101
|
Belin C, Bashandy T, Cela J, Delorme-Hinoux V, Riondet C, Reichheld JP. A comprehensive study of thiol reduction gene expression under stress conditions in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2015; 38:299-314. [PMID: 24428628 DOI: 10.1111/pce.12276] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 05/08/2023]
Abstract
Thiol reduction proteins are key regulators of the redox state of the cell, managing development and stress response programs. In plants, thiol reduction proteins, namely thioredoxin (TRX), glutaredoxin (GRX), and their respective reducers glutathione reductase (GR) and thioredoxin reductase (TR), are organized in complex multigene families. In order to decipher the function of the different proteins, it is necessary to have a clear picture of their respective expression profiles. By collecting information from gene expression databases, we have performed a comprehensive in silico study of the expression of all members of different classes of thiol reduction genes (TRX, GRX) in Arabidopsis thaliana. Tissue expression profiles and response to many biotic and abiotic stress conditions have been studied systematically. Altogether, the significance of our data is discussed with respect to published biochemical and genetic studies.
Collapse
Affiliation(s)
- C Belin
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860, Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860, Perpignan, France
| | | | | | | | | | | |
Collapse
|
102
|
Balmant KM, Parker J, Yoo MJ, Zhu N, Dufresne C, Chen S. Redox proteomics of tomato in response to Pseudomonas syringae infection. HORTICULTURE RESEARCH 2015; 2:15043. [PMID: 26504582 PMCID: PMC4591677 DOI: 10.1038/hortres.2015.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 05/21/2023]
Abstract
Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation-reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses.
Collapse
Affiliation(s)
- Kelly Mayrink Balmant
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Jennifer Parker
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Mi-Jeong Yoo
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Craig Dufresne
- Thermo Fisher Scientific, 1400 Northpoint Parkway, West Palm Beach, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
- E-mail:
| |
Collapse
|
103
|
Jung YJ, Melencion SMB, Lee ES, Park JH, Alinapon CV, Oh HT, Yun DJ, Chi YH, Lee SY. Universal Stress Protein Exhibits a Redox-Dependent Chaperone Function in Arabidopsis and Enhances Plant Tolerance to Heat Shock and Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1141. [PMID: 26734042 PMCID: PMC4685093 DOI: 10.3389/fpls.2015.01141] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/01/2015] [Indexed: 05/20/2023]
Abstract
Although a wide range of physiological information on Universal Stress Proteins (USPs) is available from many organisms, their biochemical, and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990) from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW) species to high molecular weight (HMW) complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.
Collapse
|
104
|
Zila CT, Ogut F, Romay MC, Gardner CA, Buckler ES, Holland JB. Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection. BMC PLANT BIOLOGY 2014; 14:372. [PMID: 25547028 PMCID: PMC4302614 DOI: 10.1186/s12870-014-0372-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/08/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Resistance to Fusarium ear rot of maize is a quantitative and complex trait. Marker-trait associations to date have had small additive effects and were inconsistent between previous studies, likely due to the combined effects of genetic heterogeneity and low power of detection of many small effect variants. The complexity of inheritance of resistance hinders the use marker-assisted selection for ear rot resistance. RESULTS We conducted a genome-wide association study (GWAS) for Fusarium ear rot resistance in a panel of 1687 diverse inbred lines from the USDA maize gene bank with 200,978 SNPs while controlling for background genetic relationships with a mixed model and identified seven single nucleotide polymorphisms (SNPs) in six genes associated with disease resistance in either the complete inbred panel (1687 lines with highly unbalanced phenotype data) or in a filtered inbred panel (734 lines with balanced phenotype data). Different sets of SNPs were detected as associated in the two different data sets. The alleles conferring greater disease resistance at all seven SNPs were rare overall (below 16%) and always higher in allele frequency in tropical maize than in temperate dent maize. Resampling analysis of the complete data set identified one robust SNP association detected as significant at a stringent p-value in 94% of data sets, each representing a random sample of 80% of the lines. All associated SNPs were in exons, but none of the genes had predicted functions with an obvious relationship to resistance to fungal infection. CONCLUSIONS GWAS in a very diverse maize collection identified seven SNP variants each associated with between 1% and 3% of trait variation. Because of their small effects, the value of selection on these SNPs for improving resistance to Fusarium ear rot is limited. Selection to combine these resistance alleles combined with genomic selection to improve the polygenic background resistance might be fruitful. The genes associated with resistance provide candidate gene targets for further study of the biological pathways involved in this complex disease resistance.
Collapse
Affiliation(s)
- Charles T Zila
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - Funda Ogut
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - Maria C Romay
- Institute for Genomic Diversity, Biotechnology bldg., Cornell University, Ithaca, NY, 14853, USA.
| | - Candice A Gardner
- U.S. Department of Agriculture-Agricultural Research Service, North Central Regional Plant Introduction Station, Ames, IA, 50014, USA.
| | - Edward S Buckler
- U.S. Department of Agriculture-Agricultural Research Service, Plant, Soil, and Nutrition Research Unit and Department of Plant Breeding and Genetics, Bradfield Hall, Cornell University, Ithaca, NY, 14853, USA.
| | - James B Holland
- U.S. Department of Agriculture-Agricultural Research Service Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| |
Collapse
|
105
|
González A, Moenne F, Gómez M, Sáez CA, Contreras RA, Moenne A. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees. FRONTIERS IN PLANT SCIENCE 2014; 5:512. [PMID: 25352851 PMCID: PMC4195311 DOI: 10.3389/fpls.2014.00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/12/2014] [Indexed: 05/27/2023]
Abstract
In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandra Moenne
- *Correspondence: Alejandra Moenne, Faculty of Chemistry and Biology, University of Santiago of Chile, 9170022 Santiago, Chile e-mail:
| |
Collapse
|
106
|
Balsera M, Uberegui E, Schürmann P, Buchanan BB. Evolutionary development of redox regulation in chloroplasts. Antioxid Redox Signal 2014; 21:1327-55. [PMID: 24483204 DOI: 10.1089/ars.2013.5817] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The post-translational modification of thiol groups stands out as a key strategy that cells employ for metabolic regulation and adaptation to changing environmental conditions. Nowhere is this more evident than in chloroplasts-the O2-evolving photosynthetic organelles of plant cells that are fitted with multiple redox systems, including the thioredoxin (Trx) family of oxidoreductases functional in the reversible modification of regulatory thiols of proteins in all types of cells. The best understood member of this family in chloroplasts is the ferredoxin-linked thioredoxin system (FTS) by which proteins are modified via light-dependent disulfide/dithiol (S-S/2SH) transitions. RECENT ADVANCES Discovered in the reductive activation of enzymes of the Calvin-Benson cycle in illuminated chloroplast preparations, recent studies have extended the role of the FTS far beyond its original boundaries to include a spectrum of cellular processes. Together with the NADP-linked thioredoxin reductase C-type (NTRC) and glutathione/glutaredoxin systems, the FTS also plays a central role in the response of chloroplasts to different types of stress. CRITICAL ISSUES The comparisons of redox regulatory networks functional in chloroplasts of land plants with those of cyanobacteria-prokaryotes considered to be the ancestors of chloroplasts-and different types of algae summarized in this review have provided new insight into the evolutionary development of redox regulation, starting with the simplest O2-evolving organisms. FUTURE DIRECTIONS The evolutionary appearance, mode of action, and specificity of the redox regulatory systems functional in chloroplasts, as well as the types of redox modification operating under diverse environmental conditions stand out as areas for future study.
