101
|
Yao H, Chen S, Deng Z, Tse MK, Matsuda Y, Zhu G. BODI-Pt, a Green-Light-Activatable and Carboplatin-Based Platinum(IV) Anticancer Prodrug with Enhanced Activation and Cytotoxicity. Inorg Chem 2020; 59:11823-11833. [PMID: 32799491 DOI: 10.1021/acs.inorgchem.0c01880] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Platinum drugs are widely used in clinics to treat various types of cancer. However, a number of severe side effects induced by the nonspecific binding of platinum drugs to normal tissues limit their clinical use. The conversion of platinum(II) drugs into more inert platinum(IV) derivatives is a promising strategy to solve this problem. Some platinum(IV) prodrugs, such as carboplatin-based tetracarboxylatoplatinum(IV) prodrugs, are not easily reduced to active platinum(II) species, leading to low cytotoxicity in vitro. In this study, we report the design and synthesis of a carboplatin-based platinum(IV) prodrug functionalized with a boron dipyrromethene (bodipy) ligand at the axial position, and the ligand acts as a photoabsorber to photoactivate the platinum(IV) prodrug. This compound, designated as BODI-Pt, is highly stable in the dark but quickly activated under irradiation to release carboplatin and the axial ligands. A cytotoxic study reveals that BODI-Pt is effective under irradiation, with cytotoxicity 11 times higher than that in the dark and 39 times higher than that of carboplatin in MCF-7 cells. Moreover, BODI-Pt has been proven to kill cancer cells by binding to the genomic DNA, arresting the cell cycle at the G2/M phase, inducing oncosis, and generating ROS upon irradiation. In summary, we report a green-light-activatable and carboplatin-based Pt(IV) prodrug with improved cytotoxicity against cancer cells, and our strategy can be used as a promising way to effectively activate carboplatin-based platinum(IV) prodrugs.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
102
|
Chen S, Yao H, Zhou Q, Tse MK, Gunawan YF, Zhu G. Stability, Reduction, and Cytotoxicity of Platinum(IV) Anticancer Prodrugs Bearing Carbamate Axial Ligands: Comparison with Their Carboxylate Analogues. Inorg Chem 2020; 59:11676-11687. [PMID: 32799457 DOI: 10.1021/acs.inorgchem.0c01541] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum(IV) complexes containing carboxylate and carbamate ligands at the axial position have been reported previously. A better understanding of the similarity and difference between the two types of ligands will provide us with new insights and more choices to design novel Pt(IV) complexes. In this study, we systematically investigated and compared the properties of Pt(IV) complexes bearing the two types of ligands. Ten pairs of unsymmetric Pt(IV) complexes bearing axial carbamate or carboxylate ligands were synthesized and characterized. The stability of these Pt(IV) complexes in a PBS buffer with or without a reducing agent was investigated, and most of these complexes exhibited good stability. Besides, most Pt(IV) prodrugs with carbamate axial ligands were reduced faster than the corresponding ones with carboxylate ligands. Furthermore, the aqueous solubilities and lipophilicities of these Pt(IV) complexes were tested. All the carbamate complexes showed better aqueous solubility and decreased lipophilicity as compared to those of the corresponding carboxylate complexes, due to the increased polarity of carbamate ligands. Biological properties of these complexes were also evaluated. Many carbamate complexes showed cytotoxicity similar to that of the carboxylate complexes, which may derive from the lower cellular accumulation but faster reduction of the former. Our research highlights the differences between the Pt(IV) prodrugs containing carbamate and carboxylate axial ligands and may contribute to the future rational design of Pt-based anticancer prodrugs.
Collapse
Affiliation(s)
- Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| | - Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| | - Qiyuan Zhou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Yuliana F Gunawan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen 5108057, People's Republic of China
| |
Collapse
|
103
|
Tabrizi L, Thompson K, Mnich K, Chintha C, Gorman AM, Morrison L, Luessing J, Lowndes NF, Dockery P, Samali A, Erxleben A. Novel Pt(IV) Prodrugs Displaying Antimitochondrial Effects. Mol Pharm 2020; 17:3009-3023. [PMID: 32628022 DOI: 10.1021/acs.molpharmaceut.0c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The design, synthesis, characterization, and biological activity of a series of platinum(IV) prodrugs containing the axial ligand 3-(4-phenylquinazoline-2-carboxamido)propanoate (L3) are reported. L3 is a derivative of the quinazolinecarboxamide class of ligands that binds to the translocator protein (TSPO) at the outer mitochondrial membrane. The cytotoxicities of cis,cis,trans-[Pt(NH3)2Cl2(L3)(OH)] (C-Pt1), cis,cis,trans-[Pt(NH3)2Cl2(L3)(BZ)] (C-Pt2), trans-[Pt(DACH)(OX)(L3)(OH)] (C-Pt3), and trans-[Pt(DACH)(OX)(L3)(BZ)] (C-Pt4) (DACH: R,R-diaminocyclohexane, BZ: benzoate, OX: oxalate) in MCF-7 breast cancer and noncancerous MCF-10A epithelial cells were assessed and compared with those of cisplatin, oxaliplatin, and the free ligand L3. Moreover, the cellular uptake, ROS generation, DNA damage, and the effect on the mitochondrial function, mitochondrial membrane potential, and morphology were investigated. Molecular interactions of L3 in the TSPO binding site were studied using molecular docking. The results showed that complex C-Pt1 is the most effective Pt(IV) complex and exerts a multimodal mechanism involving DNA damage, potent ROS production, loss of the mitochondrial membrane potential, and mitochondrial damage.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway H91 TK33, Ireland
| | - Kerry Thompson
- Anatomy, School of Medicine, National University of Ireland, Galway H91 TK33, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Chetan Chintha
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Janna Luessing
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Noel F Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Peter Dockery
- Anatomy, School of Medicine, National University of Ireland, Galway H91 TK33, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway H91 TK33, Ireland
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
104
|
Theoretical Prediction of Dual-Potency Anti-Tumor Agents: Combination of Oxoplatin with Other FDA-Approved Oncology Drugs. Int J Mol Sci 2020; 21:ijms21134741. [PMID: 32635199 PMCID: PMC7369966 DOI: 10.3390/ijms21134741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 02/01/2023] Open
Abstract
Although Pt(II)-based drugs are widely used to treat cancer, very few molecules have been approved for routine use in chemotherapy due to their side-effects on healthy tissues. A new approach to reducing the toxicity of these drugs is generating a prodrug by increasing the oxidation state of the metallic center to Pt(IV), a less reactive form that is only activated once it enters a cell. We used theoretical tools to combine the parent Pt(IV) prodrug, oxoplatin, with the most recent FDA-approved anti-cancer drug set published by the National Institute of Health (NIH). The only prerequisite imposed for the latter was the presence of one carboxylic group in the structure, a chemical feature that ensures a link to the coordination sphere via a simple esterification procedure. Our calculations led to a series of bifunctional prodrugs ranked according to their relative stabilities and activation profiles. Of all the designed molecules, the combination of oxoplatin with aminolevulinic acid as the bioactive ligand emerged as the most promising strategy by which to design enhanced dual-potency oncology drugs.
