10.1021/acs.bioconjchem.6b00257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of a chemotherapeutic nanoformulation made of polyvinylpyrrolidone-stabilized magnetofluorescent nanoparticles (Fl-PMNPs) loaded with anticancer drugs as a promising drug carrier homing to human breast cancer cells, primary tumors, and solid tumors. First, nanoparticle uptake and cell death were evaluated in three types of human breast cells: two metastatic cancerous MCF-7 and MDA-MB-231 cells and nontumorigenic MCF-10A cells. While Fl-PMNPs were not toxic to cells even at the highest concentrations used, Dox-loaded Fl-PMNPs showed significant potency, effectively killing the different breast cancer cells, albeit at different affinities. Interestingly and superior to free Dox, Dox-loaded Fl-PMNPs were found to be more effective in killing the metastatic cells (2- to 3-fold enhanced cytotoxicities for MDA-MB-231 compared to MCF-7), compared to the normal noncancerous MCF-10A cells (up to 8-fold), suggesting huge potentials as selective anticancer agents. Electron and live confocal microscopy imaging mechanistically confirmed that the nanoparticles were successfully endocytosed and packaged into vesicles inside the cytoplasm, where Dox is released and then translocated to the nucleus exerting its cytotoxic action and causing apoptotic cell death. Furthermore, commendable and enhanced penetration in 3D multilayered primary tumor cells derived from primary lesions as well as in patient breast tumor biopsies was observed, killing the tumor cells inside. The designed nanocarriers described here can potentially open new opportunities for breast cancer patients, especially in theranostic imaging and hyperthermia. While many prior studies have focused on targeting ligands to specific receptors to improve efficacies, we discovered that even with passive-targeted tailored delivery system enhanced toxic responses can be attained.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Hassan M Bahhari
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Khaled O AlSaad
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Atef Nehdi
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Mohamed Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| | - Abdulmohsen AlKushi
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| |
Collapse
|
145
|
Henke H, Kryeziu K, Banfić J, Theiner S, Körner W, Brüggemann O, Berger W, Keppler BK, Heffeter P, Teasdale I. Macromolecular Pt(IV) Prodrugs from Poly(organo)phosphazenes. Macromol Biosci 2016; 16:1239-1249. [PMID: 27169668 DOI: 10.1002/mabi.201600035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/25/2016] [Indexed: 11/06/2022]
Abstract
The preparation of novel macromolecular prodrugs via the conjugation of two platinum(IV) complexes to suitably functionalized poly(organo)phosphazenes is presented. The inorganic/organic polymers provide carriers with controlled dimensions due to the use of living cationic polymerization and allow the preparation of conjugates with excellent aqueous solubility but long-term hydrolytic degradability. The macromolecular Pt(IV) prodrugs are designed to undergo intracellular reduction and simultaneous release from the macromolecular carrier to present the active Pt(II) drug derivatives. In vitro investigations show a significantly enhanced intracellular uptake of Pt for the macromolecular prodrugs when compared to small molecule Pt complexes, which is also reflected in an increase in cytotoxicity. Interestingly, drug-resistant sublines also show a significantly smaller resistance against the conjugates compared to clinically established platinum drugs, indicating that an alternative uptake route of the Pt(IV) conjugates might also be able to overcome acquired resistance against Pt(II) drugs. In vivo studies of a selected conjugate show improved tumor shrinkage compared to the respective Pt(IV) complex.
Collapse
Affiliation(s)
- Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Kushtrim Kryeziu
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Jelena Banfić
- Institute of Inorganic Chemistry University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Sarah Theiner
- Research Platform "Translational Cancer Therapy Research," University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Wilfried Körner
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Research Platform "Translational Cancer Therapy Research," University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
146
|
|
147
|
Linhardt A, König M, Schöfberger W, Brüggemann O, Andrianov AK, Teasdale I. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids. Polymers (Basel) 2016; 8:polym8040161. [PMID: 30979252 PMCID: PMC6432119 DOI: 10.3390/polym8040161] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior.
Collapse
Affiliation(s)
- Anne Linhardt
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Michael König
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria.
| |
Collapse
|
148
|
Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. MOLECULAR AND CELLULAR THERAPIES 2016; 4:3. [PMID: 26925240 PMCID: PMC4769556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2023]
Abstract
The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Matthias Kuhlmann
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
149
|
Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. MOLECULAR AND CELLULAR THERAPIES 2016; 4:3. [PMID: 26925240 PMCID: PMC4769556 DOI: 10.1186/s40591-016-0048-8] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Abstract
The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however, challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or ligand-mediated association. This review will give an overview of albumin-based products with focus on the natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug delivery platform.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Matthias Kuhlmann
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
150
|
Palacio J, Agudelo NA, Lopez BL. PEGylation of PLA nanoparticles to improve mucus-penetration and colloidal stability for oral delivery systems. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2015.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|