101
|
Bernklau E, Bjostad L, Hogeboom A, Carlisle A, H S A. Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. INSECTS 2019; 10:E14. [PMID: 30626025 PMCID: PMC6359238 DOI: 10.3390/insects10010014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 01/25/2023]
Abstract
Continued loss of natural habitats with native prairies and wildflower patches is eliminating diverse sources of pollen, nectar and phytochemicals therein for foraging bees. The longstanding plant-pollinator mutualism reiterates the role of phytochemicals in sustaining plant-pollinator relationship and promoting honey bee health. We studied the effects of four phytochemicals-caffeine, gallic acid, kaempferol and p-coumaric acid, on survival and pathogen tolerance in the European honey bee, Apis mellifera (L.). We recorded longevity of worker bees that were provided ad libitum access to sugar solution supplemented with different concentrations of phytochemicals. We artificially infected worker bees with the protozoan parasite, Nosema ceranae. Infected bees were provided access to the same concentrations of the phytochemicals in the sugar solution, and their longevity and spore load at mortality were determined. Bees supplemented with dietary phytochemicals survived longer and lower concentrations were generally more beneficial. Dietary phytochemicals enabled bees to combat infection as seen by reduced spore-load at mortality. Many of the phytochemicals are plant defense compounds that pollinators have evolved to tolerate and derive benefits from. Our findings support the chemical bases of co-evolutionary interactions and reiterate the importance of diversity in floral nutrition sources to sustain healthy honey bee populations by strengthening the natural mutualistic relationships.
Collapse
Affiliation(s)
- Elisa Bernklau
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Louis Bjostad
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Alison Hogeboom
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Ashley Carlisle
- Department of Fisheries, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Arathi H S
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
102
|
Welfare of Managed Honey Bees. Anim Welf 2019. [DOI: 10.1007/978-3-030-13947-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
103
|
Boff S, Friedel A, Mussury RM, Lenis PR, Raizer J. Changes in social behavior are induced by pesticide ingestion in a Neotropical stingless bee. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:548-553. [PMID: 30149353 DOI: 10.1016/j.ecoenv.2018.08.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Throughout evolutionary history bees have developed complex communication systems. For social bees, communication is important for both the individual and the development of the colony. Successful communication helps bees to recognize relatives, defend the colony, and promote recruitment to optimize foraging of floral resources. Bees' contribution to pollination is of broad environmental and economic importance. However, studies have reported that anthropogenic actions, such as the use of pesticides, negatively affect bee survival and behavior. We tested the effect of a commercially available pesticide mix containing two pesticide classes, a neonicotinoid and a pyrethroid, on the social behavior of the stingless bee, Melipona quadrifasciata (Lepeletier, 1863). After determining a sublethal dose of the pesticides, we tested the effect of an acute dose on antennation and trophallaxis behaviors of worker bees. Our results showed a drastic reduction in the communication and social interactions of bees.
Collapse
Affiliation(s)
- Samuel Boff
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Avenida Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil; Postgraduate Program in Bioprospecting and General Biology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; The University of Milan, Department of Food, Environmental and Nutritional Sciences, via Celoria 2, 20133Milan, Italy.
| | - Anna Friedel
- Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Rosilda Mara Mussury
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Avenida Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil; Postgraduate Program in Bioprospecting and General Biology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil; Postgraduate Program in Entomology and Biodiversity Conservation, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Patricia Roseti Lenis
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Avenida Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil; Postgraduate Program in Entomology and Biodiversity Conservation, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Josué Raizer
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Avenida Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil; Postgraduate Program in Entomology and Biodiversity Conservation, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
104
|
Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis mellifera. J Invertebr Pathol 2018; 159:121-128. [PMID: 30268675 DOI: 10.1016/j.jip.2018.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
The invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.e. the immune response) but also involves resilience. This process implies that the host can tolerate and repair damage inflicted by the infection- by the pathogen itself or by an excessive host immune response. Enterocyte damage caused by N. ceranae can be compensated by proliferation of intestinal stem cells (ISCs) that are under the control of multiple pathways. In the present study, we investigated the impact of N. ceranae on honeybee epithelium renewal by following the mitotic index of midgut stem cells during a 22-day N. ceranae infection. Fluorescence in situ hybridization (FISH) and immunostaining experiments were performed to follow the parasite proliferation/progression in the intestinal tissue, especially in the ISCs as they are key cells for the midgut homeostasis. We also monitored the transcriptomic profile of 7 genes coding for key proteins involved in pathways implicated in the gut epithelium renewal and homeostasis. We have shown for the first time that N. ceranae can negatively alter the gut epithelium renewal rate and disrupt some signaling pathways involved in the gut homeostasis. This alteration is correlated to a reduced longevity of N. ceranae-infected honeybees and we can assume that honeybee susceptibility to N. ceranae could be due to an impaired ability to repair gut damage.
Collapse
|
105
|
Pusceddu M, Floris I, Mura A, Theodorou P, Cirotto G, Piluzza G, Bullitta S, Angioni A, Satta A. The effects of raw propolis on Varroa-infested honey bee (Apis mellifera) workers. Parasitol Res 2018; 117:3527-3535. [DOI: 10.1007/s00436-018-6050-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
|
106
|
Ferguson JA, Northfield TD, Lach L. Honey Bee (Apis mellifera) Pollen Foraging Reflects Benefits Dependent on Individual Infection Status. MICROBIAL ECOLOGY 2018; 76:482-491. [PMID: 29380027 DOI: 10.1007/s00248-018-1147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Parasites often modify host foraging behavior, for example, by spurring changes to nutrient intake ratios or triggering self-medication. The gut parasite, Nosema ceranae, increases energy needs of the European or Western honey bee (Apis mellifera), but little is known about how infection affects foraging behavior. We used a combination of experiments and observations of caged and free-flying individual bees and hives to determine how N. ceranae affects honey bee foraging behavior. In an experiment with caged bees, we found that infected bees with access to a high-quality pollen were more likely to survive than infected bees with access to a lower quality pollen or no pollen. Non-infected bees showed no difference in survival with pollen quality. We then tested free-flying bees in an arena of artificial flowers and found that pollen foraging bees chose pollen commensurate with their infection status; twice as many infected bees selected the higher quality pollen than the lower quality pollen, while healthy bees showed no preference between pollen types. However, healthy and infected bees visited sucrose and pollen flowers in the same proportions. Among hive-level observations, we found no significant correlations between N. ceranae infection intensity in the hive and the proportion of bees returning with pollen. Our results indicate that N. ceranae-infected bees benefit from increased pollen quality and will selectively forage for higher quality while foraging for pollen, but infection status does not lead to increased pollen foraging at either the individual or hive levels.
Collapse
Affiliation(s)
- Jade A Ferguson
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland, 4870, Australia
| | - Tobin D Northfield
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland, 4870, Australia
| | - Lori Lach
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland, 4870, Australia.
