101
|
Wang J, Li D, Wang P, Hu X, Chen F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. J Nutr Biochem 2019; 70:105-115. [PMID: 31200315 DOI: 10.1016/j.jnutbio.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Numerous natural herbs have been proven as safe anti-obesity resources. Ginger, one of the most widely consumed spices, has shown beneficial effects against obesity and related metabolic disorders. The present study aimed to examine whether the antiobesity effect of ginger is associated with energy metabolism. Mice were maintained on either a normal control diet or a high-fat diet (HFD) with or without 500 mg/kg (w/w) ginger supplementation. After 16 weeks, ginger supplementation alleviated the HFD-induced increases in body weight, fat accumulation, and levels of serum glucose, triglyceride and cholesterol. Indirect calorimetry showed that ginger administration significantly increased the respiratory exchange ratio (RER) and heat production in both diet models. Furthermore, ginger administration corrected the HFD-induced changes in concentrations of intermediates in glycolysis and the TCA cycle. Moreover, ginger enhanced brown adipose tissue function and activated white adipose tissue browning by altering the gene expression and protein levels of some brown and beige adipocyte-selective markers. Additionally, stimulation of the browning program by ginger may be partly regulated by the sirtuin-1 (SIRT1)/AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Taken together, these results indicate that dietary ginger prevents body weight gain by remodeling whole-body energy metabolism and inducing browning of white adipose tissue (WAT). Thus, ginger is an edible plant that plays a role in the therapeutic treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Pan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, China Agricultural University, Beijing, China; Engineering Research Centre for Fruit and Vegetable Processing, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
102
|
An Ancient Chinese Herbal Decoction Containing Angelicae Sinensis Radix, Astragali Radix, Jujuba Fructus, and Zingiberis Rhizoma Recens Stimulates the Browning Conversion of White Adipocyte in Cultured 3T3-L1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3648685. [PMID: 31316571 PMCID: PMC6601477 DOI: 10.1155/2019/3648685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Background Abnormal storage of white adipocyte tissue (WAT) is the major factor causing obesity. The promising strategies for obesity treatment are building up the brown adipocyte tissue (BAT) and/or expedite fatty acid catabolism. Traditional Chinese Medicine (TCM) sheds light on preventing obesity. Ginger is one of the most effective herbs for antiobesity by accelerating browning WAT. To fortify the antiobesity effect of ginger, an ancient Chinese herbal decoction composed of four herbs, Angelicae Sinensis Radix (ASR), Astragali Radix (AR), Jujuba Fructus (JF), and Zingiberis Rhizoma Recens (ZRR; ginger), was tested here: this herbal formula was written in AD 1155, named as Danggui Buxue Tang (DBT1155). Therefore, the antiobesity function of this ancient herbal decoction was revealed in vitro by cultured 3T3-L1 cells. Materials and Method The lipid accumulation was detected by Oil Red O staining. Furthermore, the underlying working mechanisms of antiobesity functions of DBT1155 were confirmed in 3T3-L1 cells by confocal microscopy, western blot, and RT-PCR. Results DBT1155 was able to actuate brown fat-specific gene activations, which included (i) expression of PPARγ, UCP1, and PCG1α and (ii) fatty acid oxidation genes, i.e., CPT1A and HSL. The increase of browning WAT, triggered by DBT1155, was possibly mediated by a Ca2+-AMPK signaling pathway, because the application of Ca2+ chelator, BAMPTA-AM, reversed the effect. Conclusion These findings suggested that the herbal mixture DBT1155 could potentiate the antiobesity functions of ginger, which might have potential therapeutic implications.
Collapse
|
103
|
Low-Dose Curcumin Nanoparticles Normalise Blood Pressure in Male Wistar Rats with Diet-Induced Metabolic Syndrome. Nutrients 2019; 11:nu11071542. [PMID: 31288419 PMCID: PMC6682951 DOI: 10.3390/nu11071542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022] Open
Abstract
Nanoparticle formulations improve bioavailability and so may allow low-dose formulations of food-derived compounds such as curcumin to attenuate chronic systemic disease despite intrinsically low oral bioavailability. The current study induced metabolic syndrome in male Wistar rats aged eight–nine weeks using a high-carbohydrate, high-fat diet (H) with corn starch diet (C) as control. Using a reversal protocol, rats were given curcumin as either nanoparticles encapsulated in poly(lactic–co–glycolic acid) (5 mg/kg/day, HCNP) or as an unformulated low dose or high-dose suspension in water (low-dose, 5 mg/kg/day, HC5; high-dose, 100 mg/kg/day, HC100) or blank nanoparticles (HBNP) for the final eight weeks of the 16 week study. We analysed cardiovascular parameters including systolic blood pressure and left ventricular diastolic stiffness along with histopathology, liver parameters including plasma liver enzymes, histopathology and metabolic parameters, including glucose tolerance, blood lipid profile and body composition, and plasma curcumin concentrations. HC100 and HCNP but not HBNP normalised systolic blood pressure (C = 120 ± 4; H = 143 ± 5; HBNP = 141 ± 3; HC5 = 143 ± 4; HC100 = 126 ± 4; HCNP = 128 ± 4 mmHg), left ventricular diastolic stiffness and liver fat deposition. No other improvements were induced in HC100 or HCNP or other intervention groups (HC5 and HBNP). We conclude that 5 mg/kg/day curcumin nanoparticles in H rats showed similar improvements in cardiovascular function as 100 mg/kg/day unformulated curcumin correlating with similar plasma curcumin concentrations.
Collapse
|
104
|
circNrxn2 Promoted WAT Browning via Sponging miR-103 to Relieve Its Inhibition of FGF10 in HFD Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:551-562. [PMID: 31362242 PMCID: PMC6661467 DOI: 10.1016/j.omtn.2019.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/23/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022]
Abstract
The accumulation of excess white adipose tissue (WAT) has harmful consequences on metabolic health. WAT browning confers beneficial effects on adiposity, insulin resistance, and hyperlipidemia. In this study, it was found out that circNrxn2 sponged miR-103 and enhanced FGF10 levels in HFD mice WAT. We discovered that circNrxn2 promoted WAT browning and mitochondria functions. Furthermore, circNrxn2 also increased M2 macrophage polarization in HFD mouse adipose tissue, and the PPARγ signaling pathway participated in these biological processes. Moreover, eliminating adipose tissue macrophages (ATMs) by clodronate-crippled circNrxn2 promoted WAT browning, and the simulation co-culture of macrophages and adipocytes results suggested that circNrxn2 promoted WAT browning through increasing M2 macrophage polarization. Our finding revealed that circNrxn2 acted as an endogenous miR-103 sponge, blocked miR-103 effects, and relieved its inhibition of FGF10 expression to promote WAT browning through increasing M2 macrophage polarization. This study provides a good therapeutic strategy for treating obesity and improving obesity-related metabolic disorders.
Collapse
|
105
|
Issara U, Park S, Park S. Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro. Food Sci Anim Resour 2019; 39:430-445. [PMID: 31304472 PMCID: PMC6612783 DOI: 10.5851/kosfa.2019.e38] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/22/2023] Open
Abstract
Natural edible waxes mixed with plant oils, containing high levels of unsaturated
fatty acids (FAs), are known as oleogels. Oleogels are used for replacing
saturated FAs in animal-derived food with unsaturated FAs. However, the health
effects of edible waxes are not yet clearly defined. The purpose of this study
was to investigate the effect of FAs and natural waxes on the adipogenesis in
3T3-L1 cells. The 3T3-L1 cells were differentiated and treated with FAs and
waxes. These FAs [Palmitic acid (PA), Stearic acid (SA), Oleic acid (OA),
Linoleic acid (LA), and Alpha-linolenic acid (ALA)] and waxes [beeswax (BW) and
carnauba wax (CW)] were prepared at varying concentrations, and cell toxicity,
triglyceride accumulation, lipid droplets size, and distribution inside of cells
were determined. Adipogenic gene expression including
PPARγ, FASN,
C/EBPα, SREBP-1, and
CPT-1 was determined. Results showed that increasing the
concentration of FAs and waxes led to a decrease in the adipocyte cells
viability and metabolic performance. SA showed the highest level of triglyceride
accumulation (p<0.05), whereas ALA showed the lowest (p<0.05).
