101
|
Russo M, Cejas CM, Pitingolo G. Advances in microfluidic 3D cell culture for preclinical drug development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:163-204. [PMID: 35094774 DOI: 10.1016/bs.pmbts.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.
Collapse
Affiliation(s)
- Maria Russo
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France
| | - Gabriele Pitingolo
- Bioassays, Microsystems and Optical Engineering Unit, BIOASTER, Paris France
| |
Collapse
|
102
|
Lee SY, Lee DY, Kang JH, Jeong JW, Kim JH, Kim HW, Oh DH, Kim JM, Rhim SJ, Kim GD, Kim HS, Jang YD, Park Y, Hur SJ. Alternative experimental approaches to reduce animal use in biomedical studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
103
|
Cheng M, Liu W, Zhang J, Zhang S, Guo Z, Liu L, Tian J, Zhang X, Cheng J, Liu Y, Deng G, Gao G, Sun L. Regulatory considerations for animal studies of biomaterial products. Bioact Mater 2021; 11:52-56. [PMID: 34938912 DOI: 10.1016/j.bioactmat.2021.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/02/2022] Open
Abstract
Animal studies play a vital role in validating the concept, feasibility, safety, performance and efficacy of biomaterials products during their bench-to-clinic translation. This article aims to share regulatory considerations for animal studies of biomaterial products. After briefly emphasizing the importance of animal studies, issues of animal studies during biomaterial products' translation are discussed. Animal studies with unclear purposes, flawed design and poor reporting quality could significantly reduce the translation efficiency and create regulatory challenges. Regulatory perspectives on the purpose, principle, quality and regulatory science of animal studies are also presented. Animal studies should have clear purposes, follow principles of 3R+DQ (replacement, reduction, refinement, design and quality) and execute under an efficiently operating quality management system. With the advancement of regulatory science, National Medical Products Administration of China has been developing a series of standards and guidance documents on animal studies of medical devices. Case studies of making decisions on whether to conduct animal studies are provided in the end with drug-eluting stents as examples. In summary, animal studies of biomaterial products should pay close attention to the rationale, design and quality in order to achieve their purposes.
Collapse
Affiliation(s)
- Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Wenbo Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Jiazhen Zhang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Song Zhang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Zhaojun Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Lu Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Jiaxin Tian
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Xiangmei Zhang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Jin Cheng
- National Medical Products Administration, Beijing, 100037, China
| | - Yinghui Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Gang Deng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, China
| |
Collapse
|
104
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
105
|
Predeina AL, Prilepskii AY, de Zea Bermudez V, Vinogradov VV. Bioinspired In Vitro Brain Vasculature Model for Nanomedicine Testing Based on Decellularized Spinach Leaves. NANO LETTERS 2021; 21:9853-9861. [PMID: 34807626 DOI: 10.1021/acs.nanolett.1c01920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Animal testing is often criticized due to ethical issues and complicated translation of the results obtained to the clinical stage of drug development. Existing alternative models for nanopharmaceutical testing still have many limitations and do not significantly decrease the number of animals used. We propose a simple, bioinspired in vitro model for nanopharmaceutical drug testing based on the decellularized spinach leaf's vasculature. This system is similar to human arterioles and capillaries in terms of diameter (300-10 μm) and branching. The model has proven its suitability to access the maneuverability of magnetic nanoparticles, particularly those composed of Fe3O4. Moreover, the thrombosis has been recreated in the model's vasculature. We have tested and compared the effects of both a single-chain urokinase plasminogen activator (scuPA) and a magnetically controlled nanocomposite prepared by heparin-mediated cross-linking of scuPA with Fe3O4 nanoparticles. Compositions were tested both in static and flow conditions.
Collapse
Affiliation(s)
| | - Artur Y Prilepskii
- SCAMT Institute, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | | |
Collapse
|
106
|
van der Voet M, Teunis M, Louter-van de Haar J, Stigter N, Bhalla D, Rooseboom M, Wever KE, Krul C, Pieters R, Wildwater M, van Noort V. Towards a reporting guideline for developmental and reproductive toxicology testing in C. elegans and other nematodes. Toxicol Res (Camb) 2021; 10:1202-1210. [PMID: 34950447 PMCID: PMC8692742 DOI: 10.1093/toxres/tfab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Implementation of reliable methodologies allowing Reduction, Refinement, and Replacement (3Rs) of animal testing is a process that takes several decades and is still not complete. Reliable methods are essential for regulatory hazard assessment of chemicals where differences in test protocol can influence the test outcomes and thus affect the confidence in the predictive value of the organisms used as an alternative for mammals. Although test guidelines are common for mammalian studies, they are scarce for non-vertebrate organisms that would allow for the 3Rs of animal testing. Here, we present a set of 30 reporting criteria as the basis for such a guideline for Developmental and Reproductive Toxicology (DART) testing in the nematode Caenorhabditis elegans. Small organisms like C. elegans are upcoming in new approach methodologies for hazard assessment; thus, reliable and robust test protocols are urgently needed. A literature assessment of the fulfilment of the reporting criteria demonstrates that although studies describe methodological details, essential information such as compound purity and lot/batch number or type of container is often not reported. The formulated set of reporting criteria for C. elegans testing can be used by (i) researchers to describe essential experimental details (ii) data scientists that aggregate information to assess data quality and include data in aggregated databases (iii) regulators to assess study data for inclusion in regulatory hazard assessment of chemicals.
Collapse
Affiliation(s)
| | - Marc Teunis
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Johanna Louter-van de Haar
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Nienke Stigter
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Diksha Bhalla
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
| | - Martijn Rooseboom
- Toxicology group Shell International B.V., 2596 HR, The Hague, the Netherlands
| | - Kimberley E Wever
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, 6525 GA, Nijmegen, the Netherlands
| | - Cyrille Krul
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
| | - Raymond Pieters
- Utrecht University of Applied Sciences, Innovative testing in Life Sciences & Chemistry, 3584 CH, Utrecht, the Netherlands
- Utrecht University, Institute for Risk Assessment Sciences, 3584 CM, Utrecht, the Netherlands
| | | | - Vera van Noort
- KU Leuven, Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, 3001, Leuven, Belgium
- Leiden University, Institute of Biology Leiden, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
107
|
Suchý T, Kaczmarek I, Maricic T, Zieschang C, Schöneberg T, Thor D, Liebscher I. Evaluating the feasibility of Cas9 overexpression in 3T3-L1 cells for generation of genetic knock-out adipocyte cell lines. Adipocyte 2021; 10:631-645. [PMID: 34915813 PMCID: PMC8735834 DOI: 10.1080/21623945.2021.1990480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Cell lines recapitulating physiological processes can represent alternatives to animal or human studies. The 3T3-L1 cell line is used to mimic adipocyte function and differentiation. Since transfection of 3T3-L1 cells is difficult, we used a modified 3T3-L1 cell line overexpressing Cas9 for a straightforward generation of gene knock-outs. As an example, we intended to generate 3T3-L1 cell lines deficient for adhesion G protein-coupled receptors Gpr64/Adgr2 and Gpr126/Adgr6 using the CRISPR/Cas approach. Surprisingly, all the generated knock-out as well as scramble control cell lines were unresponsive to isoprenaline in respect to adiponectin secretion and lipolysis in contrast to the wild type 3T3-L1 cells. We, therefore, analysed the properties of these stable Cas9-overexpressing 3T3-L1 cells. We demonstrate that this commercially available cell line exhibits dysfunction in cAMP signalling pathways as well as reduced insulin sensitivity independent of gRNA transfection. We tried transient transfection of plasmids harbouring Cas9 as well as direct introduction of the Cas9 protein as alternate approaches to the stable expression of this enzyme. We find that transfection of the Cas9 protein is not only feasible but also does not impair adipogenesis and, therefore, represents a preferable alternative to achieve genetic knock-out.