| |
Collapse
|
107
|
DeGrandi-Hoffman G, Gage SL, Corby-Harris V, Carroll M, Chambers M, Graham H, Watkins deJong E, Hidalgo G, Calle S, Azzouz-Olden F, Meador C, Snyder L, Ziolkowski N. Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:114-124. [PMID: 29990468 DOI: 10.1016/j.jinsphys.2018.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/16/2018] [Accepted: 07/03/2018] [Indexed: 05/24/2023]
Abstract
Free-ranging herbivores have yearly life cycles that generate dynamic resource needs. Honey bee colonies also have a yearly life cycle that might generate nutritional requirements that differ between times of brood rearing and colony expansion in the spring and population contraction and preparation for overwintering in the fall. To test this, we analyzed polyfloral mixes of spring and fall pollens to determine if the nutrient composition differed with season. Next, we fed both types of seasonal pollens to bees reared in spring and fall. We compared the development of brood food glands (i.e., hypopharyngeal glands - HPG), and the expression of genes in the fat body between bees fed pollen from the same (in-season) or different season (out-of-season) when they were reared. Because pathogen challenges often heighten the effects of nutritional stress, we infected a subset of bees with Nosema to determine if bees responded differently to the infection depending on the seasonal pollen they consumed. We found that spring and fall pollens were similar in total protein and lipid concentrations, but spring pollens had higher concentrations of amino and fatty acids that support HPG growth and brood production. Bees responded differently when fed in vs. out of season pollen. The HPG of both uninfected and Nosema-infected spring bees were larger when they were fed spring (in-season) compared to fall pollen. Spring bees differentially regulated more than 200 genes when fed in- vs. out-of-season pollen. When infected with Nosema, approximately 400 genes showed different infection-induced expression patterns in spring bees depending on pollen type. In contrast, HPG size in fall bees was not affected by pollen type, though HPG were smaller in those infected with Nosema. Very few genes were differentially expressed with pollen type in uninfected (4 genes) and infected fall bees (5 genes). Pollen type did not affect patterns of infection-induced expression in fall bees. Our data suggest that physiological responses to seasonal pollens differ between bees reared in the spring and fall with spring bees being significantly more sensitive to pollen type especially when infected with Nosema. This study provides evidence that seasonal pollens may provide levels of nutrients that align with the activities of honey bees during their yearly colony cycle. The findings are important for the planning and establishment of forage plantings to sustain honey bees, and in the development of seasonal nutritional supplements fed to colonies when pollen is unavailable.
Collapse
Affiliation(s)
| | | | | | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | | | | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Farida Azzouz-Olden
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY, USA
| | | | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | |
Collapse
|
108
|
Ptaszyńska AA, Gancarz M, Hurd PJ, Borsuk G, Wiącek D, Nawrocka A, Strachecka A, Załuski D, Paleolog J. Changes in the bioelement content of summer and winter western honeybees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 2018; 13:e0200410. [PMID: 30044811 PMCID: PMC6060561 DOI: 10.1371/journal.pone.0200410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Proper bioelement content is crucial for the health and wellness of all
organisms, including honeybees. However, the situation is more complicated in
these important pollinators due to the fact that they change their physiology
during winter in order to survive the relatively harsh climatic conditions.
Additionally, honeybees are susceptible to many diseases such as
nosemosis, which during winter can depopulate an entire
colony. Here we show that summer bees have a markedly higher content of
important bioelements such as: Al, Cu, P, V, (physiologically essential); Ca, K,
Mg, (electrolytic); Cr, Se, Zn, (enzymatic); As, Hg, (toxic). In contrast, a
markedly higher content of: Fe (physiologically essential); Mn, Ni, (enzymatic);
Cd (exclusively toxic) were present in winter bees. Importantly,
N. ceranae infection resulted in an
increased honeybee bioelement content of: S, Sr (physiologically essential) and
Pb (exclusively toxic), whereas the Nosema-free worker-bees had
higher amounts of B and Si (physiologically essential). We propose that the
shortages of Fe, Mn, Ni, and Na observed in Nosema-infected
bees, could be the reason for the higher mortality of
Nosema-infected bees throughout overwintering. In addition, a
shortage of bioelements such as B and Si may be a reason for accelerated aging
in foragers that is observed following N.
ceranae infection. Therefore, in winter, bioelement content
was more strongly affected by N. ceranae
infection than during summer. We found a strong correlation between the
bioelement content of bees and seasons (summer or winter) and also with
Nosema infection. We conclude that the balance of
bioelements in the honeybee is altered by both seasonal affects and by
Nosema infection.
Collapse
Affiliation(s)
- Aneta A. Ptaszyńska
- Department of Botany and Mycology, Institute of Biology and Biochemistry,
Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin,
Poland
- * E-mail:
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin,
Poland
| | - Paul J. Hurd
- School of Biological and Chemical Sciences, Queen Mary University of
London, London, United Kingdom
| | - Grzegorz Borsuk
- Laboratory of Environmental Biology and Apidologie, Institute of
Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and
Bioeconomy, University of Life Sciences in Lublin, Lublin,
Poland
| | - Dariusz Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin,
Poland
| | | | - Aneta Strachecka
- Laboratory of Environmental Biology and Apidologie, Institute of
Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and
Bioeconomy, University of Life Sciences in Lublin, Lublin,
Poland
| | - Daniel Załuski
- Department of Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus
Copernicus University, Bydgoszcz, Poland
| | - Jerzy Paleolog
- Department of Zoology, Ecology and Wildlife Management, Life Science
University in Lublin, Lublin, Poland
| |
Collapse
|
109
|
Pan G, Bao J, Ma Z, Song Y, Han B, Ran M, Li C, Zhou Z. Invertebrate host responses to microsporidia infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:104-113. [PMID: 29428490 DOI: 10.1016/j.dci.2018.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/06/2023]
Abstract
Microsporidia are a group of fungi-like intracellular and unicellular parasites, which infect nearly all animals. As "master parasites", over 1400 microsporidian species have been described to date. Microsporidia infections in economical invertebrates (e.g., silkworm, shrimp) cause huge financial losses, while other microsporidia infections in daphnia, nematode, locust, honeybee and mosquito play important roles in the regulation of their population size. Research investigating invertebrate host responses following microsporidia infections has yielded numerous interesting results, especially pertaining to the innate immune response to these pathogens. In this review, we comparatively summarize the invertebrate host responses to various microsporidia infections. We discuss numerous critical events in host responses including ubiquitin-mediated resistance, production of reactive oxygen species, melanization and innate immune pathways, and the increased basic metabolism and the accumulation of juvenile hormone in infected hosts. Recent studies progressing our understanding of microsporidia infection are also highlighted. Collectively, these advances shed more light on general rules of invertebrate host immune responses and pathogenesis mechanisms of microsporidia, and concurrently offer valuable clues for further research on the crosstalk between hosts and intracellular pathogens.
Collapse
Affiliation(s)
- Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zhengang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
110
|
El Khoury S, Rousseau A, Lecoeur A, Cheaib B, Bouslama S, Mercier PL, Demey V, Castex M, Giovenazzo P, Derome N. Deleterious Interaction Between Honeybees (Apis mellifera) and its Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00058] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
111
|
Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol 2018; 9:722. [PMID: 29765357 PMCID: PMC5938604 DOI: 10.3389/fmicb.2018.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
112
|
Holt HL, Villar G, Cheng W, Song J, Grozinger CM. Molecular, physiological and behavioral responses of honey bee (Apis mellifera) drones to infection with microsporidian parasites. J Invertebr Pathol 2018; 155:14-24. [PMID: 29705058 DOI: 10.1016/j.jip.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 04/02/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Susceptibility to pathogens and parasites often varies between sexes due to differences in life history traits and selective pressures. Nosema apis and Nosema ceranae are damaging intestinal pathogens of European honey bees (Apis mellifera). Nosema pathology has primarily been characterized in female workers where infection is energetically costly and accelerates worker behavioral maturation. Few studies, however, have examined infection costs in male honey bees (drones) to determine if Nosema similarly affects male energetic status and sexual maturation. We infected newly emerged adult drones with Nosema spores and conducted a series of molecular, physiological, and behavioral assays to characterize Nosema etiology in drones. We found that infected drones starved faster than controls and exhibited altered patterns of flight activity in the field, consistent with energetic distress or altered rates of sexual maturation. Moreover, expression of candidate genes with metabolic and/or hormonal functions, including members of the insulin signaling pathway, differed by infection status. Of note, while drone molecular responses generally tracked predictions based on worker studies, several aspects of infected drone flight behavior contrasted with previous observations of infected workers. While Nosema infection clearly imposed energetic costs in males, infection had no impact on drone sperm numbers and had only limited effects on antennal responsiveness to a major queen sex pheromone component (9-ODA). We compare Nosema pathology in drones with previous studies describing symptoms in workers and discuss ramifications for drone and colony fitness.
