101
|
Lv JJ, Wang H, Cui HY, Liu ZK, Zhang RY, Lu M, Li C, Yong YL, Liu M, Zhang H, Zhang TJ, Zhang K, Li G, Nan G, Zhang C, Guo SP, Wang L, Chen ZN, Bian H. Blockade of Macrophage CD147 Protects Against Foam Cell Formation in Atherosclerosis. Front Cell Dev Biol 2021; 8:609090. [PMID: 33490072 PMCID: PMC7820343 DOI: 10.3389/fcell.2020.609090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The persistence of macrophage-derived foam cells in the artery wall fuels atherosclerosis development. However, the mechanism of foam cell formation regulation remains elusive. We are committed to determining the role that CD147 might play in macrophage foam cell formation during atherosclerosis. In this study, we found that CD147 expression was primarily increased in mouse and human atherosclerotic lesions that were rich in macrophages and could be upregulated by ox-LDL. High-throughput compound screening indicated that ox-LDL-induced CD147 upregulation in macrophages was achieved through PI3K/Akt/mTOR signaling. Genetic deletion of macrophage CD147 protected against foam cell formation by impeding cholesterol uptake, probably through the scavenger receptor CD36. The opposite effect was observed in primary macrophages isolated from macrophage-specific CD147-overexpressing mice. Moreover, bioinformatics results indicated that CD147 suppression might exert an atheroprotective effect via various processes, such as cholesterol biosynthetic and metabolic processes, LDL and plasma lipoprotein clearance, and decreased platelet aggregation and collagen degradation. Our findings identify CD147 as a potential target for prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jian-Jun Lv
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Hong-Yong Cui
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Ze-Kun Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Ren-Yu Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Can Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Le Yong
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Man Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian-Jiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China.,School of Science, College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Gang Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China.,Institutes of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, China
| | - Gang Nan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Cong Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Shuang-Ping Guo
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Wang
- College of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
102
|
Hu HF, Xu WW, Li YJ, He Y, Zhang WX, Liao L, Zhang QH, Han L, Yin XF, Zhao XX, Pan YL, Li B, He QY. Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission. Am J Cancer Res 2021; 11:1828-1844. [PMID: 33408784 PMCID: PMC7778598 DOI: 10.7150/thno.48698] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to screen novel anticancer strategies from FDA-approved non-cancer drugs and identify potential biomarkers and therapeutic targets for colorectal cancer (CRC). Methods: A library consisting of 1056 FDA-approved drugs was screened for anticancer agents. WST-1, colony-formation, flow cytometry, and tumor xenograft assays were used to determine the anticancer effect of azelastine. Quantitative proteomics, confocal imaging, Western blotting and JC-1 assays were performed to examine the effects on mitochondrial pathways. The target protein of azelastine was analyzed and confirmed by DARTS, WST-1, Biacore and tumor xenograft assays. Immunohistochemistry, gain- and loss-of-function experiments, WST-1, colony-formation, immunoprecipitation, and tumor xenograft assays were used to examine the functional and clinical significance of ARF1 in colon tumorigenesis. Results: Azelastine, a current anti-allergic drug, was found to exert a significant inhibitory effect on CRC cell proliferation in vitro and in vivo, but not on ARF1-deficient or ARF1-T48S mutant cells. ARF1 was identified as a direct target of azelastine. High ARF1 expression was associated with advanced stages and poor survival of CRC. ARF1 promoted colon tumorigenesis through its interaction with IQGAP1 and subsequent activation of ERK signaling and mitochondrial fission by enhancing the interaction of IQGAP1 with MEK and ERK. Mechanistically, azelastine bound to Thr-48 in ARF1 and repressed its activity, decreasing Drp1 phosphorylation. This, in turn, inhibited mitochondrial fission and suppressed colon tumorigenesis by blocking IQGAP1-ERK signaling. Conclusions: This study provides the first evidence that azelastine may be novel therapeutics for CRC treatment. ARF1 promotes colon tumorigenesis, representing a promising biomarker and therapeutic target in CRC.
Collapse
|
103
|
Liu J, Chen L, Pan J, Chen M, Zhou J, Zhou F, Chen P, Song Y. Comprehensive analysis of key lncRNAs in HCV-positive hepatocellular carcinoma. Arch Med Sci 2021; 17:142-151. [PMID: 33488867 PMCID: PMC7811325 DOI: 10.5114/aoms.2020.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Despite the therapeutic advances in HCC in the past few decades, the mortality rate of HCC is still high. Hepatitis C (HCV) infection is one of the major etiological risk factors of HCCs. However, the underlying mechanisms of HCV-induced hepatocarcinogenesis remain largely unclear. MATERIAL AND METHODS Our study represented the comprehensive analysis of differentially expressed lncRNAs in HCV-positive HCC for the first time by analyzing the public dataset GSE17856. Co-expression network and gene ontology (GO) analysis revealed the functions of those differentially expressed lncRNAs. RESULTS We identified 256 upregulated lncRNAs and 198 downregulated lncRNAs in HCV- positive HCC compared to the normal liver tissues. Co-expression network and GO analysis showed that these lncRNAs were involved in regulating metabolism, energy pathways, proliferation and the immune response. Seven lncRNAs (LOC341056, CCT6P1, PTTG3P, LOC643387, LOC100133920, C3P1 and C22orf45) were identified as key lncRNAs and co-expressed with more than 100 differentially expressed genes (DEGs) in HCV-related HCC. Kaplan-Meier analysis showed that higher expression levels of LOC643387, PTTG3P, LOC341056, CCT6P1 and lower expression levels of C3P1 and C22orf45 were associated with shorter survival time in the TCGA dataset. CONCLUSIONS We believe that this study can provide novel potential therapeutic and prognostic biomarkers for HCV-positive HCC.
Collapse
Affiliation(s)
- Jingqi Liu
- Department of Geriatrics, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| | - Ligang Chen
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| | - Jinshui Pan
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| | - Meiya Chen
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| | - Jingping Zhou
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| | - Fei Zhou
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| | - Peizhong Chen
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| | - Yang Song
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
104
|
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and the fifth most common cancer worldwide. HCC is recognized as the fourth most common cause of cancer related deaths worldwide due to the lack of effective early diagnostic tools, which often leads to individuals going undiagnosed until the cancer has reached late stage development. The current FDA approved treatments for late stage HCC provide a minimal increase in patient survival and lack tumor specificity, resulting in toxic systemic side effects. Gene therapy techniques, such as chimeric antigen receptor (CAR)-T Cells, viral vectors, and nanoparticles, are being explored as novel treatment options in various genetic diseases. Pre-clinical studies using gene therapy to treat in vitro and in vivo models of HCC have demonstrated potential efficacy for use in human patients. This review highlights genetic targets, techniques, and current clinical trials in HCC utilizing gene therapy.
Collapse
|
105
|
Kobayashi T, Kanno K, Nguyen PT, Sugiyama A, Kawahara A, Otani Y, Kishikawa N, Ito M, Tazuma S. Periostin antisense oligonucleotide prevents hepatic steatosis and fibrosis in a mouse model of non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2020; 35:2140-2150. [PMID: 32365405 DOI: 10.1111/jgh.15088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, inflammation, and hepatocellular injury with varying degrees of fibrosis. There are currently no established treatment approaches for NASH other than lifestyle interventions. Periostin, a matricellular protein required for tissue remodeling and fibrosis, plays an important role in hepatic steatosis and fibrosis and could be a potential target for NASH treatment. Advances in molecular biology and biochemical engineering have led to the development of antisense oligonucleotides (ASOs) that can inhibit target genes with no significant toxic effects. Herein, we investigated the therapeutic effects of periostin-targeting ASO (PNASO) in NASH. METHODS C57BL/6J mice were fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) to induce NASH with or without intraperitoneal injection of mouse PNASO. To explore the role of periostin in hepatocellular steatosis, Hc3716 cells, an immortalized human hepatocyte line, were treated with recombinant periostin in vitro. RESULTS The induced periostin expression in the liver of CDAHFD-fed mice was significantly suppressed by PNASO. The deletion of hepatic periostin by PNASO significantly ameliorated hepatic steatosis while restoring the expression levels of peroxisome proliferator-activated receptor-alpha (PPAR-α) and its target genes. PNASO also inhibited hepatic fibrosis, reflected by the reduction of alpha-smooth muscle actin, collagen type I, and other fibrotic markers. In vitro experiments demonstrated that treatment with recombinant periostin increased cellular lipid accumulation in Hc3716 cells accompanied with the downregulation of PPAR-α. CONCLUSIONS Periostin-targeting ASO is a potential therapeutic approach for the efficient treatment of hepatic steatosis and fibrosis in NASH.
Collapse
Affiliation(s)
- Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Phuong Thao Nguyen
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akiko Sugiyama
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Akihiro Kawahara
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobusuke Kishikawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
106
|
Zhang W, Han L, Xing P, Liu B, Sun Z, Zhou W, Dong J. LncRNA RHPN1-AS1 accelerates proliferation, migration, and invasion via regulating miR-485-5p/BSG axis in hepatocellular carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2543-2551. [PMID: 32435875 DOI: 10.1007/s00210-020-01889-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
It is reported that long noncoding RNA RHPN1-AS1 (lncRNA RHPN1-AS1) functions as an oncogene among multiple types of cancers; however, the effect of lncRNA RHPN1-AS1 in hepatocellular carcinoma (HCC) is left to be investigated. The main purpose of this work was to study the effects of lncRNA RHPN1-AS1/miR-485-5p system on proliferation, migration, and invasion in HCC and future investigate the latent mechanisms. Our work found that lncRNA RHPN1-AS1 was observably up-regulated in HCC tissues and cell lines, especially HCCLM3 and SMMC-7721 cells. LncRNA RHPN1-AS1 knockdown decreased the capacity of proliferation, invasion, and migration in HCCLM3 and SMMC-7721 cells, which could be crippled by miR-485-5p inhibitor. Besides, the expression of basigin (BSG) was decreased after lncRNA RHPN1-AS1 silence, indicating the function of lncRNA RHPN1-AS1/miR-485-5p/BSG axis in HCC progression. Our study opens novel insights to help understand the mechanisms of lncRNA RHPN1-AS1/miR-485-5p/BSG axis in HCC progression, which may provide a new therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
- Post-doctoral Station, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Peng Xing
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Bailiang Liu
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Zhongqi Sun
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
107
|
He Y, Hua R, Li B, Gu H, Sun Y, Li Z. Loss of FBP1 promotes proliferation, migration, and invasion by regulating fatty acid metabolism in esophageal squamous cell carcinoma. Aging (Albany NY) 2020; 13:4986-4998. [PMID: 33232284 PMCID: PMC7950246 DOI: 10.18632/aging.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in China. Recent studies have shown fatty acid metabolism is involved in the progression of various cancers through regulating the function of various types of cells. However, the relationship between fatty acid metabolism and tumorigenesis of ESCC remains unclear. Here, in this study, the expression of FBP1 was dramatically decreased in ESCC tissues compared with the adjacent non-ESCC tissues. The cell proliferation, migration, invasion and fatty acid metabolism were evaluated in ESCC cells using transfection of shFBP1 vectors. We found loss of FBP1 promoted ESCC cell proliferation, migration and invasion, which correlated with the activated fatty acid metabolism in vitro. Moreover, the content of phospholipids, triglycerides, neutral lipids and the protein expression levels of fatty acid metabolism related FASN, ACC1 and SREBP1C proteins were significantly increased following down-regulation of FBP1. Furthermore, FBP1 was found to be directly targeted by miR-18b-5p in ESCC cells. In addition, miR-18b-5p inhibitor treatment obviously reversed the increased fatty acid metabolism induced by loss of FBP1 in ESCC cells. These findings explored a detailed molecular mechanism of tumorigenesis and progression of ESCC and might provide a potential novel method to treat ESCC in clinic.