Collapse
Affiliation(s)
- Monica Balsera
- 1 Instituto de Recursos Naturales y Agrobiología de Salamanca , Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | | | | | | |
Collapse
|
107
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
108
|
Motohashi K, Okegawa Y. Method for enhancement of plant redox-related protein expression and its application for in vitro reduction of chloroplastic thioredoxins. Protein Expr Purif 2014; 101:152-6. [DOI: 10.1016/j.pep.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/24/2022]
|
109
|
Cheng F, Zhou YH, Xia XJ, Shi K, Zhou J, Yu JQ. Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4335-47. [PMID: 24847092 PMCID: PMC4112637 DOI: 10.1093/jxb/eru207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplast thioredoxins (TRXs) and glutathione function as redox messengers in the regulation of photosynthesis. In this work, the roles of chloroplast TRXs in brassinosteroids (BRs)-induced changes in cellular redox homeostasis and CO2 assimilation were studied in the leaves of tomato plants. BRs-deficient d (^im) plants showed decreased transcripts of TRX-f, TRX-m2, TRX-m1/4, and TRX-x, while exogenous BRs significantly induced CO2 assimilation and the expression of TRX-f, TRX-m2, TRX-m1/4, and TRX-x. Virus-induced gene silencing (VIGS) of the chloroplast TRX-f, TRX-m2, TRX-m1/4, and TRX-y genes individually increased membrane lipid peroxidation and accumulation of 2-Cys peroxiredoxin dimers, and decreased the activities of the ascorbate-glutathione cycle enzymes and the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in the leaves. Furthermore, partial silencing of TRX-f, TRX-m2, TRX-m1/4, and TRX-y resulted in decreased expression of genes involved in the Benson-Calvin cycle and decreased activity of the associated enzymes. Importantly, the BRs-induced increase in CO2 assimilation and the increased expression and activities of antioxidant- and photosynthesis-related genes and enzymes were compromised in the partially TRX-f- and TRX-m1/4-silenced plants. All of these results suggest that TRX-f and TRX-m1/4 are involved in the BRs-induced changes in CO2 assimilation and cellular redox homeostasis in tomato.
Collapse
Affiliation(s)
- Fei Cheng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China
| |
Collapse
|
110
|
Brembu T, Winge P, Tooming-Klunderud A, Nederbragt AJ, Jakobsen KS, Bones AM. The chloroplast genome of the diatom Seminavis robusta: New features introduced through multiple mechanisms of horizontal gene transfer. Mar Genomics 2014; 16:17-27. [DOI: 10.1016/j.margen.2013.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
111
|
Walvekar AS, Choudhury R, Punekar NS. Mixed disulfide formation at Cys141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity. PLoS One 2014; 9:e101662. [PMID: 24987966 PMCID: PMC4079599 DOI: 10.1371/journal.pone.0101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH) exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol) resulted in preferential attenuation of AnGDH reductive amination (forward) activity but with a negligible effect on oxidative deamination (reverse) activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH), resembling a hypothetical 'one-way' active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme.
Collapse
Affiliation(s)
- Adhish S. Walvekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Rajarshi Choudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Narayan S. Punekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
112
|
Spoel SH, van Ooijen G. Circadian redox signaling in plant immunity and abiotic stress. Antioxid Redox Signal 2014; 20:3024-39. [PMID: 23941583 PMCID: PMC4038994 DOI: 10.1089/ars.2013.5530] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/13/2013] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. RECENT ADVANCES Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. CRITICAL ISSUES Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. FUTURE DIRECTIONS Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
Collapse
Affiliation(s)
- Steven H. Spoel
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerben van Ooijen
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- SythSys, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
113
|
Yoshida K, Matsuoka Y, Hara S, Konno H, Hisabori T. Distinct Redox Behaviors of Chloroplast Thiol Enzymes and their Relationships with Photosynthetic Electron Transport in Arabidopsis thaliana. ACTA ACUST UNITED AC 2014; 55:1415-25. [DOI: 10.1093/pcp/pcu066] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
114
|
Zhu M, Zhu N, Song WY, Harmon AC, Assmann SM, Chen S. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:491-515. [PMID: 24580573 PMCID: PMC4019734 DOI: 10.1111/tpj.12490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/22/2013] [Accepted: 02/17/2014] [Indexed: 05/19/2023]
Abstract
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Wen-yuan Song
- Department of Plant Pathology, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Alice C. Harmon
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M. Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
- Corresponding author: Sixue Chen, Ph.D., Tel: (352) 273-8330; Fax: (352) 273-8284,
| |
Collapse
|
115
|
Nikkanen L, Rintamäki E. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130224. [PMID: 24591711 PMCID: PMC3949389 DOI: 10.1098/rstb.2013.0224] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plants have adopted a number of mechanisms to restore redox homeostasis in the chloroplast under fluctuating light conditions in nature. Chloroplast thioredoxin systems are crucial components of this redox network, mediating environmental signals to chloroplast proteins. In the reduced state, thioredoxins control the structure and function of proteins by reducing disulfide bridges in the redox active site of a protein. Subsequently, an oxidized thioredoxin is reduced by a thioredoxin reductase, the two enzymes together forming a thioredoxin system. Plant chloroplasts have versatile thioredoxin systems, including two reductases dependent on ferredoxin and NADPH as reducing power, respectively, several types of thioredoxins, and the system to deliver thiol redox signals to the thylakoid membrane and lumen. Light controls the activity of chloroplast thioredoxin systems in two ways. First, light reactions activate the thioredoxin systems via donation of electrons to oxidized ferredoxin and NADP+, and second, light induces production of reactive oxygen species in chloroplasts which deactivate the components of the thiol redox network. The diversity and partial redundancy of chloroplast thioredoxin systems enable chloroplast metabolism to rapidly respond to ever-changing environmental conditions and to raise plant fitness in natural growth conditions.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, , Turku 20014, Finland
| | | |
Collapse
|
116
|
Thioredoxin targets fundamental processes in a methane-producing archaeon, Methanocaldococcus jannaschii. Proc Natl Acad Sci U S A 2014; 111:2608-13. [PMID: 24505058 DOI: 10.1073/pnas.1324240111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thioredoxin (Trx), a small redox protein, controls multiple processes in eukaryotes and bacteria by changing the thiol redox status of selected proteins. The function of Trx in archaea is, however, unexplored. To help fill this gap, we have investigated this aspect in methanarchaea--strict anaerobes that produce methane, a fuel and greenhouse gas. Bioinformatic analyses suggested that Trx is nearly universal in methanogens. Ancient methanogens that produce methane almost exclusively from H2 plus CO2 carried approximately two Trx homologs, whereas nutritionally versatile members possessed four to eight. Due to its simplicity, we studied the Trx system of Methanocaldococcus jannaschii--a deeply rooted hyperthermophilic methanogen growing only on H2 plus CO2. The organism carried two Trx homologs, canonical Trx1 that reduced insulin and accepted electrons from Escherichia coli thioredoxin reductase and atypical Trx2. Proteomic analyses with air-oxidized extracts treated with reduced Trx1 revealed 152 potential targets representing a range of processes--including methanogenesis, biosynthesis, transcription, translation, and oxidative response. In enzyme assays, Trx1 activated two selected targets following partial deactivation by O2, validating proteomics observations: methylenetetrahydromethanopterin dehydrogenase, a methanogenesis enzyme, and sulfite reductase, a detoxification enzyme. The results suggest that Trx assists methanogens in combating oxidative stress and synchronizing metabolic activities with availability of reductant, making it a critical factor in the global carbon cycle and methane emission. Because methanogenesis developed before the oxygenation of Earth, it seems possible that Trx functioned originally in metabolic regulation independently of O2, thus raising the question whether a complex biological system of this type evolved at least 2.5 billion years ago.