Collapse
Affiliation(s)
- Holly L Holt
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA.
| | - Gabriel Villar
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Weiyi Cheng
- Department of Educational Psychology, Counseling and Special Education, Pennsylvania State University, University Park, USA
| | - Jun Song
- Department of Mathematics and Statistics, University of North Carolina, Charlotte, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| |
Collapse
|
113
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
114
|
Evans JD, Huang Q. Interactions Among Host-Parasite MicroRNAs During Nosema ceranae Proliferation in Apis mellifera. Front Microbiol 2018; 9:698. [PMID: 29692768 PMCID: PMC5902570 DOI: 10.3389/fmicb.2018.00698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022] Open
Abstract
We previously identified microRNA (miRNA) from Nosema ceranae and found that knockdowns of transcripts for the parasite protein Dicer greatly reduce parasite reproduction. In order to study parasitic miRNA functions and identify candidate target genes, we fed honey bees infected with N. ceranae with small interfering RNA (siRNA) targeting the N. ceranae gene Dicer. We then deep-sequenced honey bee and N. ceranae miRNAs daily across a full 6-day proliferation cycle. We found seven honey bee and five N. ceranae miRNAs that were significantly differently expressed between the infection and siRNA-Dicer groups. N. ceranae miRNA showed potentially strong impacts on the N. ceranae transcriptome, where over 79% of the total protein coding genes were significantly correlated with one or more miRNAs. N. ceranae miRNAs also can regulate honey bee metabolism and immune response, given parasitic miRNAs were secreted into the cytoplasm. Our results suggest that N. ceranae miRNAs regulate both parasite and host gene expression, providing new insights for microsporidia parasitism evolution.
Collapse
Affiliation(s)
- Jay D Evans
- Bee Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Qiang Huang
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
115
|
Paris L, El Alaoui H, Delbac F, Diogon M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. CURRENT OPINION IN INSECT SCIENCE 2018; 26:149-154. [PMID: 29764655 DOI: 10.1016/j.cois.2018.02.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 05/27/2023]
Abstract
The common and widespread parasite Nosema ceranae is considered a major threat to the Western honey bee at both the individual and colony levels. Several studies demonstrated that infection by this parasite may affect physiology, behavior, and survival of honey bees. N. ceranae infection impairs midgut integrity and alters the energy demand in honey bees. The infection can also significantly suppress the bee immune response and modify pheromone production in worker and queen honey bees leading to precocious foraging. However, the presence of N. ceranae is not systematically associated with colony weakening and honey bee mortality. This variability depends upon parasite or host genetics, nutrition, climate or interactions with other stressors such as environmental contaminants or other parasites.
Collapse
Affiliation(s)
- Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Hicham El Alaoui
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France.
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| |
Collapse
|
116
|
Infection dynamics of Nosema ceranae in honey bee midgut and host cell apoptosis. J Invertebr Pathol 2018; 154:1-4. [PMID: 29550404 DOI: 10.1016/j.jip.2018.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/24/2018] [Accepted: 03/13/2018] [Indexed: 11/22/2022]
Abstract
Nosema ceranae is an intracellular microsporidian parasite that infects epithelial cells of the honey bee (Apis mellifera) midgut. Previous studies have shown that Nosema may alter cell renewal and apoptosis in honey bees. We found that the amount of apoptotic cells progressively declines from the anterior towards posterior regions of the midgut in Nosema-infected sensitive bees. There was no such pattern in the infected Nosema tolerant honey bees and controls. These data provide additional evidence that N. ceranae appears to alter apoptosis in its host cells for its own advantage.
Collapse
|
117
|
Gage SL, Kramer C, Calle S, Carroll M, Heien M, DeGrandi-Hoffman G. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees ( Apis mellifera). ACTA ACUST UNITED AC 2018; 221:jeb.161489. [PMID: 29361577 DOI: 10.1242/jeb.161489] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Nosema sp. is an internal parasite of the honey bee, Apis mellifera, and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae, as well as the neurochemistry of odor learning and memory under normal and parasitic conditions.
Collapse
Affiliation(s)
- Stephanie L Gage
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA .,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Catherine Kramer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA
| | - Michael Heien
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, USA.,Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
118
|
Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees. Int J Parasitol 2018; 48:433-444. [PMID: 29452081 DOI: 10.1016/j.ijpara.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023]
Abstract
Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21 days post inoculation (21 days pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host's whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6 days pi. At 7 days pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14 days pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14 days pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse.
Collapse
|
119
|
Comparative Flight Activities and Pathogen Load of Two Stocks of Honey Bees Reared in Gamma-Irradiated Combs. INSECTS 2017; 8:insects8040127. [PMID: 29186033 PMCID: PMC5746810 DOI: 10.3390/insects8040127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
Gamma irradiation is known to inactivate various pathogens that negatively affect honey bee health. Bee pathogens, such as Deformed wing virus (DWV) and Nosema spp., have a deleterious impact on foraging activities and bee survival, and have been detected in combs. In this study, we assessed the effects of gamma irradiation on the flight activities, pathogen load, and survival of two honey bee stocks that were reared in irradiated and non-irradiated combs. Overall, bee genotype influenced the average number of daily flights, the total number of foraging flights, and total flight duration, in which the Russian honey bees outperformed the Italian honey bees. Exposing combs to gamma irradiation only affected the age at first flight, with worker bees that were reared in non-irradiated combs foraging prematurely compared to those reared in irradiated combs. Precocious foraging may be associated with the higher levels of DWV in bees reared in non-irradiated combs and also with the lower amount of pollen stores in colonies that used non-irradiated combs. These data suggest that gamma irradiation of combs can help minimize the negative impact of DWV in honey bees. Since colonies with irradiated combs stored more pollen than those with non-irradiated combs, crop pollination efficiency may be further improved when mite-resistant stocks are used, since they performed more flights and had longer flight durations.
Collapse
|
120
|
Tritschler M, Vollmann JJ, Yañez O, Chejanovsky N, Crailsheim K, Neumann P. Protein nutrition governs within-host race of honey bee pathogens. Sci Rep 2017; 7:14988. [PMID: 29118416 PMCID: PMC5678143 DOI: 10.1038/s41598-017-15358-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
Multiple infections are common in honey bees, Apis mellifera, but the possible role of nutrition in this regard is poorly understood. Microsporidian infections, which are promoted by protein-fed, can negatively correlate with virus infections, but the role of protein nutrition for the microsporidian-virus interface is unknown. Here, we challenged naturally deformed wing virus - B (DWV-B) infected adult honey bee workers fed with or without pollen ( = protein) in hoarding cages, with the microsporidian Nosema ceranae. Bee mortality was recorded for 14 days and N. ceranae spore loads and DWV-B titers were quantified. Amongst the groups inoculated with N. ceranae, more spores were counted in protein-fed bees. However, N. ceranae infected bees without protein-diet had reduced longevity compared to all other groups. N. ceranae infection had no effect on protein-fed bee's longevity, whereas bees supplied only with sugar-water showed reduced survival. Our data also support that protein-feeding can have a significant negative impact on virus infections in insects. The negative correlation between N. ceranae spore loads and DWV-B titers was stronger expressed in protein-fed hosts. Proteins not only enhance survival of infected hosts, but also significantly shape the microsporidian-virus interface, probably due to increased spore production and enhanced host immunity.