Both BW and CW at 3.0 ppm showed significantly higher lipid accumulation than in
the control and other groups (p<0.05). ALA had significantly
downregulated adipogenic gene expression levels, excluding those of
CPT-1, compared to the other treatment groups
(p<0.05). Moreover, BW demonstrated similar adipogenic gene expression
levels as ALA compared to CW. Consequently, ALA and BW may have health benefits
by reducing adipogenesis and can be used in processed meat.
Collapse
Affiliation(s)
- Utthapon Issara
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Suhyun Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
106
|
Berberine Promotes Beige Adipogenic Signatures of 3T3-L1 Cells by Regulating Post-transcriptional Events. Cells 2019; 8:cells8060632. [PMID: 31234575 PMCID: PMC6627823 DOI: 10.3390/cells8060632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023] Open
Abstract
Induced brown adipocytes (also referred to as beige cells) execute thermogenesis, as do the classical adipocytes by consuming stored lipids, being related to metabolic homeostasis. Treatment of phytochemicals, including berberine (BBR), was reported to induce conversion from white adipocytes to beige cells. In this study, results of microRNA (miRNA)-seq analyses revealed a decrease in miR-92a, of which the transcription is driven by the c13orf25 promoter in BBR-treated 3T3-L1 cells. BBR treatment manipulated the expressions of SP1 and MYC, in turn, reducing the activity of the c13orf25 promoter. A decrease in miR-92a led to an increase in RNA-binding motif protein 4a (RBM4a) expression, which facilitated the beige adipogenesis. Overexpression of miR-92a or depletion of RBM4a reversely interfered with the impact of BBR treatment on the beige adipogenic signatures, gene expressions, and splicing events in 3T3-L1 cells. Our findings demonstrated that BBR treatment enhanced beige adipogenesis of 3T3-L1 cells through transcription-coupled post-transcriptional regulation.
Collapse
|
107
|
Zhang J, Wang Y, Bao C, Liu T, Li S, Huang J, Wan Y, Li J. Curcumin‑loaded PEG‑PDLLA nanoparticles for attenuating palmitate‑induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway. Int J Mol Med 2019; 44:672-682. [PMID: 31173176 PMCID: PMC6605976 DOI: 10.3892/ijmm.2019.4228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Curcumin (CUR) has the ability to attenuate oxidative stress in the myocardium and to protect the myocardium from lipotoxic injury owing to its lipid-reducing properties. However, the use of CUR is limited due to its hydrophobicity and instability. In this study, CUR-loaded nanoparticles (CUR NPs) were developed using an amphiphilic copolymer, monomethoxy poly (ethylene glycol)-b-poly (DL-lactide), as a vehicle material. CUR NPs with high drug loading and small size were prepared under optimized conditions. The effects of CUR NPs on palmitate-induced cardiomyocyte injury were investigated and the possible protective mechanism of CUR NPs was also examined. It was found that CUR NPs were able to control the release of CUR and to deliver CUR to H9C2 cells, and they could prevent palmitate-treated H9C2 cells from apoptosis. In addition, CUR NPs could regulate the Bax and Bcl-2 levels of palmitate-treated H9C2 cells back to their respective normal levels. A prospective mechanism for the function of CUR NPs is that they may activate the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex-1/p-p70 ribosomal protein S6 kinase signaling pathway, regulate the expression of downstream proteins and resist the palmitate-induced cardiomyocyte injury. Results suggest that CUR NPs can attenuate palmitate-induced oxidative stress in cardiomyocytes and protect cardiomyocytes from apoptosis through the AMPK pathway. In view of the safety and efficiency of these CUR NPs, they have potential for application in protecting the myocardium from lipotoxic injury.
Collapse
Affiliation(s)
- Jingyi Zhang
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Wang
- Changchun People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Cuiyu Bao
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tao Liu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shuai Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jiaxi Huang
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jing Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
108
|
Concha F, Prado G, Quezada J, Ramirez A, Bravo N, Flores C, Herrera JJ, Lopez N, Uribe D, Duarte-Silva L, Lopez-Legarrea P, Garcia-Diaz DF. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev Endocr Metab Disord 2019; 20:161-171. [PMID: 31020455 DOI: 10.1007/s11154-019-09495-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a public health problem present in both developed and developing countries. The white adipose tissue (WAT) is the main deposit of lipids when there is an excess of energy. Its pathological growth is directly linked to the development of obesity and to a wide number of comorbidities, such as insulin-resistance, cardiovascular disease, among others. In this scenario, it becomes imperative to develop new approaches to the treatment and prevention of obesity and its comorbidities. It has been documented that the browning of WAT could be a suitable strategy to tackle the obesity epidemic that is developing worldwide. Currently there is an intense search for bioactive compounds with anti-obesity properties, which present the particular ability to generate thermogenesis in the brown adipose tissue (BAT) or beige. The present study provide recent information of the bioactive nutritional compounds capable of inducing thermogenesis and therefore capable of generate positive effects on health.
Collapse
Affiliation(s)
- F Concha
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - G Prado
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J Quezada
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A Ramirez
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - N Bravo
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - C Flores
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - J J Herrera
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - N Lopez
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D Uribe
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - L Duarte-Silva
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - P Lopez-Legarrea
- Centro de Investigacion Biomedica, Universidad Autonoma de Chile, Santiago, Chile
| | - Diego F Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
109
|
Kwak HJ, Jeong MY, Um JY, Park J. β -Lapachone Regulates Obesity through Modulating Thermogenesis in Brown Adipose Tissue and Adipocytes: Role of AMPK Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:803-822. [PMID: 31094212 DOI: 10.1142/s0192415x19500423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of brown adipose tissue (BAT) has been proposed as a promising target against obesity due to its increased capacity for thermogenesis. In this study, we explored the effect of β -Lapachone ( β L), a compound obtained from the bark of the lapacho tree, against obesity. In vivo administration of β L into either high fat diet (HFD)-induced obese C57BL6 mice and genetically obese Lepr -∕- mice prevented body weight gain, which was associated with tissue weight loss of white adipose tissue (WAT). In addition, β L elevated thermogenic proteins including uncoupling protein 1 (UCP1) and mitochondrial count in BAT and human adipose tissue-derived mesenchymal stem cells (hAMSCs). β L also induced AMP-activated protein kinase (AMPK) phosphorylation, subsequent upregulation of acetyl-CoA carboxylase (ACC) and UCP1, and these effects were diminished by AMPK inhibitor compound C, suggesting that AMPK underlies the effects of β L. Mitogen-activated protein kinase pathways participated in the thermogenesis of β L, specifically p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) were activated by β L treatment in hAMSCs. Additionally, inhibitors of p38/JNK/ERK1/2 abrogated the activity of β L. Taken together, β L exerts anti-obese effects by inducing thermogenesis mediated by AMPK signaling pathway, suggesting that β L may have a potential therapeutic implication of obesity. Taken together, β L exerts anti-obese effects by not only inducing thermogenesis on brown adipocytes but also inducing the browning of white adipocytes. The anti-obese effect of β L is mediated by AMPK signaling pathway, suggesting that β L may have potential therapeutic implication of obesity.
Collapse
Affiliation(s)
- Hyun Jeong Kwak
- * Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Mi-Young Jeong
- † Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- † Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinbong Park
- † Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
110
|
Ahmed MF, El-Sayed AK, Chen H, Zhao R, Yusuf MS, Zuo Q, Zhang Y, Li B. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med 2019; 17:4154-4166. [PMID: 30988793 PMCID: PMC6447915 DOI: 10.3892/etm.2019.7414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
The use of bone marrow mesenchymal stem cells (BMSCs) has great potential in cell therapy, particularly in the orthopedic field. BMSCs represent a valuable renewable cell source that have been successfully utilized to treat damaged skeletal tissue and bone defects. BMSCs can be induced to differentiate into osteogenic lineages via the addition of inducers to the growth medium. The present study examined the effects of all-trans retinoic acid (ATRA) and curcumin on the osteogenic differentiation of mouse BMSCs. Morphological changes, the expression levels of the bone-associated gene markers bone morphogenetic protein 2, runt-related transcription factor and osterix during differentiation, an in vitro mineralization assay, and changes in osteocalcin expression revealed that curcumin supplementation promoted the osteogenic differentiation of BMSCs. By contrast, the application of ATRA increased osteogenic differentiation during the early stages, but during the later stages, it decreased the mineralization of differentiated cells. In addition, to the best of our knowledge, the present study is the first to examine the effect of curcumin on the osteogenic potency of mouse embryonic fibroblasts (MEFs) after reprogramming with human lim mineralization protein (hLMP-3), which is a positive osteogenic regulator. The results revealed that curcumin-supplemented culture medium increased hLMP-3 osteogenic potency compared with that of MEFs cultured in the non-supplemented medium. The present results demonstrate that enrichment of the osteogenic culture medium with curcumin, a natural osteogenic inducer, increased the osteogenic differentiation capacity of BMSCs as well as that of MEFs reprogrammed with hLMP-3.