Collapse
|
117
|
Sadler NC, Melnicki MR, Serres MH, Merkley ED, Chrisler WB, Hill EA, Romine MF, Kim S, Zink EM, Datta S, Smith RD, Beliaev AS, Konopka A, Wright AT. Live cell chemical profiling of temporal redox dynamics in a photoautotrophic cyanobacterium. ACS Chem Biol 2014; 9:291-300. [PMID: 24168666 DOI: 10.1021/cb400769v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein reduction-oxidation (redox) modification is an important mechanism that allows microorganisms to sense environmental changes and initiate cellular responses. We have developed a quantitative chemical probe approach for live cell labeling and imaging of proteins that are sensitive to redox modifications. We utilize this in vivo strategy to identify 176 proteins undergoing ∼5-10-fold dynamic redox change in response to nutrient limitation and subsequent replenishment in the photoautotrophic cyanobacterium Synechococcus sp. PCC 7002. We detect redox changes in as little as 30 s after nutrient perturbation and oscillations in reduction and oxidation for 60 min following the perturbation. Many of the proteins undergoing dynamic redox transformations participate in the major components for the production (photosystems and electron transport chains) or consumption (Calvin-Benson cycle and protein synthesis) of reductant and/or energy in photosynthetic organisms. Thus, our in vivo approach reveals new redox-susceptible proteins and validates those previously identified in vitro.
Collapse
Affiliation(s)
- Natalie C. Sadler
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew R. Melnicki
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Margrethe H. Serres
- Bay
Paul Center, Marine Biological Laboratory, Woods Hole, Massachussetts 02543, United States
| | - Eric D. Merkley
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William B. Chrisler
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric A. Hill
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Margaret F. Romine
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sangtae Kim
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erika M. Zink
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Suchitra Datta
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander S. Beliaev
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Allan Konopka
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T. Wright
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
118
|
Abstract
Studies triggered by the discovery of the function of thioredoxin (Trx) in photosynthesis have revealed its role throughout biology. Parallel biochemical and proteomic analyses have led to the identification of its numerous putative targets. Recently, to verify the biological significance of these targets, in vivo studies using transformants in which Trx is overexpressed or suppressed are in progress, and the transformants themselves that are being used in such studies show their potential applicative values. Moreover, Trx's mitigation of allergenicity for some proteins offers promising prospects in the food industry. Practical studies based on redox regulation, once only on the horizon, are now achieving new dimensions. This short review focuses on the industrial applications of Trx studies, the current situation, and future perspectives. The putative targets obtained by the proteomics approach in comparison with in vivo observations of the transformants are also examined. Applicative studies of glutathione, a counterpart of Trx, are also discussed briefly.
Collapse
Affiliation(s)
- Hiroyuki Yano
- National Food Research Institute, National Agriculture and Food Research Organization, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
119
|
Verslues PE, Lasky JR, Juenger TE, Liu TW, Kumar MN. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:144-59. [PMID: 24218491 PMCID: PMC3875797 DOI: 10.1104/pp.113.224014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/10/2013] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods.
Collapse
|
120
|
Lundquist PK, Rosar C, Bräutigam A, Weber APM. Plastid signals and the bundle sheath: mesophyll development in reticulate mutants. MOLECULAR PLANT 2014; 7:14-29. [PMID: 24046062 DOI: 10.1093/mp/sst133] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of a plant leaf is a meticulously orchestrated sequence of events producing a complex organ comprising diverse cell types. The reticulate class of leaf variegation mutants displays contrasting pigmentation between veins and interveinal regions due to specific aberrations in the development of mesophyll cells. Thus, the reticulate mutants offer a potent tool to investigate cell-type-specific developmental processes. The discovery that most mutants are affected in plastid-localized, metabolic pathways that are strongly expressed in vasculature-associated tissues implicates a crucial role for the bundle sheath and their chloroplasts in proper development of the mesophyll cells. Here, we review the reticulate mutants and their phenotypic characteristics, with a focus on those in Arabidopsis thaliana. Two alternative models have been put forward to explain the relationship between plastid metabolism and mesophyll cell development, which we call here the supply and the signaling hypotheses. We critically assess these proposed models and discuss their implications for leaf development and bundle sheath function in C3 species. The characterization of the reticulate mutants supports the significance of plastid retrograde signaling in cell development and highlights the significance of the bundle sheath in C3 photosynthesis.
Collapse
Affiliation(s)
- Peter K Lundquist
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
121
|
Gómez-Pastor R, Garre E, Pérez-Torrado R, Matallana E. Trx2p-dependent regulation of Saccharomyces cerevisiae oxidative stress response by the Skn7p transcription factor under respiring conditions. PLoS One 2013; 8:e85404. [PMID: 24376879 PMCID: PMC3871606 DOI: 10.1371/journal.pone.0085404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/04/2013] [Indexed: 01/27/2023] Open
Abstract
The whole genome analysis has demonstrated that wine yeasts undergo changes in promoter regions and variations in gene copy number, which make them different to lab strains and help them better adapt to stressful conditions during winemaking, where oxidative stress plays a critical role. Since cytoplasmic thioredoxin II, a small protein with thiol-disulphide oxidoreductase activity, has been seen to perform important functions under biomass propagation conditions of wine yeasts, we studied the involvement of Trx2p in the molecular regulation of the oxidative stress transcriptional response on these strains. In this study, we analyzed the expression levels of several oxidative stress-related genes regulated by either Yap1p or the co-operation between Yap1p and Skn7p. The results revealed a lowered expression for all the tested Skn7p dependent genes in a Trx2p-deficient strain and that Trx2p is essential for the oxidative stress response during respiratory metabolism in wine yeast. Additionally, activity of Yap1p and Skn7p dependent promoters by β-galactosidase assays clearly demonstrated that Skn7p-dependent promoter activation is affected by TRX2 gene deficiency. Finally we showed that deleting the TRX2 gene causes Skn7p hyperphosphorylation under oxidative stress conditions. We propose Trx2p to be a new positive efector in the regulation of the Skn7p transcription factor that controls phosphorylation events and, therefore, modulates the oxidative stress response in yeast.