Collapse
Affiliation(s)
- Manuel Tritschler
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Chemisches und Veterinäruntersuchungsamt Freiburg (CVUA), Bienengesundheit, 79108, Freiburg i. Br., Germany
| | | | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nor Chejanovsky
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Plant Protection, The Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland.
| |
Collapse
|
121
|
Li W, Evans JD, Li J, Su S, Hamilton M, Chen Y. Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitol Res 2017; 116:3265-3274. [DOI: 10.1007/s00436-017-5630-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023]
|
122
|
BenVau LR, Nieh JC. Larval honey bees infected with Nosema ceranae have increased vitellogenin titers as young adults. Sci Rep 2017; 7:14144. [PMID: 29075036 PMCID: PMC5658439 DOI: 10.1038/s41598-017-14702-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/16/2017] [Indexed: 11/08/2022] Open
Abstract
Nosema ceranae is a pervasive and widespread honey bee pathogen that is associated with colony declines and has recently been shown to infect larval honey bees. In adult bees, Nosema infection is known to alter levels of a key protein, vitellogenin (Vg), which is necessary for egg-laying in queens, brood food production in workers, and proper immune function in all female bees. We therefore tested the effects of larval worker infection on hemolymph Vg titers. In 1-day old adult workers that were infected as larvae with 10,000 (10 K) or 40,000 (40 K) live N. ceranae spores/bee, Vg titers were significantly elevated by + 83% and + 73%, respectively, as compared to controls. At 7 days of adult age, Vg remained significantly elevated (+ 68%) in 10 K treated workers as compared to control workers. Nosema infection decreased total hemolymph protein titers in 1 and 7-day old adult bees (-50% in the 10 K and 40 K treated bees). Bees infected as larvae also had a more queen-like sting morphology. They developed slightly but significantly fewer barbs on their stings (-7% in the 40K-treated bees). Higher Vg levels are associated with younger bees. Thus, elevated Vg levels could delay normal age polyethism and disrupt colony balance.
Collapse
Affiliation(s)
- Lee R BenVau
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093, USA.
| | - James C Nieh
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093, USA.
| |
Collapse
|
123
|
Chemurot M, De Smet L, Brunain M, De Rycke R, de Graaf DC. Nosema neumanni n. sp. (Microsporidia, Nosematidae), a new microsporidian parasite of honeybees, Apis mellifera in Uganda. Eur J Protistol 2017; 61:13-19. [DOI: 10.1016/j.ejop.2017.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 11/17/2022]
|
124
|
Palmer-Young EC, Tozkar CÖ, Schwarz RS, Chen Y, Irwin RE, Adler LS, Evans JD. Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1959-1972. [PMID: 28981688 DOI: 10.1093/jee/tox193] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 05/10/2023]
Affiliation(s)
| | - Cansu Ö Tozkar
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| | - Ryan S Schwarz
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| | - Yanping Chen
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695
| | - Lynn S Adler
- Department of Biology, University of Massachusetts, Amherst, MA
| | - Jay D Evans
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| |
Collapse
|
125
|
Poley JD, Sutherland BJG, Fast MD, Koop BF, Jones SRM. Effects of the vertically transmitted microsporidian Facilispora margolisi and the parasiticide emamectin benzoate on salmon lice (Lepeophtheirus salmonis). BMC Genomics 2017; 18:630. [PMID: 28818044 PMCID: PMC5561633 DOI: 10.1186/s12864-017-4040-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background Microsporidia are highly specialized, parasitic fungi that infect a wide range of eukaryotic hosts from all major taxa. Infections cause a variety of damaging effects on host physiology from increased stress to death. The microsporidian Facilispora margolisi infects the Pacific salmon louse (Lepeophtheirus salmonis oncorhynchi), an economically and ecologically important ectoparasitic copepod that can impact wild and cultured salmonids. Results Vertical transmission of F. margolisi was demonstrated by using PCR and in situ hybridization to identify and localize microsporidia in female L. salmonis and their offspring. Spores and developmental structures of F. margolisi were identified in 77% of F1 generation copepods derived from infected females while offspring from uninfected females all tested negative for the microsporidia. The transcriptomic response of the salmon louse to F. margolisi was profiled at both the copepodid larval stage and the pre-adult stage using microarray technology. Infected copepodids differentially expressed 577 transcripts related to stress, ATP generation and structural components of muscle and cuticle. The infection also impacted the response of the copepodid to the parasiticide emamectin benzoate (EMB) at a low dose of 1.0 ppb for 24 h. A set of 48 transcripts putatively involved in feeding and host immunomodulation were up to 8-fold underexpressed in the F. margolisi infected copepodids treated with EMB compared with controls or either stressor alone. Additionally, these infected lice treated with EMB also overexpressed 101 transcripts involved in stress resistance and signalling compared to the other groups. In contrast, infected pre-adult lice did not display a stress response, suggesting a decrease in microsporidian virulence associated with lice maturity. Furthermore, copepodid infectivity and moulting was not affected by the microsporidian infection. Conclusions This study demonstrated that F. margolisi is transmitted vertically between salmon louse generations and that biological impacts of infection differ depending on the stage of the copepod host. The infection caused significant perturbations of larval transcriptomes and therefore must be considered in future studies in which impacts to host development and environmental factors are assessed. Fitness impacts are probably minor, although the interaction between pesticide exposure and microsporidian infection merits further study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4040-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jordan D Poley
- Atlantic Veterinary College, University of Prince Edward Island, Department of Pathology & Microbiology, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada
| | - Ben J G Sutherland
- Centre for Biomedical Research, Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3N5, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Département de biologie, Université Laval, 1030 Avenue de la Medecine, Québec, QC, G1V 0A6, Canada
| | - Mark D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Department of Pathology & Microbiology, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8W 3N5, Canada
| | - Simon R M Jones
- Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC, V9T 6N7, Canada.
| |
Collapse
|
126
|
Paris L, Roussel M, Pereira B, Delbac F, Diogon M. Disruption of oxidative balance in the gut of the western honeybee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microb Biotechnol 2017; 10:1702-1717. [PMID: 28736933 PMCID: PMC5658624 DOI: 10.1111/1751-7915.12772] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 02/05/2023] Open
Abstract
The causes underlying the increased mortality of honeybee colonies remain unclear and may involve multiple stressors acting together, including both pathogens and pesticides. Previous studies suggested that infection by the gut parasite Nosema ceranae combined with chronic exposure to sublethal doses of the insecticide fipronil generated an increase in oxidative stress in the midgut of honeybees. To explore the impact of these two stressors on oxidative balance, we experimentally infected bees with N. ceranae and/or chronically exposed to fipronil at low doses for 22 days, and we measured soluble reactive oxygen species (ROS) and ROS damage by quantifying both protein and lipid oxidation in the midgut. Our results revealed a disruption of the oxidative balance, with a decrease in both the amount of ROS and ROS damage in the presence of the parasite alone. However, protein oxidation was significantly increased in the N. ceranae/fipronil combination, revealing an increase in oxidative damage and suggesting higher fipronil toxicity in infected bees. Furthermore, our results highlighted a temporal order in the appearance of oxidation events in the intestinal cells and revealed that all samples tended to undergo protein oxidation during ageing, regardless of treatment.