Collapse
Affiliation(s)
- Mahmoud F Ahmed
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ruifeng Zhao
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Mohamed S Yusuf
- College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yani Zhang
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Bichun Li
- Key Laboratory of Animal Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
111
|
Wang H, Mao X, Du M. Phytanic acid activates PPARα to promote beige adipogenic differentiation of preadipocytes. J Nutr Biochem 2019; 67:201-211. [PMID: 30951974 DOI: 10.1016/j.jnutbio.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 11/30/2022]
Abstract
A better understanding of the mechanisms of beige and brown adipogenesis is needed for developing strategies to prevent and treat obesity and associated metabolic disorders. Phytanic acid (PA) exists in a wide range of foods, especially in milk fat and marine foods, but its effects on obesity and beige adipogenesis remain poorly defined. The objective is to investigate the effects and regulatory mechanisms of PA in the beige adipogenesis. In 3T3-L1 preadipocytes, PA elevated the expression of brown adipogenic markers, suggesting that PA promotes beige adipogenic differentiation in committed adipogenic cells. In uncommitted C3H10T1/2 cells, while PA increased PGC1α expression, it did not increase brown adipogenic regulators PRDM16 or UCP1 expression, suggesting that PA had no significant effects on brown adipocyte commitment. PA also enhanced mitochondrial biogenesis and oxygen consumption. Promotion of both mitochondriogenesis and beige adipogenic differentiation were blocked by using PPARα antagonist or with Pparα knockdown, showing that PA-mediated beige/brown adipogenic differentiation is dependent on PPARα. Additionally, the PA-regulated effect is independent on β3-adrenergic receptor. Taken together, PA promotes beige adipogenic differentiation, but not the commitment of progenitor cells to the brown adipocyte lineage. PPARα is a key mediator during PA-induced beige/brown adipogenic differentiation.
Collapse
Affiliation(s)
- Hanning Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
112
|
Allicin induces beige-like adipocytes via KLF15 signal cascade. J Nutr Biochem 2019; 64:13-24. [DOI: 10.1016/j.jnutbio.2018.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/13/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
|
113
|
El Hadi H, Di Vincenzo A, Vettor R, Rossato M. Food Ingredients Involved in White-to-Brown Adipose Tissue Conversion and in Calorie Burning. Front Physiol 2019; 9:1954. [PMID: 30687134 PMCID: PMC6336830 DOI: 10.3389/fphys.2018.01954] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity is the consequence of chronic positive energy balance and considered a leading risk factor for cardiovascular and metabolic diseases. Due to its epidemic trends among children and adults, there is an increasing interest in implementing new therapeutic interventions to tackle overweight and obesity. Activation of brown adipose tissue (BAT) represents today a promising strategy to enhance energy expenditure (EE) through heat production. More recently, “browning” of white adipose tissue (WAT) has gained increasing attention in research area as an alternative method in stimulating energy dissipation. This minireview aims to summarize the current knowledge of some dietary compounds that have been shown to promote BAT activation and WAT browning with subsequent beneficial health effects.
Collapse
Affiliation(s)
- Hamza El Hadi
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| | - Angelo Di Vincenzo
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| | - Marco Rossato
- Internal Medicine 3, Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
114
|
Wu C, Zhou Y, Qi G, Liu D, Cao X, Yu J, Zhang R, Lin W, Guo P. Asperlin Stimulates Energy Expenditure and Modulates Gut Microbiota in HFD-Fed Mice. Mar Drugs 2019; 17:E38. [PMID: 30634484 PMCID: PMC6356881 DOI: 10.3390/md17010038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Asperlin is a marine-derived, natural product with antifungal, anti-inflammatory and anti-atherosclerotic activities. In the present study, we showed that asperlin effectively prevented the development of obesity in high-fat diet (HFD)-fed mice. Oral administration of asperlin for 12 weeks significantly suppressed HFD-induced body weight gain and fat deposition without inhibiting food intake. Hyperlipidemia and liver steatosis were also substantially ameliorated. A respiratory metabolism monitor showed that asperlin efficiently increased energy expenditure and enhanced thermogenic gene expression in adipose tissue. Accordingly, asperlin-treated mice showed higher body temperature and were more tolerant of cold stress. Meanwhile, asperlin also increased the diversity and shifted the structure of gut microbiota. Oral administration of asperlin markedly increased the relative abundance of Bacteroidetes, leading to a higher Bacteroidetes-to-Fimicutes ratio. The HFD-induced abnormalities at both phylum and genus levels were all remarkably recovered by asperlin. These results demonstrated that asperlin is effective in preventing HFD-induced obesity and modulating gut microbiota. Its anti-obesity properties may be attributed to its effect on promoting energy expenditure.
Collapse
Affiliation(s)
- Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yue Zhou
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Guihong Qi
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Xiaoxue Cao
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rong Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Peng Guo
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
115
|
Qi G, Zhou Y, Zhang X, Yu J, Li X, Cao X, Wu C, Guo P. Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway. Acta Pharm Sin B 2019; 9:135-143. [PMID: 30766785 PMCID: PMC6361849 DOI: 10.1016/j.apsb.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity is a worldwide epidemic. Promoting browning of white adipose tissue (WAT) contributes to increased energy expenditure and hence counteracts obesity. Here we show that cordycepin (Cpn), a natural derivative of adenosine, increases energy expenditure, inhibits weight gain, improves metabolic profile and glucose tolerance, decreases WAT mass and adipocyte size, and enhances cold tolerance in normal and high-fat diet-fed mice. Cpn markedly increases the surface temperature around the inguinal WAT and turns the inguinal fat browner. Further investigations show that Cpn induces the development of brown-like adipocytes in inguinal and, to a less degree, epididymal WAT depots. Cpn also increases the expression of uncoupling protein 1 (UCP1) and other thermogenic genes in WAT and 3T3-L1 differentiated adipocytes, in which AMP-activated protein kinase (AMPK) plays an important role. Our results provide novel insights into the function of Cpn in regulating energy balance, and suggest a potential utility of Cpn in the treatment of obesity.
Collapse
Affiliation(s)
- Guihong Qi
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yue Zhou
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaopo Zhang
- School of Pharmaceutical Science, Hainan Medical University, Hainan 571199, China
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xin Li
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Corresponding authors. Tel.: +86 10 57833235; fax: +86 10 57833018.
| | - Peng Guo
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Corresponding authors. Tel.: +86 10 57833235; fax: +86 10 57833018.
| |
Collapse
|
116
|
Nimri L, Staikin K, Peri I, Yehuda-Shnaidman E, Schwartz B. Ostreolysin induces browning of adipocytes and ameliorates hepatic steatosis. J Gastroenterol Hepatol 2018; 33:1990-2000. [PMID: 29663549 DOI: 10.1111/jgh.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Deposition of excess triglycerides in liver cells, a hallmark of NAFLD, is associated with loss of insulin sensitivity. Ostreolysin (Oly) is a 15-kDa fungal protein known to interact with cholesterol-enriched raft-like membrane domains. We aim to test whether a recombinant version of Oly (rOly) can induce functional changes in vitro in adipocytes or in vivo in mice fed a high-fat diet (HFD). METHODS White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly. Male C57BL/6 mice were fed a control or HFD and treated with saline or with rOly (1 mg/kg BW) every other day for 4 weeks. RESULTS White preadipocyte 3T3-L1 cells or mouse primary adipocytes treated with rOly acquire a browning phenotype through activation of 5' adenosine monophosphate-activated protein kinase and downregulation of tumor necrosis factor α-mediated activation of IκB kinase ε and TANK-binding kinase 1. HFD-fed mice treated with rOly showed a 10% reduction in BW and improved glucose tolerance, which paralleled improved expression of liver and adipose functionality, metabolism, and inflammation status, mimicking the in vitro findings. CONCLUSION This study provides first evidence of rOly's prevention of HFD-induced NAFLD by stimulating liver and adipose muscle tissue functionality and oxidative potential, improving glucose tolerance, and ameliorating the metabolic profile of diet-induced obese mice.
