101
|
Korotkov A, Sim NS, Luinenburg MJ, Anink JJ, van Scheppingen J, Zimmer TS, Bongaarts A, Broekaart DWM, Mijnsbergen C, Jansen FE, Van Hecke W, Spliet WGM, van Rijen PC, Feucht M, Hainfellner JA, Kršek P, Zamecnik J, Crino PB, Kotulska K, Lagae L, Jansen AC, Kwiatkowski DJ, Jozwiak S, Curatolo P, Mühlebner A, Lee JH, Mills JD, van Vliet EA, Aronica E. MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis. Neuropathol Appl Neurobiol 2021; 47:796-811. [PMID: 33942341 PMCID: PMC8519131 DOI: 10.1111/nan.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
AIMS Tuberous sclerosis complex (TSC) is a genetic disorder associated with dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. Neurodevelopmental disorders, frequently present in TSC, are linked to cortical tubers in the brain. We previously reported microRNA-34a (miR-34a) among the most upregulated miRs in tubers. Here, we characterised miR-34a expression in tubers with the focus on the early brain development and assessed the regulation of mTORC1 pathway and corticogenesis by miR-34a. METHODS We analysed the expression of miR-34a in resected cortical tubers (n = 37) compared with autopsy-derived control tissue (n = 27). The effect of miR-34a overexpression on corticogenesis was assessed in mice at E18. The regulation of the mTORC1 pathway and the expression of the bioinformatically predicted target genes were assessed in primary astrocyte cultures from three patients with TSC and in SH-SY5Y cells following miR-34a transfection. RESULTS The peak of miR-34a overexpression in tubers was observed during infancy, concomitant with the presence of pathological markers, particularly in giant cells and dysmorphic neurons. miR-34a was also strongly expressed in foetal TSC cortex. Overexpression of miR-34a in mouse embryos decreased the percentage of cells migrated to the cortical plate. The transfection of miR-34a mimic in TSC astrocytes negatively regulated mTORC1 and decreased the expression of the target genes RAS related (RRAS) and NOTCH1. CONCLUSIONS MicroRNA-34a is most highly overexpressed in tubers during foetal and early postnatal brain development. miR-34a can negatively regulate mTORC1; however, it may also contribute to abnormal corticogenesis in TSC.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Nam Suk Sim
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Mark J. Luinenburg
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jasper J. Anink
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
- Department of NeuroimmunologyNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Till S. Zimmer
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Anika Bongaarts
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Diede W. M. Broekaart
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Floor E. Jansen
- Department of Paediatric NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Wim Van Hecke
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Wim G. M. Spliet
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter C. van Rijen
- University Medical CenterBrain CentreRudolf Magnus Institute for NeuroscienceUtrechtThe Netherlands
| | - Martha Feucht
- Department of PediatricsMedical University ViennaViennaAustria
| | | | - Pavel Kršek
- Department of Pediatric Neurology2nd Faculty of Medicine and Motol University HospitalPragueCzech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine2nd Faculty of Medicine and Motol University HospitalPragueCzech Republic
| | - Peter B. Crino
- Department of NeurologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Katarzyna Kotulska
- Department of Neurology and EpileptologyThe Children's Memorial Health InstituteWarsawPoland
| | - Lieven Lagae
- Department of Development and Regeneration‐Section Pediatric NeurologyUniversity Hospitals KU LeuvenLeuvenBelgium
| | - Anna C. Jansen
- Pediatric Neurology UnitUniversitair Ziekenhuis BrusselBrusselsBelgium
| | | | - Sergiusz Jozwiak
- Department of Neurology and EpileptologyThe Children's Memorial Health InstituteWarsawPoland
- Department of Child NeurologyMedical University of WarsawWarsawPoland