Collapse
Affiliation(s)
- Laurianne Paris
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Michaël Roussel
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Bruno Pereira
- Université Clermont Auvergne, CHU Clermont-Ferrand, Unité de Biostatistiques, DRCI, F-63000, Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| |
Collapse
|
127
|
Palmer-Young EC, Thursfield L. Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees. PeerJ 2017; 5:e3297. [PMID: 28503378 PMCID: PMC5426351 DOI: 10.7717/peerj.3297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Phytochemicals produced by plants, including at flowers, function in protection against plant diseases, and have a long history of use against trypanosomatid infection. Floral nectar and pollen, the sole food sources for many species of insect pollinators, contain phytochemicals that have been shown to reduce trypanosomatid infection in bumble and honey bees when fed as isolated compounds. Nectar and pollen, however, consist of phytochemical mixtures, which can have greater antimicrobial activity than do single compounds. This study tested the hypothesis that pollen extracts would inhibit parasite growth. Extracts of six different pollens were tested for direct inhibitory activity against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi. Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen extracts contained high concentrations of sugars, mainly the monosaccharides glucose and fructose. Experimental manipulations of growth media showed that supplemental monosaccharides (glucose and fructose) increased maximum cell density, while a common floral phytochemical (caffeic acid) with inhibitory activity against other trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results indicate that, although pollen is essential for bees and other pollinators, pollen may promote growth of intestinal parasites that are uninhibited by pollen phytochemicals and, as a result, can benefit from the nutrients that pollen provides.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- Organismic and Evolutionary Biology, University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Lucy Thursfield
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
128
|
Amiri E, Strand MK, Rueppell O, Tarpy DR. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. INSECTS 2017; 8:E48. [PMID: 28481294 PMCID: PMC5492062 DOI: 10.3390/insects8020048] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
129
|
Badaoui B, Fougeroux A, Petit F, Anselmo A, Gorni C, Cucurachi M, Cersini A, Granato A, Cardeti G, Formato G, Mutinelli F, Giuffra E, Williams JL, Botti S. RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae. PLoS One 2017; 12:e0173438. [PMID: 28350872 PMCID: PMC5370102 DOI: 10.1371/journal.pone.0173438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
Honeybees (Apis mellifera) are constantly subjected to many biotic stressors including parasites. This study examined honeybees infected with Nosema ceranae (N. ceranae). N. ceranae infection increases the bees energy requirements and may contribute to their decreased survival. RNA-seq was used to investigate gene expression at days 5, 10 and 15 Post Infection (P.I) with N. ceranae. The expression levels of genes, isoforms, alternative transcription start sites (TSS) and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation suggesting that bees use a range of tactics to cope with the stress of N. ceranae infection. N. ceranae infection may cause reduced immune function in the bees by: (i)disturbing the host amino acids metabolism (ii) down-regulating expression of antimicrobial peptides (iii) down-regulation of cuticle coatings and (iv) down-regulation of odorant binding proteins.
Collapse
Affiliation(s)
- Bouabid Badaoui
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | | | | | - Anna Anselmo
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - Chiara Gorni
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - Marco Cucurachi
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Roma, Italy
| | - Anna Granato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Roma, Italy
| | - Giovanni Formato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana, Roma, Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Elisabetta Giuffra
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
| | - John L. Williams
- Davies Research Centre, University of Adelaide, Roseworthy, South Australia, Australia
| | - Sara Botti
- Parco Tecnologico Padano - CERSA, Integrative Biology Group, Lodi, Italy
- * E-mail:
| |
Collapse
|
130
|
Theisen-Jones H, Bienefeld K. The Asian Honey Bee (Apis cerana) is Significantly in Decline. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/0005772x.2017.1284973] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
131
|
A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism. Appl Environ Microbiol 2017; 83:AEM.03005-16. [PMID: 28039132 DOI: 10.1128/aem.03005-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/19/2016] [Indexed: 01/14/2023] Open
Abstract
Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. "Candidatus Liberibacter asiaticus" (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides.IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular and biochemical levels. The growth of the plant-pathogenic bacteria in the hemolymph of their vectors indicated that the hemolymph contains all the necessary nutrients for their growth. In addition to nutrients, "Candidatus Liberibacter asiaticus" (CLas) can take up energetic nucleotides, such as ATP, from its vector, Diaphorina citri, using ATP translocase. In this study, we found that the CLas pathogen manipulates the energy metabolism of its insect vector. The accumulation of ATP in CLas-infected D. citri psyllids indicated that CLas induces ATP production to fulfill its need for this energetic compound. As a result of ATP accumulation, a shorter life span and altered feeding behavior were observed. These findings increase our knowledge of insect transmission of the persistent-circulative-propagative type of plant pathogens vectored by insects.
Collapse
|
132
|
Benaets K, Van Geystelen A, Cardoen D, De Smet L, de Graaf DC, Schoofs L, Larmuseau MHD, Brettell LE, Martin SJ, Wenseleers T. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc Biol Sci 2017; 284:20162149. [PMID: 28148747 PMCID: PMC5310602 DOI: 10.1098/rspb.2016.2149] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022] Open
Abstract
Several studies have suggested that covert stressors can contribute to bee colony declines. Here we provide a novel case study and show using radiofrequency identification tracking technology that covert deformed wing virus (DWV) infections in adult honeybee workers seriously impact long-term foraging and survival under natural foraging conditions. In particular, our experiments show that adult workers injected with low doses of DWV experienced increased mortality rates, that DWV caused workers to start foraging at a premature age, and that the virus reduced the workers' total activity span as foragers. Altogether, these results demonstrate that covert DWV infections have strongly deleterious effects on honeybee foraging and survival. These results are consistent with previous studies that suggested DWV to be an important contributor to the ongoing bee declines in Europe and the USA. Overall, our study underlines the strong impact that covert pathogen infections can have on individual and group-level performance in bees.
Collapse
Affiliation(s)
- Kristof Benaets
- Department of Biology, KU Leuven, Laboratory of Socio-ecology and Social Evolution, Leuven, Belgium
| | - Anneleen Van Geystelen
- Department of Biology, KU Leuven, Laboratory of Socio-ecology and Social Evolution, Leuven, Belgium
| | - Dries Cardoen
- Department of Biology, KU Leuven, Laboratory of Socio-ecology and Social Evolution, Leuven, Belgium
| | - Lina De Smet
- Department of Biochemistry and Microbiology, UGent, Laboratory of Molecular Entomology and Bee Pathology, Gent, Belgium
| | - Dirk C de Graaf
- Department of Biochemistry and Microbiology, UGent, Laboratory of Molecular Entomology and Bee Pathology, Gent, Belgium
| | - Liliane Schoofs
- Department of Biology, KU Leuven, Research group of Functional Genomics and Proteomics, Leuven, Belgium
| | - Maarten H D Larmuseau
- Department of Biology, KU Leuven, Laboratory of Socio-ecology and Social Evolution, Leuven, Belgium
- Laboratory of Forensic Genetics and Molecular Archaeology, UZ Leuven, Leuven, Belgium
- Department of Imaging and Pathology, KU Leuven, Forensic Medicine, Leuven, Belgium
| | - Laura E Brettell
- School of Environment and Life Sciences, The University of Salford, Manchester, UK
| | - Stephen J Martin
- School of Environment and Life Sciences, The University of Salford, Manchester, UK
| | - Tom Wenseleers
- Department of Biology, KU Leuven, Laboratory of Socio-ecology and Social Evolution, Leuven, Belgium
| |
Collapse
|
133
|
Martín-Hernández R, Higes M, Sagastume S, Juarranz Á, Dias-Almeida J, Budge GE, Meana A, Boonham N. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis. PLoS One 2017; 12:e0170183. [PMID: 28152065 PMCID: PMC5289437 DOI: 10.1371/journal.pone.0170183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell.