Collapse
Affiliation(s)
- Lili Nimri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Katerina Staikin
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Yehuda-Shnaidman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
117
|
Kaisanlahti A, Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem 2018; 75:1-10. [PMID: 30506389 PMCID: PMC6513802 DOI: 10.1007/s13105-018-0658-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022]
Abstract
Mammalian adipose tissue is traditionally categorized into white and brown relating to their function and morphology: while white serves as an energy storage, brown adipose tissue acts as the heat generator maintaining the core body temperature. The most recently identified type of fat, beige adipocyte tissue, resembles brown fat by morphology and function but is developmentally more related to white. The synthesis of beige fat, so-called browning of white fat, has developed into a topical issue in diabetes and metabolism research. This is due to its favorable effect on whole-body energy metabolism and the fact that it can be recruited during adult life. Indeed, brown and beige adipose tissues have been demonstrated to play a role in glucose homeostasis, insulin sensitivity, and lipid metabolism—all factors related to pathogenesis of type 2 diabetes. Many agents capable of initiating browning have been identified so far and tested widely in humans and animal models including in vitro and in vivo experiments. Interestingly, several agents demonstrated to have browning activity are in fact secreted as adipokines from brown and beige fat tissue, suggesting a physiological relevance both in beige adipocyte recruitment processes and in maintenance of metabolic homeostasis. The newest findings on agents driving beige fat recruitment, their mechanisms, and implications on type 2 diabetes are discussed in this review.
Collapse
MESH Headings
- Adipose Tissue, Beige/drug effects
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Beige/pathology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Glucagon-Like Peptide 1/pharmacology
- Glucose/metabolism
- Humans
- Insulin Resistance
- Leptin/pharmacology
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- Lipotropic Agents/pharmacology
- Melatonin/pharmacology
- Natriuretic Peptides/pharmacology
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- A Kaisanlahti
- Biocenter Oulu/Cancer Research and Translational Medicine Research Unit, University of Oulu, Aapistie 5, P.O. Box 5281, 90014, Oulu, Finland.
| | - T Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, P.O Box 5400, 90014, Oulu, Finland
| |
Collapse
|
118
|
Cheng CY, Yang AJ, Ekambaranellore P, Huang KC, Lin WW. Anti-obesity action of INDUS810, a natural compound from Trigonella foenum-graecum: AMPK-dependent lipolysis effect in adipocytes. Obes Res Clin Pract 2018; 12:562-569. [DOI: 10.1016/j.orcp.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
|
119
|
Silvester AJ, Aseer KR, Yun JW. Dietary polyphenols and their roles in fat browning. J Nutr Biochem 2018; 64:1-12. [PMID: 30414469 DOI: 10.1016/j.jnutbio.2018.09.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/08/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
Discovery of the presence of brown adipose tissue (BAT) in newborn babies and adult humans, especially constitutively active brown fat or inducible beige fat, has led to the investigation of strategies employing BAT aimed at the development of novel therapeutic avenues for combating obesity and diabetes. Such antiobesity therapeutic tools include pharmaceutical and nutraceutical dietary polyphenols. Although there have been emerging notable advances in knowledge of and an increased amount of research related to brown and beige adipocyte developmental lineages and transcriptional regulators, current knowledge regarding whether and how food factors and environmental modifiers of BAT influence thermogenesis has not been extensively investigated. Therefore, in this review, we summarized recent updates on the exploration of dietary polyphenols while paying attention to the activation of BAT and thermogenesis. Specifically, we summarized findings pertaining to BAT metabolism, white adipose tissue (WAT) browning and thermogenic function of polyphenols (e.g., flavan-3-ols, green tea catechins, resveratrol, capsaicin/capsinoids, curcumin, thymol, chrysin, quercetin and berberine) that may foster a relatively safe and effective therapeutic option to improve metabolic health. We also deciphered the underlying proposed mechanisms through which these dietary polyphenols facilitate BAT activity and WAT browning. Characterization of thermogenic dietary factors may offer novel insight enabling revision of nutritional intervention strategies aimed at obesity and diabetes prevention and management. Moreover, identification of polyphenolic dietary factors among plant-derived natural compounds may provide information that facilitates nutritional intervention strategies against obesity, diabetes and metabolic syndrome.
Collapse
Affiliation(s)
| | - Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
120
|
Kim Y, Clifton P. Curcumin, Cardiometabolic Health and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102093. [PMID: 30250013 PMCID: PMC6210685 DOI: 10.3390/ijerph15102093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric (Curcuma longa)] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
121
|
Soltani A, Salmaninejad A, Jalili‐Nik M, Soleimani A, Javid H, Hashemy SI, Sahebkar A. 5′‐Adenosine monophosphate‐activated protein kinase: A potential target for disease prevention by curcumin. J Cell Physiol 2018; 234:2241-2251. [DOI: 10.1002/jcp.27192] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Arash Soltani
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Arash Salmaninejad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Mohammad Jalili‐Nik
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Anvar Soleimani
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Hossein Javid
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhad Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical SciencesMashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical SciencesMashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhad Iran
- School of Pharmacy, Mashhad University of Medical SciencesMashhad Iran
| |
Collapse
|
122
|
Flavonoids, Potential Bioactive Compounds, and Non-Shivering Thermogenesis. Nutrients 2018; 10:nu10091168. [PMID: 30149637 PMCID: PMC6164844 DOI: 10.3390/nu10091168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity results from the body having either high energy intake or low energy expenditure. Based on this energy equation, scientists have focused on increasing energy expenditure to prevent abnormal fat accumulation. Activating the human thermogenic system that regulates body temperature, particularly non-shivering thermogenesis in either brown or white adipose tissue, has been suggested as a promising solution to increase energy expenditure. Together with the increasing interest in understanding the mechanism by which plant-derived dietary compounds prevent obesity, flavonoids were recently shown to have the potential to regulate non-shivering thermogenesis. In this article, we review the latest research on flavonoid derivatives that increase energy expenditure through non-shivering thermogenesis.
Collapse
|
123
|
Ginsenoside Rg1 promotes browning by inducing UCP1 expression and mitochondrial activity in 3T3-L1 and subcutaneous white adipocytes. J Ginseng Res 2018; 43:589-599. [PMID: 31695565 PMCID: PMC6823768 DOI: 10.1016/j.jgr.2018.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background Panax ginseng Meyer is known as a conventional herbal medicine, and ginsenoside Rg1, a steroid glycoside, is one of its components. Although Rg1 has been proved to have an antiobesity effect, the mechanism of this effect and whether it involves adipose browning have not been elucidated. Methods 3T3-L1 and subcutaneous white adipocytes from mice were used to access the thermogenic effect of Rg1. Adipose mitochondria and uncoupling protein 1 (UCP1) expression were analyzed by immunofluorescence. Protein level and mRNA of UCP1 were also evaluated by Western blotting and real-time polymerase chain reaction, respectively. Results Rg1 dramatically enhanced expression of brown adipocyte–specific markers, such as UCP1 and fatty acid oxidation genes, including carnitine palmitoyltransferase 1. In addition, it modulated lipid metabolism, activated 5′ adenosine monophosphate (AMP)-activated protein kinase, and promoted lipid droplet dispersion. Conclusions Rg1 increases UCP1 expression and mitochondrial biogenesis in 3T3-L1 and subcutaneous white adipose cells isolated from C57BL/6 mice. We suggest that Rg1 exerts its antiobesity effects by promoting adipocyte browning through activation of the AMP-activated protein kinase pathway.