Collapse
Affiliation(s)
- Rocío Gómez-Pastor
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Elena Garre
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 7 Paterna, Valencia, Spain
| | - Emilia Matallana
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, 7 Paterna, Valencia, Spain
- * E-mail:
| |
Collapse
|
122
|
Hara S, Hisabori T. Kinetic analysis of the interactions between plant thioredoxin and target proteins. FRONTIERS IN PLANT SCIENCE 2013; 4:508. [PMID: 24391652 PMCID: PMC3867114 DOI: 10.3389/fpls.2013.00508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/28/2013] [Indexed: 05/10/2023]
Abstract
Thioredoxin is a critical protein that mediates the transfer of reducing equivalents in vivo and regulates redox sensitive enzymes in several cases. In addition, thioredoxin provides reducing equivalents to oxidoreductases such as peroxiredoxin. Through a dithiol-disulfide exchange reaction, the reduced form of thioredoxin preferentially interacts with the oxidized forms of targets, which are immediately released after this reaction is complete. In order to more thoroughly characterize these interactions between thioredoxin and its target proteins, a mutant version of thioredoxin that lacked the second cysteine was synthesized and interactions were monitored by surface plasmon resonance. The binding rates of thioredoxin to its targets were very different depending on the use of reducing equivalents by the targets: the enzymes whose activity was controlled by reduction or oxidation of a cysteine pair(s) in the molecule and the enzymes that used reducing equivalents provided by thioredoxin for their catalysis. In addition, thioredoxin revealed a stronger preference for an oxidized target. These results explain the reason for selective association of thioredoxin with oxidized targets for reduction, whereas immediate dissociation from a reduced target when the dithiol-disulfide exchange reaction is complete.
Collapse
Affiliation(s)
- Satoshi Hara
- Chemical Resources Laboratory, Tokyo Institute of TechnologyMidori-Ku, Yokohama, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of TechnologyMidori-Ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
123
|
Lovazzano C, Serrano C, Correa JA, Contreras-Porcia L. Comparative analysis of peroxiredoxin activation in the brown macroalgae Scytosiphon gracilis and Lessonia nigrescens (Phaeophyceae) under copper stress. PHYSIOLOGIA PLANTARUM 2013; 149:378-88. [PMID: 23489129 DOI: 10.1111/ppl.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 06/01/2023]
Abstract
Among thiol-dependent peroxidases (TDPs) peroxiredoxins (PRXs) standout, since they are enzymes capable of reducing hydrogen peroxide, alkylhydroperoxides and peroxynitrite, and have been detected in a proteomic study of the copper-tolerant species Scytosiphon gracilis. In order to determine the importance of these enzymes in copper-stress tolerance, TDP activity and type II peroxiredoxin (II PRX) protein expression were compared between the opportunistic S. gracilis and the brown kelp Lessonia nigrescens, a species absent from copper-impacted sites due to insufficient copper-tolerance mechanisms. Individuals of both species were cultured with increasing copper concentrations (0-300 µg l(-1) Cu) for 96 h and TDP activity and lipoperoxides (LPXs) were determined together with II PRX expression by immunofluorescence and Western blot analysis. The results showed that TDP activity was higher in S. gracilis than L. nigrescens in all copper concentrations, independent of the reducing agent used (dithiothreitol, thioredoxin or glutaredoxin). This activity was copper inhibited in L. nigrescens at lower copper concentrations (20 µg l(-1) Cu) compared to S. gracilis (100 µg l(-1) Cu). The loss of activity coincided in both species with an increase in LPX, which suggests that TDP may control LPX production. Moreover, II PRX protein levels increased under copper stress only in S. gracilis. These results suggest that in S. gracilis TDP, particularly type II peroxiredoxin (II PRX), acts as an active antioxidant barrier attenuating the LPX levels generated by copper, which is not the case in L. nigrescens. Thus, from an ecological point of view these results help explaining the inability of L. nigrescens to flourish in copper-enriched environments.
Collapse
Affiliation(s)
- Carlos Lovazzano
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
124
|
Wang Q, Hou Y, Qu J, Hong Y, Lin Y, Han X. Molecular cloning, expression, purification and characterization of thioredoxin from Antarctic sea-ice bacteria Pseudoalteromonas sp. AN178. Mol Biol Rep 2013; 40:6587-91. [PMID: 24065544 DOI: 10.1007/s11033-013-2771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 09/14/2013] [Indexed: 01/08/2023]
Abstract
Thioredoxin (Trx) is a highly conserved and multi-functional protein that plays a pivotal role in maintaining the redox state of the cell and in protecting the cell against oxidative stress. Trx gene from Antarctic sea-ice bacteria Pseudoalteromonas sp. AN178 was cloned and expressed as soluble protein in Escherichia coli (designated as PsTrx). Trx gene consisted of an open reading frame of 324-bp nucleotides encoding a protein of 108 amino acids with a calculated molecular mass of 11.88 kDa. The deduced protein included the conserved Cys-Gly-Pro-Cys active-site sequence. After purification by a single step Ni-NTA affinity chromatography, recombinant PsTrx with a high specific activity of 96.67 U/mg was obtained. The purified PsTrx had an optimal temperature and pH of 25 °C and 7.0, respectively, and showed about 55 % of the residual catalytic activity even at 0-10 °C. It had high tolerance to a wide range of NaCl concentrations (0-2 M NaCl) and was stable in the presence of H2O2. This research suggested that PsTrx displayed unique catalytic properties.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | | | | | | | | | | |
Collapse
|
125
|
Guo H, Wang S, Xu F, Li Y, Ren J, Wang X, Niu H, Yin J. The role of thioredoxin h in protein metabolism during wheat (Triticum aestivum L.) seed germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:137-143. [PMID: 23562797 DOI: 10.1016/j.plaphy.2013.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
Thioredoxin h can regulate the redox environment in the cell and play an important role in the germination of cereals. In the present study, the thioredoxin s antisense transgenic wheat with down-regulation of thioredoxin h was used to study the role of thioredoxin h in protein metabolism during germination of wheat seeds, and to explore the mechanism of the thioredoxin s antisense transgenic wheat seeds having high resistance to pre-harvest sprouting. The qRT-PCR results showed that the expression of protein disulfide isomerase in the thioredoxin s antisense transgenic wheat was up-regulated, which induced easily forming glutenin macropolymers and the resistance of storage proteins to degradation. The expression of serine protease inhibitor was also up-regulated in transgenic wheat, which might be responsible for the decreased activity of thiocalsin during the germination. The expression of WRKY6 in transgenic wheat was down-regulated, which was consistent with the decreased activity of glutamine oxoglutarate aminotransferase. In transgenic wheat, the activities of glutamate dehydrogenase, glutamic pyruvic transaminase and glutamic oxaloacetic transaminase were down-regulated, indicating that the metabolism of amino acid was lower than that in wild-type wheat during seed germination. A putative model for the role of thioredoxin h in protein metabolism during wheat seed germination was proposed and discussed.