Collapse
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, Albacete, Spain
- * E-mail:
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Soledad Sagastume
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joyce Dias-Almeida
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Giles E. Budge
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Neil Boonham
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
134
|
Mendoza Y, Diaz-Cetti S, Ramallo G, Santos E, Porrini M, Invernizzi C. Nosema ceranae Winter Control: Study of the Effectiveness of Different Fumagillin Treatments and Consequences on the Strength of Honey Bee (Hymenoptera: Apidae) Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1-5. [PMID: 28025388 DOI: 10.1093/jee/tow228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OVERVIEW In Uruguay, colonies of honey bees moving to Eucalyptus grandis plantation in autumn habitually become infected with the microsporidian Nosema ceranae , a parasite that attacks the digestive system of bees. Beekeepers attributed to N. ceranae depopulation of the colonies that often occurs at the end of the blooming period, and many use the antibiotic fumagillin to reduce the level of infection. The aim of this study was to compare the effectiveness of four different fumagillin treatments and determine how this antibiotic affects the strength of the colonies during the winter season. The colonies treated with fumagillin in July showed less spore load at the end of applications, being the most effective the following treatments: the four applications sprayed over bees of 30 mg of fumagillin in 100 ml of sugar syrup 1:1, and four applications of 90 mg of fumagillin in 250 ml of sugar syrup 1:1 using a feeder. However, 2 month after the treatment applications, the colonies treated with fumagillin were the same size as the untreated colonies. In September, the colonies treated and not treated with fumagillin did not differ in colony strength (adult bee population and brood area) or spores abundance. Our study demonstrates that fumagillin treatment temporarily decreased the spore load of N. ceranae , but this was not reflected in either the size of the colonies or the probability of surviving the winter regardless of the dose or the administration strategy applied. Given the results obtained, we suggest to not perform the pharmacological treatment under the conditions described in the experiment. RESUMEN En Uruguay las colonias de abejas melíferas que se trasladan a las forestaciones de Eucalyptus grandis en otoño indefectiblemente se infectan con el microsporido Nosema ceranae , parásito que ataca el sistema digestivo de las abejas. Los apicultores atribuyen a N. ceranae el despoblamiento de las colonias que ocurre con frecuencia al terminar el periodo de floración y muchos emplean el antibiótico fumagilina para reducir el nivel de infección. El objetivo de este estudio fue comparar la eficacia de cuatro tratamientos diferentes con fumagilina y determinar cómo incide en la fortaleza de las colonias durante la invernada. Las colonias tratadas con fumagilina en julio presentaron una menor carga de esporas al terminar las aplicaciones, siendo los tratamientos más eficaces el de 4 aplicaciones mediante asperjado sobre las abejas de 30 mg de fumagilina en 100 ml de jarabe de azúcar 1:1, y el de 4 aplicaciones de 90 mg de fumagilina en 250 ml de jarabe de azúcar 1:1 utilizando un alimentador. Sin embargo, durante el período de experimentación, las colonias tratadas con antibiótico presentaron igual tamaño que las colonias no tratadas. En setiembre, las colonias tratadas y no tratadas con fumagilina no se diferenciaron en la intensidad de infección ni en su tamaño. En las condiciones en que se realizó el estudio, la aplicación de fumagilina disminuyó temporalmente la carga de esporas de N. ceranae pero esto no se reflejó en el tamaño de las colonias ni en la probabilidad de sobrevivir el invierno.
Collapse
Affiliation(s)
- Y Mendoza
- Instituto Nacional de Investigación Agropecuaria, Apicultura, Uruguay
| | - S Diaz-Cetti
- Instituto Nacional de Investigación Agropecuaria, Apicultura, Uruguay
| | - G Ramallo
- Instituto Nacional de Investigación Agropecuaria, Apicultura, Uruguay
| | - E Santos
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay
| | - M Porrini
- Departamento de Biología, Centro de Investigación en Abejas Sociales, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - C Invernizzi
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
135
|
Kurze C, Dosselli R, Grassl J, Le Conte Y, Kryger P, Baer B, Moritz RFA. Differential proteomics reveals novel insights into Nosema-honey bee interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:42-49. [PMID: 27784614 DOI: 10.1016/j.ibmb.2016.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.
Collapse
Affiliation(s)
- Christoph Kurze
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia; Pennsylvania State University, Center for Infectious Disease Dynamics, W249 Millennium Science Complex, University Park, PA 16802, United States.
| | - Ryan Dosselli
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Julia Grassl
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Per Kryger
- Aarhus University, Department of Agroecology/Section of Entomology and Plant Pathology, Flakkebjerg, 4200, Slagelse, Denmark
| | - Boris Baer
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Robin F A Moritz
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; German Institute for Integrative Biodiversity Research (iDiv), Bio City, 04103 Leipzig, Germany; University of Pretoria, Department of Zoology and Entomology, Pretoria, 0002, South Africa
| |
Collapse
|
136
|
Dosselli R, Grassl J, Carson A, Simmons LW, Baer B. Flight behaviour of honey bee (Apis mellifera) workers is altered by initial infections of the fungal parasite Nosema apis. Sci Rep 2016; 6:36649. [PMID: 27827404 PMCID: PMC5101476 DOI: 10.1038/srep36649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022] Open
Abstract
Honey bees (Apis mellifera) host a wide range of parasites, some being known contributors towards dramatic colony losses as reported over recent years. To counter parasitic threats, honey bees possess effective immune systems. Because immune responses are predicted to cause substantial physiological costs for infected individuals, they are expected to trade off with other life history traits that ultimately affect the performance and fitness of the entire colony. Here, we tested whether the initial onset of an infection negatively impacts the flight behaviour of honey bee workers, which is an energetically demanding behaviour and a key component of foraging activities. To do this, we infected workers with the widespread fungal pathogen Nosema apis, which is recognised and killed by the honey bee immune system. We compared their survival and flight behaviour with non-infected individuals from the same cohort and colony using radio frequency identification tags (RFID). We found that over a time frame of four days post infection, Nosema did not increase mortality but workers quickly altered their flight behaviour and performed more flights of shorter duration. We conclude that parasitic infections influence foraging activities, which could reduce foraging ranges of colonies and impact their ability to provide pollination services.
Collapse
Affiliation(s)
- Ryan Dosselli
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Julia Grassl
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Andrew Carson
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley WA 6009, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley WA 6009, Australia
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
137
|
Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections. Appl Environ Microbiol 2016; 82:6779-6787. [PMID: 27613683 DOI: 10.1128/aem.02105-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate that knocking down the honey bee immune repressor-encoding nkd gene can suppress the reproduction of N. ceranae and improve the overall health of honey bees, which highlights the potential role of host-derived and RNAi-based therapeutics in controlling the infections in honey bees. The information obtained from this study will have positive implications for honey bee disease management practices.
Collapse
|
138
|
Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
139
|
Maes PW, Rodrigues PAP, Oliver R, Mott BM, Anderson KE. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol Ecol 2016; 25:5439-5450. [DOI: 10.1111/mec.13862] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick W. Maes
- Graduate Interdisciplinary Program in Entomology and Insect Science; University of Arizona; PO Box 210036 Tucson AZ 85721 USA
- Department of Entomology; University of Arizona; PO Box 210036 Tucson AZ 85721 USA
| | - Pedro A. P. Rodrigues
- Graduate Interdisciplinary Program in Entomology and Insect Science; University of Arizona; PO Box 210036 Tucson AZ 85721 USA
- Department of Entomology; University of Arizona; PO Box 210036 Tucson AZ 85721 USA
| | - Randy Oliver
- ScientificBeekeeping.com; 14744 Meadow Drive Grass Valley CA 95945 USA
| | - Brendon M. Mott
- USDA-ARS Carl Hayden Bee Research Center; 2000 East Allen Road Tucson AZ 85719 USA
| | - Kirk E. Anderson
- Graduate Interdisciplinary Program in Entomology and Insect Science; University of Arizona; PO Box 210036 Tucson AZ 85721 USA
- Department of Entomology; University of Arizona; PO Box 210036 Tucson AZ 85721 USA
- USDA-ARS Carl Hayden Bee Research Center; 2000 East Allen Road Tucson AZ 85719 USA
| |
Collapse
|
140
|
Wells T, Wolf S, Nicholls E, Groll H, Lim KS, Clark SJ, Swain J, Osborne JL, Haughton AJ. Flight performance of actively foraging honey bees is reduced by a common pathogen. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:728-737. [PMID: 27337097 PMCID: PMC5091639 DOI: 10.1111/1758-2229.12434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 05/03/2023]
Abstract
Sudden and severe declines in honey bee (Apis mellifera) colony health in the US and Europe have been attributed, in part, to emergent microbial pathogens, however, the mechanisms behind the impact are unclear. Using roundabout flight mills, we measured the flight distance and duration of actively foraging, healthy-looking honey bees sampled from standard colonies, before quantifying the level of infection by Nosema ceranae and Deformed Wing Virus complex (DWV) for each bee. Neither the presence nor the quantity of N. ceranae were at low, natural levels of infection had any effect on flight distance or duration, but presence of DWV reduced flight distance by two thirds and duration by one half. Quantity of DWV was shown to have a significant, but weakly positive relation with flight distance and duration, however, the low amount of variation that was accounted for suggests further investigation by dose-response assays is required. We conclude that widespread, naturally occurring levels of infection by DWV weaken the flight ability of honey bees and high levels of within-colony prevalence are likely to reduce efficiency and increase the cost of resource acquisition. Predictions of implications of pathogens on colony health and function should take account of sublethal effects on flight performance.