Collapse
Affiliation(s)
- Tomás Suchý
- Department of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Department of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tomislav Maricic
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christian Zieschang
- Department of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Department of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Doreen Thor
- Department of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ines Liebscher
- Department of Molecular Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
108
|
Ahsan H. Monoplex and multiplex immunoassays: approval, advancements, and alternatives. COMPARATIVE CLINICAL PATHOLOGY 2021; 31:333-345. [PMID: 34840549 PMCID: PMC8605475 DOI: 10.1007/s00580-021-03302-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Immunoassays are a powerful diagnostic tool and are widely used for the quantification of proteins and biomolecules in medical diagnosis and research. Enzyme-linked immunosorbent assay (ELISA) is the most commonly used immunoassay format and allows the detection of biomarkers at a very low concentration. The diagnostic platforms such as enzyme immunoassay (EIA), chemiluminescence (CL) assay, polymerase chain reaction (PCR), flow cytometry (FC), and mass spectrometry (MS) have been used to identify molecular biomarkers. However, these diagnostic tools requiring expensive equipment, long testing time, and qualified personnel that is not always available in small local hospitals with limited resources. The lateral flow immunoassay (LFIA) platform was developed for rapidly obtaining laboratory results and to make urgent decisions in emergency medicine, as well as the recently introduced concept of testing at the site of care (point-of-care, POC). The simultaneous measurement of different substances from a single sample called multiplex assays have become increasingly significant for in vitro quantification of multiple analytes in a single sample, thereby minimising cost, time, and volume. In multiplex immunoassays, the ligands are immobilized either in planar format (flat surface) or on microspheres in suspension that binds to target analytes in sample. The multiplex technology has established itself in proteomic networks and pathways, validation of genomic discoveries, and in the development of clinical biomarkers. In the present review article, various types of monoplex/simplex and complex/multiplex immunoassays have been analysed that are increasingly being applied in laboratory medicine. Also, some advantages and disadvantages of these multiplex assays have also been included such as experimental animals, in vitro tests using cell lines and tissue samples, 3-dimensional modelling and bioprinting, in silico tests, organ-on-chip, and computer modelling.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi - 110025, India
| |
Collapse
|
109
|
Lee BE, Kim DK, Lee H, Yoon S, Park SH, Lee S, Yoo J. Recapitulation of First Pass Metabolism Using 3D Printed Microfluidic Chip and Organoid. Cells 2021; 10:3301. [PMID: 34943808 PMCID: PMC8699265 DOI: 10.3390/cells10123301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/16/2023] Open
Abstract
The low bioavailability of oral drugs due to first pass metabolism is a major obstacle in drug development. With significant developments in the field of in vitro organ modeling and microfluidic chip three-dimensional (3D) printing, the challenge is to apply these for the production and evaluation of new drug candidates. This study aimed to produce a microfluidic chip to recapitulate and assess the feasibility of the first pass metabolism. The infill condition of the polycarbonate transparent filament and layer height was optimized to visualize and maintain the organoid or spheroid on the chip. Next, the chip was fabricated using a 3D printer after a computer-aided design (CAD). The chip consisted of three wells of different heights. The small intestinal (SI) organoid and colorectal adenocarcinoma spheroids were placed on the second and third wells, respectively. No additional equipment was assembled, and the tilted tunnel was connected to each well to transport the material by gradient force. The chip was fabricated using 50% and 0.1 um thickness. Among the three different prototypes of chip (chips 1, 2, and 3), the highest distribution of plasmids in the Matrigel of the second well was observed in Chip 2 at 48 h. The effect of first pass metabolism was analyzed using docetaxel. In the chip without an SI organoid, there was a marked decrease in the viability of colorectal adenocarcinoma spheroids due to drug efficacy. However, in the chip with the SI organoid, no significant change in viability was observed because of first pass metabolism. In conclusion, we presented a simple, fast, and low-cost microfluidic chip to analyze the efficacy change of candidate drug by the first pass metabolism.
Collapse
Affiliation(s)
- Bo-Eun Lee
- CHA Organoid Research Center, Department of Microbilogy, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea;
- Organoidsciences, Ltd., Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea
| | - Do-Kyung Kim
- CHA Bundang Medical Center, Department of Orthopaedic Surgery, School of Medicine, CHA University, Seongnam 13496, Gyeonggi-do, Korea; (D.-K.K.); (S.Y.)
| | - Hyunil Lee
- Department of Orthopaedic Surgery, Ilsan Paik Hospital, Inje University, Goyang 10380, Gyeonggi-do, Korea;
| | - Siyeong Yoon
- CHA Bundang Medical Center, Department of Orthopaedic Surgery, School of Medicine, CHA University, Seongnam 13496, Gyeonggi-do, Korea; (D.-K.K.); (S.Y.)
| | - Sin-Hyung Park
- Department of Orthopaedic Surgery, Soonchunhyang University Bucheon Hospital, Bucheon 39371, Gyeonggi-do, Korea;
| | - Soonchul Lee
- CHA Bundang Medical Center, Department of Orthopaedic Surgery, School of Medicine, CHA University, Seongnam 13496, Gyeonggi-do, Korea; (D.-K.K.); (S.Y.)
| | - Jongman Yoo
- CHA Organoid Research Center, Department of Microbilogy, School of Medicine, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea;
- Organoidsciences, Ltd., Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea
| |
Collapse
|
110
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
111
|
Srikulnath K, Ahmad SF, Panthum T, Malaivijitnond S. Importance of Thai macaque bioresources for biological research and human health. J Med Primatol 2021; 51:62-72. [PMID: 34806191 DOI: 10.1111/jmp.12555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023]
Abstract
During the past century, macaque bioresources have provided remarkable scientific and biomedical discoveries related to the understanding of human physiology, neuroanatomy, reproduction, development, cognition, and pathology. Considerable progress has been made, and an urgent need has arisen to develop infrastructure and viable settings to meet the current global demand in research models during the so-called new normal after COVID-19 era. This review highlights the critical need for macaque bioresources and proposes the establishment of a designated primate research center to integrate research in primate laboratories for the rescue and rehabilitation of wild macaques. Key areas where macaque models have been and continue to be essential for advancing fundamental knowledge in biomedical and biological research are outlined. Detailed genetic studies on macaque bioresources of Thai origin can further facilitate the rapid pace of vaccine discovery.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand.,Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand.,Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand-Chulalongkorn University, Saraburi, Thailand.,Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
112
|
In Vitro and In Vivo Toxicity Evaluation of Natural Products with Potential Applications as Biopesticides. Toxins (Basel) 2021; 13:toxins13110805. [PMID: 34822589 PMCID: PMC8617648 DOI: 10.3390/toxins13110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
The use of natural products in agriculture as pesticides has been strongly advocated. However, it is necessary to assess their toxicity to ensure their safe use. In the present study, mammalian cell lines and fish models of the zebrafish (Danio rerio) and medaka (Oryzias latipes) have been used to investigate the toxic effects of ten natural products which have potential applications as biopesticides. The fungal metabolites cavoxin, epi-epoformin, papyracillic acid, seiridin and sphaeropsidone, together with the plant compounds inuloxins A and C and ungeremine, showed no toxic effects in mammalian cells and zebrafish embryos. Conversely, cyclopaldic and α-costic acids, produced by Seiridium cupressi and Dittrichia viscosa, respectively, caused significant mortality in zebrafish and medaka embryos as a result of yolk coagulation. However, both compounds showed little effect in zebrafish or mammalian cell lines in culture, thus highlighting the importance of the fish embryotoxicity test in the assessment of environmental impact. Given the embryotoxicity of α-costic acid and cyclopaldic acid, their use as biopesticides is not recommended. Further ecotoxicological studies are needed to evaluate the potential applications of the other compounds.