Collapse
Affiliation(s)
- Hongxiang Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China; College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Shaoxin Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fangfang Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yongchun Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiangping Ren
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiang Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongbin Niu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
126
|
Tarrago L, Gladyshev VN. Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. BIOCHEMISTRY (MOSCOW) 2013; 77:1097-107. [PMID: 23157290 DOI: 10.1134/s0006297912100021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sulfur-containing amino acid methionine (Met) in its free and amino acid residue forms can be readily oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Methionine sulfoxide reductases A (MSRA) and B (MSRB) reduce MetO back to Met in a stereospecific manner, acting on the S and R forms, respectively. A third MSR type, fRMSR, reduces the R form of free MetO. MSRA and MSRB are spread across the three domains of life, whereas fRMSR is restricted to bacteria and unicellular eukaryotes. These enzymes protect against abiotic and biotic stresses and regulate lifespan. MSRs are thiol oxidoreductases containing catalytic redox-active cysteine or selenocysteine residues, which become oxidized by the substrate, requiring regeneration for the next catalytic cycle. These enzymes can be classified according to the number of redox-active cysteines (selenocysteines) and the strategies to regenerate their active forms by thioredoxin and glutaredoxin systems. For each MSR type, we review catalytic parameters for the reduction of free MetO, low molecular weight MetO-containing compounds, and oxidized proteins. Analysis of these data reinforces the concept that MSRAs reduce various types of MetO-containing substrates with similar efficiency, whereas MSRBs are specialized for the reduction of MetO in proteins.
Collapse
Affiliation(s)
- L Tarrago
- Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
127
|
Ghezzi P. Protein glutathionylation in health and disease. Biochim Biophys Acta Gen Subj 2013; 1830:3165-72. [DOI: 10.1016/j.bbagen.2013.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/10/2013] [Accepted: 02/07/2013] [Indexed: 12/31/2022]
|
128
|
Timm S, Florian A, Wittmiß M, Jahnke K, Hagemann M, Fernie AR, Bauwe H. Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:379-89. [PMID: 23471132 PMCID: PMC3641216 DOI: 10.1104/pp.113.215970] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/06/2013] [Indexed: 05/18/2023]
Abstract
Photosynthetic carbon assimilation including photorespiration is dynamically regulated during the day/night cycle. This includes transcriptional regulation, such as the light induction of corresponding genes, but little is known about the contribution of photorespiratory metabolites to the regulation of gene expression. Here, we examined diurnal changes in the levels of photorespiratory metabolites, of enzymes of the photorespiratory carbon cycle, and of corresponding transcripts in wild-type plants of Arabidopsis (Arabidopsis thaliana) and in a mutant with altered photorespiratory flux due to the absence of the peroxisomal enzyme Hydroxypyruvate Reductase1 (HPR1). Metabolomics of the wild type showed that the relative amounts of most metabolites involved in photorespiration increased after the onset of light, exhibited maxima at the end of the day, and decreased during the night. In accordance with those findings, both the amounts of messenger RNAs encoding photorespiratory enzymes and the respective protein contents showed a comparable accumulation pattern. Deletion of HPR1 did not significantly alter most of the metabolite patterns relative to wild-type plants; only serine accumulated to a constitutively elevated amount in this mutant. In contrast, the hpr1 mutation resulted in considerable deregulation of the transcription of photorespiration-related genes. This transcriptional deregulation could also be induced by the external application of l-serine but not glycine to the Arabidopsis wild type, suggesting that serine acts as a metabolic signal for the transcriptional regulation of photorespiration, particularly in the glycine-to-serine interconversion reactions.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
129
|
Azri W, Brunel N, Franchel J, Ben Rejeb I, Jacquot JP, Julien JL, Herbette S, Roeckel-Drevet P. Putative involvement of Thioredoxin h in early response to gravitropic stimulation of poplar stems. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:707-11. [PMID: 23466129 DOI: 10.1016/j.jplph.2012.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 05/22/2023]
Abstract
Gravity perception and gravitropic response are essential for plant development. In herbaceous species, it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However, the early signaling events leading to stem reorientation are not fully known, especially in woody species in which primary and secondary growth occur. Thirty-six percent of the identified proteins that were differentially expressed after gravistimulation were established as potential Thioredoxin targets. In addition, Thioredoxin h expression was induced following gravistimulation. In situ immunolocalization indicated that Thioredoxin h protein co-localized with the amyloplasts located in the endodermal cells. These investigations suggest the involvement of Thioredoxin h in the first events of signal transduction in inclined poplar stems, leading to reaction wood formation.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratoire de Biologie et Physiologie Végétales, Département de Biologie, Faculté des Sciences de Tunis, campus universitaire, 1060, Tunis, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Kaas Q, Craik DJ. NMR of plant proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:1-34. [PMID: 23611313 DOI: 10.1016/j.pnmrs.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
131
|
Kushwaha R, Payne CM, Downie AB. Uses of phage display in agriculture: a review of food-related protein-protein interactions discovered by biopanning over diverse baits. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:653759. [PMID: 23710253 PMCID: PMC3655605 DOI: 10.1155/2013/653759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
Abstract
This review highlights discoveries made using phage display that impact the use of agricultural products. The contribution phage display made to our fundamental understanding of how various protective molecules serve to safeguard plants and seeds from herbivores and microbes is discussed. The utility of phage display for directed evolution of enzymes with enhanced capacities to degrade the complex polymers of the cell wall into molecules useful for biofuel production is surveyed. Food allergies are often directed against components of seeds; this review emphasizes how phage display has been employed to determine the seed component(s) contributing most to the allergenic reaction and how it has played a central role in novel approaches to mitigate patient response. Finally, an overview of the use of phage display in identifying the mature seed proteome protection and repair mechanisms is provided. The identification of specific classes of proteins preferentially bound by such protection and repair proteins leads to hypotheses concerning the importance of safeguarding the translational apparatus from damage during seed quiescence and environmental perturbations during germination. These examples, it is hoped, will spur the use of phage display in future plant science examining protein-ligand interactions.
Collapse
Affiliation(s)
- Rekha Kushwaha
- Department of Horticulture, Agricultural Science Center North, University of Kentucky, Room 308J, Lexington, KY 40546, USA
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Room 159, F. Paul Anderson Tower, Lexington, KY 40546, USA
- Center for Computational Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - A. Bruce Downie
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
- Department of Horticulture, University of Kentucky, Room 401A, Plant Science Building, Lexington, KY 40546, USA
| |
Collapse
|
132
|
Yoshida K, Noguchi K, Motohashi K, Hisabori T. Systematic Exploration of Thioredoxin Target Proteins in Plant Mitochondria. ACTA ACUST UNITED AC 2013; 54:875-92. [DOI: 10.1093/pcp/pct037] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
133
|
Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013; 18:1165-207. [PMID: 22607099 PMCID: PMC3579385 DOI: 10.1089/ars.2011.4322] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes.
Collapse
Affiliation(s)
- Samuel Lee
- The Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
134
|
Grimaud F, Renaut J, Dumont E, Sergeant K, Lucau-Danila A, Blervacq AS, Sellier H, Bahrman N, Lejeune-Hénaut I, Delbreil B, Goulas E. Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). J Proteomics 2013; 80:145-59. [PMID: 23318888 DOI: 10.1016/j.jprot.2012.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/22/2012] [Accepted: 12/29/2012] [Indexed: 01/10/2023]
Abstract
Pea (Pisum sativum L.) productivity is linked to its ability to cope with abiotic stresses such as low temperatures during fall and winter. In this study, we investigate the chloroplast-related changes occurring during pea cold acclimation, in order to further lead to genetic improvement of its field performance. Champagne and Térèse, two pea lines with different acclimation capabilities, were studied by physiological measurements, sub-cellular fractionation followed by relative protein quantification and two-dimensional DIGE. The chilling tolerance might be related to an increase in protein related to soluble sugar synthesis, antioxidant potential, regulation of mRNA transcription and translation through the chloroplast. Freezing tolerance, only observed in Champagne, seems to rely on a higher inherent photosynthetic potential at the beginning of the cold exposure, combined with an early ability to start metabolic processes aimed at maintaining the photosynthetic capacity, optimizing the stoichiometry of the photosystems and inducing dynamic changes in carbohydrate and protein synthesis and/or turnover.