Collapse
Affiliation(s)
- Yi He
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
108
|
He XL, He YM, Zhang D, Li HS, Zhang Q, Yuan SS, Zhang Z, Wang YY, Liu CH, Fan CH, Li YH, Zheng M, Yang HJ, Zhou P. Efficacy and Mechanism of a Chinese Classic Prescription of Yueju in Treating Nonalcoholic Steatohepatitis and Protecting Hepatocytes from Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8888040. [PMID: 33178326 PMCID: PMC7644301 DOI: 10.1155/2020/8888040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/03/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Yueju, a famous classic Chinese prescription, has been extensively used in treating depression syndromes for hundreds of years. Recent studies have reported that Yueju showed good effects in treating metabolic diseases, such as obesity and hyperlipidemia. Nonalcoholic steatohepatitis (NASH), which leads to cirrhosis and severe cardiovascular diseases, is closely linked to obesity and abnormal lipid metabolism. In this study, Yueju could decrease the levels of alanine aminotransferase, aspartate transaminase, triglyceride, cholesterol, and low-density lipoprotein-C but increase the high-density lipoprotein-C in the serum of the NASH rat model induced by high-fat and high-cholesterol diet. Yueju could alleviate hepatosteatosis by increasing the phosphorylation of acetyl-CoA carboxylase and inhibiting the expression of fatty acid synthase and stearoyl-CoA desaturase 1. Yueju downregulated the expression of α-smooth muscle actin and collagen type 1A1, ameliorating the liver fibrilization. Yueju could also protect the hepatocytes from apoptosis by upregulating antiapoptosis protein Bcl-2 and X-linked inhibitor of apoptosis protein and downregulating apoptotic proteins Bax and cleaved poly ADP-ribose polymerase. Thus, Yueju could improve liver function, regulate lipid metabolism, alleviate hepatosteatosis and fibrosis, and protect hepatocytes from apoptosis against NASH. Yueju may be used as an alternative effective medicine for NASH treatment.
Collapse
Affiliation(s)
- Xiao-Li He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan-Ming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dan Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong-Shan Li
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, 41 Xibei Road, Ningbo 315010, China
| | - Qiang Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Sha-Sha Yuan
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan-Yan Wang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Cheng-Hao Liu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chao-Hua Fan
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yun-Hao Li
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Min Zheng
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong-Jie Yang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
109
|
Yu X, Lin Q, Wu Z, Zhang Y, Wang T, Zhao S, Song X, Chen C, Wang Z, Xu L, Li C, Gao L, Liang X, Yue X, Ma C. ZHX2 inhibits SREBP1c-mediated de novo lipogenesis in hepatocellular carcinoma via miR-24-3p. J Pathol 2020; 252:358-370. [PMID: 32770671 DOI: 10.1002/path.5530] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Lipogenesis has been considered as a critical player in HCC initiation and progression. However, the underlying mechanism is still not fully understood. Here, we identified zinc fingers and homeoboxes 2 (ZHX2), an HCC-associated tumor suppressor, as an important repressor of de novo lipogenesis. Ectopic expression of ZHX2 significantly inhibited de novo lipogenesis in HCC cells and decreased expression of FASN, ACL, ACC1, and SCD1. In accordance with this, ZHX2 was negatively associated with SREBP1c, the master regulator of de novo lipogenesis, in HCC cell lines and human specimens. Results from silencing and overexpression demonstrated that ZHX2 inhibited de novo lipogenesis and consequent HCC progression via repression of SREBP1c. Furthermore, treatment with the SREBP1c inhibitor fatostatin dampened the spontaneous formation of tumors in liver-specific Zhx2 knockout mice. Mechanistically, ZHX2 increased expression of miR-24-3p transcriptionally, which targeted SREBP1c and led to its degradation. In conclusion, our data suggest a novel mechanism through which ZHX2 suppresses HCC progression, which may provide a new strategy for the treatment of HCC. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiangguo Yu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qinghai Lin
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Songbai Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chaojia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Leiqi Xu
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
110
|
Sehirli AO, Sayiner S, Serakinci N. Role of melatonin in the treatment of COVID-19; as an adjuvant through cluster differentiation 147 (CD147). Mol Biol Rep 2020; 47:8229-8233. [PMID: 32920757 PMCID: PMC7486968 DOI: 10.1007/s11033-020-05830-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
COVID-19 caused by the SARS-CoV-2 outbreak quickly has turned into a pandemic. However, no specific antiviral agent is yet available. In this communication, we aimed to evaluate the significance of CD147 protein and the potential protective effect of melatonin that is mediated by this protein in COVID-19. CD147 is a glycoprotein that is responsible for the cytokine storm in the lungs through the mediation of viral invasion. Melatonin use previously was shown to reduce cardiac damage by blocking the CD147 activity. Hence, melatonin, a safe drug, may prevent severe symptoms, reduce symptom severity and the adverse effects of the other antiviral drugs in COVID-19 patients. In conclusion, the use of melatonin, which is reduced in the elderly and immune-compromised patients, should be considered as an adjuvant through its CD147 suppressor and immunomodulatory effect.
Collapse
Affiliation(s)
- Ahmet Ozer Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia, Cyprus.
| | - Serkan Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus.
| | - Nedime Serakinci
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus.
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Near East Boulevard, 99138, Nicosia, Cyprus.
| |
Collapse
|
111
|
Che L, Xu M, Gao K, Zhu C, Wang L, Yang X, Wen X, Xiao H, Jiang Z, Wu D. Valine increases milk fat synthesis in mammary gland of gilts through stimulating AKT/MTOR/SREBP1 pathway†. Biol Reprod 2020; 101:126-137. [PMID: 30985894 DOI: 10.1093/biolre/ioz065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Lactating mammary glands are among the most active lipogenic organs and provide a large percentage of bioactive lipids and calories for infant growth. The branched-chain amino acid (BCAA) valine is known to modulate fatty acids synthesis in adipose tissue; however, its effects on fat metabolism and the underlying mechanisms in mammary glands remain to be determined. Valine supplementation during late pregnancy significantly increased the contents of total milk fat, triglyceride, sphingomyelin, and polyunsaturated fatty acids in the colostrum of gilts. Further study in porcine mammary epithelial cells (PMECs) confirmed that valine upregulated the phosphorylation levels of AKT-activated MTOR and subsequently induced the nuclear accumulation of sterol regulatory element binding protein 1 (SREBP1), thus increasing the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Inhibition of AKT/MTOR signaling or silencing of SREBP1 in PMECs downregulates the expression of proteins related to fatty acids synthesis and intracellular triacylglycerol content. Our findings indicated that valine enhanced milk fat synthesis of colostrum in porcine mammary glands via the AKT/MTOR/SREBP1 signaling pathway.
Collapse
Affiliation(s)
- Long Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Mengmeng Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiaolu Wen
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture; Guangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, P. R. China, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
112
|
A Prognostic Model Based on Six Metabolism-Related Genes in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5974350. [PMID: 32953885 PMCID: PMC7482003 DOI: 10.1155/2020/5974350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
An increasing number of studies have shown that abnormal metabolism processes are closely correlated with the genesis and progression of colorectal cancer (CRC). In this study, we systematically explored the prognostic value of metabolism-related genes (MRGs) for CRC patients. A total of 289 differentially expressed MRGs were screened based on The Cancer Genome Atlas (TCGA) and the Molecular Signatures Database (MSigDB), and 72 differentially expressed transcription factors (TFs) were obtained from TCGA and the Cistrome Project database. The clinical samples obtained from TCGA were randomly divided at a ratio of 7 : 3 to obtain the training group (n = 306) and the test group (n = 128). After univariate and multivariate Cox regression analyses, we constructed a prognostic model based on 6 MRGs (AOC2, ENPP2, ADA, GPD1L, ACADL, and CPT2). Kaplan–Meier survival analysis of the training group, validation group, and overall samples proved that the model had statistical significance in predicting the outcomes of patients. Independent prognosis analysis suggested that this risk score might serve as an independent prognosis factor for CRC patients. Moreover, we combined the prognostic model and the clinical characteristics in a nomogram to predict the overall survival of CRC patients. Furthermore, gene set enrichment analysis (GSEA) was conducted to identify the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the high- and low-risk groups, which might provide novel therapeutic targets for CRC patients. We discovered through the protein-protein interaction (PPI) network and TF-MRG regulatory network that 7 hub genes were retrieved from the PPI network and 4 kinds of differentially expressed TFs (NR3C1, MYH11, MAF, and CBX7) positively regulated 4 prognosis-associated MRGs (GSTM5, PTGIS, ENPP2, and P4HA3).