Collapse
|
113
|
Bocheńska K, Moskot M, Gabig-Cimińska M. Use of Cytokine Mix-, Imiquimod-, and Serum-Induced Monoculture and Lipopolysaccharide- and Interferon Gamma-Treated Co-Culture to Establish In Vitro Psoriasis-like Inflammation Models. Cells 2021; 10:2985. [PMID: 34831208 PMCID: PMC8616089 DOI: 10.3390/cells10112985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Psoriasis (Ps), commonly perceived as a skin and joint disorder, has a complex basis and results from disturbances in the sophisticated network between skin and the immune system. This makes it difficult to properly depict the complete pathomechanism on an in vitro scale. Deciphering the complicated or even subtle modulation of intra- and intercellular factors, assisted by the implementation of in vitro human skin models, may provide the opportunity to dissect the disease background step by step. In addition to reconstructed artificial skin substitutes, which mimic the native physiological context, in vitro models are conducive to the broad "3 Rs" philosophy (reduce, refine, and replace) and represent important tools for basic and applied skin research. To meet the need for a more comprehensive in vitro Ps model, a set of various experimental conditions was applied in this study. The selection of in vitro treatment that mimicked the Ps phenotype was illustrated by analyses of discriminating biomarker genes involved in the pathogenesis of the disease, i.e., keratinocyte differentiation markers, antimicrobial peptides, chemokines, and proliferation markers. This resulted in a reproducible protocol for the use of the primary skin keratinocyte (pKC) monoculture treated with a cytokine cocktail (5MIX, i.e., interleukin (IL) 1 alpha (IL-1α), IL-17A, IL-22, oncostatin M (OSM), and tumour necrosis factor alpha (TNF-α)) at a calcium (Ca2+) concentration (i.e., 2 mM) in an applied medium, which best mirrored the in vitro Ps-like inflammatory model. In addition, based on waste skin material, the method has the potential for extensive experimentation, both in detailed molecular studies and preclinical tests.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
114
|
Kniebs C, Luengen AE, Guenther D, Cornelissen CG, Schmitz-Rode T, Jockenhoevel S, Thiebes AL. Establishment of a Pre-vascularized 3D Lung Cancer Model in Fibrin Gel-Influence of Hypoxia and Cancer-Specific Therapeutics. Front Bioeng Biotechnol 2021; 9:761846. [PMID: 34722481 PMCID: PMC8551668 DOI: 10.3389/fbioe.2021.761846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most frequently diagnosed cancer worldwide and the one that causes the highest mortality. In order to understand the disease and to develop new treatments, in vitro human lung cancer model systems which imitate the physiological conditions is of high significance. In this study, a human 3D lung cancer model was established that features the organization of a tumor with focus on tumor angiogenesis. Vascular networks were formed by co-culture of human umbilical vein endothelial cells and adipose tissue-derived mesenchymal stem cells (ASC) for 14 days in fibrin. A part of the pre-vascularized fibrin gel was replaced by fibrin gel containing lung cancer cells (A549) to form tri-cultures. This 3D cancer model system was cultured under different culture conditions and its behaviour after treatment with different concentrations of tumor-specific therapeutics was evaluated. The evaluation was performed by measurement of metabolic activity, viability, quantification of two-photon laser scanning microscopy and measurement of the proangiogenic factor vascular endothelial growth factor in the supernatant. Hypoxic conditions promoted vascularization compared to normoxic cultured controls in co- and tri-cultures as shown by significantly increased vascular structures, longer structures with a higher area and volume, and secretion of vascular endothelial growth factor. Cancer cells also promoted vascularization. Treatment with 50 µM gefitinib or 50 nM paclitaxel decreased the vascularization significantly. VEGF secretion was only reduced after treatment with gefitinib, while in contrast secretion remained constant during medication with paclitaxel. The findings suggest that the herein described 3D lung cancer model provides a novel platform to investigate the angiogenic potential of cancer cells and its responses to therapeutics. Thus, it can serve as a promising approach for the development and patient-specific pre-selection of anticancer treatment.
Collapse
Affiliation(s)
- Caroline Kniebs
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| | - Anja Elisabeth Luengen
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| | - Daniel Guenther
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Christian Gabriel Cornelissen
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Clinic for Pneumology and Internal Intensive Care Medicine (Medical Clinic V), RWTH Aachen University Hospital, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Geleen, Netherlands
| |
Collapse
|
115
|
Petetta F, Ciccocioppo R. Public perception of laboratory animal testing: Historical, philosophical, and ethical view. Addict Biol 2021; 26:e12991. [PMID: 33331099 DOI: 10.1111/adb.12991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
The use of laboratory animals in biomedical research is a matter of intense public debate. Recent statistics indicates that about half of the western population, sensitive to this discussion, would be in favor of animal testing while the other half would oppose it. Here, outlining scientific, historical, ethical, and philosophical aspects, we provide an integrated view explaining the reasons why biomedical research can hardly abandon laboratory animal testing. In this paper, we retrace the historical moments that mark the relationship between humans and other animal species. Then starting from Darwin's position on animal experimentation, we outline the steps that over time allowed the introduction of laws and rules that regulate animals' use in biomedical research. In our analysis, we present the perspectives of various authors, with the aim of delineating a theoretical framework within which to insert the ethical debate on laboratory animals research. Through the analysis of fundamental philosophical concepts and some practical examples, we propose a view according to which laboratory animals experimentation become ethically acceptable as far as it is guided by the goal of improving humans and other animal species (i.e., pets) life. Among the elements analyzed, there is the concept of responsibility that only active moral subjects (humans) have towards themselves and towards passive moral subjects (other animal species). We delineate the principle of cruelty that is useful to understand why research in laboratory animals should not be assimilated to a cruel act. Moreover, we touch upon the concepts of necessity and "good cause" to underline that, if biomedical research would have the possibility to avoid using animals, it would surely do that. To provide an example of the negative consequences occurring from not allowing laboratory animal research, we analyze the recent experience of Covid-19 epidemic. Finally, recalling the principle of "heuristics and biases" by Kahneman, we discuss why scientists should reconsider the way they are conveying information about their research to the general public.
Collapse
Affiliation(s)
- Francesca Petetta
- School of Pharmacy, Pharmacology Unit University of Camerino Camerino Italy
| | | |
Collapse
|
116
|
Aleemardani M, Trikić MZ, Green NH, Claeyssens F. The Importance of Mimicking Dermal-Epidermal Junction for Skin Tissue Engineering: A Review. Bioengineering (Basel) 2021; 8:bioengineering8110148. [PMID: 34821714 PMCID: PMC8614934 DOI: 10.3390/bioengineering8110148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022] Open
Abstract
There is a distinct boundary between the dermis and epidermis in the human skin called the basement membrane, a dense collagen network that creates undulations of the dermal-epidermal junction (DEJ). The DEJ plays multiple roles in skin homeostasis and function, namely, enhancing the adhesion and physical interlock of the layers, creating niches for epidermal stem cells, regulating the cellular microenvironment, and providing a physical boundary layer between fibroblasts and keratinocytes. However, the primary role of the DEJ has been determined as skin integrity; there are still aspects of it that are poorly investigated. Tissue engineering (TE) has evolved promising skin regeneration strategies and already developed TE scaffolds for clinical use. However, the currently available skin TE equivalents neglect to replicate the DEJ anatomical structures. The emergent ability to produce increasingly complex scaffolds for skin TE will enable the development of closer physical and physiological mimics to natural skin; it also allows researchers to study the DEJ effect on cell function. Few studies have created patterned substrates that could mimic the human DEJ to explore their significance. Here, we first review the DEJ roles and then critically discuss the TE strategies to create the DEJ undulating structure and their effects. New approaches in this field could be instrumental for improving bioengineered skin substitutes, creating 3D engineered skin, identifying pathological mechanisms, and producing and screening drugs.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
| | - Michael Zivojin Trikić
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
| | - Nicola Helen Green
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK; (M.A.); (M.Z.T.); (N.H.G.)
- Correspondence:
| |
Collapse
|
117
|
Pun S, Haney LC, Barrile R. Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions. MICROMACHINES 2021; 12:1250. [PMID: 34683301 PMCID: PMC8540847 DOI: 10.3390/mi12101250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023]
Abstract
For centuries, animal experiments have contributed much to our understanding of mechanisms of human disease, but their value in predicting the effectiveness of drug treatments in the clinic has remained controversial. Animal models, including genetically modified ones and experimentally induced pathologies, often do not accurately reflect disease in humans, and therefore do not predict with sufficient certainty what will happen in humans. Organ-on-chip (OOC) technology and bioengineered tissues have emerged as promising alternatives to traditional animal testing for a wide range of applications in biological defence, drug discovery and development, and precision medicine, offering a potential alternative. Recent technological breakthroughs in stem cell and organoid biology, OOC technology, and 3D bioprinting have all contributed to a tremendous progress in our ability to design, assemble and manufacture living organ biomimetic systems that more accurately reflect the structural and functional characteristics of human tissue in vitro, and enable improved predictions of human responses to drugs and environmental stimuli. Here, we provide a historical perspective on the evolution of the field of bioengineering, focusing on the most salient milestones that enabled control of internal and external cell microenvironment. We introduce the concepts of OOCs and Microphysiological systems (MPSs), review various chip designs and microfabrication methods used to construct OOCs, focusing on blood-brain barrier as an example, and discuss existing challenges and limitations. Finally, we provide an overview on emerging strategies for 3D bioprinting of MPSs and comment on the potential role of these devices in precision medicine.
