101
|
Erdmann J, Thöming JG, Pohl S, Pich A, Lenz C, Häussler S. The Core Proteome of Biofilm-Grown Clinical Pseudomonas aeruginosa Isolates. Cells 2019; 8:E1129. [PMID: 31547513 PMCID: PMC6829490 DOI: 10.3390/cells8101129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has greatly facilitated the identification of shared as well as unique features among individual cells or tissues, and thus offers the potential to find disease markers. While proteomics is recognized for its potential to generate quantitative maps of protein expression, comparative proteomics in bacteria has been largely restricted to the comparison of single cell lines or mutant strains. In this study, we used a data independent acquisition (DIA) technique, which enables global protein quantification of large sample cohorts, to record the proteome profiles of overall 27 whole genome sequenced and transcriptionally profiled clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. Analysis of the proteome profiles across the 27 clinical isolates grown under planktonic and biofilm growth conditions led to the identification of a core biofilm-associated protein profile. Furthermore, we found that protein-to-mRNA ratios between different P. aeruginosa strains are well correlated, indicating conserved patterns of post-transcriptional regulation. Uncovering core regulatory pathways, which drive biofilm formation and associated antibiotic tolerance in bacterial pathogens, promise to give clues to interactions between bacterial species and their environment and could provide useful targets for new clinical interventions to combat biofilm-associated infections.
Collapse
Affiliation(s)
- Jelena Erdmann
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover 30625, Germany.
| | - Janne G Thöming
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
| | - Sarah Pohl
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig 38124, Germany.
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover 30625, Germany.
| | - Christof Lenz
- Institute of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Göttingen 37075, Germany.
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Göttingen 37077, Germany.
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany.
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig 38124, Germany.
| |
Collapse
|
102
|
Kordes A, Grahl N, Koska M, Preusse M, Arce-Rodriguez A, Abraham WR, Kaever V, Häussler S. Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host. THE ISME JOURNAL 2019; 13:2018-2030. [PMID: 30952997 PMCID: PMC6775985 DOI: 10.1038/s41396-019-0412-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022]
Abstract
In a given habitat, bacterial cells often experience recurrent exposures to the same environmental stimulus. The ability to memorize the past event and to adjust current behaviors can lead to efficient adaptation to the recurring stimulus. Here we demonstrate that the versatile bacterium Pseudomonas aeruginosa adopts a virulence phenotype after serial passage in the invertebrate model host Galleria mellonella. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under rich medium conditions in vitro. Transcriptional reprogramming seemed to be induced by a host-specific food source, as reprogramming was also observed upon cultivation of P. aeruginosa in rich medium supplemented with polyunsaturated long-chain fatty acids. The establishment of induced memory responses adds a time dimension and seems to fill the gap between long-term evolutionary genotypic adaptation and short-term induced individual responses. Efforts to unravel the fundamental mechanisms that underlie the carry-over effect to induce such memory responses will continue to be of importance as hysteretic behavior can serve survival of bacterial populations in changing and challenging habitats.
Collapse
Affiliation(s)
- Adrian Kordes
- Department of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
| | - Nora Grahl
- Department of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
| | - Michal Koska
- Department of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Alejandro Arce-Rodriguez
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Wolf-Rainer Abraham
- Department of Chemical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, 30625, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany.
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany.