Collapse
|
113
|
Zhang T, Li H, Wang K, Xu B, Chen ZN, Bian H. Deficiency of CD147 Attenuated Non-alcoholic Steatohepatitis Progression in an NLRP3-Dependent Manner. Front Cell Dev Biol 2020; 8:784. [PMID: 32903542 PMCID: PMC7438480 DOI: 10.3389/fcell.2020.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cluster of differentiation 147 (CD147) is a transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD147 overexpression has been reported to facilitate the development of hepatocellular carcinoma (HCC) and influence immunologic disorders. Although increased expression of CD147 was reported in non-alcoholic steatohepatitis (NASH), functions of CD147 in NASH have not been evaluated. Firstly, we confirmed that CD147 expression was increased in the liver tissues from methionine-choline-deficient (MCD) diet-induced NASH model mice and NASH patients. Mice with hepatocyte-specific CD147 deletion exhibited attenuated NASH phenotypes, including reduced steatosis, liver injury, hepatocyte apoptosis and inflammatory cytokines IL-1β/IL-18 secretion. Following the administration of the MCD diet, NLRP3 expression was increased gradually along with CD147 expression. Furthermore, CD147 deletion inhibited the NF-κB/NLRP3 signaling pathway in both MCD diet-induced mice and primary hepatocytes. Finally, CypA inhibitor TMN355 attenuated liver steatosis and injury and inhibited NF-κB/NLRP3 signaling pathway. Therefore, our results suggest that CD147 played a vital role in NASH pathogenesis by regulating the inflammatory response, and CypA/CD147 could be attractive therapeutic targets for NASH treatment.
Collapse
Affiliation(s)
- Tian Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
114
|
Low UGP2 Expression Is Associated with Tumour Progression and Predicts Poor Prognosis in Hepatocellular Carcinoma. DISEASE MARKERS 2020; 2020:3231273. [PMID: 32733617 PMCID: PMC7369654 DOI: 10.1155/2020/3231273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/03/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumour associated with a high mortality rate and poor prognosis worldwide. Uridine diphosphate-glucose pyrophosphorylase 2 (UGP2), a key enzyme in glycogen biosynthesis, has been reported to be associated with the occurrence and development of various cancer types. However, its diagnostic value and prognostic value in HCC remain unclear. The present study observed that UGP2 expression was significantly downregulated at both the mRNA and protein levels in HCC tissues. Receiver operating characteristic (ROC) curve analysis revealed that UGP2 may be an indicator for the diagnosis of HCC. In addition, Kaplan-Meier and Cox regression multivariate analyses indicated that UGP2 is an independent prognostic factor of overall survival (OS) in patients with HCC. Furthermore, gene set enrichment analysis (GSEA) suggested that gene sets negatively correlated with the survival of HCC patients were enriched in the group with low UGP2 expression levels. More importantly, a significant correlation was identified between low UGP2 expression and fatty acid metabolism. In summary, the present study demonstrates that UGP2 may contribute to the progression of HCC, indicating a potential therapeutic target for HCC patients.
Collapse
|
115
|
Lima KG, Schneider Levorse VG, Rosa Garcia MC, de Souza Basso B, Pasqualotto Costa B, Antunes GL, Luft C, Haute GV, Leal Xavier L, Donadio MVF, Rodrigues de Oliveira J. Octyl gallate induces hepatic steatosis in HepG2 cells through the regulation of SREBP-1c and PPAR-gamma gene expression. EXCLI JOURNAL 2020; 19:962-971. [PMID: 32788910 PMCID: PMC7415935 DOI: 10.17179/excli2020-2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/01/2020] [Indexed: 11/10/2022]
Abstract
Octyl gallate (OG) is an antioxidant commonly used in food, although there is no definition of its acceptable daily intake. There are reports in vitro and in vivo showing that food additives and drugs can alter lipid metabolism. Lipid droplet accumulation in hepatic cells is one of the main findings in the unregulated lipid metabolism and is strongly related to the development of nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the effects of OG on lipid metabolism in the hepatocellular carcinoma cell line (HepG2). The results have shown, for the first time, that treatment with OG increased the overall amount of lipids, the triglyceride concentration, the lipid droplet area, and SREBP-1c and PPAR-γ gene expression. Taken together, the findings indicate that OG induces lipid droplet accumulation in HepG2 cells through the regulation of SREBP-1c and PPAR-γ gene expression without involving mTOR/S6K1 and may contribute to NAFLD when used as a food additive.
Collapse
Affiliation(s)
- Kelly Goulart Lima
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Vitor Giancarlo Schneider Levorse
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Maria Claudia Rosa Garcia
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Bruno de Souza Basso
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Bruna Pasqualotto Costa
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Gessica Luana Antunes
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Carolina Luft
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Gabriela Viegas Haute
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| |
Collapse
|
116
|
Jiang W, Xu S, Guo H, Lu L, Liu J, Wang G, Hao K. Magnesium isoglycyrrhizinate prevents the nonalcoholic hepatic steatosis via regulating energy homeostasis. J Cell Mol Med 2020; 24:7201-7213. [PMID: 32410294 PMCID: PMC7339216 DOI: 10.1111/jcmm.15230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/22/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease is a public health problem worldwide associated with high morbidity and hepatic steatosis, but no effective therapeutic interventions. Magnesium isoglycyrrhizinate (MGIG), a derivative of an active component of Glycyrrhiza glabra, is widely used for the treatment of inflammatory liver diseases due to its potent anti-inflammatory and hepatoprotective activities. Hence, this study aimed to study the effects of MGIG on hepatic steatosis in mice fed a high-fat diet (HFD). Oil Red O staining and transmission electron microscopy revealed a decrease in lipid accumulation in the liver after MGIG treatment along with improved mitochondrial ultramicrostructures. Metabonomic analysis demonstrated that MGIG intervention increased glutamate utilization in mitochondria by promoting the uptake of glutamate into the tricarboxylic acid (TCA) cycle. The NAD+ /NADH ratio and the expression of other lipid-metabolism-related genes were increased in MGIG-treated livers. Transcriptome sequencing showed that the expression of TLR4, an isoform of the innate immunity Toll-like receptors (TLRs), was significantly decreased after MGIG treatment, suggesting a link between the anti-inflammatory effects of MGIG and its suppression of lipidation. Our results reveal the potent effects of MGIG on lipid metabolism and suggest that hepatic TLR4 might be a crucial therapeutic target to regulate energy homeostasis in hepatic steatosis.
Collapse
Affiliation(s)
- Wenjiao Jiang
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Shiyu Xu
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Huijie Guo
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Li Lu
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Liu
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Kun Hao
- Key Laboratory of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
117
|
Zhao H, Yan G, Zheng L, Zhou Y, Sheng H, Wu L, Zhang Q, Lei J, Zhang J, Xin R, Jiang L, Zhang X, Chen Y, Wang J, Xu Y, Li D, Li Y. STIM1 is a metabolic checkpoint regulating the invasion and metastasis of hepatocellular carcinoma. Theranostics 2020; 10:6483-6499. [PMID: 32483465 PMCID: PMC7255033 DOI: 10.7150/thno.44025] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Cancer cells undergoing invasion and metastasis possess a phenotype with attenuated glycolysis, but enhanced fatty acid oxidation (FAO). Calcium (Ca2+)-mediated signaling pathways are implicated in tumor metastasis and metabolism regulation. Stromal-interaction molecule 1 (STIM1) triggered store-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx for non-excitable cells including hepatocellular carcinoma (HCC) cells. However, whether and how STIM1 regulates the invasion and metastasis of HCC via metabolic reprogramming is unclear. Methods: The expressions of STIM1 and Snail1 in the HCC tissues and cells were measured by immunohistochemistry, Western-blotting and quantitative PCR. STIM1 knockout-HCC cells were generated by CRISPR-Cas9, and gene-overexpression was mediated via lentivirus transfection. Besides, the invasive and metastatic activities of HCC cells were assessed by transwell assay, anoikis rate in vitro and lung metastasis in vivo. Seahorse energy analysis and micro-array were used to evaluate the glucose and lipid metabolism. Results: STIM1 was down-regulated in metastatic HCC cells rather than in proliferating HCC cells, and low STIM1 levels were associated with poor outcome of HCC patients. During tumor growth, STIM1 stabilized Snail1 protein by activating the CaMKII/AKT/GSK-3β pathway. Subsequently, the upregulated Snail1 suppressed STIM1/SOCE during metastasis. STIM1 restoration significantly diminished anoikis-resistance and metastasis induced by Snail1. Mechanistically, the downregulated STIM1 shifted the anabolic/catabolic balance, i.e., from aerobic glycolysis towards AMPK-activated fatty acid oxidation (FAO), which contributed to Snail1-driven metastasis and anoikis-resistance. Conclusions: Our data provide the molecular basis that STIM1 orchestrates invasion and metastasis via reprogramming HCC metabolism.
Collapse
|
118
|
Lou J, Li C, Li ZS, Zhang T, Chen ZN, Bian H. Hepatic CD147 knockout modulates liver steatosis and up-regulates autophagy in high-fat-diet-induced NAFLD mice. Biochem Biophys Res Commun 2020; 524:1010-1017. [PMID: 32063360 DOI: 10.1016/j.bbrc.2020.01.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a global health problem. Impaired autophagy has been implicated in the pathogenesis of NAFLD, and CD147 is recognized to regulate lipid metabolism in a variety of cell types. This study was initiated with the aim to identify molecular makers expressed in hepatocytes that are significantly altered during the pathogenesis of NAFLD and closely associated with hepatic steatosis and autophagy. In this study, CD147 was found to be significantly associated with steatosis and autophagy in both clinical patients with NAFLD and NAFLD mouse models. In high-fat-diet-induced NAFLD mice, hepatic-specific CD147 knockout markedly reduced body weight, liver weight, serum aspartate aminotransaminase (AST) and alanine aminotransaminase (ALT), and liver steatosis. In addition, hepatic CD147 gene knockout noticeably promoted autophagy in NAFLD mice (LC3 expression was increased with decreased P62 expression; molecular markers of autophagy). Moreover, we found that CD147 expression was significantly associated with AKT/mTOR signaling pathway; thus, suggesting that CD147 is involved in the regulation of autophagy and steatosis in NAFLD. In conclusion, this study has provided in vivo evidence for the putative role of CD147 in the pathogenesis of NAFLD and a valuable experimental basis for considering CD147 as a therapeutic target to prevent hepatic steatosis in patients with NAFLD.
Collapse
Affiliation(s)
- Jiaxin Lou
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Can Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zeng-Shan Li
- Department of Pathology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tian Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, The Fourth Military Medical University, Xi'an, 710032, China; Department of Laboratory Medicine and Pathology, The People's Liberation Army 926 Central Hospital, Kaiyuan, Yunnan, 661600, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
119
|
Zhu WW, Lu M, Wang XY, Zhou X, Gao C, Qin LX. The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes Dis 2020; 7:299-307. [PMID: 32884984 PMCID: PMC7452537 DOI: 10.1016/j.gendis.2020.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis and metabolism reprogramming are two major hallmarks of cancer. In the initiation and progression of cancer, tumor cells are known to undergo fundamental metabolic changes to sustain their development and progression. In recent years, much more attentions have been drawn to their important roles in facilitating cancer metastasis through regulating the biological properties. In this review, we summarized the recent progresses in the studies of metabolism reprogramming of cancer metastasis, particularly of primary liver cancer, and highlight their potential applications.