Collapse
Affiliation(s)
- Sirjana Pun
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Li Cai Haney
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
| | - Riccardo Barrile
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA; (S.P.); (L.C.H.)
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45221, USA
| |
Collapse
|
118
|
Moraes KCM, Montagne J. Drosophila melanogaster: A Powerful Tiny Animal Model for the Study of Metabolic Hepatic Diseases. Front Physiol 2021; 12:728407. [PMID: 34603083 PMCID: PMC8481879 DOI: 10.3389/fphys.2021.728407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
Animal experimentation is limited by unethical procedures, time-consuming protocols, and high cost. Thus, the development of innovative approaches for disease treatment based on alternative models in a fast, safe, and economic manner is an important, yet challenging goal. In this paradigm, the fruit-fly Drosophila melanogaster has become a powerful model for biomedical research, considering its short life cycle and low-cost maintenance. In addition, biological processes are conserved and homologs of ∼75% of human disease-related genes are found in the fruit-fly. Therefore, this model has been used in innovative approaches to evaluate and validate the functional activities of candidate molecules identified via in vitro large-scale analyses, as putative agents to treat or reverse pathological conditions. In this context, Drosophila offers a powerful alternative to investigate the molecular aspects of liver diseases, since no effective therapies are available for those pathologies. Non-alcoholic fatty liver disease is the most common form of chronic hepatic dysfunctions, which may progress to the development of chronic hepatitis and ultimately to cirrhosis, thereby increasing the risk for hepatocellular carcinoma (HCC). This deleterious situation reinforces the use of the Drosophila model to accelerate functional research aimed at deciphering the mechanisms that sustain the disease. In this short review, we illustrate the relevance of using the fruit-fly to address aspects of liver pathologies to contribute to the biomedical area.
Collapse
Affiliation(s)
- Karen C M Moraes
- Laboratório de Sinalização Celular e Expressão Gênica, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, UNESP, Rio Claro, Brazil
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
119
|
Ataeinia B, Heidari P. Artificial Intelligence and the Future of Diagnostic and Therapeutic Radiopharmaceutical Development:: In Silico Smart Molecular Design. PET Clin 2021; 16:513-523. [PMID: 34364818 PMCID: PMC8453048 DOI: 10.1016/j.cpet.2021.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel diagnostic and therapeutic radiopharmaceuticals are increasingly becoming a central part of personalized medicine. Continued innovation in the development of new radiopharmaceuticals is key to sustained growth and advancement of precision medicine. Artificial intelligence has been used in multiple fields of medicine to develop and validate better tools for patient diagnosis and therapy, including in radiopharmaceutical design. In this review, we first discuss common in silico approaches and focus on their usefulness and challenges in radiopharmaceutical development. Next, we discuss the practical applications of in silico modeling in design of radiopharmaceuticals in various diseases.
Collapse
Affiliation(s)
- Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA.
| |
Collapse
|
120
|
Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. PLANTA MEDICA 2021; 87:964-988. [PMID: 34412146 DOI: 10.1055/a-1529-8339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.
Collapse
Affiliation(s)
- Luiz C Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - Maira R de Souza
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Johan Viaene
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Tania M B Bresolin
- School of Health Sciences, Universidade do Vale do Itajaí - UNIVALI, Itajaí/SC, Brazil
| | - André L de Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau - FURB, Blumenau/SC, Brazil
| | - Amélia T Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre/RS, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, Brussels, Belgium
| |
Collapse
|
121
|
Shukla SK, Sharma AK, Gupta V, Kalonia A, Shaw P. Challenges with Wound Infection Models in Drug Development. Curr Drug Targets 2021; 21:1301-1312. [PMID: 32116189 DOI: 10.2174/1389450121666200302093312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023]
Abstract
Wound research is an evolving science trying to unfold the complex untold mechanisms behind the wound healing cascade. In particular, interest is growing regarding the role of microorganisms in both acute and chronic wound healing. Microbial burden plays an important role in the persistence of chronic wounds, ultimately resulting in delayed wound healing. It is therefore important for clinicians to understand the evolution of infection science and its various etiologies. Therefore, to understand the role of bacterial biofilm in chronic wound pathogenesis, various in vitro and in vivo models are required to investigate biofilms in wound-like settings. Infection models should be refined comprising an important signet of biofilms. These models are eminent for translational research to obtain data for designing an improved wound care formulation. However, all the existing models possess limitations and do not fit properly in the model frame for developing wound care agents. Among various impediments, one of the major drawbacks of such models is that the wound they possess does not mimic the wound a human develops. Therefore, a novel wound infection model is required which can imitate the human wounds. This review article mainly discusses various in vitro and in vivo models showing microbial colonization, their advantages and challenges. Apart from these models, there are also present ex vivo wound infection models, but this review mainly focused on various in vitro and in vivo models available for studying wound infection in controlled conditions. This information might be useful in designing an ideal wound infection model for developing an effective wound healing formulation.
Collapse
Affiliation(s)
- Sandeep K Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Ajay K Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Vanya Gupta
- Graphic Era deemed to be University, Dehradun, India
| | - Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, SK Mazumdar Marg, Timarpur, Delhi-110054, India
| |
Collapse
|
122
|
Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021; 132:37-51. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
As life expectancy improves and the number of people suffering from various diseases increases, the need for developing effective personalized disease models is rapidly rising. The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce key elements for disease modeling and recent engineering advances using both liver and lung organoids. Due to the importance of personalized medicine, we also emphasize patient-derived cancer organoid models and their engineering approaches. These organoid-based disease models combined with microfluidics, biomaterials, and co-culture systems will provide a powerful research platform for understanding disease mechanisms and developing precision medicine; enabling preclinical drug screening and drug development. STATEMENT OF SIGNIFICANCE: The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce liver, lung, and cancer organoids integrated with various engineering approaches as a novel platform for personalized disease modeling. These engineered organoid-based disease models will provide a powerful research platform for understanding disease mechanisms and developing precision medicine.
Collapse
|
123
|
Qiu Y, Wang N, Guo T, Liu S, Tang X, Zhong Z, Chen Q, Wu H, Li X, Wang J, Zhang S, Ou Y, Wang B, Ma K, Gu W, Cao J, Chen H, Duan Y. Establishment of a 3D model of tumor-driven angiogenesis to study the effects of anti-angiogenic drugs on pericyte recruitment. Biomater Sci 2021; 9:6064-6085. [PMID: 34136892 DOI: 10.1039/d0bm02107e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-β in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.
Collapse
Affiliation(s)
- Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Zhiyong Zhong
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xiajing Li
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Yimeng Ou
- Department of General Surgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, P. R. China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, P. R. China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, P. R. China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
124
|
Nicolai MM, Witt B, Hartwig A, Schwerdtle T, Bornhorst J. A fast and reliable method for monitoring genomic instability in the model organism Caenorhabditis elegans. Arch Toxicol 2021; 95:3417-3424. [PMID: 34458933 PMCID: PMC8448691 DOI: 10.1007/s00204-021-03144-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
The identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, and feasible for high-throughput genotoxicity testing, and especially preliminary screening.
Collapse
Affiliation(s)
- Merle Marie Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119, Wuppertal, NRW, Germany
| | - Barbara Witt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Brandenburg, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Baden-Württemberg, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Brandenburg, Germany.,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119, Wuppertal, NRW, Germany. .,TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| |
Collapse
|
125
|
Piyawajanusorn C, Nguyen LC, Ghislat G, Ballester PJ. A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling. Brief Bioinform 2021; 22:6343527. [PMID: 34368843 DOI: 10.1093/bib/bbab312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A central goal of precision oncology is to administer an optimal drug treatment to each cancer patient. A common preclinical approach to tackle this problem has been to characterize the tumors of patients at the molecular and drug response levels, and employ the resulting datasets for predictive in silico modeling (mostly using machine learning). Understanding how and why the different variants of these datasets are generated is an important component of this process. This review focuses on providing such introduction aimed at scientists with little previous exposure to this research area.