| |
Collapse
|
103
|
Hassan AA, Coutinho CP, Sá-Correia I. Burkholderia cepacia Complex Species Differ in the Frequency of Variation of the Lipopolysaccharide O-Antigen Expression During Cystic Fibrosis Chronic Respiratory Infection. Front Cell Infect Microbiol 2019; 9:273. [PMID: 31417878 PMCID: PMC6686744 DOI: 10.3389/fcimb.2019.00273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria can adapt to the lung environment of cystic fibrosis (CF) patients resulting in the emergence of a very difficult to eradicate heterogeneous population leading to chronic infections associated with rapid lung function loss and increased mortality. Among the important phenotypic modifications is the variation of the lipopolysaccharide (LPS) structure at level of the O-antigen (OAg) presence, influencing adherence, colonization and the ability to evade the host defense mechanisms. The present study was performed to understand whether the loss of OAg expression during CF infection can be considered a general phenomenon in different Bcc species favoring its chronicity. In fact, it is still not clear why different Bcc species/strains differ in their ability to persist in the CF lung and pathogenic potential. The systematic two-decade-retrospective-longitudinal-screening conducted covered 357 isolates retrieved from 19 chronically infected patients receiving care at a central hospital in Lisbon. The study involved 21 Bcc strains of six/seven Bcc species/lineages, frequently or rarely isolated from CF patients worldwide. Different strains/clonal variants obtained during infection gave rise to characteristic OAg-banding patterns. The two most prevalent and feared species, B. cenocepacia and B. multivorans, showed a tendency to lose the OAg along chronic infection. B. cenocepacia recA lineage IIIA strains known to lead to particularly destructive infections exhibit the most frequent OAg loss, compared with lineage IIIB. The switch frequency increased with the duration of infection and the level of lung function deterioration. For the first time, it is shown that the rarely found B. cepacia and B. contaminans, whose representation in the cohort of patients examined is abnormally high, keep the OAg even during 10- or 15-year infections. Data from co-infections with different Bcc species reinforced these conclusions. Concerning the two other rarely found species examined, B. stabilis exhibited a stable OAg expression phenotype over the infection period while for the single clone of the more distantly related B. dolosa species, the OAg-chain was absent from the beginning of the 5.5-year infection until the patient dead. This work reinforces the relevance attributed to the OAg-expression switch suggesting marked differences in the various Bcc species.
Collapse
Affiliation(s)
- A. Amir Hassan
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P. Coutinho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
104
|
Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D, Haverich A, Warnecke G, Häussler S. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 2019; 10:3397. [PMID: 31363089 PMCID: PMC6667473 DOI: 10.1038/s41467-019-11414-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated substantial genetic diversification of Pseudomonas aeruginosa across sub-compartments in cystic fibrosis (CF) lungs. Here, we isolate P. aeruginosa from five different sampling areas in the upper and lower airways of an explanted CF lung, analyze ex vivo transcriptional profiles by RNA-seq, and use colony re-sequencing and deep population sequencing to determine the genetic diversity within and across the various sub-compartments. We find that, despite genetic variation, the ex vivo transcriptional profiles of P. aeruginosa populations inhabiting different regions of the CF lung are similar. Although we cannot estimate the extent to which the transcriptional response recorded here actually reflects the in vivo transcriptomes, our results indicate that there may be a common in vivo transcriptional profile in the CF lung environment.
Collapse
Affiliation(s)
- Adrian Kordes
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
| | - Matthias Preusse
- Institute for Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Sven D Willger
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany
- Institute for Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, 30625, Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (Deutsches Zentrum für Lungenforschung [DZL]), Hannover, 30625, Germany
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, 30625, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, 30625, Germany.
- Institute for Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany.
| |
Collapse
|
105
|
Farias KS, Kato NN, Boaretto AG, Weber JI, Brust FR, Alves FM, Tasca T, Macedo AJ, Silva DB, Carollo CA. Nectandra as a renewable source for (+)-α-bisabolol, an antibiofilm and anti-Trichomonas vaginalis compound. Fitoterapia 2019; 136:104179. [DOI: 10.1016/j.fitote.2019.104179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/29/2022]
|
106
|
Remigi P, Ferguson GC, McConnell E, De Monte S, Rogers DW, Rainey PB. Ribosome Provisioning Activates a Bistable Switch Coupled to Fast Exit from Stationary Phase. Mol Biol Evol 2019; 36:1056-1070. [PMID: 30835283 PMCID: PMC6501884 DOI: 10.1093/molbev/msz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Observations of bacteria at the single-cell level have revealed many instances of phenotypic heterogeneity within otherwise clonal populations, but the selective causes, molecular bases, and broader ecological relevance remain poorly understood. In an earlier experiment in which the bacterium Pseudomonas fluorescens SBW25 was propagated under a selective regime that mimicked the host immune response, a genotype evolved that stochastically switched between capsulation states. The genetic cause was a mutation in carB that decreased the pyrimidine pool (and growth rate), lowering the activation threshold of a preexisting but hitherto unrecognized phenotypic switch. Genetic components surrounding bifurcation of UTP flux toward DNA/RNA or UDP-glucose (a precursor of colanic acid forming the capsules) were implicated as key components. Extending these molecular analyses-and based on a combination of genetics, transcriptomics, biochemistry, and mathematical modeling-we show that pyrimidine limitation triggers an increase in ribosome biosynthesis and that switching is caused by competition between ribosomes and CsrA/RsmA proteins for the mRNA transcript of a positively autoregulated activator of colanic acid biosynthesis. We additionally show that in the ancestral bacterium the switch is part of a program that determines stochastic entry into a semiquiescent capsulated state, ensures that such cells are provisioned with excess ribosomes, and enables provisioned cells to exit rapidly from stationary phase under permissive conditions.