Collapse
Affiliation(s)
- Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xu Zhou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| |
Collapse
|
120
|
Cruz ALS, Barreto EDA, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis 2020; 11:105. [PMID: 32029741 PMCID: PMC7005265 DOI: 10.1038/s41419-020-2297-3] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Lipid droplets (also known as lipid bodies) are lipid-rich, cytoplasmic organelles that play important roles in cell signaling, lipid metabolism, membrane trafficking, and the production of inflammatory mediators. Lipid droplet biogenesis is a regulated process, and accumulation of these organelles within leukocytes, epithelial cells, hepatocytes, and other nonadipocyte cells is a frequently observed phenotype in several physiologic or pathogenic situations and is thoroughly described during inflammatory conditions. Moreover, in recent years, several studies have described an increase in intracellular lipid accumulation in different neoplastic processes, although it is not clear whether lipid droplet accumulation is directly involved in the establishment of these different types of malignancies. This review discusses current evidence related to the biogenesis, composition and functions of lipid droplets related to the hallmarks of cancer: inflammation, cell metabolism, increased proliferation, escape from cell death, and hypoxia. Moreover, the potential of lipid droplets as markers of disease and targets for novel anti-inflammatory and antineoplastic therapies will be discussed.
Collapse
Affiliation(s)
- André L S Cruz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Physiopathology, Polo Novo Cavaleiros, Federal University of Rio De Janeiro (UFRJ), Macaé, Brazil
| | - Ester de A Barreto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Narayana P B Fazolini
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| | - Patricia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
121
|
Zhao J, Zhang X, Gao T, Wang S, Hou Y, Yuan P, Yang Y, Yang T, Xing J, Li J, Liu S. SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. Cell Death Dis 2020; 11:25. [PMID: 31932581 PMCID: PMC6957524 DOI: 10.1038/s41419-019-2221-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Salt-inducible kinase 2 (SIK2) has been established as a regulator of diverse biological processes including cell metabolism. A recent study has reported that SIK2 is required for adipocyte-induced ovarian cancer (OC) survival through facilitating fatty acid oxidation. However, whether SIK2 also plays a role in the lipid synthesis in OC cells remains elusive. Here, we showed that SIK2 significantly promoted the lipid synthesis in OC cells. On the one hand, SIK2 enhanced fatty acid synthesis through upregulating the expression of sterol regulatory element binding protein 1c (SREBP1c) and thus the transcription of major lipogenic enzyme FASN. On the other hand, SIK2 promoted cholesterol synthesis through upregulating the expression of sterol regulatory element binding protein 2 (SREBP2) and thus the transcription of major cholesterol synthesis enzymes HMGCR. Moreover, PI3K/Akt signaling pathway was found to be involved in the upregulation of SREBP1c and SREBP2 in OC cells. Moreover, in vitro and in vivo assays indicated that the SIK2-regulated fatty acid and cholesterol synthesis played a critical role in the growth of OC cells. Our findings demonstrate that SIK2 is a critical regulator of lipid synthesis in OC cells and thus promotes OC growth, which provides a strong line of evidence for this molecule to be used as a therapeutic target in the treatment of this malignancy.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaohong Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Tian Gao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shanci Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastorenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiran Hou
- Medical College of Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Peng Yuan
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Yi Yang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jibin Li
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Shujuan Liu
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
122
|
Yuan J, Jiang Q, Song L, Liu Y, Li M, Lin Q, Li Y, Su K, Ma Z, Wang Y, Liu D, Dong J. L-Carnitine Is Involved in Hyperbaric Oxygen-Mediated Therapeutic Effects in High Fat Diet-Induced Lipid Metabolism Dysfunction. Molecules 2020; 25:molecules25010176. [PMID: 31906305 PMCID: PMC6982999 DOI: 10.3390/molecules25010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/25/2019] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism dysfunction and obesity are serious health issues to human beings. The current study investigated the effects of hyperbaric oxygen (HBO) against high fat diet (HFD)-induced lipid metabolism dysfunction and the roles of L-carnitine. C57/B6 mice were fed with HFD or normal chew diet, with or without HBO treatment. Histopathological methods were used to assess the adipose tissues, serum free fatty acid (FFA) levels were assessed with enzymatic methods, and the endogenous circulation and skeletal muscle L-carnitine levels were assessed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, western blotting was used to assess the expression levels of PPARα, CPT1b, pHSL/HSL, and UCP1. HFD treatment increased body/adipose tissue weight, serum FFA levels, circulation L-carnitines and decreased skeletal muscle L-carnitine levels, while HBO treatment alleviated such changes. Moreover, HFD treatment increased fatty acid deposition in adipose tissues and decreased the expression of HSL, while HBO treatment alleviated such changes. Additionally, HFD treatment decreased the expression levels of PPARα and increased those of CPT1b in skeletal muscle, while HBO treatment effectively reverted such changes as well. In brown adipose tissues, HFD increased the expression of UCP1 and the phosphorylation of HSL, which was abolished by HBO treatment as well. In summary, HBO treatment may alleviate HFD-induced fatty acid metabolism dysfunction in C57/B6 mice, which seems to be associated with circulation and skeletal muscle L-carnitine levels and PPARα expression.
Collapse
Affiliation(s)
- Junhua Yuan
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| | - Limin Song
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yuan Liu
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Manwen Li
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qian Lin
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yanrun Li
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Kaizhen Su
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Zhengye Ma
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Yifei Wang
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Defeng Liu
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Jing Dong
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| |
Collapse
|
123
|
Yuan P, Yang T, Mu J, Zhao J, Yang Y, Yan Z, Hou Y, Chen C, Xing J, Zhang H, Li J. Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells. Cancer Lett 2020; 469:498-509. [DOI: 10.1016/j.canlet.2019.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
|
124
|
Jin S, Yang L, Fan X, Wu M, Xu Y, Chen X, Lin Z, Geng Z. Effect of divergence in residual feed intake on expression of lipid metabolism-related genes in the liver of meat-type ducks1. J Anim Sci 2019; 97:3947-3957. [PMID: 31325379 DOI: 10.1093/jas/skz241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism is considered one of the important factors affecting residual feed intake (RFI). However, the relationship between RFI and expression of lipid metabolism-related genes is unknown in meat-type ducks. To address this issue, a total of 1,000 male meat-type ducks with similar body weight were randomly selected to measure body weight gain and feed intake from 21 to 42 d of age to estimate RFI. The 8 greatest- (high RFI [HRFI]) and lowest- (low RFI [LRFI]) ranking birds were then selected for the present study. Relative expressions of key genes, namely sirtuin 1 (Sirt1), forkhead box O1 (Foxo1), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1c (SREBP-1c), fas cell surface death receptor (FAS), acetyl-CoA carboxylase alpha (ACC), carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA oxidase 1 (ACOX1), were then determined in the HRFI and LRFI ducks by quantitative PCR. The results showed that RFI, feed conversion ratio (FCR), and average daily feed intake (ADFI) were significantly lower (P < 0.05) in LRFI ducks than in HRFI ducks. In addition, expression of Sirt1, Foxo1, CPT1A, and ACOX1 were significantly higher in LRFI ducks than in HRFI ducks (P < 0.05), whereas PPARγ and FAS expression levels were significantly lower in LRFI ducks than in HRFI ducks (P < 0.01). Correlation analysis showed that Sirt1, CPT1A, and ACOX1 expressions were significantly negatively correlated with FCR (r = -0.81 to -0.93; P < 0.01), whereas PPARγ and FAS expressions were significantly positively correlated with FCR (r = 0.74 to 0.87; P < 0.01). PPARγ expression was significantly positively correlated with RFI (r = 0.83; P < 0.01), whereas CPT1A and ACOX1 expressions were significantly negatively correlated with RFI (r = -0.84 to -0.89; P < 0.01). Sirt1 mRNA expression was positively correlated with Foxo1, CPT1A, and ACOX1 mRNA expression (r = 0.78 to 0.92; P < 0.01). Association of Foxo1 with CPT1A and ACOX1 was positive (r = 0.88 to 0.96; P < 0.01). These results suggest that genes related to fatty acid oxidation are upregulated in the liver of ducks with high feed efficiency, while genes associated with lipid synthesis are downregulated. Furthermore, the inclusion of lipid metabolism-related genes in future breeding programs might be beneficial for selecting ducks with greater feed efficiency phenotype.
Collapse
Affiliation(s)
- Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinfeng Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Minghui Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xianzen Chen
- Anhui Provincial Key Laboratory of Local Animal Genetic Resources Conservation and Biobreeding, Hefei, China
| | - Zhiqiang Lin
- Huangshan Qiangying Duck Breeding Co. Ltd., Huangshan, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
125
|
Che L, Paliogiannis P, Cigliano A, Pilo MG, Chen X, Calvisi DF. Pathogenetic, Prognostic, and Therapeutic Role of Fatty Acid Synthase in Human Hepatocellular Carcinoma. Front Oncol 2019; 9:1412. [PMID: 31921669 PMCID: PMC6927283 DOI: 10.3389/fonc.2019.01412] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common solid tumors worldwide, characterized by clinical aggressiveness, resistance to conventional chemotherapy, and high lethality. Consequently, there is an urgent need to better delineate the molecular pathogenesis of HCC to develop new preventive and therapeutic strategies against this deadly disease. Noticeably, emerging evidence indicates that proteins involved in lipid biosynthesis are important mediators along the development and progression of HCC in humans and rodents. Here, we provide a comprehensive overview of: (a) The pathogenetic relevance of lipogenic proteins involved in liver carcinogenesis, with a special emphasis on the master fatty acid regulator, fatty acid synthase (FASN); (b) The molecular mechanisms responsible for unrestrained activation of FASN and related fatty acid biosynthesis in HCC; (c) The findings in experimental mouse models of liver cancer and their possible clinical implications; (d) The existing potential therapies targeting FASN. A consistent body of data indicates that elevated levels of lipogenic proteins, including FASN, characterize human hepatocarcinogenesis and are predictive of poor prognosis of HCC patients. Pharmacological or genetic blockade of FASN is highly detrimental for the growth of HCC cells in both in vitro and in vivo models. In conclusion, FASN is involved in the molecular pathogenesis of HCC, where it plays a pivotal role both in tumor onset and progression. Thus, targeted inhibition of FASN and related lipogenesis could be a potentially relevant treatment for human HCC.