Collapse
Affiliation(s)
- Florent Grimaud
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France; Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Jenny Renaut
- Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Estelle Dumont
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Kjell Sergeant
- Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Anca Lucau-Danila
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Anne-Sophie Blervacq
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Hélène Sellier
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Nasser Bahrman
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Isabelle Lejeune-Hénaut
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Bruno Delbreil
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Estelle Goulas
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| |
Collapse
|
135
|
Fu N, Su D, Cort JR, Chen B, Xiong Y, Qian WJ, Konopka AE, Bigelow DJ, Squier TC. Synthesis and Application of an Environmentally Insensitive Cy3-Based Arsenical Fluorescent Probe To Identify Adaptive Microbial Responses Involving Proximal Dithiol Oxidation. J Am Chem Soc 2013; 135:3567-75. [DOI: 10.1021/ja3117284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Na Fu
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dian Su
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John R. Cort
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Baowei Chen
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yijia Xiong
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Allan E. Konopka
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Diana J. Bigelow
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas C. Squier
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
136
|
Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc Natl Acad Sci U S A 2013; 110:3633-8. [PMID: 23401556 DOI: 10.1073/pnas.1220589110] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. To investigate the relationship between MSR capacity and longevity in plant seeds, we first used two Medicago truncatula genotypes with contrasting seed quality. After characterizing the MSR family in this species, we analyzed gene expression and enzymatic activity in immature and mature seeds exhibiting distinct quality levels. We found a very strong correlation between the initial MSR capacities in different lots of mature seeds of the two genotypes and the time to a drop in viability to 50% after controlled deterioration. We then analyzed seed longevity in Arabidopsis thaliana lines, in which MSR gene expression has been genetically altered, and observed a positive correlation between MSR capacity and longevity in these seeds as well. Based on our data, we propose that the MSR repair system plays a decisive role in the establishment and preservation of longevity in plant seeds.
Collapse
|
137
|
Balsera M, Uberegui E, Susanti D, Schmitz RA, Mukhopadhyay B, Schürmann P, Buchanan BB. Ferredoxin:thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria. PLANTA 2013; 237:619-635. [PMID: 23223880 DOI: 10.1007/s00425-012-1803-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/26/2012] [Indexed: 06/01/2023]
Abstract
Uncovered in studies on photosynthesis 35 years ago, redox regulation has been extended to all types of living cells. We understand a great deal about the occurrence, function, and mechanism of action of this mode of regulation, but we know little about its origin and its evolution. To help fill this gap, we have taken advantage of available genome sequences that make it possible to trace the phylogenetic roots of members of the system that was originally described for chloroplasts-ferredoxin, ferredoxin:thioredoxin reductase (FTR), and thioredoxin as well as target enzymes. The results suggest that: (1) the catalytic subunit, FTRc, originated in deeply rooted microaerophilic, chemoautotrophic bacteria where it appears to function in regulating CO(2) fixation by the reverse citric acid cycle; (2) FTRc was incorporated into oxygenic photosynthetic organisms without significant structural change except for addition of a variable subunit (FTRv) seemingly to protect the Fe-S cluster against oxygen; (3) new Trxs and target enzymes were systematically added as evolution proceeded from bacteria through the different types of oxygenic photosynthetic organisms; (4) an oxygenic type of regulation preceded classical light-dark regulation in the regulation of enzymes of CO(2) fixation by the Calvin-Benson cycle; (5) FTR is not universally present in oxygenic photosynthetic organisms, and in certain early representatives is seemingly functionally replaced by NADP-thioredoxin reductase; and (6) FTRc underwent structural diversification to meet the ecological needs of a variety of bacteria and archaea.
Collapse
Affiliation(s)
- Monica Balsera
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
138
|
Mason ME, Koch JL, Krasowski M, Loo J. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia). Proteome Sci 2013; 11:2. [PMID: 23317283 PMCID: PMC3575302 DOI: 10.1186/1477-5956-11-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 12/23/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. RESULTS Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. CONCLUSIONS Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early identification of resistant trees (prior to the full disease development in an area) will allow forest management through the removal of susceptible trees and their root-sprouts prior to the onset of disease, allowing management and mitigation of costs, economic impact, and impacts on ecological systems and services.
Collapse
Affiliation(s)
- Mary E Mason
- US Forest Service, Northern Research Station, 359 Main Rd, Delaware, OH, 43015, USA.
| | | | | | | |
Collapse
|
139
|
Bykova NV, Rampitsch C. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Proteomics 2013. [PMID: 23197359 DOI: 10.1002/pmic.201200270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been clearly demonstrated that plants redox control can be exerted over virtually every cellular metabolic pathway affecting metabolic homeostasis and energy balance. Therefore, a tight link exists between cellular/compartmental steady-state redox level and cellular metabolism. Proteomics offers a powerful new way to characterize the response and regulation of protein oxidation in different cell types and in relation to cellular metabolism. Compelling evidence revealed in proteomics studies suggests the integration of the redox network with other cellular signaling pathways such as Ca(2+) and/or protein phosphorylation, jasmonic, salicylic, abscisic acids, ethylene, and other phytohormones. Here we review progress in using the various proteomics techniques and approaches to answer biological questions arising from redox signaling and from changes in redox status of the cell. The focus is on reversible redox protein modifications and on three main processes, namely oxidative and nitrosative stress, defense against pathogens, cellular redox response and regulation, drawing on examples from plant redox proteomics studies.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and AgriFood Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
140
|
Tsukamoto Y, Fukushima Y, Hara S, Hisabori T. Redox Control of the Activity of Phosphoglycerate Kinase in Synechocystis sp. PCC6803. ACTA ACUST UNITED AC 2013; 54:484-91. [DOI: 10.1093/pcp/pct002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
141
|
Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 2013; 49:511-23. [PMID: 23290914 DOI: 10.1016/j.molcel.2012.11.030] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 10/17/2012] [Accepted: 11/29/2012] [Indexed: 01/04/2023]
Abstract
During plant photosynthesis, photosystems I (PSI) and II (PSII), located in the thylakoid membranes of the chloroplast, use light energy to mobilize electron transport. Different modes of electron flow exist. Linear electron flow is driven by both photosystems and generates ATP and NADPH, whereas cyclic electron flow (CEF) is driven by PSI alone and generates ATP only. Two variants of CEF exist in flowering plants, of which one is sensitive to antimycin A (AA) and involves the two thylakoid proteins, PGR5 and PGRL1. However, neither the mechanism nor the site of reinjection of electrons from ferredoxin into the thylakoid electron transport chain during AA-sensitive CEF is known. Here, we show that PGRL1 accepts electrons from ferredoxin in a PGR5-dependent manner and reduces quinones in an AA-sensitive fashion. PGRL1 activity itself requires several redox-active cysteine residues and a Fe-containing cofactor. We therefore propose that PGRL1 is the elusive ferredoxin-plastoquinone reductase (FQR).