Collapse
|
105
|
Almotairy ARZ, Montagner D, Morrison L, Devereux M, Howe O, Erxleben A. Pt(IV) pro-drugs with an axial HDAC inhibitor demonstrate multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance in A2780/A2780cis cells. J Inorg Biochem 2020; 210:111125. [PMID: 32521289 DOI: 10.1016/j.jinorgbio.2020.111125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic agents such as histone deacetylase (HDAC) inhibitors are widely investigated for use in combined anticancer therapy and the co-administration of Pt drugs with HDAC inhibitors has shown promise for the treatment of resistant cancers. Coordination of an HDAC inhibitor to an axial position of a Pt(IV) derivative of cisplatin allows the combination of the epigenetic drug and the Pt chemotherapeutic into a single molecule. In this work we carry out mechanistic studies on the known Pt(IV) complex cis,cis,trans-[Pt(NH3)2Cl2(PBA)2] (B) with the HDAC inhibitor 4-phenylbutyrate (PBA) and its derivatives cis,cis,trans-[Pt(NH3)2Cl2(PBA)(OH)] (A), cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Bz)] (C), and cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Suc)] (D) (Bz = benzoate, Suc = succinate). The comparison of the cytotoxicity, effect on HDAC activity, reactive oxygen species (ROS) generation, γ-H2AX (histone 2A-family member X) foci generation and induction of apoptosis in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells shows that A - C exhibit multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance.
Collapse
Affiliation(s)
- Awatif Rashed Z Almotairy
- School of Chemistry, National University of Ireland, Galway, Ireland; School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Michael Devereux
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Orla Howe
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland.
| |
Collapse
|
106
|
Kumar P, Butcher RJ, Patra AK. Ternary Co(II), Ni(II) and Cu(II) complexes containing dipyridophenazine and saccharin: Structures, reactivity, binding interactions with biomolecules and DNA damage activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
107
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
108
|
Zhong Y, Jia C, Zhang X, Liao X, Yang B, Cong Y, Pu S, Gao C. Synthesis, characterization, and antitumor activity of novel tumor‐targeted platinum(IV) complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunshuang Zhong
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Chunyan Jia
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Xinzhong Zhang
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Xiali Liao
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Bo Yang
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 China
| | - Yanwei Cong
- Kunming Guiyan Pharmaceutical Co. Ltd Kunming Yunnan 650221 China
| | - Shaoping Pu
- Kunming Guiyan Pharmaceutical Co. Ltd Kunming Yunnan 650221 China
| | - Chuanzhu Gao
- Faculty of Life Science and TechnologyKunming University of Science and Technology Kunming 650500 China
| |
Collapse
|
109
|
Corinti D, Crestoni ME, Fornarini S, Dabbish E, Sicilia E, Gabano E, Perin E, Osella D. A multi-methodological inquiry of the behavior of cisplatin-based Pt(IV) derivatives in the presence of bioreductants with a focus on the isolated encounter complexes. J Biol Inorg Chem 2020; 25:655-670. [PMID: 32296997 DOI: 10.1007/s00775-020-01789-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023]
Abstract
The study of Pt(IV) antitumor prodrugs able to circumvent some drawbacks of the conventional Pt(II) chemotherapeutics is the focus of a lot of attention. This paper reports a thorough study based on experimental methods (reduction kinetics, electrochemistry, tandem mass spectrometry and IR ion spectroscopy) and quantum-mechanical DFT calculations on the reduction mechanism of cisplatin-based Pt(IV) derivatives having two hydroxido (1), one hydroxido and one acetato (2), or two acetato ligands (3) in axial position. The biological reductants glutathione and ascorbic acid were taken into consideration. The presence of a hydroxido ligand resulted to play an important role in the chemical reduction with ascorbic acid, as verified by 15N-NMR kinetic analysis using 15N-enriched complexes. The reactivity trend (1 > 2 > 3) does not reflect the respective reduction peak potentials (1 < 2 < 3), an inverse relationship already documented in similar systems. Turning to a simplified environment, the Pt(IV) complexes associated with a single reductant molecule (corresponding to the encounter complex occurring along the reaction coordinate in bimolecular reactions in solution) were characterized by IR ion spectroscopy and sampled for their reactivity under collision-induced dissociation (CID) conditions. The complexes display a comparable reduction reactivity ordering as that observed in solution. DFT calculations of the free energy pathways for the observed fragmentation reactions provide theoretical support for the CID patterns and the mechanistic hypotheses on the reduction process are corroborated by the observed reaction paths. The bulk of these data offers a clue of the intricate pathways occurring in solution.Graphic abstract.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87035, Arcavacata di Rende (CS), Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87035, Arcavacata di Rende (CS), Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
110
|
Targeting drug delivery system for platinum(Ⅳ)-Based antitumor complexes. Eur J Med Chem 2020; 194:112229. [PMID: 32222677 DOI: 10.1016/j.ejmech.2020.112229] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Classical platinum(II) anticancer agents are widely-used chemotherapeutic drugs in the clinic against a range of cancers. However, severe systemic toxicity and drug resistance have become the main obstacles which limit their application and effectiveness. Because divalent cisplatin analogues are easily destroyed in vivo, their bioavailability is low and no selective to tumor tissues. The platinum(IV) prodrugs are attractive compounds for cancer treatment because they have great advantages, e.g., higher stability in biological media, aqueous solubility and no cross-resistance with cisplatin, which may become the next generation of platinum anticancer drugs. In addition, platinum(IV) drugs could be taken orally, which could be more acceptable to cancer patients, breaking the current situation that platinum(II) drugs can only be given by injection. The coupling of platinum(IV) complexes with tumor targeting groups avoids the disadvantages such as instability in blood, irreversible binding to plasma proteins, rapid renal clearance, and non-specific distribution in normal tissues. Because of the above advantages, the combination of platinum complexes and tumor targeting groups has become the hottest field in the research and development of new platinum drugs. These approaches can be roughly categorized into two groups: active and passive targeted strategies. This review concentrates on various targeting and delivery strategies for platinum(IV) complexes to improve the efficacy and reduce the side effects of platinum-based anticancer drugs. We have made a summary of the related articles on platinum(IV) targeted delivery in recent years. We believe the results of the studies described in this review will provide new ideas and strategies for the development of platinum drugs.