| | - Paolo Curatolo
- Child Neurology and Psychiatry UnitSystems Medicine DepartmentTor Vergata UniversityRomeItaly
| | - Angelika Mühlebner
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jeong H. Lee
- Graduate School of Medical Science and EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- SoVarGen, IncDaejeonRepublic of Korea
| | - James D. Mills
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Clinical and Experimental EpilepsyUniversity College LondonLondonUK
- Chalfont Centre for EpilepsyChalfont St PeterUK
| | - Erwin A. van Vliet
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
- Center for NeuroscienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Eleonora Aronica
- Department of (Neuro) PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam NeuroscienceAmsterdamThe Netherlands
- Stichting Epilepsie Instellingen NederlandHeemstedeThe Netherlands
| |
Collapse
|
102
|
Bazrgar M, Khodabakhsh P, Prudencio M, Mohagheghi F, Ahmadiani A. The role of microRNA-34 family in Alzheimer's disease: A potential molecular link between neurodegeneration and metabolic disorders. Pharmacol Res 2021; 172:105805. [PMID: 34371173 DOI: 10.1016/j.phrs.2021.105805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 02/09/2023]
Abstract
Growing evidence indicates that overexpression of the microRNA-34 (miR-34) family in the brain may play a crucial role in Alzheimer's disease (AD) pathogenesis by targeting and downregulating genes associated with neuronal survival, synapse formation and plasticity, Aβ clearance, mitochondrial function, antioxidant defense system, and energy metabolism. Additionally, elevated levels of the miR-34 family in the liver and pancreas promote the development of metabolic syndromes (MetS), such as diabetes and obesity. Importantly, MetS represent a well-documented risk factor for sporadic AD. This review focuses on the recent findings regarding the role of the miR-34 family in the pathogenesis of AD and MetS, and proposes miR-34 as a potential molecular link between both disorders. A comprehensive understanding of the functional roles of miR-34 family in the molecular and cellular pathogenesis of AD brains may lead to the discovery of a breakthrough treatment strategy for this disease.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
103
|
Li R, Qu H, Wang S, Chater JM, Wang X, Cui Y, Yu L, Zhou R, Jia Q, Traband R, Wang M, Xie W, Yuan D, Zhu J, Zhong WD, Jia Z. CancerMIRNome: an interactive analysis and visualization database for miRNome profiles of human cancer. Nucleic Acids Res 2021; 50:D1139-D1146. [PMID: 34500460 PMCID: PMC8728249 DOI: 10.1093/nar/gkab784] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), which play critical roles in gene regulatory networks, have emerged as promising diagnostic and prognostic biomarkers for human cancer. In particular, circulating miRNAs that are secreted into circulation exist in remarkably stable forms, and have enormous potential to be leveraged as non-invasive biomarkers for early cancer detection. Novel and user-friendly tools are desperately needed to facilitate data mining of the vast amount of miRNA expression data from The Cancer Genome Atlas (TCGA) and large-scale circulating miRNA profiling studies. To fill this void, we developed CancerMIRNome, a comprehensive database for the interactive analysis and visualization of miRNA expression profiles based on 10 554 samples from 33 TCGA projects and 28 633 samples from 40 public circulating miRNome datasets. A series of cutting-edge bioinformatics tools and machine learning algorithms have been packaged in CancerMIRNome, allowing for the pan-cancer analysis of a miRNA of interest across multiple cancer types and the comprehensive analysis of miRNome profiles to identify dysregulated miRNAs and develop diagnostic or prognostic signatures. The data analysis and visualization modules will greatly facilitate the exploit of the valuable resources and promote translational application of miRNA biomarkers in cancer. The CancerMIRNome database is publicly available at http://bioinfo.jialab-ucr.org/CancerMIRNome.