Collapse
|
124
|
Xu L, Zhao W, Wang D, Ma X. Chinese Medicine in the Battle Against Obesity and Metabolic Diseases. Front Physiol 2018; 9:850. [PMID: 30042690 PMCID: PMC6048988 DOI: 10.3389/fphys.2018.00850] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Obesity is a multi-factor chronic disease caused by the mixed influence of genetics, environments and an imbalance of energy intake and expenditure. Due to lifestyle changes, modern society sees a rapid increase in obesity occurrence along with an aggravated risk of metabolic syndromes in the general population, including diabetes, hepatic steatosis, cardiovascular diseases and certain types of cancer. Although obesity has become a serious worldwide public health hazard, effective and safe drugs treating obesity are still missing. Traditional Chinese medicine (TCM) has been implicated in practical use in China for thousands of years and has accumulated substantial front line experience in treating various diseases. Compared to western medicine that features defined composition and clear molecular mechanisms, TCM is consisted with complex ingredients from plants and animals and prescribed based on overall symptoms and collective experience. Because of their fundamental differences, TCM and western medicine were once considered irreconcilable. However, nowadays, sophisticated isolation technologies and deepened molecular understanding of the active ingredients of TCM are gradually bridging the gap between the two, enabling the identification of active TCM components for drug development under the western-style paradigms. Thus, studies on TCM open a new therapeutic avenue and show great potential in the combat against obesity, though challenges exist. In this review, we highlight six key candidate substances derived from TCM, including artemisinin, curcumin, celastrol, capsaicin, berberine and ginsenosides, to review their recent discoveries in the metabolic field, with special focus on their therapeutic efficacy and molecular mechanisms in treating obesity and metabolic diseases. In addition, we discuss the translational challenges and perspectives in implementing modern Chinese medicine into the western pharmaceutical industry.
Collapse
Affiliation(s)
- Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
125
|
Gallotannin derivatives from mango ( Mangifera indica L.) suppress adipogenesis and increase thermogenesis in 3T3-L1 adipocytes in part through the AMPK pathway. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
126
|
Xue H, Wang Z, Hua Y, Ke S, Wang Y, Zhang J, Pan YH, Huang W, Irwin DM, Zhang S. Molecular signatures and functional analysis of beige adipocytes induced from in vivo intra-abdominal adipocytes. SCIENCE ADVANCES 2018; 4:eaar5319. [PMID: 30116775 PMCID: PMC6093709 DOI: 10.1126/sciadv.aar5319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Beige adipocytes can be induced from white adipocytes and precursors upon stimulation by cold temperatures and act like brown adipocytes to increase energy expenditure. Most in vivo studies examining the mechanisms for the induction of beige adipocytes have focused on subcutaneous white adipose tissue (sWAT; benign fat) in the mouse. How intra-abdominal WAT (aWAT; malignant fat) develops into beige adipocytes remains obscure, largely because there is a lack of a good animal model for the induction of beige adipocytes from aWAT. To better understand the development of beige adipocytes from mammalian WATs, especially aWAT, we induced beige adipocytes from bat aWAT and mouse sWAT by exposure to cold temperatures and analyzed their molecular signatures. RNA sequencing followed by whole genome-wide expression analysis shows that beige adipocytes induced from bat aWAT, rather than sWAT, have molecular signatures resembling those of mouse sWAT-induced beige adipocytes and exhibit dynamic profiles similar to those of classical brown adipocytes. In addition, we identified molecular markers that were highly enriched in beige adipocytes and conserved between bat aWAT and mouse sWAT, a set that included the genes Uqcrc1 and Letm1. Furthermore, knockdown of Uqcrc1 and Letm1 expression shows that they are required not only for beige adipocyte differentiation but also for preadipocyte maturation. This study presents a new model for research into the induction of beige adipocytes from aWAT in vivo, which, when combined with models where beige adipocytes are induced from sWAT, provides insight into therapeutic approaches for combating obesity-related diseases in humans.
Collapse
Affiliation(s)
- Huiling Xue
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yongjie Hua
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Shanshan Ke
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Yao Wang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Junpeng Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai 200062, China
| | - Wenjie Huang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai 200062, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuyi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
127
|
Unno Y, Yamamoto H, Takatsuki S, Sato Y, Kuranaga T, Yazawa K, Ono Y, Wakimoto T. Palmitoyl lactic acid induces adipogenesis and a brown fat-like phenotype in 3T3-L1 preadipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:772-782. [DOI: 10.1016/j.bbalip.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/08/2018] [Indexed: 12/01/2022]
|
128
|
Samuels JS, Shashidharamurthy R, Rayalam S. Novel anti-obesity effects of beer hops compound xanthohumol: role of AMPK signaling pathway. Nutr Metab (Lond) 2018; 15:42. [PMID: 29946343 PMCID: PMC6003190 DOI: 10.1186/s12986-018-0277-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity alters adipose tissue metabolic and endocrine functioning, leading to an increased adiposity and release of pro-inflammatory cytokines. Various phytochemicals have been reported to contribute to the beiging of white adipose tissue in order to ameliorate obesity by increasing thermogenesis. Here, we show that the prenylated chalcone, xanthohumol (XN), induces beiging of white adipocytes, stimulates lipolysis, and inhibits adipogenesis of murine 3T3-L1 adipocytes and primary human subcutaneous preadipocytes and these effects are partly mediated by the activation of the AMP-activated protein kinase (AMPK) signaling pathway. METHODS 3T3-L1 adipocytes and primary human subcutaneous preadipocytes were differentiated using a standard protocol and were treated with various concentrations of XN, dorsomorphin, an AMPK inhibitor, or AICAR, an AMPK activator, to investigate the effects on adipogenesis, beiging and lipolysis. RESULTS XN induced beiging of white adipocytes as witnessed by the increased expression of beige markers CIDE-A and TBX-1. XN increased mitochondrial biogenesis, as evidenced by increased mitochondrial content, enhanced expression of PGC-1α, and the thermogenic protein UCP1. Following 24 h of treatment, XN also increased oxygen consumption rate. XN stimulated lipolysis of mature 3T3-L1 and primary human subcutaneous adipocytes and inhibited adipogenesis of maturing adipocytes. XN activated AMPK and in turn, XN-induced upregulation of UCP1, p-ACC, HSL, and ATGL was downregulated in the presence of dorsomorphin. Likewise, an XN-induced decrease in adipogenesis was reversed in the presence of dorsomorphin. CONCLUSIONS Taken together, XN demonstrates anti-obesity effects by not only inducing beiging but also decreasing adipogenesis and inducing lipolysis. The anti-obesity effects of XN are partly mediated by AMPK signaling pathway suggesting that XN may have potential therapeutic implications for obesity.
Collapse
Affiliation(s)
- Janaiya S. Samuels
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| | - Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, 625 Old Peachtree Rd NW, Suwannee, GA 30024 USA
| |
Collapse
|
129
|
Kang NH, Mukherjee S, Min T, Kang SC, Yun JW. Trans-anethole ameliorates obesity via induction of browning in white adipocytes and activation of brown adipocytes. Biochimie 2018; 151:1-13. [PMID: 29803631 DOI: 10.1016/j.biochi.2018.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
Abstract
To treat obesity, suppression of white adipose tissue (WAT) expansion and activation of brown adipose tissue (BAT) are considered as potential therapeutic targets. Recent advances have been made in the induction of brown fat-like adipocytes (beige) in WAT, which represents an attractive potential strategy for the management and treatment of obesity. Use of natural compounds for browning of white adipocytes can be considered as a safe and novel strategy against obesity. Here, we report that trans-anethole (TA), a flavoring substance present in the essential oils of various plants, alleviated high fat diet (HFD)-induced obesity in mice models via elevation of the expression of beige-specific genes such as Ppargc1α, Prdm16, Ucp1, Cd137, Cited1, Tbx1, and Tmem26. TA also regulated lipid metabolism in white adipocytes via reduction of adipogenesis and lipogenesis as well as elevation of lipolysis and fat oxidation. Moreover, TA exhibited thermogenic activity by increasing mitochondrial biogenesis in white adipocytes and activating brown adipocytes. In addition, molecular docking analysis enabled us to successfully predict core proteins for fat browning such as β3-adrenergic receptor (β3-AR) and sirtuin1 (SIRT1) based on their low binding energy interactions with TA for promotion of regulatory mechanisms. Indeed, agonistic and antagonistic studies demonstrated that TA induced browning of 3T3-L1 adipocytes through activation of β3-AR as well as the AMPK-mediated SIRT1 pathway regulating PPARα and PGC-1α. In conclusion, TA possesses potential therapeutic implications for treatment of obesity by playing multiple modulatory roles in the induction of white fat browning, activation of brown adipocytes, and promotion of lipid catabolism.