Collapse
|
111
|
Annunziata A, Amoresano A, Cucciolito ME, Esposito R, Ferraro G, Iacobucci I, Imbimbo P, Lucignano R, Melchiorre M, Monti M, Scognamiglio C, Tuzi A, Monti DM, Merlino A, Ruffo F. Pt(II) versus Pt(IV) in Carbene Glycoconjugate Antitumor Agents: Minimal Structural Variations and Great Performance Changes. Inorg Chem 2020; 59:4002-4014. [PMID: 32129608 PMCID: PMC7997382 DOI: 10.1021/acs.inorgchem.9b03683] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Octahedral Pt(IV) complexes (2Pt-R) containing a glycoconjugate carbene ligand were prepared and fully characterized. These complexes are structural analogues to the trigonal bipyramidal Pt(II) species (1Pt-R) recently described. Thus, an unprecedented direct comparison between the biological properties of Pt compounds with different oxidation states and almost indistinguishable structural features was performed. The stability profile of the novel Pt(IV) compounds in reference solvents was determined and compared to that of the analogous Pt(II) complexes. The uptake and antiproliferative activities of 2Pt-R and 1Pt-R were evaluated on the same panel of cell lines. DNA and protein binding properties were assessed using human serum albumin, the model protein hen egg white lysozyme, and double stranded DNA model systems by a variety of experimental techniques, including UV-vis absorption spectroscopy, fluorescence, circular dichroism, and electrospray ionization mass spectrometry. Although the compounds present similar structures, their in-solution stability, cellular uptake, and DNA binding properties are diverse. These differences may represent the basis of their different cytotoxicity and biological activity.
Collapse
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Angela Amoresano
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Maria Elena Cucciolito
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
- CIRCC, via Celso Ulpiani
27, 70126 Bari, Italy
| | - Roberto Esposito
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
- CIRCC, via Celso Ulpiani
27, 70126 Bari, Italy
| | - Giarita Ferraro
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Sesto Fiorentino, Florence 50019, Italy
| | - Ilaria Iacobucci
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Paola Imbimbo
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Rosanna Lucignano
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | | | - Maria Monti
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Chiara Scognamiglio
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Angela Tuzi
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Daria Maria Monti
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Antonello Merlino
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Francesco Ruffo
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
- CIRCC, via Celso Ulpiani
27, 70126 Bari, Italy
| |
Collapse
|
112
|
Oxaliplatin Pt(IV) prodrugs conjugated to gadolinium-texaphyrin as potential antitumor agents. Proc Natl Acad Sci U S A 2020; 117:7021-7029. [PMID: 32179677 DOI: 10.1073/pnas.1914911117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Described here is the development of gadolinium(III) texaphyrin-platinum(IV) conjugates capable of overcoming platinum resistance by 1) localizing to solid tumors, 2) promoting enhanced cancer cell uptake, and 3) reactivating p53 in platinum-resistant models. Side by side comparative studies of these Pt(IV) conjugates to clinically approved platinum(II) agents and previously reported platinum(II)-texaphyrin conjugates demonstrate that the present Pt(IV) conjugates are more stable against hydrolysis and nucleophilic attack. Moreover, they display high potent antiproliferative activity in vitro against human and mouse cell cancer lines. Relative to the current platinum clinical standard of care (SOC), a lead Gd(III) texaphyrin-Pt(IV) prodrug conjugate emerging from this development effort was found to be more efficacious in subcutaneous (s.c.) mouse models involving both cell-derived xenografts and platinum-resistant patient-derived xenografts. Comparative pathology studies in mice treated with equimolar doses of the lead Gd texaphyrin-Pt(IV) conjugate or the US Food and Drug Administration (FDA)-approved agent oxaliplatin revealed that the conjugate was better tolerated. Specifically, the lead could be dosed at more than three times (i.e., 70 mg/kg per dose) the tolerable dose of oxaliplatin (i.e., 4 to 6 mg/kg per dose depending on the animal model) with little to no observable adverse effects. A combination of tumor localization, redox cycling, and reversible protein binding is invoked to explain the relatively increased tolerability and enhanced anticancer activity seen in vivo. On the basis of the present studies, we conclude that metallotexaphyrin-Pt conjugates may have substantial clinical potential as antitumor agents.
Collapse
|
113
|
Synthesis and biological evaluation of new mono naphthalimide platinum(IV) derivatives as antitumor agents with dual DNA damage mechanism. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02561-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
114
|
Li Y, Meng F, Chen Z, Han F, He D, Hao Y, Gao A, Jiang J, Wang Z, Liu W, Liu Q. Pharmacokinetics and tissue distribution in rats of a novel anticancer platinum compound LLC-1903. Xenobiotica 2020; 50:980-987. [PMID: 32072840 DOI: 10.1080/00498254.2020.1728421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LLC-1903, a novel anticancer compound, was synthesized by optimizing the structure, which was derived from altering the leaving group of lobaplatin. It has an excellent in vitro anti-cancer activity, high water solubility, high stability in solution and low in vivo toxicity according to our former study.The plasma pharmacokinetics (PK) and tissue distribution of LLC-1903 and lobaplatin in rats were determined after intravenous administration of a single dose (0.06 mmol/kg body weight). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of platinum (Pt) in plasma and tissue samples.Most PK parameters of the Pt in LLC-1903 showed a significant difference from those of lobaplatin. The plasma level of LLC-1903 is only half of that of lobaplatin (p < 0.01) which could be the direct result of faster drug clearance. The tissue distribution showed that both LLC-1903 and lobaplatin were mainly found in the liver and kidney, and less in other organs. At four time points (0.083, 0.5, 1 and 4 h) after administration, the tissue concentrations of LLC-1903 were almost always significantly higher than those of lobaplatin (p < 0.05 or p < 0.01).