Collapse
Affiliation(s)
| | - Stephan Wolf
- Rothamsted ResearchHarpendenUK
- Present address: School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Elizabeth Nicholls
- Rothamsted ResearchHarpendenUK
- Present address: School of Life SciencesUniversity of SussexBrightonUK
| | - Helga Groll
- Rothamsted ResearchHarpendenUK
- Present address: PPD, Granta Park, Great AbingtonCambridgeUK
| | | | | | | | - Juliet L. Osborne
- Rothamsted ResearchHarpendenUK
- Present address: Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | | |
Collapse
|
141
|
Jack CJ, Lucas HM, Webster TC, Sagili RR. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.). PLoS One 2016; 11:e0163522. [PMID: 27658258 PMCID: PMC5033419 DOI: 10.1371/journal.pone.0163522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/09/2016] [Indexed: 01/30/2023] Open
Abstract
Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and midgut pH.
Collapse
Affiliation(s)
- Cameron J. Jack
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Hannah M. Lucas
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas C. Webster
- College of Agriculture, Food Science & Sustainable Systems, Kentucky State University, Frankfort, Kentucky, United States of America
| | - Ramesh R. Sagili
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
142
|
Di Pasquale G, Alaux C, Le Conte Y, Odoux JF, Pioz M, Vaissière BE, Belzunces LP, Decourtye A. Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS One 2016; 11:e0162818. [PMID: 27631605 PMCID: PMC5025243 DOI: 10.1371/journal.pone.0162818] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/29/2016] [Indexed: 12/02/2022] Open
Abstract
Intensive agricultural systems often expose honey bees (Apis mellifera L.) to large temporal variations in the availability (quantity, quality and diversity) of nutritional resources. Such nutritional irregularity is expected to affect honey bee health. We therefore tested under laboratory conditions the effect of such variation in pollen availability on honey bee health (survival and nursing physiology—hypopharyngeal gland development and vitellogenin expression). We fed honey bees with different diets composed of pollen pellets collected by honey bees in an agricultural landscape of western France. Slight drops (5–10%) in the availability of oilseed rape (Brassica napus L.) pollen resulted in significant reductions of all tested variables. Despite some variations in taxonomic diversity and nutritional quality, the pollen mixes harvested over the season had a similar positive influence on honey bee health, except for the one collected in late July that induced poor survival and nursing physiology. This period coincided with the mass-flowering of maize (Zea mays L.), an anemophilous crop which produces poor-quality pollen. Therefore, changes in bee health were not connected to variations in pollen diversity but rather to variations in pollen depletion and quality, such as can be encountered in an intensive agricultural system of western France. Finally, even though pollen can be available ad libitum during the mass-flowering of some crops (e.g. maize), it can fail to provide bees with diet adequate for their development.
Collapse
Affiliation(s)
| | - Cédric Alaux
- UMT PrADE, Avignon, France
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Yves Le Conte
- UMT PrADE, Avignon, France
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | | | - Maryline Pioz
- UMT PrADE, Avignon, France
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Bernard E. Vaissière
- UMT PrADE, Avignon, France
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Luc P. Belzunces
- UMT PrADE, Avignon, France
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Axel Decourtye
- UMT PrADE, Avignon, France
- ACTA, Avignon, France
- ITSAP-Institut de l’abeille, Avignon, France
| |
Collapse
|
143
|
Wolf S, Nicholls E, Reynolds AM, Wells P, Lim KS, Paxton RJ, Osborne JL. Optimal search patterns in honeybee orientation flights are robust against emerging infectious diseases. Sci Rep 2016; 6:32612. [PMID: 27615605 PMCID: PMC5018844 DOI: 10.1038/srep32612] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
Lévy flights are scale-free (fractal) search patterns found in a wide range of animals. They can be an advantageous strategy promoting high encounter rates with rare cues that may indicate prey items, mating partners or navigational landmarks. The robustness of this behavioural strategy to ubiquitous threats to animal performance, such as pathogens, remains poorly understood. Using honeybees radar-tracked during their orientation flights in a novel landscape, we assess for the first time how two emerging infectious diseases (Nosema sp. and the Varroa-associated Deformed wing virus (DWV)) affect bees' behavioural performance and search strategy. Nosema infection, unlike DWV, affected the spatial scale of orientation flights, causing significantly shorter and more compact flights. However, in stark contrast to disease-dependent temporal fractals, we find the same prevalence of optimal Lévy flight characteristics (μ ≈ 2) in both healthy and infected bees. We discuss the ecological and evolutionary implications of these surprising insights, arguing that Lévy search patterns are an emergent property of fundamental characteristics of neuronal and sensory components of the decision-making process, making them robust against diverse physiological effects of pathogen infection and possibly other stressors.
Collapse
Affiliation(s)
- Stephan Wolf
- Rothamsted Research, Harpenden, UK
- School of Biological & Chemical Sciences, Queen Mary University of London, UK
| | - Elizabeth Nicholls
- Rothamsted Research, Harpenden, UK
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | | - Robert J. Paxton
- School of Biological Sciences, Queen’s University Belfast, Belfast, UK
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, Germany
| | - Juliet L. Osborne
- Rothamsted Research, Harpenden, UK
- Environment and Sustainability Institute, Penryn, University of Exeter, UK
| |
Collapse
|
144
|
Kurze C, Routtu J, Moritz RF. Parasite resistance and tolerance in honeybees at the individual and social level. ZOOLOGY 2016; 119:290-7. [DOI: 10.1016/j.zool.2016.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 12/01/2022]
|
145
|
Holt HL, Grozinger CM. Approaches and Challenges to Managing Nosema (Microspora: Nosematidae) Parasites in Honey Bee (Hymenoptera: Apidae) Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1487-503. [PMID: 27340190 DOI: 10.1093/jee/tow103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 05/23/2023]
Abstract
UNLABELLED The microsporidia Nosema apis (Zander) and Nosema ceranae (Fries) are common intestinal parasites in honey bee (Apis mellifera L.) colonies. Though globally prevalent, there are mixed reports of Nosema infection costs, with some regions reporting high parasite virulence and colony losses, while others REPORT high Nosema prevalence but few costs. Basic and applied studies are urgently needed to help beekeepers effectively manage Nosema spp., ideally through an integrated pest management approach that allows beekeepers to deploy multiple strategies to control Nosema when Nosema is likely to cause damage to the colonies, rather than using prophylactic treatments. Beekeepers need practical and affordable technologies that facilitate disease diagnosis and science-backed guidelines that recommend when, if at all, to treat infections. In addition, new treatment methods are needed, as there are several problems associated with the chemical use of fumagillin (the only currently extensively studied, but not globally available treatment) to control Nosema parasites. Though selective breeding of Nosema-resistant or tolerant bees may offer a long-term, sustainable solution to Nosema management, other treatments are needed in the interim. Furthermore, the validation of alternative treatment efficacy in field settings is needed along with toxicology assays to ensure that treatments do not have unintended, adverse effects on honey bees or humans. Finally, given variation in Nosema virulence, development of regional management guidelines, rather than universal guidelines, may provide optimal and cost-effective Nosema management, though more research is needed before regional plans can be developed.