Collapse
Affiliation(s)
- Nam Hyeon Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Taesun Min
- Faculty of Biotechnology, Major of Animal Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
130
|
Abstract
Numerous natural products available over the counter are commonly consumed by healthy, sub-healthy or ill people for the treatment and prevention of various chronic diseases. Among them, a few dietary polyphenols, including the curry compound curcumin, have been attracting the most attention from biomedical researchers and drug developers. Unlike many so-called "good drug candidates", curcumin and several other dietary polyphenols do not have a single known therapeutic target or defined receptor. In addition, the bioavailability of these polyphenols is usually very low due to their poor absorption in the gut. These recently debated features have created enormous difficulties for drug developers. In this review, I do not discuss how to develop curcumin, other dietary polyphenols or their derivatives into pharmaceutical agents. Instead, I comment on how curcumin and dietary polyphenol research has enriched our knowledge of insulin signaling, including the presentation of my perspectives on how these studies will add to our understanding of the famous hepatic insulin function paradox.
Collapse
|
131
|
|
132
|
Simpson–Golabi–Behmel syndrome human adipocytes reveal a changing phenotype throughout differentiation. Histochem Cell Biol 2018; 149:593-605. [DOI: 10.1007/s00418-018-1663-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
|
133
|
Milk Fat Globule Membrane Attenuates High-Fat Diet-Induced Obesity by Inhibiting Adipogenesis and Increasing Uncoupling Protein 1 Expression in White Adipose Tissue of Mice. Nutrients 2018. [PMID: 29522452 PMCID: PMC5872749 DOI: 10.3390/nu10030331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Milk fat globule membrane (MFGM), a protein-lipid complex surrounding the fat globules in milk, has many health benefits. The aim of the current study was to investigate whether MFGM could prevent obesity through inhibiting adipogenesis and promoting brown remodeling of white adipose tissue (WAT) in mice fed with high-fat diet. C57BL/6 mice were fed a normal diet (ND), high-fat diet (HFD), HFD plus MFGM at 100 mg/kg BW, 200 mg/kg BW or 400 mg/kg BW for 8 weeks. Results showed that MFGM suppressed body weight gain induced by HFD, reduced white adipose tissue (WAT) mass accompanied with the decrease in adipocyte sizes. MFGM was found to have partially improved serum lipid profiles, as well as to have suppressed HFD-induced adipogenesis as shown by reduced expression of peroxisome proliferators-activator receptor-γ (PPARγ), CCAAT/enhancer-binding protein-α (C/EBPα) and sterol regulatory element-binding protein-1c (SREBP-1c). MFGM also markedly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), showing activation of AMPK pathway. Moreover, MFGM promoted browning of inguinal WAT by upregulation the protein expression of uncoupling protein 1 (UCP1) in HFD mice. Taken together, these findings provide evidence that MFGM may protect against diet-induced adiposity by suppressing adipogenesis and promoting brown-like transformation in WAT.
Collapse
|
134
|
Imran KM, Yoon D, Kim YS. A pivotal role of AMPK signaling in medicarpin-mediated formation of brown and beige. Biofactors 2018; 44:168-179. [PMID: 29064586 DOI: 10.1002/biof.1392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Obesity poses a substantial threat of a worldwide epidemic and requires better understanding of adipose-tissue biology as well as necessitates research into the etiology and therapeutic interventions. In this study, Medicarpin (Med), a natural pterocarpan, was selected (by screening) as a small-molecule inducer of adipocyte differentiation among 854 candidates by using C3H10T1/2 mesenchymal stem cell; a cellular model of adipogenesis. Med induced the expression of brown-adipocyte commitment marker Bmp7 as well as the early regulators of brown fat fate Pparγ, Prdm16, and Pgc-1α during differentiation of C3H10T1/2 mesenchymal stem cells. Med also induced the expression of a key thermogenic marker-uncoupling protein 1 (UCP1)-along with expression of other brown-fat-specific markers and beige-fat-specific markers. Of note, Med significantly reduced the expression of white fat markers too. Furthermore, Med treatment promoted formation of multilocular lipid droplets (LDs), expression of mitochondrial-biogenesis-related genes, and increased oxygen consumption. Gene silencing study revealed that Med promotes the development of brown- and beige-adipocyte characteristics in C3H10T1/2 mesenchymal stem cells through activation of the AMPK pathway, and our data allow us to propose Med as a candidate for therapeutics against obesity or related metabolic disorders. © 2017 BioFactors, 44(2):168-179, 2018.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
| | - Dahyeon Yoon
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam, 330-090, Korea
| |
Collapse
|
135
|
Zhu E, Yang Y, Zhang J, Li Y, Li C, Chen L, Sun B. Liraglutide suppresses obesity and induces brown fat-like phenotype via Soluble Guanylyl Cyclase mediated pathway in vivo and in vitro. Oncotarget 2018; 7:81077-81089. [PMID: 27835589 PMCID: PMC5348377 DOI: 10.18632/oncotarget.13189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Strategies for driving white adipose tissue (WAT) to acquire brown-like characteristics are a promising approach to reduce obesity. Liraglutide has been reported to active brown adipose tissue (BAT) thermogenesis and WAT browning by rapid intracerebroventricular injection in mice. In this study, we investigated the effects and possible mechanisms of liraglutide on WAT browning by chronic treatment. Here, we show that liraglutide significantly decreases body weight of mice and reduces the size of white adipocytes. By quantity polymerase chain reaction, immunoblotting analysis, cell immunofluorescence or immunocytochemical staining, we found liraglutide induced WAT browning because it up-regulated lipolytic activity, BAT, as well as mitochondrial marker genes in inguinal and peripheral renal WAT. We also confirmed liraglutide induced browning of 3T3-L1 because it enhanced expression of BAT and mitochondrial specific genes. In further, we observed that, soluble guanylyl cyclase (sGC) and protein kinase G I (PKGI) were up-regulated by liraglutide in vivo and in vitro; stimulation of sGC elevated expression of BAT markers and PKGI, which suggested that liraglutide induced WAT browning via sGC-dependent pathway. Taken together, this study expands our knowledge on the mechanism of liraglutide inducing WAT browning, and provides a theoretical support for clinical usage of liraglutide on obesity treatment.
Collapse
Affiliation(s)
- Endong Zhu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Yang Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Juanjuan Zhang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Yongmei Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China.,Department of Human Anatomy and Histology, Tianjin Medical University, 300070 Tianjin, China
| | - Chunjun Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| |
Collapse
|
136
|
Nishikawa S, Kamiya M, Aoyama H, Nomura M, Hyodo T, Ozeki A, Lee H, Takahashi T, Imaizumi A, Tsuda T. Highly Dispersible and Bioavailable Curcumin but not Native Curcumin Induces Brown-Like Adipocyte Formation in Mice. Mol Nutr Food Res 2018; 62. [PMID: 29334590 DOI: 10.1002/mnfr.201700731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Indexed: 12/21/2022]
Abstract
SCOPE The induction of brown-like adipocytes in white adipose tissue (WAT) is a potential therapeutic target for the treatment of obesity and metabolic disorders via the ability of these cells to release excess energy as heat in association with uncoupling protein 1. Some experimental trials suggest that curcumin (a yellow pigment from turmeric) has a suppressive effect on the accumulation of body fat. However, there is little evidence to show that curcumin induces the formation of brown-like adipocytes and the molecular mechanisms involved remain elusive. In addition, in most experimental trials, high doses of curcumin are administered. METHODS AND RESULTS Highly dispersible and bioavailable curcumin (HC, i.e., 4.5 mg native curcumin kg-1 ) but not the same dose of native curcumin induces the formation of brown-like adipocytes in mouse inguinal WAT. Moreover, the formation of brown-like adipocytes induced by HC in inguinal WAT may be mediated by the production of local norepinephrine from accumulated alternatively activated macrophages. CONCLUSION These novel findings suggest that curcumin increases energy expenditure by inducing the formation of brown-like adipocytes via a unique molecular mechanism. Importantly, they show that HC has significant bioactive effects in vivo at lower doses of curcumin.