Collapse
Affiliation(s)
- Yingxue Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fanzhuo Meng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zhijian Chen
- Department of Oncology, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Donglin He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yanli Hao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Anli Gao
- Kunming Institute of Precious Metals, Kunming, China
| | - Jing Jiang
- Kunming Institute of Precious Metals, Kunming, China
| | - Zhao Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Weiping Liu
- Kunming Institute of Precious Metals, Kunming, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
115
|
Hydrogen halide assisted formation of peptide disulfides by a platinum(IV) complex oxidation in aqueous medium, a mechanistic study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
116
|
|
117
|
Zhao Y, Kang Y, Xu F, Zheng W, Luo Q, Zhang Y, Jia F, Wang F. Pharmacophore conjugation strategy for multi-targeting metal-based anticancer complexes. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
118
|
Behera S, Behura R, Mohanty M, Dinda R, Mohanty P, Verma AK, Sahoo SK, Jali B. Spectroscopic, cytotoxicity and molecular docking studies on the interaction between 2,4-dinitrophenylhydrazine derived Schiff bases with bovine serum albumin. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
119
|
|
120
|
Karmakar S, Poetsch I, Kowol CR, Heffeter P, Gibson D. Synthesis and Cytotoxicity of Water-Soluble Dual- and Triple-Action Satraplatin Derivatives: Replacement of Equatorial Chlorides of Satraplatin by Acetates. Inorg Chem 2019; 58:16676-16688. [PMID: 31790216 DOI: 10.1021/acs.inorgchem.9b02796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pt(II) complexes, such as cisplatin and oxaliplatin, are in widespread use as anticancer drugs. Their use is limited by the toxic side effects and the ability of tumors to develop resistance to the drugs. A popular approach to overcome these drawbacks is to use their kinetically inert octahedral Pt(IV) derivatives that act as prodrugs. The most successful Pt(IV) complex in clinical trials to date is satraplatin, cct-[Pt(NH3)(c-hexylamine)Cl2(OAc)2], that upon cellular reduction releases the cytotoxic cis-[Pt(NH3)(c-hexylamine)Cl2]. In an attempt to obtain water-soluble and more effective cytotoxic Pt(IV) complexes, we prepared a series of dual- and triple-action satraplatin analogues, where the equatorial chlorido ligands were replaced with acetates and the axial ligands include innocent and bioactive ligands. Replacement of the chlorides with acetates enhanced the water solubility of the compounds and, with one exception, all of the compounds were very stable in buffer. In general, compounds with one or two axial hydroxido ligands were reduced by ascorbate significantly more quickly than compounds with two axial carboxylates. While replacement of the chlorides with acetates in satraplatin led to a reduction in cytotoxicity, the dual- and triple-action analogues with equatorial acetates had low- to sub-micromolar IC50 values in a panel of eight cancer cells. The triple-action compound cct-[Pt(NH3)(c-hexylamine)(OAc)2(PhB)(DCA)] was active in all cell lines, causing DNA damage that induced cell cycle inhibition and apoptosis. Its good activity against CT26 cells in vitro translated into good in vivo efficacy against the CT26 allograft, an in vivo model with intrinsic satraplatin resistance. This indicates that multiaction Pt(IV) derivatives of diamine dicarboxylates are interesting anticancer drug candidates.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I , Medical University of Vienna , Borschkegasse 8a , 1090 Vienna , Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry , University of Vienna , Vienna , Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry , University of Vienna , Vienna , Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I , Medical University of Vienna , Borschkegasse 8a , 1090 Vienna , Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| |
Collapse
|
121
|
Li YL, Gan XL, Zhu RP, Wang X, Liao DF, Jin J, Huang Z. Anticancer Activity of Platinum (II) Complex with 2-Benzoylpyridine by Induction of DNA Damage, S-Phase Arrest, and Apoptosis. Anticancer Agents Med Chem 2019; 20:504-517. [PMID: 31721706 DOI: 10.2174/1871520619666191112114340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared. However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = dimethyl sulfoxide, L = 2-benzoylpyridine) in cancer cells remain unknown. METHODS Pt(II)-Bpy was synthesized and characterized by spectrum analysis. Its anticancer activity and underlying mechanisms were demonstrated at the cellular, molecular, and in vivo levels. RESULTS Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8±0.5μM, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the molecular level was most likely through an intercalation mechanism, which might be evidence of DNA damage. Pt(II)-Bpy initiated cell cycle arrest at the S phase in HepG2 cells. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Moreover, Pt(II)-Bpy displayed marked inhibitory effects on tumor growth in the HepG2 nude mouse model. CONCLUSION Pt(II)-Bpy is a potential candidate for cancer chemotherapy.