Collapse
Affiliation(s)
- Philippe Remigi
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Gayle C Ferguson
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Ellen McConnell
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - David W Rogers
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris Tech), CNRS UMR 8231, PSL Research University, Paris, France
| |
Collapse
|
107
|
Pham DTN, Khan F, Phan TTV, Park SK, Manivasagan P, Oh J, Kim YM. Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Braz J Microbiol 2019; 50:791-805. [PMID: 31250405 DOI: 10.1007/s42770-019-00108-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022] Open
Abstract
Biofilm formation is one of the resistance mechanisms of Pseudomonas aeruginosa against antimicrobial compounds. Biofilm formation also characterizes for the infection and pathogenesis of P. aeruginosa, along with production of various virulence factors. With recent development of nanotechnology, the present study aims to employ the synthetic iron nanoparticle (FeOOH-NP) as an active agent to inhibit the formation of P. aeruginosa biofilm. The FeOOH-NP was synthesized and characterized with rod shape and average size of 40 nm. Inhibition of biofilm formation by the FeOOH-NP is in a concentration-dependent manner, with inhibition of biofilm formation increased as the FeOOH-NP concentration increased. Microscopic observations also confirmed the disruption of the biofilm architecture in the presence of the FeOOH-NP. In addition, the presence of the FeOOH-NP was also found to modulate bacterial motility as well as some other important virulence factors produced simultaneously with biofilm formation. These findings provide insights to anti-biofilm effect of a new iron NP, contributing to the search for an effective agent to combat P. aeruginosa infections resulted from biofilm formation.
Collapse
Affiliation(s)
- Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea
| | - Thi Tuong Vy Phan
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Seul-Ki Park
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea.,Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea. .,Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
108
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
109
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
110
|
Francis VI, Porter SL. Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annu Rev Microbiol 2019; 73:199-223. [PMID: 31112439 DOI: 10.1146/annurev-micro-020518-115846] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| |
Collapse
|
111
|
Bouillet S, Ba M, Houot L, Iobbi-Nivol C, Bordi C. Connected partner-switches control the life style of Pseudomonas aeruginosa through RpoS regulation. Sci Rep 2019; 9:6496. [PMID: 31019225 PMCID: PMC6482189 DOI: 10.1038/s41598-019-42653-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/29/2019] [Indexed: 12/27/2022] Open
Abstract
Biofilm formation is a complex process resulting from the action of imbricated pathways in response to environmental cues. In this study, we showed that biofilm biogenesis in the opportunistic pathogen Pseudomonas aeruginosa depends on the availability of RpoS, the sigma factor regulating the general stress response in bacteria. Moreover, it was demonstrated that RpoS is post-translationally regulated by the HsbR-HsbA partner switching system as has been demonstrated for its CrsR-CrsA homolog in Shewanella oneidensis. Finally, it was established that HsbA, the anti-sigma factor antagonist, has a pivotal role depending on its phosphorylation state since it binds HsbR, the response regulator, when phosphorylated and FlgM, the anti-sigma factor of FliA, when non-phosphorylated. The phosphorylation state of HsbA thus drives the switch between the sessile and planktonic way of life of P. aeruginosa by driving the release or the sequestration of one or the other of these two sigma factors.
Collapse
Affiliation(s)
| | - Moly Ba
- Aix Marseille Univ, CNRS, IMM, LISM, Marseille, France
| | | | | | | |
Collapse
|
112
|
Regulatory Effect of DNA Topoisomerase I on T3SS Activity, Antibiotic Susceptibility and Quorum- Sensing-Independent Pyocyanin Synthesis in Pseudomonas aeruginosa. Int J Mol Sci 2019; 20:ijms20051116. [PMID: 30841529 PMCID: PMC6429228 DOI: 10.3390/ijms20051116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 02/04/2023] Open
Abstract
Topoisomerases are required for alleviating supercoiling of DNA during transcription and replication. Recent evidence suggests that supercoiling of bacterial DNA can affect bacterial pathogenicity. To understand the potential regulatory role of a topoisomerase I (TopA) in Pseudomonas aeruginosa, we investigated a previously isolated topA mutation using genetic approaches. We here report the effects of the altered topoisomerase in P. aeruginosa on type III secretion system, antibiotic susceptibility, biofilm initiation, and pyocyanin production. We found that topA was essential in P. aeruginosa, but a transposon mutant lacking the 13 amino acid residues at the C-terminal of the TopA and a mutant, named topA-RM, in which topA was split into three fragments were viable. The reduced T3SS expression in topA-RM seemed to be directly related to TopA functionality, but not to DNA supercoiling. The drastically increased pyocyanin production in the mutant was a result of up-regulation of the pyocyanin related genes, and the regulation was mediated through the transcriptional regulator PrtN, which is known to regulate bacteriocin. The well-established regulatory pathway, quorum sensing, was unexpectedly not involved in the increased pyocyanin synthesis. Our results demonstrated the unique roles of TopA in T3SS activity, antibiotic susceptibility, initial biofilm formation, and secondary metabolite production, and revealed previously unknown regulatory pathways.