Collapse
Affiliation(s)
- Chayanit Piyawajanusorn
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Linh C Nguyen
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ghita Ghislat
- U1104, CNRS UMR7280, Centre d'Immunologie de Marseille-Luminy, Inserm, Marseille, France
| | - Pedro J Ballester
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France
| |
Collapse
|
126
|
Garcia de Lomana M, Morger A, Norinder U, Buesen R, Landsiedel R, Volkamer A, Kirchmair J, Mathea M. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities. J Chem Inf Model 2021; 61:3255-3272. [PMID: 34153183 PMCID: PMC8317154 DOI: 10.1021/acs.jcim.1c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Computational methods such as machine learning approaches have a strong track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to predict in vivo endpoints is more limited due to the high number of parameters and processes that may influence the outcome. Recent studies have shown that the combination of chemical and biological data can yield better models for in vivo endpoints. The ChemBioSim approach presented in this work aims to enhance the performance of conformal prediction models for in vivo endpoints by combining chemical information with (predicted) bioactivity assay outcomes. Three in vivo toxicological endpoints, capturing genotoxic (MNT), hepatic (DILI), and cardiological (DICC) issues, were selected for this study due to their high relevance for the registration and authorization of new compounds. Since the sparsity of available biological assay data is challenging for predictive modeling, predicted bioactivity descriptors were introduced instead. Thus, a machine learning model for each of the 373 collected biological assays was trained and applied on the compounds of the in vivo toxicity data sets. Besides the chemical descriptors (molecular fingerprints and physicochemical properties), these predicted bioactivities served as descriptors for the models of the three in vivo endpoints. For this study, a workflow based on a conformal prediction framework (a method for confidence estimation) built on random forest models was developed. Furthermore, the most relevant chemical and bioactivity descriptors for each in vivo endpoint were preselected with lasso models. The incorporation of bioactivity descriptors increased the mean F1 scores of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no significant improvement in model performance was observed. Besides pure performance improvements, an analysis of the most important bioactivity features allowed detection of novel and less intuitive relationships between the predicted biological assay outcomes used as descriptors and the in vivo endpoints. This study presents how the prediction of in vivo toxicity endpoints can be improved by the incorporation of biological information-which is not necessarily captured by chemical descriptors-in an automated workflow without the need for adding experimental workload for the generation of bioactivity descriptors as predicted outcomes of bioactivity assays were utilized. All bioactivity CP models for deriving the predicted bioactivities, as well as the in vivo toxicity CP models, can be freely downloaded from https://doi.org/10.5281/zenodo.4761225.
Collapse
Affiliation(s)
- Marina Garcia de Lomana
- BASF
SE, Ludwigshafen am Rhein 67063, Germany
- Department
of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
| | - Andrea Morger
- In Silico
Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Charitéplatz
1, Berlin 10117, Germany
| | - Ulf Norinder
- MTM
Research Centre, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| | | | | | - Andrea Volkamer
- In Silico
Toxicology and Structural Bioinformatics, Institute of Physiology, Charité Universitätsmedizin Berlin, Charitéplatz
1, Berlin 10117, Germany
| | - Johannes Kirchmair
- Department
of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria
| | | |
Collapse
|
127
|
Paterson K, Zanivan S, Glasspool R, Coffelt SB, Zagnoni M. Microfluidic technologies for immunotherapy studies on solid tumours. LAB ON A CHIP 2021; 21:2306-2329. [PMID: 34085677 PMCID: PMC8204114 DOI: 10.1039/d0lc01305f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/09/2021] [Indexed: 05/10/2023]
Abstract
Immunotherapy is a powerful and targeted cancer treatment that exploits the body's immune system to attack and eliminate cancerous cells. This form of therapy presents the possibility of long-term control and prevention of recurrence due to the memory capabilities of the immune system. Various immunotherapies are successful in treating haematological malignancies and have dramatically improved outcomes in melanoma. However, tackling other solid tumours is more challenging, mostly because of the immunosuppressive tumour microenvironment (TME). Current in vitro models based on traditional 2D cell monolayers and animal models, such as patient-derived xenografts, have limitations in their ability to mimic the complexity of the human TME. As a result, they have inadequate translational value and can be poorly predictive of clinical outcome. Thus, there is a need for robust in vitro preclinical tools that more faithfully recapitulate human solid tumours to test novel immunotherapies. Microfluidics and lab-on-a-chip technologies offer opportunities, especially when performing mechanistic studies, to understand the role of the TME in immunotherapy, and to expand the experimental throughput when using patient-derived tissue through its miniaturization capabilities. This review first introduces the basic concepts of immunotherapy, presents the current preclinical approaches used in immuno-oncology for solid tumours and then discusses the underlying challenges. We provide a rationale for using microfluidic-based approaches, highlighting the most recent microfluidic technologies and methodologies that have been used for studying cancer-immune cell interactions and testing the efficacy of immunotherapies in solid tumours. Ultimately, we discuss achievements and limitations of the technology, commenting on potential directions for incorporating microfluidic technologies in future immunotherapy studies.
Collapse
Affiliation(s)
- K Paterson
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK.
| | - S Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK and Cancer Research UK Beatson Institute, Glasgow, UK
| | - R Glasspool
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK and Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - S B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK and Cancer Research UK Beatson Institute, Glasgow, UK
| | - M Zagnoni
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
128
|
Meijerink N, de Oliveira JE, van Haarlem DA, Hosotani G, Lamot DM, Stegeman JA, Rutten VPMG, Jansen CA. Glucose Oligosaccharide and Long-Chain Glucomannan Feed Additives Induce Enhanced Activation of Intraepithelial NK Cells and Relative Abundance of Commensal Lactic Acid Bacteria in Broiler Chickens. Vet Sci 2021; 8:110. [PMID: 34204778 PMCID: PMC8231533 DOI: 10.3390/vetsci8060110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | | | - Daphne A. van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | - Guilherme Hosotani
- Cargill R&D Center Europe, B-1800 Vilvoorde, Belgium; (J.E.d.O.); (G.H.)
| | - David M. Lamot
- Cargill Animal Nutrition and Health Innovation Center, 5334 LD Velddriel, The Netherlands;
| | - J. Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| |
Collapse
|
129
|
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6107. [PMID: 34198930 PMCID: PMC8201328 DOI: 10.3390/ijerph18116107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Besides our current health concerns due to COVID-19, cancer is a longer-lasting and even more dramatic pandemic that affects almost a third of the human population worldwide. Most of the emphasis on its causes has been posed on genetic predisposition, chance, and wrong lifestyles (mainly, obesity and smoking). Moreover, our medical weapons against cancers have not improved too much during the last century, although research is in progress. Once diagnosed with a malignant tumour, we still rely on surgery, radiotherapy, and chemotherapy. The main problem is that we have focused on fighting a difficult battle instead of preventing it by controlling its triggers. Quite the opposite, our knowledge of the links between environmental pollution and cancer has surged from the 1980s. Carcinogens in water, air, and soil have continued to accumulate disproportionally and grow in number and dose, bringing us to today's carnage. Here, a synthesis and critical review of the state of the knowledge of the links between cancer and environmental pollution in the three environmental compartments is provided, research gaps are briefly discussed, and some future directions are indicated. New evidence suggests that it is relevant to take into account not only the dose but also the time when we are exposed to carcinogens. The review ends by stressing that more dedication should be put into studying the environmental causes of cancers to prevent and avoid curing them, that the precautionary approach towards environmental pollutants must be much more reactionary, and that there is an urgent need to leave behind the outdated petrochemical-based industry and goods production.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Konrad Lorenz Institute for Evolution and Cognition Research, 3400 Klosterneuburg, Austria;
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
130
|
Köktürk M, Çomaklı S, Özkaraca M, Alak G, Atamanalp M. Teratogenic and Neurotoxic Effects of n-Butanol on Zebrafish Development. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:94-106. [PMID: 33780052 DOI: 10.1002/aah.10123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
In recent years, n-butanol, a type of alcohol, has been widely used from the chemical industry to the food industry. In this study, toxic effects of n-butanol's different concentrations (10, 50, 250, 500, 750, 1,000, and 1,250 mg/L) in Zebrafish Danio rerio embryos and larvae were investigated. For this purpose, Zebrafish embryos were exposed to n-butanol in acute semistatic applications. Teratogenic effects such as cardiac edema, scoliosis, lordosis, head development abnormality, yolk sac edema, and tail abnormality were determined at different time intervals (24, 48, 72, 96, and 120 h). Additionally, histopathological abnormalities such as vacuole formation in brain tissue and necrosis in liver tissue were observed at high doses (500, 750, and 1,000 mg/L) in all treatment groups at 96 h. It was determined that heart rate decreased at 48, 72, and 96 h due to an increase in concentration. In addition, alcohol-induced eye size reduction (microphthalmia) and single eye formation (cyclopia) are also among the effects observed in our research findings. In conclusion, n-butanol has been observed to cause intense neurotoxic, teratogenic, and cardiotoxic effects in Zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, School of Applied Science, Igdır University, 76000, Igdır, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25030, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Cumhuriyet University, 58140, Sivas, Turkey
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25030, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, 25030, Erzurum, Turkey
| |
Collapse
|
131
|
Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021; 173:306-330. [PMID: 33798642 PMCID: PMC8191594 DOI: 10.1016/j.addr.2021.03.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Even given recent advances in nanomedicine development of breast cancer treatment in recent years and promising results in pre-clinical models, cancer nanomedicines often fail at the clinical trial stage. Limitations of conventional in vitro models include the lack of representation of the stromal population, the absence of a three-dimensional (3D) structure, and a poor representation of inter-tumor and intra-tumor heterogeneity. Herein, we review those cell culture strategies that aim to overcome these limitations, including cell co-cultures, advanced 3D cell cultures, patient-derived cells, bioprinting, and microfluidics systems. The in vivo evaluation of nanomedicines must consider critical parameters that include the enhanced permeability and retention effect, the host's immune status, and the site of tumor implantation. Here, we critically discuss the advantages and limitations of current in vivo models and report how the improved selection and application of breast cancer models can improve the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Paula M Soriano-Teruel
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain; Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Ana Armiñán
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Mar Orzáez
- Centro de Investigación Príncipe Felipe, Targeted Therapies on Cancer and Inflammation Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Laboratory, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
132
|
Effect of Poly(L-lysine) and Heparin Coatings on the Surface of Polyester-Based Particles on Prednisolone Release and Biocompatibility. Pharmaceutics 2021; 13:pharmaceutics13060801. [PMID: 34072016 PMCID: PMC8229182 DOI: 10.3390/pharmaceutics13060801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
A plethora of micro- and nanoparticle types are currently investigated for advanced ocular treatment due to improved drug retention times, higher bioavailability and better biocompatibility. Yet, comparative studies of both physicochemical and toxicological performance of these novel drug delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(ε-caprolactone)-based micro- and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties of the particles were varied with respect to their hydrophilicity and size as well as their charge and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface determined the surface charge and the release rate, enabling prednisolone release for at least 30 days. Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the developed particle formulations were found to be nontoxic in the tested range of concentrations.