Collapse
Affiliation(s)
- Yu-Lan Li
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, Guangxi, China.,China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi, China.,Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Xin-Li Gan
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Rong-Ping Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.,Department of Emergency Traumatic Surgery, the Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People's Hospital), Ganzhou 341000, Jiangxi, China
| | - Xuehong Wang
- Department of Pathology, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, Guangxi, China.,China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Zhaoquan Huang
- Department of Pathology, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| |
Collapse
|
122
|
Ponte F, Piccini G, Sicilia E, Parrinello M. A metadynamics perspective on the reduction mechanism of the Pt(IV) asplatin prodrug. J Comput Chem 2019; 41:290-294. [PMID: 31691997 DOI: 10.1002/jcc.26100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/07/2022]
Abstract
Enhanced sampling molecular dynamics has been used to model the reduction mechanism of the antitumoral Asplatin Pt(IV) complex, c,c,t-[PtCl2(NH3)2(OH)(aspirin)] in the presence of l-ascorbic acid as reducing agent. In order to overcome the timescale problem, characteristic of many chemical reactions, we enhanced the sampling of the free energy landscape using Metadynamics. To achieve such a goal, the selection of adequate collective variables is crucial for the application of the method. Recently, a new method called Multi-Class Harmonic Linear Discriminant Analysis (MC-HLDA) has been proposed as a tool for constructing collective variables (CVs) for complex chemical processes. The method reduces the dimensionality of the variable space by generating appropriate linear combinations of several relevant chemical descriptors. The aim of this work is to assess the ability and performance of this method in describing the fundamental features of complex chemical reactions such as the Asplatin reduction mechanism in a compact, simple, and physically transparent manner. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fortuna Ponte
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte P. Bucci, Cubo 14C, Arcavacata di Rende, 87030, Italy
| | - GiovanniMaria Piccini
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, Lugano, 6900, Switzerland.,Facoltà di Informatica, Istituto di Scienze Computazionali, Università della SvizzeraItaliana (USI), Via Giuseppe Buffi 13, Lugano, 6900, Switzerland
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte P. Bucci, Cubo 14C, Arcavacata di Rende, 87030, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, Lugano, 6900, Switzerland.,Facoltà di Informatica, Istituto di Scienze Computazionali, Università della SvizzeraItaliana (USI), Via Giuseppe Buffi 13, Lugano, 6900, Switzerland.,Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
123
|
Shaili E, Salassa L, Woods JA, Clarkson G, Sadler PJ, Farrer NJ. Platinum(iv) dihydroxido diazido N-(heterocyclic)imine complexes are potently photocytotoxic when irradiated with visible light. Chem Sci 2019; 10:8610-8617. [PMID: 31803436 PMCID: PMC6844273 DOI: 10.1039/c9sc02644d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/28/2019] [Indexed: 01/05/2023] Open
Abstract
A series of trans-di-(N-heterocyclic)imine dihydroxido diazido PtIV complexes of the form trans,trans,trans-[Pt(N3)2(OH)2(L1)(L2)] where L = pyridine, 2-picoline, 3-picoline, 4-picoline, thiazole and 1-methylimidazole have been synthesised and characterised, and their photochemical and photobiological activity evaluated. Notably, complexes 19 (L1 = py, L2 = 3-pic) and 26 (L1 = L2 = 4-pic) were potently phototoxic following irradiation with visible light (420 nm), with IC50 values of 4.0 μM and 2.1 μM respectively (A2780 cancer cell line), demonstrating greater potency than the previously reported complex 1 (L1 = L2 = py; 6.7 μM); whilst also being minimally toxic in the absence of irradiation. Complexes with mixed N-(heterocyclic)imine ligands 19 and 20 (L1 = py, L2 = 4-pic) were particularly photocytotoxic towards cisplatin resistant (A2780cis) cell lines. Complex 18 (L1 = py, L2 = 2-pic) was comparatively less photocytotoxic (IC50 value 14.5 μM) than the other complexes, despite demonstrating the greatest absorbance at the irradiation wavelength and the fastest half-life for loss of the N3 → Pt LMCT transition upon irradiation (λ irr = 463 nm) in aqueous solution. Complex 29 (X1 = X2 = thiazole) although potently phototoxic (2.4 μM), was also toxic towards cells in the absence of irradiation.
Collapse
Affiliation(s)
- Evyenia Shaili
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Luca Salassa
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Julie A Woods
- Photobiology Unit , Department of Dermatology and Photobiology , Ninewells Hospital , Dundee , DD1 9SY , UK
| | - Guy Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK
| | - Nicola J Farrer
- Chemistry Research Laboratory , University of Oxford , 12 Mansfield Road , Oxford , OX1 3TA , UK . ; ; Tel: +44 (0)1865 285131
| |
Collapse
|
124
|
Corinti D, Crestoni ME, Fornarini S, Ponte F, Russo N, Sicilia E, Gabano E, Osella D. Elusive Intermediates in the Breakdown Reactivity Patterns of Prodrug Platinum(IV) Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1881-1894. [PMID: 30980381 DOI: 10.1007/s13361-019-02186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Kinetically inert platinum(IV) complexes are receiving growing attention as promising candidates in the effort to develop safe and valid alternatives to classical square-planar Pt(II) complexes currently used in antineoplastic therapy. Their antiproliferative activity requires intracellular Pt(IV)-Pt(II) reduction (activation by reduction). In the present work, a set of five Pt(IV) complexes has been assayed using mass spectrometry-based techniques, i.e., collision-induced dissociation (CID), and IR multiple photon dissociation (IRMPD) spectroscopy, together with ab initio theoretical investigations. Breakdown and reduction mechanisms are observed that lead to Pt(II) species. Evidence is found for typically transient Pt(III) intermediates along the dissociation paths of isolated, negatively charged (electron-rich) Pt(IV) prodrug complexes.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87036, Arcavacata di Rende, Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87036, Arcavacata di Rende, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87036, Arcavacata di Rende, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| |
Collapse
|
125
|
Wang Q, Chen Y, Li G, Zhao Y, Liu Z, Zhang R, Liu M, Li D, Han J. A potent aminonaphthalimide platinum(IV) complex with effective antitumor activities in vitro and in vivo displaying dual DNA damage effects on tumor cells. Bioorg Med Chem Lett 2019; 29:126670. [PMID: 31500997 DOI: 10.1016/j.bmcl.2019.126670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
A new aminonaphthalimide platinum(IV) complex was developed by incorporating aminonaphthalimide, a DNA intercalator, into the platinum(IV) system. This complex displayed potent antitumor activities against all tested tumor cell lines in vitro and showed great potential in overcoming drug resistance of cisplatin. Moreover, it remarkably inhibited the growth of CT26 xenografts in BALB/c mice without severe side effects in vivo. Then, the compound exhibited a dual DNA damage antitumor mechanism that it could interact with DNA in tetravalent form via the naphthalimide group to cause DNA lesion, and the further liberation of platinum(II) complex after reduction would induce remarkable secondary damage to DNA. Meanwhile, it caused cell apoptosis through an intrinsic apoptosis pathway by up-regulating the expression of caspase 3 and caspase 9.
Collapse
Affiliation(s)
- Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Guoshuai Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Dacheng Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, PR China.