Collapse
Affiliation(s)
- Sho Nishikawa
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Misa Kamiya
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiroki Aoyama
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Mami Nomura
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takuma Hyodo
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Aoi Ozeki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | | | | | | | - Takanori Tsuda
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| |
Collapse
|
137
|
Secoisolariciresinol diglucoside inhibits adipogenesis through the AMPK pathway. Eur J Pharmacol 2018; 820:235-244. [DOI: 10.1016/j.ejphar.2017.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022]
|
138
|
Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB, Liu JH. Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun 2018; 496:287-293. [PMID: 29317208 DOI: 10.1016/j.bbrc.2018.01.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
|
139
|
Chaudhuri R, Krycer JR, Fazakerley DJ, Fisher-Wellman KH, Su Z, Hoehn KL, Yang JYH, Kuncic Z, Vafaee F, James DE. The transcriptional response to oxidative stress is part of, but not sufficient for, insulin resistance in adipocytes. Sci Rep 2018; 8:1774. [PMID: 29379070 PMCID: PMC5789081 DOI: 10.1038/s41598-018-20104-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is a major risk factor for metabolic diseases such as Type 2 diabetes. Although the underlying mechanisms of insulin resistance remain elusive, oxidative stress is a unifying driver by which numerous extrinsic signals and cellular stresses trigger insulin resistance. Consequently, we sought to understand the cellular response to oxidative stress and its role in insulin resistance. Using cultured 3T3-L1 adipocytes, we established a model of physiologically-derived oxidative stress by inhibiting the cycling of glutathione and thioredoxin, which induced insulin resistance as measured by impaired insulin-stimulated 2-deoxyglucose uptake. Using time-resolved transcriptomics, we found > 2000 genes differentially-expressed over 24 hours, with specific metabolic and signalling pathways enriched at different times. We explored this coordination using a knowledge-based hierarchical-clustering approach to generate a temporal transcriptional cascade and identify key transcription factors responding to oxidative stress. This response shared many similarities with changes observed in distinct insulin resistance models. However, an anti-oxidant reversed insulin resistance phenotypically but not transcriptionally, implying that the transcriptional response to oxidative stress is insufficient for insulin resistance. This suggests that the primary site by which oxidative stress impairs insulin action occurs post-transcriptionally, warranting a multi-level ‘trans-omic’ approach when studying time-resolved responses to cellular perturbations.
Collapse
Affiliation(s)
- Rima Chaudhuri
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - James R Krycer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Zhiduan Su
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jean Yee Hwa Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zdenka Kuncic
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Physics and Australian Institute for Nanoscale Science and Technology, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - David E James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia. .,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia. .,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
140
|
Lu M, Cao Y, Xiao J, Song M, Ho CT. Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: a review. Food Funct 2018; 9:4569-4581. [DOI: 10.1039/c8fo01349g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mechanisms of the anti-obesity effects of bioactive compounds in common spices in adipocytes, animal models and human participants have been reviewed.
Collapse
Affiliation(s)
- Muwen Lu
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
- Department of Food Science
| | - Yong Cao
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Jie Xiao
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
- Department of Food Science
| | - Mingyue Song
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
- Department of Food Science
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| |
Collapse
|
141
|
Abstract
Since the rediscovery of brown adipose tissue (BAT) in humans, its energy-dissipating ability has been well-recognized. The negative correlations of BAT activity with adiposity and insulin sensitivity provided an obvious rationale for discerning reliable and practical strategies for stimulating BAT. Though cold exposure or use of pharmacological adrenomimetics can activate BAT, they may have adverse effects. Therefore, determining alternative stimulants of BAT with lower risks such as commonly used food ingredients is highly desirable. Recent observations revealed that chemical activation of temperature-sensitive transient receptor potential (TRP) channels by food ingredients can recruit BAT in humans. Furthermore, animal studies have identified several food-derived stimulants of BAT acting through multiple mechanisms distinct from a TRP-mediated process. Dietary compounds acting as an activator of Sirtuin 1, a critical regulator of mitochondrial biogenesis and brown adipocyte differentiation, are one such class of promising food-derived BAT activators in humans. While the individual effects of various dietary factors are increasingly established in a laboratory setting, the potential synergistic effects of multiple stimulants on BAT remain to be tested in a clinical environment. These investigations may support the development of efficient, flexible dietary regimens capable of boosting BAT thermogenesis.
Collapse
|
142
|
Lone J, Yun JW. Honokiol exerts dual effects on browning and apoptosis of adipocytes. Pharmacol Rep 2017; 69:1357-1365. [DOI: 10.1016/j.pharep.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/06/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022]
|
143
|
Milet C, Bléher M, Allbright K, Orgeur M, Coulpier F, Duprez D, Havis E. Egr1 deficiency induces browning of inguinal subcutaneous white adipose tissue in mice. Sci Rep 2017; 7:16153. [PMID: 29170465 PMCID: PMC5701004 DOI: 10.1038/s41598-017-16543-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Beige adipocyte differentiation within white adipose tissue, referred to as browning, is seen as a possible mechanism for increasing energy expenditure. The molecular regulation underlying the thermogenic browning process has not been entirely elucidated. Here, we identify the zinc finger transcription factor EGR1 as a negative regulator of the beige fat program. Loss of Egr1 in mice promotes browning in the absence of external stimulation and leads to an increase of Ucp1 expression, which encodes the key thermogenic mitochondrial uncoupling protein-1. Moreover, EGR1 is recruited to the proximal region of the Ucp1 promoter in subcutaneous inguinal white adipose tissue. Transcriptomic analysis of subcutaneous inguinal white adipose tissue in the absence of Egr1 identifies the molecular signature of white adipocyte browning downstream of Egr1 deletion and highlights a concomitant increase of beige differentiation marker and a decrease in extracellular matrix gene expression. Conversely, Egr1 overexpression in mesenchymal stem cells decreases beige adipocyte differentiation, while increasing extracellular matrix production. These results reveal a role for Egr1 in blocking energy expenditure via direct Ucp1 transcription repression and highlight Egr1 as a therapeutic target for counteracting obesity.
Collapse
Affiliation(s)
- Cécile Milet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France
| | - Marianne Bléher
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France
| | | | - Mickael Orgeur
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France
| | - Fanny Coulpier
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École normale supérieure (IBENS), Plateforme Génomique, 75005, Paris, France
| | - Delphine Duprez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
| | - Emmanuelle Havis
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR7622, Inserm U1156, IBPS-Developmental Biology Laboratory, F-75005, Paris, France.
| |
Collapse
|
144
|
Liu Z, Cui C, Xu P, Dang R, Cai H, Liao D, Yang M, Feng Q, Yan X, Jiang P. Curcumin Activates AMPK Pathway and Regulates Lipid Metabolism in Rats Following Prolonged Clozapine Exposure. Front Neurosci 2017; 11:558. [PMID: 29046626 PMCID: PMC5632657 DOI: 10.3389/fnins.2017.00558] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Clozapine (CLO) remains an ultimate option for patients with treatment resistant schizophrenia. However, the atypical antipsychotic is often associated with serious metabolic side effects, such as dyslipidemia. Hepatic sterol regulatory element-binding proteins (SREBPs) are central in the allosteric control of a variety of lipid biosynthetic pathways. There is emerging evidence that CLO can activate SREBP pathway and enhance downstream lipogenesis, whereas curcumin (CUR), a major active compound of Curcuma longa, contains hypolipidemic properties. Therefore, in the present study, we examined the protective effects of CUR against CLO-induced lipid disturbance and analyzed the expression of key components in hepatic lipid metabolism. Our data showed that 4-week treatment of CLO (15 mg/kg/day) markedly elevated serum lipid levels and resulted in hepatic lipid accumulation, whereas co-treatment of CUR (80 mg/kg/day) alleviated the CLO-induced dyslipidemia. We further demonstrated that CUR appears to be a novel AMP-activated protein kinase (AMPK) agonist, which enhanced AMPK phosphorylation and mitigated CLO-induced SREBP overexpression. Additionally, CUR also modulated the downstream SREBP-targeted genes involved in fatty acid synthesis and cholesterol metabolism, including fatty acid synthase (FAS) and HMG-CoA reductase (HMGCR). In summary, our study suggests that the suppressed AMPK activity and thereby enhanced SREBP-dependent lipid synthesis could be associated with the antipsychotic-stimulated dyslipidemia, whereas CUR may maintain lipid homeostasis by directly binding to AMPK, indicating that adjunctive use of CUR could be a promising preventive strategy for the drug-induced lipogenesis.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Hualin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingyan Feng
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
145
|
Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats. Nutrients 2017; 9:nu9090999. [PMID: 28891956 PMCID: PMC5622759 DOI: 10.3390/nu9090999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022] Open
Abstract
Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.