Collapse
Affiliation(s)
- Alexander P Hertle
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
142
|
Shahmoradi Z, Tamaskani F, Sadeghipour HR, Abdolzadeh A. Redox changes accompanying storage protein mobilization in moist chilled and warm incubated walnut kernels prior to germination. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:6-17. [PMID: 22989946 DOI: 10.1016/j.jplph.2012.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/10/2012] [Accepted: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Alterations in the redox state of storage proteins and the associated proteolytic processes were investigated in moist-chilled and warm-incubated walnut (Juglans regia L.) kernels prior to germination. The kernel total protein labeling with a thiol-specific fluorochrome i.e. monobromobimane (mBBr) revealed more reduction of 29-32 kDa putative glutelins, while in the soluble proteins, both putative glutelins and 41, 55 and 58 kDa globulins contained reduced disulfide bonds during mobilization. Thus, the in vivo more reduced disulfide bonds of storage proteins corresponds to greater solubility. After the in vitro reduction of walnut kernel proteins pre-treated by N-ethyl maleimide (NEM) with dithioerythrethiol (DTT) and bacterial thioredoxin, the 58 kDa putative globulin and a 6 kDa putative albumin were identified as disulfide proteins. Thioredoxin stimulated the reduction of the H(2)O(2)-oxidized 6 kDa polypeptide, but not the 58 kDa polypeptide by DTT. The solubility of 6 kDa putative albumin, 58 and 19-24 kDa putative globulins and glutelins, respectively, were increased by DTT. The in vitro specific mobilization of the 58 kDa polypeptide that occurred at pH 5.0 by the kernel endogenous protease was sensitive to the serine-protease inhibitor phenylmethylsulfonyl fluoride (PMSF) and stimulated by DTT. The specific degradation of the 58 kDa polypeptide might be achieved through thioredoxin-mediated activation of a serine protease and/or reductive unfolding of its 58 kDa polypeptide substrate. As redox changes in storage proteins occurred equally in both moist chilled and warm incubated walnut kernels, the regulatory functions of thioredoxins in promoting seed germination may be due to other germination related processes.
Collapse
Affiliation(s)
- Zeynab Shahmoradi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | | | | | | |
Collapse
|
143
|
Thormählen I, Ruber J, von Roepenack-Lahaye E, Ehrlich SM, Massot V, Hümmer C, Tezycka J, Issakidis-Bourguet E, Geigenberger P. Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. PLANT, CELL & ENVIRONMENT 2013; 36:16-29. [PMID: 22646759 DOI: 10.1111/j.1365-3040.2012.02549.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP-glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose-dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light-activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch-to-sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography-mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.
Collapse
Affiliation(s)
- Ina Thormählen
- Department Biologie I, Metabolism Group Mass-Spectrometry Group, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Rey P, Sanz-Barrio R, Innocenti G, Ksas B, Courteille A, Rumeau D, Issakidis-Bourguet E, Farran I. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants. FRONTIERS IN PLANT SCIENCE 2013; 4:390. [PMID: 24137166 PMCID: PMC3797462 DOI: 10.3389/fpls.2013.00390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 05/07/2023]
Abstract
Plants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.
Collapse
Affiliation(s)
- Pascal Rey
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
- *Correspondence: Pascal Rey, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique, Bâtiment 158, SBVME, CEA-Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France e-mail:
| | - Ruth Sanz-Barrio
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-Consejo Superior de Investigaciones CientíficasPamplona, Spain
| | - Gilles Innocenti
- UMR 8618 Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Université Paris-SudOrsay, France
| | - Brigitte Ksas
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Agathe Courteille
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Dominique Rumeau
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Emmanuelle Issakidis-Bourguet
- UMR 8618 Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Université Paris-SudOrsay, France
| | - Inmaculada Farran
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-Consejo Superior de Investigaciones CientíficasPamplona, Spain
| |
Collapse
|
145
|
Courteille A, Vesa S, Sanz-Barrio R, Cazalé AC, Becuwe-Linka N, Farran I, Havaux M, Rey P, Rumeau D. Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:508-20. [PMID: 23151348 PMCID: PMC3532281 DOI: 10.1104/pp.112.207019] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/12/2012] [Indexed: 05/18/2023]
Abstract
In addition to the linear electron flow, a cyclic electron flow (CEF) around photosystem I occurs in chloroplasts. In CEF, electrons flow back from the donor site of photosystem I to the plastoquinone pool via two main routes: one that involves the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (PGR) and one that is dependent of the NADH dehydrogenase-like complex. While the importance of CEF in photosynthesis and photoprotection has been clearly established, little is known about its regulation. We worked on the assumption of a redox regulation and surveyed the putative role of chloroplastic thioredoxins (TRX). Using Arabidopsis (Arabidopsis thaliana) mutants lacking different TRX isoforms, we demonstrated in vivo that TRXm4 specifically plays a role in the down-regulation of the NADH dehydrogenase-like complex-dependent plastoquinone reduction pathway. This result was confirmed in tobacco (Nicotiana tabacum) plants overexpressing the TRXm4 orthologous gene. In vitro assays performed with isolated chloroplasts and purified TRXm4 indicated that TRXm4 negatively controls the PGR pathway as well. The physiological significance of this regulation was investigated under steady-state photosynthesis and in the pgr5 mutant background. Lack of TRXm4 reversed the growth phenotype of the pgr5 mutant, but it did not compensate for the impaired photosynthesis and photoinhibition sensitivity. This suggests that the physiological role of TRXm4 occurs in vivo via a mechanism distinct from direct up-regulation of CEF.
Collapse
Affiliation(s)
| | | | - Ruth Sanz-Barrio
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Commissariat à l'Energie Atomique, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales, Laboratoire d’Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France (S.V., N.B.-L., M.H., P.R., D.R.); Université Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Instituto de Agrobiotecnologia, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Pamplona, Spain (R.S.-B., I.F.); Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France (A.-C.C.); and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (A.-C.C.)
| | - Anne-Claire Cazalé
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Commissariat à l'Energie Atomique, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales, Laboratoire d’Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France (S.V., N.B.-L., M.H., P.R., D.R.); Université Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Instituto de Agrobiotecnologia, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Pamplona, Spain (R.S.-B., I.F.); Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France (A.-C.C.); and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (A.-C.C.)
| | - Noëlle Becuwe-Linka
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Commissariat à l'Energie Atomique, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales, Laboratoire d’Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France (S.V., N.B.-L., M.H., P.R., D.R.); Université Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Instituto de Agrobiotecnologia, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Pamplona, Spain (R.S.-B., I.F.); Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France (A.-C.C.); and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (A.-C.C.)
| | - Immaculada Farran
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Commissariat à l'Energie Atomique, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales, Laboratoire d’Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France (S.V., N.B.-L., M.H., P.R., D.R.); Université Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Instituto de Agrobiotecnologia, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Pamplona, Spain (R.S.-B., I.F.); Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France (A.-C.C.); and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (A.-C.C.)