Collapse
Affiliation(s)
- Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Antonio Cigliano
- Institut für Pathologie, Universität Regensburg, Regensburg, Germany
| | - Maria G Pilo
- Department of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
126
|
SPIN1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett 2019; 470:54-63. [PMID: 31790762 DOI: 10.1016/j.canlet.2019.11.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Abnormal lipid metabolism plays crucial roles in the development of cancer. Spindlin 1 (SPIN1) involving the process of spindle organization and chromosomal stability serves as an important player in the carcinogenesis. In this study, we try to identify the new function of SPIN1 in lipid metabolism of liver cancer. Tissue microarray showed that 75% (60/80) of hepatocellular carcinoma (HCC) tissues were positive for SPIN1, which was highly expressed in clinical HCC samples and positively associated with malignancy of HCC. Strikingly, SPIN1 could modulate abnormal lipid metabolism by increasing intracellular triglycerides, cholesterols, and lipid droplets in hepatoma cells, which could remarkably enhance the proliferation of hepatoma cells. Mechanistically, SPIN1 up-regulated FASN in hepatoma cells. SPIN1 co-activated transcriptional factor SREBP1c in the promoter of FASN through interaction with SREBP1c. Moreover, SPIN1 promoted the growth of liver cancer in vitro and in vivo and the levels of intracellular triglycerides, cholesterols and lipid droplets were increased in the tumor tissues from mice. In conclusion, SPIN1 modulates abnormal lipid metabolism and enhances growth of liver cancer through SREBP1c-triggered FASN signaling. Therapeutically, SPIN1 may serve as a novel target for HCC.
Collapse
|
127
|
Yang T, Yuan P, Yang Y, Liang N, Wang Q, Li J, Lu R, Zhang H, Mu J, Yan Z, Chang H. NPAS2 Contributes to Liver Fibrosis by Direct Transcriptional Activation of Hes1 in Hepatic Stellate Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:1009-1022. [PMID: 31778954 PMCID: PMC6889679 DOI: 10.1016/j.omtn.2019.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022]
Abstract
Recently, emerging evidence shows that dysregulation of circadian genes is closely associated with liver fibrosis. However, how dysregulation of circadian genes promotes liver fibrosis is unknown. In this study, we show that neuronal PAS domain protein 2 (NPAS2), one of the core circadian molecules that has been shown to promote hepatocarcinoma cell proliferation, significantly contributed to liver fibrogenesis. NPAS2 is upregulated in hepatic stellate cells (HSCs) after fibrogenic injury, which subsequently contributes to the activation of HSCs. Mechanistically, NPAS2 plays a profibrotic role via direct transcriptional activation of hairy and enhancer of split 1 (Hes1), a critical transcriptor of Notch signaling for the fibrogenesis process, in HSCs. Our findings demonstrate that NPAS2 plays a critical role in liver fibrosis through direct transcriptional activation of Hes1, indicating that NPAS2 may serve as an important therapeutic target to reverse the progression of liver fibrosis.
Collapse
Affiliation(s)
- Tao Yang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Yuan
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Yang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, Yunnan 671000, China
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jing Li
- College and Hospital of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Rui Lu
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiao Mu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, China.
| | - Zhaoyong Yan
- Department of Pain Treatment, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China.
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
128
|
Wang M, Zhang S, Sun Q, Yang X, Wang Y, Shang R, Zhu Y, Yao H, Li Y. Dual effects of an anti-CD147 antibody for Esophageal cancer therapy. Cancer Biol Ther 2019; 20:1443-1452. [PMID: 31411555 DOI: 10.1080/15384047.2019.1647052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Esophageal cancer is a highly aggressive neoplasm. Targeted therapy has been proven to be a promising way for cancer therapy. Here, we report a novel anti-CD147 antibody for esophageal cancer therapy, which is a chimeric antibody with modified glycoform in Fc region. Methods: ADCC assay was used to explore the antitumor efficacy of Metuzumab against esophageal cancer in vitro. Wound healing assay and Boyden Chamber invasion assay were performed to explore whether Metuzumab could inhibit migration and invasion of esophageal cancer in vitro. Insulin-like growth factors 1 (IGF-1) and PI3k/Akt was assayed for elaborating antagonistic mechanism of Metuzumab in migration and invasion of esophageal cancer cells. Subcutaneous xenograft nude mouse model was used to investigate the antitumor efficacy of Metuzumab against esophageal cancer in vivo. The esophageal cancer tissue microarrays (TMA) was examined for identification of association of CD147 with lymph node metastasis, and the footpad xenograft nude mouse model was used to explore whether Metuzumab could inhibit lymph node metastasis of esophageal cancer in vivo. Results: The results showed that Metuzumab exhibited higher ADCC compared to the wild type antibody cHAb18. Metuzumab inhibited migration and invasion of esophageal cancer through blockade of CD147 in vitro. The results of Western blot showed Metuzumab might inhibit migration and invasion of esophageal cancer cells through suppressing activation of PI3k/Akt and expression of IGF-1. Experiments in vivo showed that Metuzumab exhibited significant antitumor efficacy and inhibited lymph node metastasis of esophageal cancer in xenograft models. The immunochemical staining of TMA showed CD147 was high-expressed on various kinds of esophageal cancer tissues and associated with the grade of lymph node-metastasis. Conclusions: The in vitro and in vivo study demonstrated dual effects of Metuzumab in effectively mediating ADCC by activating effector cells, and inhibiting metastasis of esophageal cancer through blockade the function of CD147, providing justification for moving Metuzumab forward to clinical development in esophageal cancer.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University , Xi'an , P. R. China
| | - Shuai Zhang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University , Xi'an , P. R. China
| | - Qian Sun
- Research and Development Department, Jiangsu Pacific Meinuoke Biopharmaceutical Company , Changzhou , 213022 , P. R. China
| | - Xiangmin Yang
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University , Xi'an , P. R. China
| | - Yu Wang
- Department of Oncology, State Key Discipline of Cell Biology, XiJing Hospital, Fourth Military Medical University , Xi'an , P. R. China
| | - Runze Shang
- Department of Hepatobiliary Surgery, XiJing Hospital, Fourth Military Medical University , Xi'an , P. R. China
| | - Yumeng Zhu
- State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, Fourth Military Medical University , Xi'an , P. R. China
| | - Hui Yao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University , Changzhou , P. R. China
| | - Yu Li
- School of Life Science, Northwestern Polytechnical University , Xi'an , Shaanxi , P. R. China
| |
Collapse
|
129
|
Huang Y, Xu J, Xu Y, Li L, Zheng M. CD147 promotes glucose metabolism, invasion and metastasis via PI3K/AKT pathway in oral squamous cell carcinomas. Transl Cancer Res 2019; 8:1486-1496. [PMID: 35116891 PMCID: PMC8798969 DOI: 10.21037/tcr.2019.07.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/11/2019] [Indexed: 12/04/2022]
Abstract
Background The incidence of oral cancers, especially that of oral squamous cell carcinoma (OSCC), has increased significantly in the last few decades. Aggressive tumor progression and metastasis are the key factors responsible for the high mortality rate associated with OSCC. CD147 is known to play a key role in tumor metastasis and is associated with poor prognosis in oral cancer. It is also a crucial regulator of glucose metabolism in cancer cells. The aim of this study was to determine the effect of CD147 on OSCC invasiveness, metastasis and glucose metabolism, as well as the underlying mechanism. Methods CD147 was knocked down in the human OSCC lines SCC-25 and CAL-27, and both the wild-type and knockdown cells were then stably transfected with PI3K cDNA. Glucose metabolism and in vitro migration of the OSCC cells were respectively analyzed by glucose uptake and lactate secretion assays, and transwell assay. Results Knocking down CD147 in the OSCC cells significantly reduced their migration, and decreased glucose metabolism. The inhibitory effects of blocking CD147 were reversed upon PI3K overexpression. Conclusions CD147 mediates its oncogenic effects via the PI3K/AKT pathway, and is a potential prognostic factor and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yi Huang
- Department of Stomatology, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jing Xu
- Comprehensive Breast Health Center, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Ying Xu
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Li Li
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, China
| |
Collapse
|
130
|
Cai Y, Lin Y, Xiong X, Lu J, Zhou R, Jin Y, You Z, Ye H, Li F, Cheng N. Knockdown expression of MECR, a novel gene of mitochondrial FAS II inhibits growth and colony-formation, promotes apoptosis of hepatocelluar carcinoma cells. Biosci Trends 2019; 13:234-244. [PMID: 31178528 DOI: 10.5582/bst.2019.01109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial trans-2-enoyl-CoA reductase (MECR) is a protein-coding gene, and the protein encoded by this gene is an oxidoreductase that catalyzes the last step in mitochondrial fatty acid synthesis (mtFASII). Numerous studies have shown disorder of lipid metabolism is closely related with malignance, especially in liver cancer. Through pre-experiment, we found that the expression of MECR gene was highly expressed in hepatocelluar carcinoma (HCC) cell lines in vitro. This suggests that the MECR gene may play a role of oncogene in HCC. Therefore, we conducted a preliminary experimental study on the role of MECR gene in HCC cells in vitro. Objective to explore whether the MECR gene can affect the malignant biological behavior of HCC. We selected HCC cell line BEL-7404 as experimental cell, which involves the highest expression of MECR in the pre-experiment. We constructed MECR knockdwon lentivirus vector, and then infected HCC cell lines to down-regulate MECR expression, and establish negative control group (NC). Through various experiments of cytology, our study showed that knockdown of MECR inhibited cell proliferation and colony formation, promoted apoptosis, and inhibited metastasis in HCC cell lines BEL-7404. MECR might serve as a novel gene therapeutic target for the treatment of HCC. Further study is needed to elucidate the signaling pathway through which MECR functions in HCC.
Collapse
Affiliation(s)
- Yulong Cai
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Yixin Lin
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Xianze Xiong
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Jiong Lu
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Rongxing Zhou
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Yanwen Jin
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Zhen You
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Hui Ye
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University
| | - Nansheng Cheng
- Department of Biliary Surgery, West China Hospital, Sichuan University
| |
Collapse
|
131
|
Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, Li Y, Li G, Zeng Z, Xiong W, Xiong F, Guo C. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 2019; 10:3789-3797. [PMID: 31333796 PMCID: PMC6636296 DOI: 10.7150/jca.31166] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The occurrence and development of tumors is a complex process involving long-term multi-factor participation. In this process, tumor cells from a set of abnormal metabolic patterns that are different from normal cells. This abnormal metabolic change is called metabolic reprogramming of tumors. Wnt signaling pathway is one of the critical signaling pathways regulating cell proliferation and differentiation. In recent years, it has been found that Wnt signaling participates in the occurrence and development of malignant tumors by affecting metabolic reprogramming. This paper reviews the role of Wnt signaling in tumor metabolic reprogramming to provide crucial theoretical guidance for targeted therapy and drug response of tumors.