Collapse
|
146
|
Mele L, Bidault G, Mena P, Crozier A, Brighenti F, Vidal-Puig A, Del Rio D. Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. Adv Nutr 2017; 8:694-704. [PMID: 28916570 PMCID: PMC5593103 DOI: 10.3945/an.117.015792] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The incidence of overweight and obesity has reached epidemic proportions, making the control of body weight and its complications a primary health problem. Diet has long played a first-line role in preventing and managing obesity. However, beyond the obvious strategy of restricting caloric intake, growing evidence supports the specific antiobesity effects of some food-derived components, particularly (poly)phenolic compounds. The relatively new rediscovery of active brown adipose tissue in adult humans has generated interest in this tissue as a novel and viable target for stimulating energy expenditure and controlling body weight by promoting energy dissipation. This review critically discusses the evidence supporting the concept that the antiobesity effects ascribed to (poly)phenols might be dependent on their capacity to promote energy dissipation by activating brown adipose tissue. Although discrepancies exist in the literature, most in vivo studies with rodents strongly support the role of some (poly)phenol classes, particularly flavan-3-ols and resveratrol, in promoting energy expenditure. Some human data currently are available and most are consistent with studies in rodents. Further investigation of effects in humans is warranted.
Collapse
Affiliation(s)
- Laura Mele
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust–Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Pedro Mena
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Furio Brighenti
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust–Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom;,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom; and
| | - Daniele Del Rio
- Laboratory of Phytochemicals in Physiology, Department of Food and Drugs, University of Parma, Parma, Italy;,Need for Nutrition Education/Innovation Programme Global Centre for Nutrition and Health, St John’s Innovation Centre, Cambridge, United Kingdom
| |
Collapse
|
147
|
Imran KM, Rahman N, Yoon D, Jeon M, Lee BT, Kim YS. Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1110-1120. [PMID: 28807877 DOI: 10.1016/j.bbalip.2017.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
Abstract
Although white adipose tissue (WAT) stores triglycerides and contributes to obesity, brown adipose tissue (BAT) dissipates energy as heat. Therefore, browning of WAT is regarded as an attractive way to counteract obesity. Our previous studies have revealed that treatment with cryptotanshinone (CT) during adipogenesis of 3T3-L1 cells inhibits their differentiation. Here, we found that pretreatment of C3H10T1/2 mesenchymal stem cells with CT before exposure to adipogenic hormonal stimuli promotes the commitment of these mesenchymal stem cells to the adipocyte lineage as confirmed by increased triglyceride accumulation. Furthermore, CT treatment induced the expression of early B-cell factor 2 (Ebf2) and bone morphogenetic protein 7 (Bmp7), which are known to drive differentiation of C3H10T1/2 mesenchymal stem cells toward preadipocytes and to the commitment to brown adipocytes. Consequently, CT treatment yielded brown-adipocyte-like features as evidenced by elevated expression of brown-fat signature genes including Ucp1, Prdm16, Pgc-1α, Cidea, Zic1, and beige-cell-specific genes such as CD137, Hspb7, Cox2, and Tmem26. Additionally, CT treatment induced mitochondrial biogenesis through upregulation of Sirt1, Tfam, Nrf1, and Cox7a and increased mitochondrial mass and DNA content. Our data also showed that cotreatment with CT and BMP4 was more effective at activating brown-adipocyte-specific genes. Mechanistic experiments revealed that treatment with CT activated AMPKα and p38-MAPK via their phosphorylation: the two major signaling pathways regulating energy metabolism. Thus, these findings suggest that CT is a candidate therapeutic agent against obesity working via activation of browning and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Naimur Rahman
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Dahyeon Yoon
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Miso Jeon
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea; Dept. of Tissue Engineering, College of Medicine, Soonchunhyang University, Korea
| | - Yong-Sik Kim
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea.
| |
Collapse
|
148
|
Zhao J, Yang Q, Zhang L, Liang X, Sun X, Wang B, Chen Y, Zhu M, Du M. AMPKα1 deficiency suppresses brown adipogenesis in favor of fibrogenesis during brown adipose tissue development. Biochem Biophys Res Commun 2017; 491:508-514. [PMID: 28668388 DOI: 10.1016/j.bbrc.2017.06.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
Abstract
Brown adipose tissue (BAT) dissipates energy for thermogenesis which reduces or prevents obesity and metabolic dysfunction. AMP-activated protein kinase (AMPK) is a master regulator of energy metabolism and its activity is inhibited in the developing BAT due to obesity. We previously found that AMPK is required for brown fat development and thermogenic function, but the non-brown adipogenic differentiation of progenitor cells due to AMPKα1 deficiency has not been defined. We found that, in vivo, the thermogenic capacity and morphology of BAT were compromised due to AMPK deficiency, which was correlated with decreased progenitor density in BAT. In addition, the expression of fibrogenic markers was higher in AMPK deficient compared to wild-type mice. Furthermore, we transplanted AMPKα1 wild-type (WT) and floxed BAT into the same recipient mice; following tamoxifen induced AMPKα1 knockout in floxed BAT, the fibrogenesis was enhanced compared to WT mice. Taken together, our data demonstrated that AMPKα1 deficiency suppressed brown adipogenesis in favor of fibrogenesis during BAT development.
Collapse
Affiliation(s)
- Junxing Zhao
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Qiyuan Yang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Lupei Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingwei Liang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Xiaofei Sun
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Bo Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Yanting Chen
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Meijun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Department of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030800, China; Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
149
|
Okla M, Kim J, Koehler K, Chung S. Dietary Factors Promoting Brown and Beige Fat Development and Thermogenesis. Adv Nutr 2017; 8:473-483. [PMID: 28507012 PMCID: PMC5421122 DOI: 10.3945/an.116.014332] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized fat tissue that has a high capacity to dissociate cellular respiration from ATP utilization, resulting in the release of stored energy as heat. Adult humans possess a substantial amount of BAT in the form of constitutively active brown fat or inducible beige fat. BAT activity in humans is inversely correlated with adiposity, blood glucose concentrations, and insulin sensitivity; this suggests that strategies aimed at BAT-mediated bioenergetics are an attractive therapeutic target in combating the continuing epidemic of obesity and diabetes. Despite advances in knowledge regarding the developmental lineage and transcriptional regulators of brown and beige adipocytes, our current understanding of environmental modifiers of BAT thermogenesis, such as diet, is limited. In this review, we consolidated the latest research on dietary molecules that may serve to promote BAT thermogenesis. Here, we summarized the thermogenic function of selected phytochemicals (e.g., capsaicin, resveratrol, curcumin, green tea, and berberine), dietary fatty acids (e.g., fish oil and conjugated linoleic acids), and all-trans retinoic acid, a vitamin A metabolite. We also delineated the proposed mechanisms whereby these dietary molecules promote BAT activity and/or browning of white adipose tissue. Characterizing thermogenic dietary factors may offer novel insight into revising nutritional intervention strategies aimed at obesity and diabetes prevention and management.
Collapse
Affiliation(s)
- Meshail Okla
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jiyoung Kim
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| | - Karsten Koehler
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE; and
| |
Collapse
|
150
|
Montanari T, Pošćić N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev 2017; 18:495-513. [PMID: 28187240 DOI: 10.1111/obr.12520] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
Obesity is the result of energy intake chronically exceeding energy expenditure. Classical treatments against obesity do not provide a satisfactory long-term outcome for the majority of patients. After the demonstration of functional brown adipose tissue in human adults, great effort is being devoted to develop therapies based on the adipose tissue itself, through the conversion of fat-accumulating white adipose tissue into energy-dissipating brown adipose tissue. Anti-obesity treatments that exploit endogenous, pharmacological and nutritional factors to drive such conversion are especially in demand. In the present review, we summarize the current knowledge about the various molecules that can be applied in promoting white-to-brown adipose tissue conversion and energy expenditure and the cellular mechanisms involved.
Collapse
Affiliation(s)
- T Montanari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - N Pošćić
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - M Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|