| | - Michel Havaux
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Commissariat à l'Energie Atomique, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales, Laboratoire d’Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France (S.V., N.B.-L., M.H., P.R., D.R.); Université Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Instituto de Agrobiotecnologia, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Pamplona, Spain (R.S.-B., I.F.); Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France (A.-C.C.); and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (A.-C.C.)
| | - Pascal Rey
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Commissariat à l'Energie Atomique, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales, Laboratoire d’Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France (S.V., N.B.-L., M.H., P.R., D.R.); Université Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Instituto de Agrobiotecnologia, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Pamplona, Spain (R.S.-B., I.F.); Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France (A.-C.C.); and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (A.-C.C.)
| | - Dominique Rumeau
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265, Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Commissariat à l'Energie Atomique, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et Microbiologie Environnementales, Laboratoire d’Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France (S.V., N.B.-L., M.H., P.R., D.R.); Université Aix-Marseille, 13108 Saint-Paul-lez-Durance, France (A.C., S.V., N.B.-L., M.H., P.R., D.R.); Instituto de Agrobiotecnologia, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Pamplona, Spain (R.S.-B., I.F.); Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441, F-31326 Castanet-Tolosan, France (A.-C.C.); and Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 2594, F-31326 Castanet-Tolosan, France (A.-C.C.)
| |
Collapse
|
146
|
Björnberg O, Maeda K, Svensson B, Hägglund P. Dissecting Molecular Interactions Involved in Recognition of Target Disulfides by the Barley Thioredoxin System. Biochemistry 2012; 51:9930-9. [DOI: 10.1021/bi301051b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Olof Björnberg
- Enzyme and Protein Chemistry, Department
of Systems Biology,
Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kenji Maeda
- Enzyme and Protein Chemistry, Department
of Systems Biology,
Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department
of Systems Biology,
Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Per Hägglund
- Enzyme and Protein Chemistry, Department
of Systems Biology,
Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
147
|
Buchanan BB, Holmgren A, Jacquot JP, Scheibe R. Fifty years in the thioredoxin field and a bountiful harvest. Biochim Biophys Acta Gen Subj 2012; 1820:1822-9. [DOI: 10.1016/j.bbagen.2012.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
148
|
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 2012; 17:1124-60. [PMID: 22531002 DOI: 10.1089/ars.2011.4327] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thioredoxins (Trx) and glutaredoxins (Grx) constitute families of thiol oxidoreductases. Our knowledge of Trx and Grx in plants has dramatically increased during the last decade. The release of the Arabidopsis genome sequence revealed an unexpectedly high number of Trx and Grx genes. The availability of several genomes of vascular and nonvascular plants allowed the establishment of a clear classification of the genes and the chronology of their appearance during plant evolution. Proteomic approaches have been developed that identified the putative Trx and Grx target proteins which are implicated in all aspects of plant growth, including basal metabolism, iron/sulfur cluster formation, development, adaptation to the environment, and stress responses. Analyses of the biochemical characteristics of specific Trx and Grx point to a strong specificity toward some target enzymes, particularly within plastidial Trx and Grx. In apparent contradiction with this specificity, genetic approaches show an absence of phenotype for most available Trx and Grx mutants, suggesting that redundancies also exist between Trx and Grx members. Despite this, the isolation of mutants inactivated in multiple genes and several genetic screens allowed the demonstration of the involvement of Trx and Grx in pathogen response, phytohormone pathways, and at several control points of plant development. Cytosolic Trxs are reduced by NADPH-thioredoxin reductase (NTR), while the reduction of Grx depends on reduced glutathione (GSH). Interestingly, recent development integrating biochemical analysis, proteomic data, and genetics have revealed an extensive crosstalk between the cytosolic NTR/Trx and GSH/Grx systems. This crosstalk, which occurs at multiple levels, reveals the high plasticity of the redox systems in plants.
Collapse
Affiliation(s)
- Yves Meyer
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | | | | | | | | |
Collapse
|
149
|
Ehira S, Ohmori M. The redox-sensing transcriptional regulator RexT controls expression of thioredoxin A2 in the cyanobacterium Anabaena sp. strain PCC 7120. J Biol Chem 2012; 287:40433-40. [PMID: 23027868 DOI: 10.1074/jbc.m112.384206] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Thioredoxins (Trxs) play a crucial role in the oxidative stress response. RESULTS A redox-sensing transcriptional regulator, RexT, controls expression of TrxA2, and TrxA2 regulates the DNA binding activity of RexT. CONCLUSION The RexT-TrxA2 regulatory system regulates gene expression in response to redox state. SIGNIFICANCE This is the first report on a transcriptional regulator of the trx gene in cyanobacteria. Thioredoxins are ubiquitous proteins that catalyze thiol-disulfide redox reactions. They have a crucial role in the oxidative stress response as well as the redox regulation of metabolic enzymes. In cyanobacteria, little is known about the regulation of trx gene expression despite the importance of thioredoxins in cellular functions. In the present study, transcriptional regulation of the trx genes under oxidative stress conditions was investigated in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120. When cells were exposed to H(2)O(2), only the trxA2 gene (all1866) of seven trx genes was induced. Disruption of the rexT gene (alr1867), encoding a transcriptional regulator of the ArsR family, resulted in increased expression of trxA2. RexT bound to the region downstream of the transcription initiation site of trxA2. The DNA binding activity of RexT was impaired by H(2)O(2) through the formation of an intramolecular disulfide bond, which induced expression of the trxA2 gene. The inactivated DNA binding activity of RexT was restored by reduced TrxA2. Hence, RexT is considered as a redox-sensing transcriptional repressor of trxA2. These results support the idea that the RexT-TrxA2 regulatory system is important for the oxidative stress response in this cyanobacterium.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Tokyo 112-8551, Japan
| | | |
Collapse
|
150
|
Glaring MA, Skryhan K, Kötting O, Zeeman SC, Blennow A. Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:89-97. [PMID: 22789914 DOI: 10.1016/j.plaphy.2012.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/19/2012] [Indexed: 05/04/2023]
Abstract
In chloroplasts, the ferredoxin/thioredoxin pathway regulates enzyme activity in response to light by reduction of regulatory disulfides in target enzymes, ensuring coordination between photosynthesis and diurnal metabolism. Although earlier studies have suggested that many starch metabolic enzymes are similarly regulated, redox regulation has only been verified for a few of these in vitro. Using zymograms and enzyme assays, we performed a comprehensive analysis of the redox sensitivity of known starch metabolising enzymes in extracts of Arabidopsis thaliana. Manipulation of redox potentials revealed that several enzymatic activities where activated by reduction at physiologically relevant potentials. Among these where the isoamylase complex AtISA1/AtISA2, the limit dextrinase AtLDA, starch synthases AtSS1 and AtSS3, and the starch branching enzyme AtBE2. The reversibility of the redox reaction was confirmed by enzyme assays for AtLDA, AtSS1 and AtSS3. Analysis of an AtBAM1 knock-out mutant identified an additional redox sensitive β-amylase activity, which was most likely AtBAM3. A similar requirement for reducing conditions was observed for recombinant chloroplastic α-amylase (AtAMY3) activity. This study adds further candidates to the list of reductively activated starch metabolising enzymes and supports the view that redox regulation plays a role in starch metabolism.
Collapse
Affiliation(s)
- Mikkel A Glaring
- VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, 1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|