Collapse
|
113
|
Affiliation(s)
- Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
| | - Jane C Davies
- The Cystic Fibrosis and Chronic Infection Group, National Heart and Lung Institute, Imperial College, London, UK. .,The Royal Brompton and Harefield NHS Foundation Trust, London, UK.
| |
Collapse
|
114
|
Villalobos V, Leiva Á, Ríos HE, Pavez J, Silva CP, Ahmar M, Queneau Y, Blamey JM, Chávez FP, Urzúa MD. Inhibiting Pathogen Surface Adherence by Multilayer Polyelectrolyte Films Functionalized with Glucofuranose Derivatives. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28147-28158. [PMID: 30035536 DOI: 10.1021/acsami.8b03605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inhibiting pathogenic bacterial adherence on surfaces is an ongoing challenge to prevent the development of biofilms. Multilayer polyelectrolyte films are feasible antibacterial materials. Here, we have designed new films made of carbohydrate polyelectrolytes to obtain antibacterial coatings that prevent biofilm formation. The polyelectrolyte films were constructed from poly(maleic anhydride- alt-styrene) functionalized with glucofuranose derivatives and quaternized poly(4-vinylpyridine) N-alkyl. These films prevent Pseudomonas aeruginosa and Salmonella Typhimurium, two important bacterial contaminants in clinical environments, from adhering to surfaces. When the film was composed of more than 10 layers, the bacterial population was greatly reduced, while the bacteria remaining on the film were morphologically damaged, as atomic force microscopy revealed. The antibacterial capacity of the polyelectrolyte films was determined by the combination of thickness, wettability, surface energy, and most importantly, the conformation that polyelectrolytes adopt the function of nature of the carbohydrate group. This polyelectrolyte film constitutes the first green approach to preventing pathogenic bacterial surface adherence and proliferation without killing the bacterial pathogen.
Collapse
Affiliation(s)
- Valeria Villalobos
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería , Universidad Autónoma de Chile , El Llano Subercaseaux 2801 , 8900000 San Miguel , Santiago , Chile
| | - Ángel Leiva
- Departamento de Química-Física, Facultad de Química , Pontificia Universidad Católica de Chile , Vicuña Mackenna 4860 , 7820436 Macul , Chile
| | | | - Jorge Pavez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Soft Matter Research-Technology Center , Universidad de Santiago de Chile , SMAT-C, Av. B. O'Higgins 3363, Casilla 40, Correo 33 , 1100773 Santiago , Chile
| | - Carlos P Silva
- Departamento de Química de los Materiales, Facultad de Química y Biología, Soft Matter Research-Technology Center , Universidad de Santiago de Chile , SMAT-C, Av. B. O'Higgins 3363, Casilla 40, Correo 33 , 1100773 Santiago , Chile
| | - Mohammed Ahmar
- Université de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, CNRS, UCBL, INSA Lyon, CPE Lyon , Bâtiment Lederer, 1 Rue Victor Grignard , 69622 Villeurbanne Cedex, France
| | - Yves Queneau
- Université de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, CNRS, UCBL, INSA Lyon, CPE Lyon , Bâtiment Lederer, 1 Rue Victor Grignard , 69622 Villeurbanne Cedex, France
| | - J M Blamey
- Fundación Biociencia , José Domingo Cañas 2280 , 7750132 Ñuñoa , Santiago , Chile
| | | | | |
Collapse
|
115
|
Meyer T, Renoud S, Vigouroux A, Miomandre A, Gaillard V, Kerzaon I, Prigent-Combaret C, Comte G, Moréra S, Vial L, Lavire C. Regulation of Hydroxycinnamic Acid Degradation Drives Agrobacterium fabrum Lifestyles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:814-822. [PMID: 29460677 DOI: 10.1094/mpmi-10-17-0236-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Regulatory factors are key components for the transition between different lifestyles to ensure rapid and appropriate gene expression upon perceiving environmental cues. Agrobacterium fabrum C58 (formerly called A. tumefaciens C58) has two contrasting lifestyles: it can interact with plants as either a rhizosphere inhabitant (rhizospheric lifestyle) or a pathogen that creates its own ecological niche in a plant tumor via its tumor-inducing plasmid (pathogenic lifestyle). Hydroxycinnamic acids are known to play an important role in the pathogenic lifestyle of Agrobacterium spp. but can be degraded in A. fabrum species. We investigated the molecular and ecological mechanisms involved in the regulation of A. fabrum species-specific genes responsible for hydroxycinnamic acid degradation. We characterized the effectors (feruloyl-CoA and p-coumaroyl-CoA) and the DNA targets of the MarR transcriptional repressor, which we named HcaR, which regulates hydroxycinnamic acid degradation. Using an hcaR-deleted strain, we further revealed that hydroxycinnamic acid degradation interfere with virulence gene expression. The HcaR deletion mutant shows a contrasting competitive colonization ability, being less abundant than the wild-type strain in tumors but more abundant in the rhizosphere. This supports the view that A. fabrum C58 HcaR regulation through ferulic and p-coumaric acid perception is important for the transition between lifestyles.