Collapse
|
133
|
Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J Control Release 2021; 335:247-268. [PMID: 34033859 DOI: 10.1016/j.jconrel.2021.05.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Absorption, distribution, metabolism and excretion (ADME) studies represent a fundamental step in the early stages of drug discovery. In particular, the absorption of orally administered drugs, which occurs at the intestinal level, has gained attention since poor oral bioavailability often led to failures for new drug approval. In this context, several in vitro preclinical models have been recently developed and optimized to better resemble human physiology in the lab and serve as an animal alternative to accomplish the 3Rs principles. However, numerous models are ineffective in recapitulating the key features of the human small intestine epithelium and lack of prediction potential for drug absorption and metabolism during the preclinical stage. In this review, we provide an overview of in vitro models aimed at mimicking the intestinal barrier for pharmaceutical screening. After briefly describing how the human small intestine works, we present i) conventional 2D synthetic and cell-based systems, ii) 3D models replicating the main features of the intestinal architecture, iii) micro-physiological systems (MPSs) reproducing the dynamic stimuli to which cells are exposed in the native microenvironment. In this review, we will highlight the benefits and drawbacks of the leading intestinal models used for drug absorption and metabolism studies.
Collapse
Affiliation(s)
- Arianna Fedi
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Chiara Vitale
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Giulia Ponschin
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | | | - Marco Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy.
| |
Collapse
|
134
|
Aubeux D, Renard E, Pérez F, Tessier S, Geoffroy V, Gaudin A. Review of Animal Models to Study Pulp Inflammation. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.673552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play a major role in the defense against pathogens and during tissue injury. Animal studies are mandatory and complementary to in vitro experiments when studying the physiopathology of dental pulp, new diagnostic tools, or innovative therapeutic strategies. This animal approach makes it possible to define a benefit-risk ratio necessary to be subsequently tested in humans. Among the animal kingdom, rodents, rabbits, ferrets, swine, dogs, and non-human primates have been used to model human pulpitis. The diversity of animals found in studies indicate the difficulty of choosing the correct and most efficient model. Each animal model has its own characteristics that may be advantageous or limiting, according to the studied parameters. These elements have to be considered in preclinical studies. This article aims to provide a thorough understanding of the different animal models used to study pulp inflammation. This may help to find the most pertinent or appropriate animal model depending on the hypothesis investigated and the expected results.
Collapse
|
135
|
Ta GH, Weng CF, Leong MK. In silico Prediction of Skin Sensitization: Quo vadis? Front Pharmacol 2021; 12:655771. [PMID: 34017255 PMCID: PMC8129647 DOI: 10.3389/fphar.2021.655771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Skin direct contact with chemical or physical substances is predisposed to allergic contact dermatitis (ACD), producing various allergic reactions, namely rash, blister, or itchy, in the contacted skin area. ACD can be triggered by various extremely complicated adverse outcome pathways (AOPs) remains to be causal for biosafety warrant. As such, commercial products such as ointments or cosmetics can fulfill the topically safe requirements in animal and non-animal models including allergy. Europe, nevertheless, has banned animal tests for the safety evaluations of cosmetic ingredients since 2013, followed by other countries. A variety of non-animal in vitro tests addressing different key events of the AOP, the direct peptide reactivity assay (DPRA), KeratinoSens™, LuSens and human cell line activation test h-CLAT and U-SENS™ have been developed and were adopted in OECD test guideline to identify the skin sensitizers. Other methods, such as the SENS-IS are not yet fully validated and regulatorily accepted. A broad spectrum of in silico models, alternatively, to predict skin sensitization have emerged based on various animal and non-animal data using assorted modeling schemes. In this article, we extensively summarize a number of skin sensitization predictive models that can be used in the biopharmaceutics and cosmeceuticals industries as well as their future perspectives, and the underlined challenges are also discussed.
Collapse
Affiliation(s)
- Giang Huong Ta
- Department of Chemistry, National Dong Hwa University, Shoufeng, Taiwan
| | - Ching-Feng Weng
- Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
136
|
Lopes AM, Dahms HU, Converti A, Mariottini GL. Role of model organisms and nanocompounds in human health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:285. [PMID: 33876320 DOI: 10.1007/s10661-021-09066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Safeguarding the environment is one of the most serious modern challenges, as increasing amounts of chemical compounds are produced and released into the environment, causing a serious threat to the future health of the Earth as well as organisms and humans on a global scale. Ecotoxicology is an integrative science involving different physical, chemical, biological, and social aspects concerned with the study of toxic effects caused by natural or synthetic pollutants on any constituents of ecosystems, including animals (including humans), plants, or microorganisms, in an integral context. In recent decades, this science has undergone considerable development by addressing environmental risk assessments through the biomonitoring of indicator species using biomarkers, model organisms, and nanocompounds in toxicological assays. Since a single taxon cannot be representative of complex ecotoxicological effects and mechanisms of action of a chemical, the use of test batteries is widely accepted in ecotoxicology. Test batteries include properly chosen organisms that are easy to breed, adapt easily to laboratory conditions, and are representative of the environmental compartment under consideration. One of the main issues of toxicological and ecotoxicological research is to gain a deeper understanding of how data should be obtained through laboratory and field approaches using experimental models and how they could be extrapolated to humans. There is a tendency to replace animal tests with in vitro systems and to perform them according to standardized analytical methods and the rules of the so-called good laboratory practice (GLP). This paper aims to review this topic to stimulate both efforts to understand the toxicological and ecotoxicological properties of natural and synthetic chemicals and the possible use of such data for application to humans.