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| |
Collapse
|
126
|
Reductions of the cisplatin-based platinum(IV) prodrug cis,cis,trans-[Pt(NH3)2Cl2Br2] by predominant biological thiols: kinetic and mechanistic studies. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00311-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
127
|
Synthesis and characterisation of platinum(IV) polypyridyl complexes with halide axial ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
128
|
Dabbish E, Imbardelli D, Russo N, Sicilia E. Theoretical exploration of the reduction reaction of monofunctional phenanthriplatin Pt(IV) prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
129
|
Yao H, Xu Z, Li C, Tse MK, Tong Z, Zhu G. Synthesis and Cytotoxic Study of a Platinum(IV) Anticancer Prodrug with Selectivity toward Luteinizing Hormone-Releasing Hormone (LHRH) Receptor-Positive Cancer Cells. Inorg Chem 2019; 58:11076-11084. [PMID: 31393117 DOI: 10.1021/acs.inorgchem.9b01583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platinum drugs including cisplatin are widely used in clinics to treat various types of cancer. However, the lack of cancer-cell selectivity is one of the major problems that lead to side effects in normal tissues. Luteinizing hormone-releasing hormone (LHRH) receptors are overexpressed in many types of cancer cells but rarely presented in normal cells, making LHRH receptor a good candidate for cancer targeting. In this study, we report the synthesis and cytotoxic study of a novel platinum(IV) anticancer prodrug functionalized with LHRH peptide. This LHRH-platinum(IV) conjugate is highly soluble in water and quite stable in a PBS buffer. Cytotoxic study reveals that the prodrug selectively targets LHRH receptor-positive cancer cell lines with the cytotoxicities 5-8 times higher than those in LHRH receptor-negative cell lines. In addition, the introduction of LHRH peptide enhances the cellular accumulation in a manner of receptor-mediated endocytosis. Moreover, the LHRH-platinum(IV) prodrug is proved to kill cancer cells by binding to the genomic DNA, inducing apoptosis, and arresting the cell cycle at the G2/M phase. In summary, we report a novel LHRH-platinum(IV) anticancer prodrug having largely improved selectivity toward LHRH receptor-positive cancer cells, relative to cisplatin.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Zoufeng Xu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Cai Li
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Zixuan Tong
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Hong Kong SAR 999077 , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| |
Collapse
|
130
|
Ravera M, Zanellato I, Gabano E, Perin E, Rangone B, Coppola M, Osella D. Antiproliferative Activity of Pt(IV) Conjugates Containing the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Ketoprofen and Naproxen †. Int J Mol Sci 2019; 20:E3074. [PMID: 31238499 PMCID: PMC6627341 DOI: 10.3390/ijms20123074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Cisplatin and several non-steroidal anti-inflammatory drugs (NSAIDs) have been proven to act synergistically or at least additively on several tumor cell lines. Dual-action cisplatin-based Pt(IV) combos containing ketoprofen and naproxen offer good antiproliferative performance on a panel of human tumor cell lines, including a malignant pleural mesothelioma (MPM) one, a very chemoresistant tumor. The main reason of the increased activity relies on the enhanced lipophilicity of these Pt(IV) conjugates that in turn promotes increased cellular accumulation. A quick Pt(IV)→Pt(II) reduction generates the active cisplatin metabolite. The NSAID adjuvant action seems to be almost independent from cyclooxygenase-2 (COX-2) expression in the tumor cells under investigation (lung A-549, colon HT-29, HCT 116, SW480, ovarian A2780, and biphasic MPM MSTO-211H), but it seems to rely (at least in part) on the activation of the NSAID activated gene, NAG-1 (a member of the transforming growth factor beta, TGF-β, superfamily), which has been suggested to be involved in NSAID antiproliferative activity.
Collapse
Affiliation(s)
- Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Beatrice Rangone
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Marco Coppola
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
131
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
132
|
Cytotoxicity and ROS production of novel Pt(IV) oxaliplatin derivatives with indole propionic acid. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
133
|
Kastner A, Poetsch I, Mayr J, Burda JV, Roller A, Heffeter P, Keppler BK, Kowol CR. A Dogma in Doubt: Hydrolysis of Equatorial Ligands of Pt IV Complexes under Physiological Conditions. Angew Chem Int Ed Engl 2019; 58:7464-7469. [PMID: 30870571 PMCID: PMC6766845 DOI: 10.1002/anie.201900682] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Alexander Kastner
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
| | - Josef Mayr
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
| | - Jaroslav V. Burda
- Department of Chemical Physics and OpticsFaculty of Mathematics and PhysicsCharles UniversityKe Karlovu 312116Prague 2Czech Republic
| | - Alexander Roller
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”ViennaAustria
| | - Bernhard K. Keppler
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”ViennaAustria
| | - Christian R. Kowol
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”ViennaAustria
| |
Collapse
|
134
|
Transporter and protease mediated delivery of platinum complexes for precision oncology. J Biol Inorg Chem 2019; 24:457-466. [DOI: 10.1007/s00775-019-01660-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023]
|
135
|
Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V. A Subset of New Platinum Antitumor Agents Kills Cells by a Multimodal Mechanism of Action Also Involving Changes in the Organization of the Microtubule Cytoskeleton. J Med Chem 2019; 62:5176-5190. [PMID: 31030506 DOI: 10.1021/acs.jmedchem.9b00489] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The substitution inert platinum agent [Pt(1 S,2 S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (56MeSS, 5) is a potent cytotoxic metallodrug. In contrast to conventional cisplatin or oxaliplatin, the mechanism of action (MoA) of 5 is fundamentally different. However, details of the mechanism by which the 5,6-dimethyl-1,10-phenanthroline ligand contributes to the cytotoxicity of 5 and its derivatives have not been sufficiently clarified so far. Here, we show that 5 and its Pt(IV) derivatives exhibit an intriguing potency in the triple-negative breast cancer cells MDA-MB-231. Moreover, we show that the Pt(IV) derivatives of 5 act by multimodal MoA resulting in the global biological effects, that is, they damage nuclear DNA, reduce the mitochondrial membrane potential, induce the epigenetic processes, and last but not least, the data provide evidence that changes in the organization of cytoskeleton networks are functionally important for 5 and its derivatives, in contrast to clinically used platinum cytostatics, to kill cancer cells.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Juraj Zajac
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Janice R Aldrich-Wright
- School of Science and Health , Western Sydney University , Penrith South DC 1797 , NSW , Australia
| | - Emanuele Petruzzella
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Roman Sirota
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Viktor Brabec
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| |