Collapse
Affiliation(s)
- Thibault Meyer
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Sébastien Renoud
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Armelle Vigouroux
- 2 Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Aurélie Miomandre
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Vincent Gaillard
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Isabelle Kerzaon
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Claire Prigent-Combaret
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Gilles Comte
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Solange Moréra
- 2 Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Ludovic Vial
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Céline Lavire
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| |
Collapse
|
116
|
Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Front Cell Infect Microbiol 2018; 8:230. [PMID: 30023354 PMCID: PMC6039570 DOI: 10.3389/fcimb.2018.00230] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
The Pseudomonas quinolone signal (PQS) has been studied primarily in the context of its role as a quorum-sensing signaling molecule. Recent data suggest, however, that this molecule may also function to mediate iron acquisition, cytotoxicity, outer-membrane vesicle biogenesis, or to exert host immune modulatory activities.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Juanli Cheng
- Shaanxi Engineering and Technological Research Center for Conservation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Xihui Shen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
117
|
Francis VI, Waters EM, Finton-James SE, Gori A, Kadioglu A, Brown AR, Porter SL. Multiple communication mechanisms between sensor kinases are crucial for virulence in Pseudomonas aeruginosa. Nat Commun 2018; 9:2219. [PMID: 29880803 PMCID: PMC5992135 DOI: 10.1038/s41467-018-04640-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria and many non-metazoan Eukaryotes respond to stresses and threats using two-component systems (TCSs) comprising sensor kinases (SKs) and response regulators (RRs). Multikinase networks, where multiple SKs work together, detect and integrate different signals to control important lifestyle decisions such as sporulation and virulence. Here, we study interactions between two SKs from Pseudomonas aeruginosa, GacS and RetS, which control the switch between acute and chronic virulence. We demonstrate three mechanisms by which RetS attenuates GacS signalling: RetS takes phosphoryl groups from GacS-P; RetS has transmitter phosphatase activity against the receiver domain of GacS-P; and RetS inhibits GacS autophosphorylation. These mechanisms play important roles in vivo and during infection, and exemplify an unprecedented degree of signal processing by SKs that may be exploited in other multikinase networks.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Elaine M Waters
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sutharsan E Finton-James
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Andrea Gori
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Alan R Brown
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
118
|
Rozenblum-Beddok L, Verillaud B, Paycha F, Vironneau P, Abulizi M, Benada A, Cross T, El-Deeb G, Vodovar N, Peretti I, Herman P, Sarda-Mantel L. 99mTc-HMPAO-leukocyte scintigraphy for diagnosis and therapy monitoring of skull base osteomyelitis. Laryngoscope Investig Otolaryngol 2018; 3:218-224. [PMID: 30062138 PMCID: PMC6057221 DOI: 10.1002/lio2.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/05/2018] [Accepted: 03/17/2018] [Indexed: 11/06/2022] Open
Abstract