Collapse
Affiliation(s)
- André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, Brazil.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shin-Chuan 1st Road, Kaohsiung, 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genova, Genova, 16145, Italy
| | - Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16132, Italy
| |
Collapse
|
137
|
Rimpiläinen T, Nunes A, Calado R, Fernandes AS, Andrade J, Ntungwe E, Spengler G, Szemerédi N, Rodrigues J, Gomes JP, Rijo P, Candeias NR. Increased antibacterial properties of indoline-derived phenolic Mannich bases. Eur J Med Chem 2021; 220:113459. [PMID: 33915373 DOI: 10.1016/j.ejmech.2021.113459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
The search for antibacterial agents for the combat of nosocomial infections is a timely problem, as antibiotic-resistant bacteria continue to thrive. The effect of indoline substituents on the antibacterial properties of aminoalkylphenols was studied, leading to the development of a library of compounds with minimum inhibitory concentrations (MICs) as low as 1.18 μM. Two novel aminoalkylphenols were identified as particularly promising, after MIC and minimum bactericidal concentrations (MBC) determination against a panel of reference strain Gram-positive bacteria, and further confirmed against 40 clinical isolates (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium, and Listeria monocytogenes). The same two aminoalkylphenols displayed low toxicity against two in vivo models (Artemia salina brine shrimp and Saccharomyces cerevisiae). The in vitro cytotoxicity evaluation (on human keratinocytes and human embryonic lung fibroblast cell lines) of the same compounds was also carried out. They demonstrated a particularly toxic effect on the fibroblast cell lines, with IC50 in the 1.7-5.1 μM range, thus narrowing their clinical use. The desired increase in the antibacterial properties of the aminoalkylphenols, particularly indoline-derived phenolic Mannich bases, was reached by introducing an additional nitro group in the indolinyl substituent or by the replacement of a methyl by a bioisosteric trifluoromethyl substituent in the benzyl group introduced through use of boronic acids in the Petasis borono-Mannich reaction. Notably, the introduction of an additional nitro moiety did not confer added toxicity to the aminoalkylphenols.
Collapse
Affiliation(s)
- Tatu Rimpiläinen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland
| | - Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024, Lisboa, Portugal; CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal.
| | - Rita Calado
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal
| | - Ana S Fernandes
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Joana Andrade
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Epole Ntungwe
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720, Szeged, Hungary
| | - Nikoletta Szemerédi
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720, Szeged, Hungary
| | - João Rodrigues
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016, Lisboa, Portugal
| | - Patricia Rijo
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
138
|
Huang HJ, Lee YH, Hsu YH, Liao CT, Lin YF, Chiu HW. Current Strategies in Assessment of Nanotoxicity: Alternatives to In Vivo Animal Testing. Int J Mol Sci 2021; 22:4216. [PMID: 33921715 PMCID: PMC8073679 DOI: 10.3390/ijms22084216] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Millions of experimental animals are widely used in the assessment of toxicological or biological effects of manufactured nanomaterials in medical technology. However, the animal consciousness has increased and become an issue for debate in recent years. Currently, the principle of the 3Rs (i.e., reduction, refinement, and replacement) is applied to ensure the more ethical application of humane animal research. In order to avoid unethical procedures, the strategy of alternatives to animal testing has been employed to overcome the drawbacks of animal experiments. This article provides current alternative strategies to replace or reduce the use of experimental animals in the assessment of nanotoxicity. The currently available alternative methods include in vitro and in silico approaches, which can be used as cost-effective approaches to meet the principle of the 3Rs. These methods are regarded as non-animal approaches and have been implemented in many countries for scientific purposes. The in vitro experiments related to nanotoxicity assays involve cell culture testing and tissue engineering, while the in silico methods refer to prediction using molecular docking, molecular dynamics simulations, and quantitative structure-activity relationship (QSAR) modeling. The commonly used novel cell-based methods and computational approaches have the potential to help minimize the use of experimental animals for nanomaterial toxicity assessments.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320001, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Te Liao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
139
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
140
|
Subhan I, Siddique YH. Modulation of Huntington's disease in Drosophila. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:894-903. [PMID: 33845728 DOI: 10.2174/1871527320666210412155508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder which deteriorates the physical and mental abilities of the patients. It is an autosomal dominant disorder and is mainly caused by the expansion of a repeating CAG triplet. A number of animal models ranging from worms, fruit flies, mice and rats to pigs, sheep and monkeys are available which have been helpful in understanding various pathways involved during the progression of the disease. Drosophila is one of the most commonly used model organisms for biomedical science, due to low cost maintenance, short life span and easily implications of genetic tools. The present review provides brief description of HD and the studies carried out for HD to date taking Drosophila as a model.
Collapse
Affiliation(s)
- Iqra Subhan
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh. India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh. India
| |
Collapse
|
141
|
Myorelaxant Effect of the Dysphania ambrosioides Essential Oil on Sus scrofa domesticus Coronary Artery and Its Toxicity in the Drosophila melanogaster Model. Molecules 2021; 26:molecules26072041. [PMID: 33918492 PMCID: PMC8038241 DOI: 10.3390/molecules26072041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Alternative methods for the use of animals in research have gained increasing importance, due to assessments evaluating the real need for their use and the development of legislation that regulates the subject. The principle of the 3R's (replacement, reduction and refinement) has been an important reference, such that in vitro, ex vivo and cord replacement methods have achieved a prominent place in research. METHODS Therefore, due to successful results from studies developed with these methods, the present study aimed to evaluate the myorelaxant effect of the Dysphania ambrosioides essential oil (EODa) using a Sus scrofa domesticus coronary artery model, and the toxicity of both the Dysphania ambrosioides essential oil and its major constituent, α-terpinene, against Drosophila melanogaster in toxicity and negative geotaxis assays. RESULTS The EODa relaxed the smooth muscle of swine coronary arteries precontracted with K+ and 5-HT in assays using Sus scrofa domesticus coronary arteries. The toxicity results presented LC50 values of 1.546 mg/mL and 2.282 mg/mL for the EODa and α-terpinene, respectively, thus showing the EODa and α-terpinene presented toxicity to these dipterans, with the EODa being more toxic. CONCLUSIONS Moreover, the results reveal the possibility of using the EODa in vascular disease studies since it promoted the relaxation of the Sus scrofa domesticus coronary smooth muscle.
Collapse
|
142
|
Fontana F, Figueiredo P, Martins JP, Santos HA. Requirements for Animal Experiments: Problems and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004182. [PMID: 33025748 DOI: 10.1002/smll.202004182] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 05/27/2023]
Abstract
In vivo models remain a principle screening tool in the drug discovery pipeline. Here, the challenges associated with the need for animal experiments, as well as their impact on research, individual/societal, and economic contexts are discussed. A number of alternatives that, with further development, optimization, and investment, may replace animal experiments are also revised.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
143
|
Standardization of esophageal adenocarcinoma in vitro model and its applicability for model drug testing. Sci Rep 2021; 11:6664. [PMID: 33758229 PMCID: PMC7988140 DOI: 10.1038/s41598-021-85530-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/11/2023] Open
Abstract
FLO-1 cell line represents an important tool in esophageal adenocarcinoma (EAC) research as a verified and authentic cell line to study the disease pathophysiology and antitumor drug screenings. Since in vitro characteristics of cells depend on the microenvironment and culturing conditions, we performed a thorough characterization of the FLO-1 cell line under different culturing conditions with the aim of (1) examining the effect of serum-free growth medium and air–liquid interface (A–L) culturing, which better reflect physiological conditions in vivo and (2) investigating the differentiation potential of FLO-1 cells to mimic the properties of the in vivo esophageal epithelium. Our study shows that the composition of the media influenced the morphological, ultrastructural and molecular characteristics of FLO-1 cells, such as the expression of junctional proteins. Importantly, FLO-1 cells formed spheres at the A–L interface, recapitulating key elements of tumors in the esophageal tube, i.e., direct contact with the gas phase and three-dimensional architecture. On the other hand, FLO-1 models exhibited high permeability to model drugs and zero permeability markers, and low transepithelial resistance, and therefore poorly mimicked normal esophageal epithelium. In conclusion, the identified effect of culture conditions on the characteristics of FLO-1 cells should be considered for standardization, data reproducibility and validity of the in vitro EAC model. Moreover, the sphere-forming ability of FLO-1 cells at the A–L interface should be considered in EAC tumor biology and anticancer drug studies as a reliable and straightforward model with the potential to increase the predictive efficiency of the current in vitro approaches.