Collapse
|
136
|
Kastner A, Poetsch I, Mayr J, Burda JV, Roller A, Heffeter P, Keppler BK, Kowol CR. Zweifel an einem Dogma: Hydrolyse äquatorialer Liganden von Pt
IV
‐Komplexen unter physiologischen Bedingungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alexander Kastner
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
| | - Isabella Poetsch
- Institut für Krebsforschung und Comprehensive Cancer CenterMedizinische Universität Wien Borschkegasse 8a 1090 Wien Österreich
| | - Josef Mayr
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
| | - Jaroslav V. Burda
- Department of Chemical Physics and OpticsFaculty of Mathematics and PhysicsCharles University Ke Karlovu 3 12116 Prague 2 Tschechische Republik
| | - Alexander Roller
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
| | - Petra Heffeter
- Institut für Krebsforschung und Comprehensive Cancer CenterMedizinische Universität Wien Borschkegasse 8a 1090 Wien Österreich
- Research Cluster “Translational Cancer Therapy Research” Wien Österreich
| | - Bernhard K. Keppler
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
- Research Cluster “Translational Cancer Therapy Research” Wien Österreich
| | - Christian R. Kowol
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
- Research Cluster “Translational Cancer Therapy Research” Wien Österreich
| |
Collapse
|
137
|
Jin S, Guo Y, Song D, Zhu Z, Zhang Z, Sun Y, Yang T, Guo Z, Wang X. Targeting Energy Metabolism by a Platinum(IV) Prodrug as an Alternative Pathway for Cancer Suppression. Inorg Chem 2019; 58:6507-6516. [DOI: 10.1021/acs.inorgchem.9b00708] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Zhenqin Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yuewen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Tao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
138
|
Sabbatini M, Zanellato I, Ravera M, Gabano E, Perin E, Rangone B, Osella D. Pt(IV) Bifunctional Prodrug Containing 2-(2-Propynyl)octanoato Axial Ligand: Induction of Immunogenic Cell Death on Colon Cancer. J Med Chem 2019; 62:3395-3406. [PMID: 30879295 DOI: 10.1021/acs.jmedchem.8b01860] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis, characterization, and in vitro activity of a cyclohexane-1 R,2 R-diamine-based Pt(IV) derivative containing the histone deacetylase inhibitor rac-2-(2-propynyl)octanoato, namely, ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV), are reported together with those of its isomers containing enantiomerically enriched axial ligands. These Pt(IV) complexes showed comparable activity, of 2 orders of magnitude higher than reference drug oxaliplatin on three human (HCT 116, SW480, and HT-29) and one mouse (CT26) colon cancer cell lines. In vivo experiments were carried out on immunocompetent BALB/c mice bearing the same syngeneic tumor. The complex ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV) showed higher tumor mass Pt accumulation than oxaliplatin, due to its higher lipophilicity, with negligible nephro- and hepatotoxicities when administered intravenously. A remarkable tumor mass invasion by cytotoxic CD8+ T lymphocytes, following the Pt(IV) treatment, indicated a strong induction of immunogenic cell death.
Collapse
Affiliation(s)
- Maurizio Sabbatini
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Beatrice Rangone
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| |
Collapse
|
139
|
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88:102925. [PMID: 31003078 DOI: 10.1016/j.bioorg.2019.102925] [Citation(s) in RCA: 1027] [Impact Index Per Article: 171.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
Cisplatin or (SP-4-2)-diamminedichloridoplatinum(II) is one of the most potential and widely used drugs for the treatment of various solid cancers such as testicular, ovarian, head and neck, bladder, lung, cervical cancer, melanoma, lymphomas and several others. Cisplatin exerts anticancer activity via multiple mechanisms but its most acceptable mechanism involves generation of DNA lesions by interacting with purine bases on DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. However, side effects and drug resistance are the two inherent challenges of cisplatin which limit its application and effectiveness. Reduction of drug accumulation inside cancer cells, inactivation of drug by reacting with glutathione and metallothioneins and faster repairing of DNA lesions are responsible for cisplatin resistance. To minimize cisplatin side effects and resistance, combination therapies are used and have proven more effective to defect cancers. This article highlights a systematic description on cisplatin which includes a brief history, synthesis, action mechanism, resistance, uses, side effects and modulation of side effects. It also briefly describes development of platinum drugs from very small cisplatin complex to very large next generation nanocarriers conjugated platinum complexes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
140
|
Syntheses, crystal structures and biological evaluation of two new Cu(II) and Co(II) complexes based on (E)-2-(((4H-1,2,4-triazol-4-yl)imino)methyl)-6-methoxyphenol. J Inorg Biochem 2019; 193:52-59. [DOI: 10.1016/j.jinorgbio.2019.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 11/20/2022]
|
141
|
Gabano E, Ravera M, Perin E, Zanellato I, Rangone B, McGlinchey MJ, Osella D. Synthesis and characterization of cyclohexane-1R,2R-diamine-based Pt(iv) dicarboxylato anticancer prodrugs: their selective activity against human colon cancer cell lines. Dalton Trans 2019; 48:435-445. [PMID: 30539948 DOI: 10.1039/c8dt03950j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three pairs of asymmetric dicarboxylato derivatives based on the cisplatin and oxaliplatin-like skeletons have been synthesized de novo or re-synthesized. The axial ligands consist of one medium-chain fatty acid (MCFA), namely clofibrate (i.e. 2-(p-chlorophenoxy)-2-methylpropionic acid, CA), heptanoate (HA) or octanoate (OA), respectively, and an inactive acetato ligand that imparts acceptable water solubility to such conjugates. Stability tests provided evidence for the partial formation of two hydrolyzed products, corresponding to two monoaqua diastereomers derived from the substitution of an equatorial chlorido ligand with a water molecule. The complexes have been tested on three different colon cancer cell lines having different histological history, and also on the cisplatin-sensitive A2780 ovarian cancer cell line for comparison. This allowed the evaluation not only of the increase in activity on passing from Pt(ii) to Pt(iv) derivatives, but also the selectivity towards colon cancer cells brought about by the cyclohexane-1R,2R-diamine carrier ligand.
Collapse
Affiliation(s)
- E Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
142
|
Dabbish E, Ponte F, Russo N, Sicilia E. Antitumor Platinium(IV) Prodrugs: A Systematic Computational Exploration of Their Reduction Mechanism by l-Ascorbic Acid. Inorg Chem 2019; 58:3851-3860. [DOI: 10.1021/acs.inorgchem.8b03486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
143
|
Wang H, Yang X, Zhao C, Wang PG, Wang X. Glucose-conjugated platinum(IV) complexes as tumor-targeting agents: design, synthesis and biological evaluation. Bioorg Med Chem 2019; 27:1639-1645. [PMID: 30852077 DOI: 10.1016/j.bmc.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/04/2023]
Abstract
A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21-91.33 μM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25 μM) and oxaliplatin (8.34 μM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.