Collapse
Affiliation(s)
- Holly L Holt
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, 3A Chemical Ecology Laboratory, University Park, PA, 16802 Current Affiliation: Department of Fisheries, Wildlife and Conservation Biology, The University of Minnesota, Skok Hall, St. Paul, MN, 55108
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, 1A Chemical Ecology Laboratory, University Park, PA, 16802
| |
Collapse
|
146
|
Metarhizium anisopliae infection alters feeding and trophallactic behavior in the ant Solenopsis invicta. J Invertebr Pathol 2016; 138:24-9. [PMID: 27234423 DOI: 10.1016/j.jip.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
In social insects, social behavior may be changed in a way that preventing the spread of pathogens. We infected workers of the ant Solenopsis invicta with an entomopathogenic fungus Metarhizium anisopliae and then videotaped and/or measured worker feeding and trophallactic behavior. Results showed that fungal infected S. invicta enhanced their preference for bitter alkaloid chemical quinine on 3days after inoculation, which might be self-medication of S. invicta by ingesting more alkaloid substances in response to pathogenic infection. Furthermore, infected ants devoted more time to trophallactic behavior with their nestmates on 3days post inoculation, in return receiving more food. Increased interactions between exposed ants and their naive nestmates suggest the existence of social immunity in S. invicta. Overall, our study indicates that S. invicta may use behavioral defenses such as self-medication and social immunity in response to a M. anisopliae infection.
Collapse
|
147
|
Mitchell D. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:629-638. [PMID: 26335295 DOI: 10.1007/s00484-015-1057-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
In the absence of human intervention, the honeybee (Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW(-1) K for wooden hives and greater than 5 kgW(-1) K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW(-1) K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.
Collapse
|
148
|
Garrido PM, Porrini MP, Antúnez K, Branchiccela B, Martínez-Noël GMA, Zunino P, Salerno G, Eguaras MJ, Ieno E. Sublethal effects of acaricides and Nosema ceranae infection on immune related gene expression in honeybees. Vet Res 2016; 47:51. [PMID: 27118545 PMCID: PMC4847213 DOI: 10.1186/s13567-016-0335-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work.
Collapse
Affiliation(s)
- Paula Melisa Garrido
- />Facultad de Ciencias Exactas y Naturales, Centro de Investigación en Abejas Sociales, Universidad Nacional de Mar del Plata–CONICET, Mar Del Plata, Buenos Aires Argentina
| | - Martín Pablo Porrini
- />Facultad de Ciencias Exactas y Naturales, Centro de Investigación en Abejas Sociales, Universidad Nacional de Mar del Plata–CONICET, Mar Del Plata, Buenos Aires Argentina
| | - Karina Antúnez
- />Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Belén Branchiccela
- />Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Pablo Zunino
- />Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Graciela Salerno
- />Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), CIB-FIBA, Mar Del Plata, Argentina
| | - Martín Javier Eguaras
- />Facultad de Ciencias Exactas y Naturales, Centro de Investigación en Abejas Sociales, Universidad Nacional de Mar del Plata–CONICET, Mar Del Plata, Buenos Aires Argentina
| | - Elena Ieno
- />Highland Statistics, 03130 Alicante, Spain
| |
Collapse
|
149
|
Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc Biol Sci 2016; 283:20160414. [PMID: 27075256 PMCID: PMC4843664 DOI: 10.1098/rspb.2016.0414] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 11/12/2022] Open
Abstract
At present, there is substantive evidence that the nutritional content of agriculturally important food crops will decrease in response to rising levels of atmospheric carbon dioxide, Ca However, whether Ca-induced declines in nutritional quality are also occurring for pollinator food sources is unknown. Flowering late in the season, goldenrod (Solidago spp.) pollen is a widely available autumnal food source commonly acknowledged by apiarists to be essential to native bee (e.g. Bombus spp.) and honeybee (Apis mellifera) health and winter survival. Using floral collections obtained from the Smithsonian Natural History Museum, we quantified Ca-induced temporal changes in pollen protein concentration of Canada goldenrod (Solidago canadensis), the most wide spread Solidago taxon, from hundreds of samples collected throughout the USA and southern Canada over the period 1842-2014 (i.e. a Ca from approx. 280 to 398 ppm). In addition, we conducted a 2 year in situtrial of S. Canadensis populations grown along a continuous Ca gradient from approximately 280 to 500 ppm. The historical data indicated a strong significant correlation between recent increases in Ca and reductions in pollen protein concentration (r(2)= 0.81). Experimental data confirmed this decrease in pollen protein concentration, and indicated that it would be ongoing as Ca continues to rise in the near term, i.e. to 500 ppm (r(2)= 0.88). While additional data are needed to quantify the subsequent effects of reduced protein concentration for Canada goldenrod on bee health and population stability, these results are the first to indicate that increasing Ca can reduce protein content of a floral pollen source widely used by North American bees.
Collapse
Affiliation(s)
- Lewis H Ziska
- Crop Systems and Global Change Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Jeffery S Pettis
- Research Entomologist, Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Joan Edwards
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Jillian E Hancock
- Department of Biology, Williams College, Williamstown, MA 01267, USA
| | - Martha B Tomecek
- Crop Systems and Global Change Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Andrew Clark
- US National Herbarium, Smithsonian Institution, MRC 166, PO Box 37012, Washington, DC 20013-7012, USA
| | - Jeffrey S Dukes
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47097, USA Department of Biological Sciences, Purdue University, West Lafayette, IN 47097, USA
| | - Irakli Loladze
- Bryan College of Health Sciences, Bryan Medical Center, Lincoln, NE 68506, USA
| | - H Wayne Polley
- Grassland, Soil and Water Research Laboratory, USDA-ARS, Temple, TX 76502, USA
| |
Collapse
|
150
|
Stentiford GD, Becnel JJ, Weiss LM, Keeling PJ, Didier ES, Williams BAP, Bjornson S, Kent ML, Freeman MA, Brown MJF, Troemel ER, Roesel K, Sokolova Y, Snowden KF, Solter L. Microsporidia - Emergent Pathogens in the Global Food Chain. Trends Parasitol 2016; 32:336-348. [PMID: 26796229 PMCID: PMC4818719 DOI: 10.1016/j.pt.2015.12.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Intensification of food production has the potential to drive increased disease prevalence in food plants and animals. Microsporidia are diversely distributed, opportunistic, and density-dependent parasites infecting hosts from almost all known animal taxa. They are frequent in highly managed aquatic and terrestrial hosts, many of which are vulnerable to epizootics, and all of which are crucial for the stability of the animal-human food chain. Mass rearing and changes in global climate may exacerbate disease and more efficient transmission of parasites in stressed or immune-deficient hosts. Further, human microsporidiosis appears to be adventitious and primarily associated with an increasing community of immune-deficient individuals. Taken together, strong evidence exists for an increasing prevalence of microsporidiosis in animals and humans, and for sharing of pathogens across hosts and biomes.
Collapse
Affiliation(s)
- G D Stentiford
- Pathology and Molecular Systematics Team, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - -J J Becnel
- United States Department of Agriculture (USDA) Agricultural Research Center (ARS), Center for Medical, Agricultural, and Veterinary Entomology (CMAVE), 1600 South West 23rd Drive, Gainesville, FL, 32608, USA
| | - L M Weiss
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 504, Bronx, NY 10641, USA
| | - P J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| | - E S Didier
- Division of Microbiology, Tulane National Primate Research Center and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - B-A P Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK
| | - S Bjornson
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, Canada
| | - M-L Kent
- Departments of Microbiology and Biomedical Sciences, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA
| | - M A Freeman
- Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - M J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - E-R Troemel
- University of California, San Diego, 4202 Bonner Hall, 9500 Gilman Drive #0349, La Jolla, CA 92093-0349, USA
| | - K Roesel
- International Livestock Research Institute, c/o Freie Universität Berlin, Institute of Parasitology and Tropical Veterinary Medicine, Robert-von-Ostertag-Strasse 7-13, Berlin, 14163 Germany
| | - Y Sokolova
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, 1909 Skip Bertman Drive, Baton RougeLA 70803, USA
| | - K F Snowden
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Pathobiology, Mailstop 4467, College Station, TX 77843-4467, USA
| | - L Solter
- Illinois Natural History Survey, Prairie Research Institute at the University of Illinois at Urbana-Champaign, 1816 South Oak Street, Champaign, IL 61820, USA.
| |
Collapse
|