Collapse
Affiliation(s)
- Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Lishen Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Liting Yang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
132
|
Dong Z, Zhang W, Chen S, Liu C. Silibinin A decreases statin‑induced PCSK9 expression in human hepatoblastoma HepG2 cells. Mol Med Rep 2019; 20:1383-1392. [PMID: 31173243 DOI: 10.3892/mmr.2019.10344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 11/06/2022] Open
Abstract
Hypercholesterolemia is one of the major risk factors for the occurrence and development of atherosclerosis. The most common drugs used to treat hypercholesterolemia are 3‑hydroxy‑3‑methyl‑glutaryl‑CoA reductase inhibitors, known as statins. Statins induce a beneficial increase in the levels of the low density lipoprotein receptor (LDLR) and additionally upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which leads to LDLR degradation. This process causes a negative feedback response that attenuates the lipid lowering effects of statins. Therefore, the development of PCSK9 inhibitors may increase the lipid‑lowering functions of statins. In the present study, a drug‑screening assay was developed using the human PCSK9 promoter, based on data from a dual‑luciferase reporter assay, and the efficacies of various compounds from Traditional Chinese Medicine were examined. Among the compounds examined, SIL was demonstrated to function by targeting PCSK9. It was identified that SIL treatment decreased the expression levels of PCSK9 in HepG2 cells by decreasing the activity of the PCSK9 promoter in a dose‑and time‑dependent manner. Notably, SIL antagonized the statin‑induced phosphorylation of the p38 MAPK signaling pathway. The present study suggested that SIL may be developed as a novel PCSK9 inhibitor that may increase the efficiency of statin treatment.
Collapse
Affiliation(s)
- Zhewen Dong
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
133
|
Pope ED, Kimbrough EO, Vemireddy LP, Surapaneni PK, Copland JA, Mody K. Aberrant lipid metabolism as a therapeutic target in liver cancer. Expert Opin Ther Targets 2019; 23:473-483. [PMID: 31076001 DOI: 10.1080/14728222.2019.1615883] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers. Progress has been made in treatment of HCC; however, improved outcomes are much needed. The increased metabolic needs of cancer cells underscore the importance of metabolic pathways in cancer cell survival. Lipid metabolism has a role in HCC development; aberrant overexpression of several key enzymes is seen in many solid human tumors. Areas covered: We discuss aberrant lipid metabolism and the promise of multiple targets, in particular related to HCC treatment. We searched PubMed and clinicaltrials.gov for published and unpublished studies from 2000 to 2019. These terms were used: lipids, fatty acid metabolism, lipid metabolism, liver cancer, HCC, de novo fatty acid synthesis, ATP citrate lyase, stearoyl CoA denaturase, fatty acid synthase, acetyl coenzyme A carboxylase, CD147, KLF4, monoglyceride lipase, AMP activated protein kinase. Expert opinion: The importance of dysregulation of fatty acid synthesis in cancer is a growing area of research. HCC demonstrates significant alteration in lipid metabolism, representing great potential as a target for novel therapeutics. Various agents have demonstrated promising anti-neoplastic activity. This strategy deserves further development for improved outcomes.
Collapse
Affiliation(s)
- Evans D Pope
- a Cancer Clinical Studies Unit , Mayo Clinic , Jacksonville , FL , USA
| | | | | | | | - John A Copland
- d Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Kabir Mody
- c Division of Hematology and Medical Oncology , Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
134
|
Yu XN, Chen H, Liu TT, Wu J, Zhu JM, Shen XZ. Targeting the mTOR regulatory network in hepatocellular carcinoma: Are we making headway? Biochim Biophys Acta Rev Cancer 2019; 1871:379-391. [PMID: 30951815 DOI: 10.1016/j.bbcan.2019.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway coordinates organismal growth and homeostasis in response to growth factors, nutrients, and cellular energy stage. The pathway regulates several major cellular processes and is implicated in various pathological conditions, including hepatocellular carcinoma (HCC). This review summarizes recent advances of the mTOR pathway, highlights the potential of the mTOR pathway as a therapeutic target, and explores clinical trials targeting the mTOR pathway in HCC. Although the review focuses on the mTOR pathway involved in HCC, more comprehensive discussions (eg, developing a rational design for future trials targeting the mTOR pathway) are also applicable to other tumors.
Collapse
Affiliation(s)
- Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hong Chen
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jian Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Medical Microbiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
135
|
Tao T, Su Q, Xu S, Deng J, Zhou S, Zhuang Y, Huang Y, He C, He S, Peng M, Hocher B, Yang X. Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. J Cell Physiol 2019; 234:3088-3104. [PMID: 30221356 DOI: 10.1002/jcp.27129] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
Abstract
Fatty acid synthase (FASN) catalyzing the terminal steps in the de novo biogenesis of fatty acids is correlated with low survival and high disease recurrence in patients with bladder cancer. Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels and provides a growth advantage to tumors. However, it is unclear whether the change of PKM2 has an effect on FASN and what is the mechanisms underlying. Here we describe a novel function of PKM2 in control of lipid metabolism by mediating transcriptional activation of FASN, showing the reduced expression of sterol regulatory element binding protein 1c (SREBP-1c). We first discovered that PKM2 physically interacts with the SREBP-1c using biochemical approaches, and downregulation of PKM2 reduced the expression of SREBP-1c by inactivating the AKT/mTOR signaling pathway, which in turn directly suppressed the transcription of major lipogenic genes FASN to reduce tumor growths. Furthermore, either PKM2 inhibitor-Shikonin or FASN inhibitor-TVB-3166 alone induced a strong antiproliferative and anticolony forming effect in bladder cancer cell line. The combination of both inhibitors exhibits a super synergistic effect on blocking the bladder cancer cells growth. It provides a new target and scientific basis for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Ting Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Qiongli Su
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Central Hospital of Zhuzhou City and Affiliated Zhuzhou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yu Zhuang
- Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| | - Yanjun Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Caimei He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Berthold Hocher
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Institute for Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
136
|
Yu Q, Yang D, Chen X, Chen Q. CD147 increases mucus secretion induced by cigarette smoke in COPD. BMC Pulm Med 2019; 19:29. [PMID: 30727993 PMCID: PMC6364420 DOI: 10.1186/s12890-019-0791-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CD147 is expressed in many tissues and is involved in many inflammatory diseases. Emerging evidence suggests that the overproduction of mucus is a malignant factor in chronic obstructive pulmonary disease (COPD), which results in severe airway obstruction and repeated airway infections. However, it is still unclear whether CD147 is involved in mucus production in COPD. METHODS We determined the expression levels of CD147 and MUC5AC by immunohistochemistry in 42 human lung specimens from three groups (non-smokers without COPD, smokers without COPD and smokers with COPD). For the in vitro experiment, human bronchial epithelial (HBE) cells were treated with cigarette smoke (CS) extract to establish a mucus secretion model; then, CD147 and MUC5AC production were detected by RT-PCR, Western blotting and ELISA. To determine how CD147 is involved in MUC5AC secretion, HBE cells were transfected with small interfering RNA to silence CD147 and pretreated with inhibitors of MMP9 and p38 MAPK, which are common signaling molecules involved in MUC5AC secretion; then, MUC5AC expression was evaluated. RESULTS Compared with the expression levels in the non-smokers and smokers without COPD, CD147 and MUC5AC expression levels were higher in the smokers with COPD. In the in vitro experiment, CD147 and MUC5AC expression levels were significantly increased after CS extract incubation compared with those after no treatment. Silencing CD147 by siRNA decreased the CS extract-induced MUC5AC secretion and MMP9 and phosphorylated p38 MAPK production. In addition, inhibiting MMP9 or p38 MAPK decreased the CS extract-induced MUC5AC secretion. CONCLUSIONS In lung specimens, CD147 and MUC5AC expression levels were increased in COPD patients. Increased CD147 levels induced by CS extract could stimulate MUC5AC secretion through the MMP9 and p38 MAPK signaling pathway in HBE cells. Therefore, the regulation of CD147 could be a promising target for mucus hypersecretion in COPD.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Danhui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya of Central South University, Changsha, 410008, Hunan, China
| | - Qiong Chen
- Department of Gerontology and Respirology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
137
|
Chen Q, Tang L, Xin G, Li S, Ma L, Xu Y, Zhuang M, Xiong Q, Wei Z, Xing Z, Niu H, Huang W. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med 2019; 130:48-58. [PMID: 30339883 DOI: 10.1016/j.freeradbiomed.2018.10.419] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
Retinal pigment epithelium (RPE) dysfunction is thought to increase the risk of the development and progression of diabetic retinopathy (DR), the leading cause of blindness. However, the molecular mechanism behind high glucose-induced RPE cell damage is still blurred. We reported that ARPE-19 exposed to 25 mM glucose for 48 h did not induce apoptosis, but senescence validated by SA-β-Gal staining, p21 expression and cell cycle distribution. High glucose also increased oxidant species that exerted a pivotal role in senescence, which could be relieved by the treatment with antioxidant N-acetylcysteine (NAC). The accumulation of lipid droplets and the increase of lipid oxidation were also observed in ARPE-19 treated with high glucose. And the supplementation of free fatty acids (FFAs) indicated that lipid metabolism was associated with the generation of hydrogen peroxide (H2O2) and subsequent senescence in ARPE-19. PI3K/Akt/mTOR signaling pathway was shown to be responsible for the accumulation of intracellular lipids by regulating fatty acid synthesis, which in turn controlled senescence. Furthermore, high glucose induced autophagy in ARPE-19 with the treatment of glucose for 48 h, and autophagy inhibitor hydroxychloroquine (HCQ) or bafilomycin further aggravated the senescence, accompanying by an increase in oxidant species. Whereas, prolonged high glucose exposure inhibited autophagy and increased apoptotic cells. Experiments above provide evidence that lipid metabolism plays an important role in oxidative stressed senescence of RPE.
Collapse
Affiliation(s)
- Qingqiu Chen
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Limei Ma
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Yao Xu
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Manjiao Zhuang
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Qiuyang Xiong
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China.