Collapse
Affiliation(s)
- Haifeng Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiande Yang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Caili Zhao
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Peng George Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
144
|
Gabano E, Perin E, Bonzani D, Ravera M. Conjugation between maleimide-containing Pt(IV) prodrugs and furan or furan-containing drug delivery vectors via Diels-Alder cycloaddition. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
145
|
Li G, Zhang J, Liu Z, Wang Q, Chen Y, Liu M, Li D, Han J, Wang B. Development of a series of 4-hydroxycoumarin platinum(IV) hybrids as antitumor agents: Synthesis, biological evaluation and action mechanism investigation. J Inorg Biochem 2019; 194:34-43. [PMID: 30826588 DOI: 10.1016/j.jinorgbio.2019.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/10/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
A series of new 4-hydroxycoumarin platinum(IV) complexes were designed, synthesized and evaluated as antitumor agents. All the title compounds display moderate to effective antitumor activities toward the tested cell lines and two prominent compounds were screened out with activities comparable to cisplatin and oxaliplatin. The mechanism investigation demonstrates that the platinum(IV) compounds could be reduced to bivalence and exert significant genotoxicity to tumor cells. Meanwhile the coumarin moiety endows the title compounds with cyclooxygenase inhibitory competence which might favour the reduction of tumor-related inflammation and further influence tumor proliferation. The coumarin platinum(IV) complex could effectively induce apoptosis of SKOV-3 cells through up-regulating the expression of caspase3 and caspase9. Furthermore, the conversion of platinum(II) drugs to platinum(IV) form via the conjunction with 4-hydroxycoumarin enhances the drug uptake in whole cells and DNA simultaneously. Moreover, the 4-hydroxycoumarin platinum(IV) complex could combine with human serum albumin via van der Waals force and hydrogen bond, which would influence their transport and bioactivities in vivo.
Collapse
Affiliation(s)
- Guoshuai Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, PR China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, PR China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Dacheng Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, PR China.
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Bingquan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| |
Collapse
|
146
|
Crespo M, Font-Bardia M, Hamidizadeh P, Martínez M, Nabavizadeh SM. Kinetico-mechanistic study on the reduction/complexation sequence of PtIV/PtII organometallic complexes by thiol-containing biological molecules. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
147
|
Huang H, Dong Y, Zhang Y, Ru D, Wu Z, Zhang J, Shen M, Duan Y, Sun Y. GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer. Theranostics 2019; 9:1047-1065. [PMID: 30867815 PMCID: PMC6401401 DOI: 10.7150/thno.29820] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Platinum (II) (Pt(II))-based anticancer drugs dominate the chemotherapy field of ovarian cancer. However, the patient's quality of life has severely limited owing to dose-limiting toxicities and the advanced disease at the time of diagnosis. Multifunctional tumor-targeted nanosized ultrasound contrast agents (glutathione (GSH)-sensitive platinum (IV) (Pt(IV)) prodrug-loaded phase-transitional nanoparticles, Pt(IV) NP-cRGD) were developed for precise theranostics against ovarian cancer. Methods: Pt(IV) NP-cRGD were composed of a perfluorohexane (PFH) liquid core, a hybrid lipid-polymer shell with PLGA12k-PEG2k and DSPE-PEG1k-Pt(IV), and an active targeting ligand, the cRGD peptide (PLGA: poly(lactic-co-glycolic acid), PEG: polyethylene glycol, DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, cRGD: cyclic Arg-Gly-Asp). Pt(IV), a popular alternative to Pt(II), was covalently attached to DSPE-PEG1k to form the prodrug, which fine-tuned lipophilicity and improved cellular uptake. The potential of Pt(IV) NP-cRGD as contrast agents for ultrasound (US) imaging was assessed in vitro and in vivo. Moreover, studies on the antitumor efficiency and antitumor mechanism of Pt(IV) NP-cRGD assisted by US were carried out. Results: Pt(IV) NP-cRGD exhibited strong echogenic signals and excellent echo persistence under an US field. In addition, the GSH-sensitive and US-triggered drug delivery system maximized the therapeutic effect while reducing the toxicity of chemotherapy. The mechanistic studies confirmed that Pt(IV) NP-cRGD with US consumed GSH and enhanced reactive oxy gen species (ROS) levels, which further causes mitochondria-mediated apoptosis. Conclusion: A multifunctional nanoplatform based on phase-transitional Pt(IV) NP-cRGD with US exhibited excellent echogenic signals, brilliant therapeutic efficacy and limited side effect, suggesting precise theranostics against ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, People's Republic of China
| |
Collapse
|
148
|
Fang L, Qin X, Zhao J, Gou S. Construction of Dual Stimuli-Responsive Platinum(IV) Hybrids with NQO1 Targeting Ability and Overcoming Cisplatin Resistance. Inorg Chem 2019; 58:2191-2200. [PMID: 30657321 DOI: 10.1021/acs.inorgchem.8b03386] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quinone oxidoreductase isozyme I (NQO1) is a cytoprotective two-electron-specific reductase that highly expresses in various cancer cells. Taking NQO1 as the target, we herein report three hybrid compounds from Pt(IV) complexes and a quinone propionic acid unit. The mechanism studies showed that the hybrids could be activated by both NQO1 and ascorbic acid to release the cytotoxic Pt(II) unit, exhibiting a dual stimuli-responsive character. In the pharmacological studies, complexes 2 and 3 presented higher antitumor activity than cisplatin. More importantly, the hybrid could also overcome cisplatin resistance due to the NQO1 targeting ability, improved cellular uptake, and/or different action mechanism. Significantly, complex 3 containing a coumarin moiety could be effectively activated in NQO1-overexpressed cancer cells to "turn on" fluorescence, showing a promising visual effect in cancer cells. In vivo study revealed that both 2 and 3 exhibited higher antitumor efficacy than cisplatin in the A549 xenograft mouse model at an equimolar dose to cisplatin. In all, the hybrids may serve as promising NQO1-targeting anticancer agents.
Collapse
Affiliation(s)
- Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , China
| | - Xiaodong Qin
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
149
|
Tolan DA, Abdel-Monem YK, El-Nagar MA. Anti-tumor platinum (IV) complexes bearing the anti-inflammatory drug naproxen in the axial position. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4763] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dina A. Tolan
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| | - Yasser K. Abdel-Monem
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| | - Mohamed A. El-Nagar
- Department of Chemistry, Faculty of Science; Menoufia University; Shebin El-Kom Egypt
| |
Collapse
|
150
|
|