Objective Skull base osteomyelitis (SBO) is a rare but life‐threatening disease observed in elderly diabetic patients, with high risk of recurrence and difficult therapeutic management. The diagnosis is ascertained from a set of clinical, biological, and imaging findings. CT and MRI allow initial diagnosis, but are not accurate to affirm healing at the end of therapy. 99mTc‐HMPAO‐Leucocyte Scintigraphy (LS) is highly sensitive and specific for the detection of infection. The aim of this study was to evaluate LS i) for initial diagnosis, and ii) to confirm healing at the end of antibiotherapy in SBO. Study design We retrospectively reviewed from November 2011 to September 2015 all patients with confirmed SBO who underwent LS twice, at diagnosis and at the end of antibiotic therapy in our nuclear medicine department (n = 27). Methods Clinical, biological, CT, LS, and follow‐up data were recorded in all patients. LS images (planar and tomographic performed 4 hours and 24 hours after intravenous injection of autologous Tc‐99m‐HMPAO‐leucocytes) were visually assessed and quantified. Results At initial diagnosis, 25 of 27 patients had a positive LS. At the end of antibiotic therapy (3 ± 1 months duration), 26 of 27 patients had a negative LS. During subsequent follow‐up (= or >6 months), the disease recurred in four patients including three with a negative postantibiotherapy LS scan. Conclusion In this retrospective study, LS was powerful for initial diagnostic of SBO and for healing assessment at the end of antibiotic therapy. We conclude it is a useful technique for therapeutic monitoring of SBO. Level of Evidence 4
Collapse
Affiliation(s)
| | | | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière Paris France.,Service d'Otorhinolaryngologie, Hôpital Lariboisière Paris France.,Paris Diderot Université Paris France
| | - Pierre Vironneau
- Service d'Otorhinolaryngologie, Hôpital Lariboisière Paris France
| | | | - Abdel Benada
- Service de Médecine Nucléaire, Hôpital Lariboisière Paris France
| | - Tumatarii Cross
- Service de Médecine Nucléaire, Hôpital Lariboisière Paris France.,Radiopharmacie, Hôpital Lariboisière Paris France
| | - Ghada El-Deeb
- Service de Médecine Nucléaire, Hôpital Lariboisière Paris France.,Radiopharmacie, Hôpital Lariboisière Paris France
| | | | - Ilana Peretti
- Service de Médecine Nucléaire, Hôpital Lariboisière Paris France.,Paris Diderot Université Paris France
| | - Philippe Herman
- Service d'Otorhinolaryngologie, Hôpital Lariboisière Paris France.,Paris Diderot Université Paris France
| | - Laure Sarda-Mantel
- Service de Médecine Nucléaire, Hôpital Lariboisière Paris France.,Inserm UMR-S942, Hôpital Lariboisière Paris France.,Paris Diderot Université Paris France
| |
Collapse
|
119
|
Tang H, Zhang Y, Ma Y, Tang M, Shen D, Wang M. Regulation of Nicotine Tolerance by Quorum Sensing and High Efficiency of Quorum Quenching Under Nicotine Stress in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol 2018; 8:88. [PMID: 29616198 PMCID: PMC5869914 DOI: 10.3389/fcimb.2018.00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/06/2018] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) regulates the behavior of bacterial populations and promotes their adaptation and survival under stress. As QS is responsible for the virulence of vast majority of bacteria, quorum quenching (QQ), the interruption of QS, has become an attractive therapeutic strategy. However, the role of QS in stress tolerance and the efficiency of QQ under stress in bacteria are seldom explored. In this study, we demonstrated that QS-regulated catalase (CAT) expression and biofilm formation help Pseudomonas aeruginosa PAO1 resist nicotine stress. CAT activity and biofilm formation in wild type (WT) and ΔrhlR strains are significantly higher than those in the ΔlasR strain. Supplementation of ΔlasI strain with 3OC12-HSL showed similar CAT activity and biofilm formation as those of the WT strain. LasIR circuit rather than RhlIR circuit is vital to nicotine tolerance. Acylase I significantly decreased the production of virulence factors, namely elastase, pyocyanin, and pyoverdine under nicotine stress compared to the levels observed in the absence of nicotine stress. Thus, QQ is more efficient under stress. To our knowledge, this is the first study to report that QS contributes to nicotine tolerance in P. aeruginosa. This work facilitates a better application of QQ for the treatment of bacterial infections, especially under stress.
Collapse
Affiliation(s)
- Huiming Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Yunyun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Yifan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Mengmeng Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| |
Collapse
|