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China.
| |
Collapse
|
138
|
Jiao S, Tang B, Wang Y, Li C, Zeng Z, Cui L, Zhang X, Shao M, Guo D, Wang Q. Pro-angiogenic Role of Danqi Pill Through Activating Fatty Acids Oxidation Pathway Against Coronary Artery Disease. Front Pharmacol 2018; 9:1414. [PMID: 30564122 PMCID: PMC6289089 DOI: 10.3389/fphar.2018.01414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of deaths worldwide. Energy metabolism disorders, including a reduction in fatty acids oxidation and upregulation of glycolysis pathway, are involved in the process of CAD. Therapeutic angiogenesis has become a promising treatment for CAD. Traditional Chinese medicines, such as Danqi Pill (DQP), have been proven to be effective in treating CAD in China for many years. However, the pro-angiogenic effects of DQP based on fatty acids oxidation are still unknown and the mechanism is worthy of investigation. In this study, left anterior descending (LAD) coronary artery was ligated to induce the CAD models in vivo, and cardiac functions were examined using echocardiography. Human umbilical vein endothelial cells (HUVEC) were subjected to H2O2-induced oxidative stress in vitro. The effects of DQP on CAD rat models and in vitro HUVEC were detected. Our results showed that DQP had cardio-protective effects in rat model. The intensity of capillaries in the marginal area of infarction of the rat heart was increased remarkably in DQP group, and the expression of PPARα and VEGF-2 were increased. The key enzymes involved in the transportation and intake of fatty acids, including CPT1A and CD36, both increased. In H2O2-induced endothelial cells injury models, DQP also showed protective roles and promoted capillary-like tube formation. DQP up-regulated key enzymes in fatty acids oxidation in H2O2-treated HUVEC. In addition, inhibition of CPT1A compromised the pro-angiogenic effects of DQP. In conclusion, fatty acids oxidation axis PPARα-CD36-CPT1A was involved in the pro-angiogenic roles of DQP against CAD. Cardiac CPT1A may serve as a target in therapeutic angiogenesis in clinics.
Collapse
Affiliation(s)
- Shihong Jiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binghua Tang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zifan Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lixia Cui
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuefeng Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
139
|
Pattanayak SP, Bose P, Sunita P, Siddique MUM, Lapenna A. Bergapten inhibits liver carcinogenesis by modulating LXR/PI3K/Akt and IDOL/LDLR pathways. Biomed Pharmacother 2018; 108:297-308. [DOI: 10.1016/j.biopha.2018.08.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022] Open
|
140
|
Liao X, Song L, Zhang L, Wang H, Tong Q, Xu J, Yang G, Yang S, Zheng H. LAMP3 regulates hepatic lipid metabolism through activating PI3K/Akt pathway. Mol Cell Endocrinol 2018; 470:160-167. [PMID: 29056532 DOI: 10.1016/j.mce.2017.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/11/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Lysosome associated membrane protein 3 (LAMP3), a highly glycosylated protein, is one member of the LAMPs family. LAMPs family plays a critical role in the autolysosome fusion process. Autophagy was recently confirmed to regulate hepatic lipolysis. However, the physiological function of LAMP3 in lipid metabolism is not clear. In the current study, we discovered that the LAMP3 expression level was higher in the liver tissues of non-alcoholic fatty liver disease (NAFLD) patients and high-fat diet and ob/ob mice than in the matched control groups. LAMP3 expression was also obviously increased in hepatocellular carcinoma (HCC) cells treated with free fatty acids. Moreover, marked accumulation of intracellular lipid droplets and triglycerides (TG) was observed after LAMP3 overexpression in HCC cells. Further study showed that LAMP3 overexpression activated Akt and upregulated the expression of the lipogenic enzymes FASN and SCD-1 in HepG2 cells. Additionally, the increased TG content induced by LAMP3 overexpression was attenuated by treatment with a PI3K/Akt pathway inhibitor. Our findings demonstrated that LAMP3 is an important regulator of hepatic lipid metabolism, which provides a line of evidence for taking LAMP3 as a drug target in lipid metabolism disorder-associated diseases, such as NAFLD and obesity.
Collapse
Affiliation(s)
- Xiaoyu Liao
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lingyu Song
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Wang
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Tong
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
141
|
Wisniewski DJ, Ma T, Schneider A. Nicotine induces oral dysplastic keratinocyte migration via fatty acid synthase-dependent epidermal growth factor receptor activation. Exp Cell Res 2018; 370:343-352. [PMID: 29966661 DOI: 10.1016/j.yexcr.2018.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Despite advances in diagnostic and therapeutic management, oral squamous cell carcinoma (OSCC) patient survival rates have remained relatively unchanged. Thus, identifying early triggers of malignant progression is critical to prevent OSCC development. Traditionally, OSCC initiation is elicited by the frequent and direct exposure to multiple tobacco-derived carcinogens, and not by the nicotine contained in tobacco products. However, other nicotine-containing products, especially the increasingly popular electronic cigarettes (e-cigs), have unknown effects on the progression of undiagnosed tobacco-induced oral premalignant lesions, specifically in regard to the effects of nicotine. Overexpression of fatty acid synthase (FASN), a key hepatic de novo lipogenic enzyme, is linked to poor OSCC patient survival. Nicotine upregulates hepatic FASN, but whether this response occurs in oral dysplastic keratinocytes is unknown. We hypothesized that in oral dysplastic keratinocytes, nicotine triggers a migratory phenotype through FASN-dependent epidermal growth factor receptor (EGFR) activation, a common pro-oncogenic event supporting oral carcinogenesis. We report that in oral dysplastic cells, nicotine markedly upregulates FASN leading to FASN-dependent EGFR activation and increased cell migration. These results raise potential concerns about e-cig safety, especially when used by former tobacco smokers with occult oral premalignant lesions where nicotine could trigger oncogenic signals commonly associated with malignant progression.
Collapse
Affiliation(s)
- David J Wisniewski
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, Program in Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
142
|
Lin M, Lv D, Zheng Y, Wu M, Xu C, Zhang Q, Wu L. Downregulation of CPT2 promotes tumorigenesis and chemoresistance to cisplatin in hepatocellular carcinoma. Onco Targets Ther 2018; 11:3101-3110. [PMID: 29872321 PMCID: PMC5975610 DOI: 10.2147/ott.s163266] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Cancer cells often have characteristic changes in metabolism. Besides Warburg effect, abnormal lipid metabolism is also considered as one of the most typical metabolic symbols of cancer. Thus, understanding the mechanisms of cell metabolic reprogramming may provide a potential avenue for cancer treatment. Materials and methods In total, 41 pairs of matched samples of primary hepatocellular carcinoma (HCC) and adjacent non-cancerous liver tissues were collected. Afterward, we performed quantitative reverse transcriptase polymerase chain reaction to investigate carnitine palmitoyltransferase-2 (CPT2) expression and then systematically analyzed its relationship with clinicopathologic features. We further performed proliferation, colony formation, migration and invasion, drug resistance, and lipogenesis assays to determine the function of CPT2 in HCC. Results In this study, we have identified CPT2 which is the rate-limiting enzyme of fatty acid oxidation, downregulated in HCC and was significantly associated with tumor histological differentiation and venous invasion. In vitro studies demonstrated that knockdown of CPT2 remarkably enhanced the tumorigenic activity and metastatic potential of hepatoma cells. In addition, CPT2 silencing induced chemoresistance to cisplatin. Mechanistically, low expression of CPT2 promoted cancer cell lipogenesis via upregulation of stearoyl-CoA desaturase-1, the key enzyme involved in the synthesis of monounsaturated fatty acids, at both mRNA and protein levels in hepatoma cell line. Conclusion Altogether, our findings demonstrate that CPT2 has a critical role in HCC progression and chemoresistance and may potentially serve as a novel prognostic marker and therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Meihua Lin
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Duo Lv
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yunliang Zheng
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Minglan Wu
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chang Xu
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qiao Zhang
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lihua Wu
- Research Center of Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
143
|
Huang P, Mao LF, Zhang ZP, Lv WW, Feng XP, Liao HJ, Dong C, Kaluba B, Tang XF, Chang S. Down-Regulated miR-125a-5p Promotes the Reprogramming of Glucose Metabolism and Cell Malignancy by Increasing Levels of CD147 in Thyroid Cancer. Thyroid 2018; 28:613-623. [PMID: 29634399 DOI: 10.1089/thy.2017.0401] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND CD147 contributes to increased aerobic glycolysis through which it promotes tumor growth. Accumulating evidence suggests that CD147 exerts a variety of functions in thyroid cancer (TC) progression but the molecular mechanisms and therapeutic value of CD147 remain unclear. METHODS CD147 levels in TC tissues were analyzed to assess its relationship with prognosis and disease progression. A microRNA (miRNA) microarray and bioinformatics approach were used to identify microRNA regulators of CD147 through measurement of the expression and functions of these miRNAs in TC tissues and cell lines. Precursor miRNA-transfected cells were used to assess regulation of CD147 by miRNA. The effect of miRNA on TC cells via inhibition of glycolysis through CD147 targeting was also evaluated. RESULTS We found that miR-125a-5p regulates CD147 and is negatively correlated with its expression and function. Moreover, CD147 knockdown or increased miR-125a-5p expression significantly reduced the viability, migration, and invasion of TC cells. Our mechanistic studies demonstrate that, through directly repressing the expression of the CD147 protein, miR-125a-5p suppresses aerobic glycolysis and lactate production and subsequently reduces TC cell viability, migration, and invasion, thereby exerting tumor suppressor functions. CONCLUSIONS The novel connection identified between miR-125a-5p and CD147 suggests a new diagnostic and prognostic role for miR-125a-5p and that CD147 inhibition may be a candidate therapeutic target in the therapy of for TC.