Collapse
|
144
|
Luptakova L, Dvorcakova S, Demcisakova Z, Belbahri L, Holovska K, Petrovova E. Dimethyl Sulfoxide: Morphological, Histological, and Molecular View on Developing Chicken Liver. TOXICS 2021; 9:toxics9030055. [PMID: 33809222 PMCID: PMC8001493 DOI: 10.3390/toxics9030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Dimethyl sulfoxide (DMSO) is widely used as a solvent for small hydrophobic drug molecules. However, the safe volume allowing to avoid its embryotoxic effect has been poorly studied. In this study, we documented the effects of dimethyl sulfoxide (DMSO) in the developing chicken embryo at morphological, histological, and molecular levels. We focused on the developing chicken liver as the main organ involved in the process of detoxification. In our study, 100% DMSO was administered subgerminally onto the eggshell membrane (membrana papyracea) at various volumes (5, 10, 15, 20, 25, 30, 35, and 50 µL) on 4th embryonic day (ED). We focused on histopathological alterations of the liver structure, and noticed the overall impact of DMSO on developing chicken embryos (embryotoxicity, malformation). At the molecular level, we studied cytochrome P450 complex (CYP) isoform's activities in relation to changes of CYP1A5, CYP3A37, and CYP3A80 gene expression. Total embryotoxicity after application of different doses of DMSO on ED 4, and the embryo lethality increased with increasing DMSO amounts. Overall mortality after DMSO administration ranged below 33%. Mortality was increased with higher amounts of DMSO, mainly from 20 µL. The highest mortality was observed for the highest dose of DMSO over 35 µL. The results also showed a decrease in body weight with increased application volumes of DMSO. At the histological level, we observed mainly the presence of lipid droplets and dilated bile canaliculi and sinusoids in samples over the administration of 25 µL of DMSO. While these findings were not statistically significant, DMSO treatment caused a significant different up-regulation of mRNA expression in all studied genes. For CYP1A5, CYP3A37, and CYP3A80 DMSO volumes needed were 15 µL, 10 µL, and 20 µL, respectively. A significant down-regulation of all studied CYP isoform was detected after application of a DMSO dose of 5 µL. Regarding the morphological results, we can assume that the highest safe dose of DMSO without affecting chicken embryo development and its liver is up to 10 µL. This conclusion is corroborated with the presence of number of malformations and body weight reduction, which correlates with histological findings. Moreover, the gene expression results showed that even the lowest administered DMSO volume could affect hepatocytes at the molecular level causing down-regulation of cytochrome P450 complex (CYP1A5, CYP3A37, CYP3A80).
Collapse
Affiliation(s)
- Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
- Correspondence: ; Tel.: +421-918-919-686
| | - Simona Dvorcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Zuzana Demcisakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| | - Lassaad Belbahri
- Laboratory of Soil Biodiversity, Department of Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Katarina Holovska
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.D.); (K.H.); (E.P.)
| |
Collapse
|
145
|
Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomed Mater 2021; 16:042003. [PMID: 33686970 DOI: 10.1088/1748-605x/abe6d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced biomaterials are increasingly used for numerous medical applications from the delivery of cancer-targeted therapeutics to the treatment of cardiovascular diseases. The issues of foreign body reactions induced by biomaterials must be controlled for preventing treatment failure. Therefore, it is important to assess the biocompatibility and cytotoxicity of biomaterials on cell culture systems before proceeding to in vivo studies in animal models and subsequent clinical trials. Direct use of biomaterials on animals create technical challenges and ethical issues and therefore, the use of non-animal models such as stem cell cultures could be useful for determination of their safety. However, failure to recapitulate the complex in vivo microenvironment have largely restricted stem cell cultures for testing the cytotoxicity of biomaterials. Nevertheless, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages make them an ideal candidate for in vitro screening studies. Furthermore, the application of stem cells in biomaterials screening studies may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, embryonic stem cells, adult stem cells, and induced pluripotent stem cells are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000 Punjab, Pakistan
| | | | | | | | | | | | | |
Collapse
|
146
|
Shinohara M, Arakawa H, Oda Y, Shiraki N, Sugiura S, Nishiuchi T, Satoh T, Iino K, Leo S, Kato Y, Araya K, Kawanishi T, Nakatsuji T, Mitsuta M, Inamura K, Goto T, Shinha K, Nihei W, Komori K, Nishikawa M, Kume S, Kato Y, Kanamori T, Sakai Y, Kimura H. Coculture with hiPS-derived intestinal cells enhanced human hepatocyte functions in a pneumatic-pressure-driven two-organ microphysiological system. Sci Rep 2021; 11:5437. [PMID: 33686099 PMCID: PMC7940409 DOI: 10.1038/s41598-021-84861-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Examining intestine-liver interactions is important for achieving the desired physiological drug absorption and metabolism response in in vitro drug tests. Multi-organ microphysiological systems (MPSs) constitute promising tools for evaluating inter-organ interactions in vitro. For coculture on MPSs, normal cells are challenging to use because they require complex maintenance and careful handling. Herein, we demonstrated the potential of coculturing normal cells on MPSs in the evaluation of intestine-liver interactions. To this end, we cocultured human-induced pluripotent stem cell-derived intestinal cells and fresh human hepatocytes which were isolated from PXB mice with medium circulation in a pneumatic-pressure-driven MPS with pipette-friendly liquid-handling options. The cytochrome activity, albumin production, and liver-specific gene expressions in human hepatocytes freshly isolated from a PXB mouse were significantly upregulated via coculture with hiPS-intestinal cells. Our normal cell coculture shows the effects of the interactions between the intestine and liver that may occur in vivo. This study is the first to demonstrate the coculturing of hiPS-intestinal cells and fresh human hepatocytes on an MPS for examining pure inter-organ interactions. Normal-cell coculture using the multi-organ MPS could be pursued to explore unknown physiological mechanisms of inter-organ interactions in vitro and investigate the physiological response of new drugs.
Collapse
Affiliation(s)
- Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuuichi Oda
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takumi Nishiuchi
- Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Keita Iino
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Karin Araya
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takumi Kawanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoki Nakatsuji
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Manami Mitsuta
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kosuke Inamura
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomomi Goto
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Kenta Shinha
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Wataru Nihei
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan
| | - Kikuo Komori
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Department of Mechanical Engineering, School of Engineering, Tokai University, Kanagawa, Japan.
| |
Collapse
|
147
|
In Vitro Human Joint Models Combining Advanced 3D Cell Culture and Cutting-Edge 3D Bioprinting Technologies. Cells 2021; 10:cells10030596. [PMID: 33800436 PMCID: PMC7999996 DOI: 10.3390/cells10030596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Joint-on-a-chip is a new technology able to replicate the joint functions into microscale systems close to pathophysiological conditions. Recent advances in 3D printing techniques allow the precise control of the architecture of the cellular compartments (including chondrocytes, stromal cells, osteocytes and synoviocytes). These tools integrate fluid circulation, the delivery of growth factors, physical stimulation including oxygen level, external pressure, and mobility. All of these structures must be able to mimic the specific functions of the diarthrodial joint: mobility, biomechanical aspects and cellular interactions. All the elements must be grouped together in space and reorganized in a manner close to the joint organ. This will allow the study of rheumatic disease physiopathology, the development of biomarkers and the screening of new drugs.
Collapse
|
148
|
Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes (Basel) 2021. [DOI: 10.3390/pr9030447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Techniques to provide in vitro tissue culture have undergone significant changes during the last decades, and current applications involve interactions of cells and organoids, three-dimensional cell co-cultures, and organ/body-on-chip tools. Efficient computer-aided and mathematical model-based methods are required for efficient and knowledge-driven characterization, optimization, and routine manufacturing of tissue culture systems. As an alternative to purely experimental-driven research, the usage of comprehensive mathematical models as a virtual in silico representation of the tissue culture, namely a digital twin, can be advantageous. Digital twins include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue. In this review, current concepts, expectations, and the state of the art of digital twins for tissue culture concepts will be highlighted. In general, DT’s can be applied along the full process chain and along the product life cycle. Due to the complexity, the focus of this review will be especially on the design, characterization, and operation of the tissue culture techniques.
Collapse
|
149
|
A potential anticancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile. Eur J Pharm Sci 2021; 158:105686. [DOI: 10.1016/j.ejps.2020.105686] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
|
150
|
Ramasamy S, Davoodi P, Vijayavenkataraman S, Teoh JH, Thamizhchelvan AM, Robinson KS, Wu B, Fuh JY, DiColandrea T, Zhao H, Lane EB, Wang CH. Optimized construction of a full thickness human skin equivalent using 3D bioprinting and a PCL/collagen dermal scaffold. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|