Collapse
Affiliation(s)
- Peng Huang
- 1 Department of General Surgery, Central South University , Changsha, China
| | - Lin-Feng Mao
- 1 Department of General Surgery, Central South University , Changsha, China
| | - Zhi-Peng Zhang
- 1 Department of General Surgery, Central South University , Changsha, China
| | - Wu-Wu Lv
- 2 Institute of Medical Sciences, Central South University , Changsha, China
| | - Xue-Ping Feng
- 2 Institute of Medical Sciences, Central South University , Changsha, China
| | - Hui-Jun Liao
- 3 Department of General Surgery, Chenzhou No. 1 People's Hospital , Chenzhou, China
| | - Chao Dong
- 4 Department of Geriatrics, Xiangya International Medical Center-Surgical Ward, Xiangya Hospital, Central South University , Changsha, China
| | - Benson Kaluba
- 1 Department of General Surgery, Central South University , Changsha, China
| | - Xiao-Feng Tang
- 1 Department of General Surgery, Central South University , Changsha, China
| | - Shi Chang
- 1 Department of General Surgery, Central South University , Changsha, China
| |
Collapse
|
144
|
Dihydroartemisinin inhibits ER stress-mediated mitochondrial pathway to attenuate hepatocyte lipoapoptosis via blocking the activation of the PI3K/Akt pathway. Biomed Pharmacother 2018; 97:975-984. [DOI: 10.1016/j.biopha.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
|
145
|
Zhang Q, Wang H, Mao C, Sun M, Dominah G, Chen L, Zhuang Z. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol 2017; 94:27-35. [PMID: 29248877 DOI: 10.1016/j.molimm.2017.12.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) are predominantly M2 phenotype in solid cancers including hepatocellular carcinoma (HCC). Though differentiation of M2 macrophages has been recently linked to fatty acid oxidation (FAO), whether FAO plays a role in functional maintenance of M2 macrophages is still unclear. Here, we used an in vitro model to mimic TAM-HCC interaction in tumor microenvironment. We found that M2 monocyte-derived macrophages (MDMs) enhanced the proliferation, migration, and invasion of HCC cells through an FAO-dependent way. Further investigations identified that IL-1β mediated the pro-migratory effect of M2 MDM. Using etomoxir and siRNA to inhibit FAO and palmitate to enhance FAO, we showed that FAO was responsible for the up-regulated secretion of IL-1β and, thus, the pro-migratory effect in M2 MDMs. In addition, we proved that IL-1β induction was reactive oxygen species and NLRP3-dependent. Our study demonstrates that FAO plays a key role in functional human M2 macrophages by enhancing IL-1β secretion to promote HCC cell migration. These findings provide evidence for different dependency of energy sources in macrophages with distinct phenotypes and functions, and suggest a novel strategy to treat HCC by reprogramming cell metabolism or modulating tumor microenvironment.
Collapse
Affiliation(s)
- Qi Zhang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA; Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA; Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chengyuan Mao
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mitchell Sun
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gifty Dominah
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Liyuan Chen
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA; Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
146
|
Cao X, Han C, Wen J, Guo X, Zhang K. Nicotine increases apoptosis in HUVECs cultured in high glucose/high fat via Akt ubiquitination and degradation. Clin Exp Pharmacol Physiol 2017; 45:198-204. [PMID: 28963785 DOI: 10.1111/1440-1681.12865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/04/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
It is well-documented that nicotine, the main active ingredient in cigarettes, results in endothelial cell injury in numerous diseases. However, whether nicotine plays a crucial role in endothelial cell injury in diabetes and the exact molecular mechanism that mediates this process have not been fully elucidated. The current study aimed to investigate the effects of nicotine on endothelial cell injury in diabetes and the specific molecular mechanism by which it plays a role. Human umbilical vein endothelial cells (HUVECs) were incubated in HG/HF media and treated with nicotine, PYR-41 (a selective ubiquitin E1 inhibitor), Akt-overexpressing adenovirus, or TTC3 and MUL1 shRNA adenovirus. Cell viability was subsequently detected by the CCK8 assay, and apoptosis was examined by caspase-3 cleavage and activity analysis. Compared to the HG/HF incubated group, nicotine incubation significantly decreased cell survival and increased apoptosis. Moreover, nicotine induced Akt degradation via UPS, and Akt overexpression blocked nicotine-induced apoptosis in HUVECs cultured in HG/HF media. Furthermore, the TTC3 and MUL1 shRNA adenovirus dramatically decreased the Akt ubiquitination and apoptosis induced by nicotine. These results indicate that nicotine-induced Akt ubiquitination and degradation occurs through TTC3 and MUL1 and results in a dramatic increase in apoptosis in HUVECs cultured in HG/HF media.
Collapse
Affiliation(s)
- Xiaofang Cao
- Center for Disease Control and Prevention of Baoji City, Baoji City, Shanxi Province, China
| | - Chunling Han
- Baoji Maternal and Child Health Hospital, Baoji City, Shanxi Province, China
| | - Jinsuo Wen
- Center for Disease Control and Prevention of Baoji City, Baoji City, Shanxi Province, China
| | - Xiaokun Guo
- Center for Disease Control and Prevention of Baoji City, Baoji City, Shanxi Province, China
| | - Kejian Zhang
- Center for Disease Control and Prevention of Baoji City, Baoji City, Shanxi Province, China
| |
Collapse
|
147
|
Bai P, Xia N, Sun H, Kong Y. Pleiotrophin, a target of miR-384, promotes proliferation, metastasis and lipogenesis in HBV-related hepatocellular carcinoma. J Cell Mol Med 2017; 21:3023-3043. [PMID: 28557334 PMCID: PMC5661149 DOI: 10.1111/jcmm.13213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/29/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) infection plays a crucial role and is a major cause of hepatocellular carcinoma (HCC) in China. microRNAs (miRNAs) have emerged as key players in hepatic steatosis and carcinogenesis. We found that down-regulation of miR-384 expression was a common event in HCC, especially HBV-related HCC. However, the possible function of miR-384 in HBV-related HCC remains unclear. The oncogene pleiotrophin (PTN) was a target of miR-384. HBx inhibited miR-384, increasing PTN expression. The PTN receptor N-syndecan was highly expressed in HCC. PTN induced by HBx acted as a growth factor via N-syndecan on hepatocytes and further promoted cell proliferation, metastasis and lipogenesis. PTN up-regulated sterol regulatory element-binding protein 1c (SREBP-1c) through the N-syndecan/PI3K/Akt/mTORC1 pathway and the expression of lipogenic genes, including fatty acid synthesis (FAS). PTN-mediated de novo lipid synthesis played an important role in HCC proliferation and metastasis. PI3K/AKT and an mTORC1 inhibitor diminished PTN-induced proliferation, metastasis and lipogenesis. Taken together, these data strongly suggest that the dysregulation of miR-384 could play a crucial role in HBV related to HCC, and the target gene of miR-384, PTN, represents a new potential therapeutic target for the prevention of hepatic steatosis and further progression to HCC after chronic HBV infection.
Collapse
Affiliation(s)
- Pei‐song Bai
- Department of OncologyFirst Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Nan Xia
- Institute of Cancer Prevention and ControlPeking University Cancer HospitalBei'jingChina
| | - Hong Sun
- Department of OncologyFirst Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ying Kong
- Department of OncologyFirst Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
148
|
Zhang Y, Huang JC, Cai KT, Yu XB, Chen YR, Pan WY, He ZL, Lv J, Feng ZB, Chen G. Long non‑coding RNA HOTTIP promotes hepatocellular carcinoma tumorigenesis and development: A comprehensive investigation based on bioinformatics, qRT‑PCR and meta‑analysis of 393 cases. Int J Oncol 2017; 51:1705-1721. [PMID: 29039502 PMCID: PMC5673011 DOI: 10.3892/ijo.2017.4164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
HOTTIP functions as an independent biomarker in multiple cancers. However, the role of HOTTIP in hepatocellular carcinoma (HCC) remains unclear. In this study, we sought to investigate the HOTTIP expression in HCC and normal liver. We combined quantitative reverse transcription-polymerase chain reactions (qRT-PCR), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), Multi Experiment Matrix (MEM) and Oncomine database to assess the clinical role and the potential molecular mechanism of HOTTIP in HCC. Furthermore, a meta-analysis was performed to evaluate the relationship between HOTTIP and HCC tumorigenesis and development. Additionally, bioinformatics analysis, which contained Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and network analysis, were applied to investigate the underlying functions, pathways and networks of the potential genes. HOTTIP was obviously upregulated in HCC. A statistically significant higher expression of HOTTIP was found in TNM (III +IV), age (≥60), sex (male), race (white) and cirrhosis (no) compared to the control groups (P<0.05). Furthermore, the meta-analysis of 393 cases from multiple centers indicated that HOTTIP had high diagnostic value in HCC. Additionally, according to GO and KEGG analyses, we found that the most strongly enriched functional terms were gland development, transcription factor activity and extrinsic to membrane. Also, the HOTTIP co-expressed genes were significantly related to PPAR signaling pathway. We speculate that HOTTIP might play a vital part in HCC via regulating various pathways, especially PPAR signaling pathway. However, the detailed mechanism should be confirmed by functional experiments.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Kai-Teng Cai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xi-Bing Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - You-Rong Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Ya Pan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ze-Liang He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
149
|
Rabold K, Netea MG, Adema GJ, Netea-Maier RT. Cellular metabolism of tumor-associated macrophages - functional impact and consequences. FEBS Lett 2017; 591:3022-3041. [PMID: 28771701 DOI: 10.1002/1873-3468.12771] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
Abstract
Macrophages are innate immune cells that play a role not only in host defense against infections, but also in the pathophysiology of autoimmune and autoinflammatory disorders, as well as cancer. An important feature of macrophages is their high plasticity, with high ability to adapt to environmental changes by adjusting their cellular metabolism and immunological phenotype. Macrophages are one of the most abundant innate immune cells within the tumor microenvironment that have been associated with tumor growth, metastasis, angiogenesis and poor prognosis. In the context of cancer, however, so far little is known about metabolic changes in macrophages, which have been shown to determine functional fate of the cells in other diseases. Here, we review the current knowledge regarding the cellular metabolism of tumor-associated macrophages (TAMs) and discuss its implications for cell function. Understanding the regulation of the cellular metabolism of TAMs may reveal novel therapeutic targets for treatment of malignancies.
Collapse
Affiliation(s)
- Katrin Rabold
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
150
|
Zheng HC, Gong BC. CD147 expression was positively linked to aggressiveness and worse prognosis of gastric cancer: a meta and bioinformatics analysis. Oncotarget 2017; 8:90358-90370. [PMID: 29163835 PMCID: PMC5685756 DOI: 10.18632/oncotarget.20089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
CD147 (also named as Basigin or EMMPRIN) might promote cancer invasion and metastasis by inducing MMP and VEGF synthesis in tumor microenvironment. We performed a systematic meta and bioinformatics analysis through multiple online databases up to March 14, 2017. Up-regulated CD147 expression was found in gastric cancer, compared with normal mucosa (p < 0.05). The male patients with gastric cancer showed higher CD147 expression than the female ones (p < 0.0001). CD147 expression was positively correlated with tumor size, depth of invasion, lymph node metastasis, TNM staging and unfavorable prognosis of gastric cancer (p < 0.05). At mRNA level, CD147 expression was higher in intestinal-type and mixed-type gastric carcinomas than normal tissues (p < 0.05). CD147 mRNA expression was negatively associated with histological grading and dedifferentiation of gastric cancer (p < 0.05). A higher CD147 mRNA expression was negatively correlated with overall and progression-free survival rates of all cancer patients, even stratified by clinicopathological features (p < 0.05). These findings indicated that CD147 expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bao-Cheng Gong
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|