Collapse
Affiliation(s)
- Ruidong Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, USA
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Shibo Wang
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - John M Chater
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Xuesong Wang
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, USA
| | - Yanru Cui
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Lei Yu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, USA
| | - Rui Zhou
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Qiong Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, USA
| | - Ryan Traband
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Meiyue Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Weibo Xie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.,Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, USA
| |
Collapse
|
104
|
Alshehri AS, El-Kott AF, El-Kenawy AE, Khalifa HS, AlRamlawy AM. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147182. [PMID: 34088068 DOI: 10.1016/j.scitotenv.2021.147182] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is associated with non-alcoholic fatty liver disease (NAFLD). The hepatic activation of p53/miR-43a-induced suppression of SIRT1/FXR axis plays a significant role in the development of NAFLD. In this study, we have investigated CdCl2-induced NAFLD in rats involves activation of miR34a/SIRT1/FXR axis. Adult male rats were divided into 4 groups (n-8/each) as a control, CdCl2 (10 mg/l), CdCl2 + miR-34a antagomir (inhibitor), and CdCl2 + SRT1720 (a SIRT1 activator) for 8 weeks, daily. With no effect on fasting glucose and insulin levels, CdCl2 significantly reduced rats' final body, fat pads, and liver weights, and food intake. Concomitantly, it increased the circulatory levels of liver markers (ALT, AST, and γ-GTT), increased the serum and hepatic levels of total cholesterol and triglycerides coincided with increased hepatic lipid accumulation. Besides, it increased the mRNA and protein levels of SREBP1, SREBP2, FAS, and HMGCOA reductase but reduced mRNA levels of PPARα, CPT1, and CPT2. Interestingly, CdCl2 also increased mRNA levels of miR34 without altering mRNA levels of SIRT1 but with a significant reduction in protein levels of SIRT1. These effects were associated with increased total protein levels of p53 and acetylated protein of p53, and FXR. Of note, suppressing miR-34a with a specific anatomic or activating SIRT1 by SRT1720 completely prevented all these effects and reduced hepatic fat accumulations in the livers of rats. In conclusion, CdCl2 induced NAFLD by increasing the transcription of miR-34a which in turn downregulates SIRT1 at the translational level.
Collapse
Affiliation(s)
- Ali S Alshehri
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour, Egypt.
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Amira M AlRamlawy
- Mansoura Research Centre for Cord Stem Cell (MARC-CSC), Stem cells bank, Children's Hospital, Mansoura University, Mansoura, Egypt
| |
Collapse
|
105
|
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. TP53 in Biology and Treatment of Osteosarcoma. Cancers (Basel) 2021; 13:4284. [PMID: 34503094 PMCID: PMC8428337 DOI: 10.3390/cancers13174284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.
Collapse
Affiliation(s)
- Kamil Jozef Synoradzki
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Wiktoria Firlej
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Brodziak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Stasinska
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| |
Collapse
|
106
|
Hosseini M, Baghaei K, Amani D, Ebtekar M. Tumor-derived exosomes encapsulating miR-34a promote apoptosis and inhibit migration and tumor progression of colorectal cancer cells under in vitro condition. ACTA ACUST UNITED AC 2021; 29:267-278. [PMID: 34405380 DOI: 10.1007/s40199-021-00400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/05/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNA (miR)-34a, as a master tumor suppressor in colorectal cancer (CRC), could regulate multiple genes participating in tumor proliferation, invasion, immune evasion, and inflammation-induced progression. Exosomes, as novel nano-carriers, were found to be capable of shuttling crucial mediators to various cells. Since the conventional CRC therapeutics currently are a matter of debate, implication of microRNAs in malignancy remedies have been addressed illustrating promising outlooks. OBJECTIVES In this study, we aimed to investigate the delivery of miR-34a to CRC cell line CT-26 by encapsulating into tumor-derived exosomes (TEXs), in order to evaluate the anti-proliferative and progressive effects of the novel nano-carrier complex under in vitro condition. METHODS Exosomes were purified from the starved CT-26 cells and then enriched by miR-34a using the calcium chloride (Cacl2) modified solution. Following the detection of miR-34a expression in the enriched TEXs, the viability of CT-26 cells treated by multiplicity concentrations of either TEXs or TEX-miR-34a was examined. Moreover, the apoptosis rate of the cells was evaluated, and the migration of CT-26 cells subjected to both TEX-miR-34a and TEX was also measured. Thereafter, the expressions of miR-34a target genes, as IL-6R, STAT3, PD-L1, and VEGF-A, which play roles in tumor progression, were determined in the treated CT-26 cells. RESULTS The viability of CT-26 cells was harnessed following the treatment with TEX-miR-34a and the apoptosis levels of the cells were also observed to be enhanced dose-dependently. TEX-miR-34a was able to diminish the migration rate of the TEX-miR-34a treated cells and the expressions of IL-6R, STAT3, PD-L1, and VEGF-A were significantly restricted. Moreover, TEXs alone increased the apoptosis rate of tumor cells and repressed the proliferation and migration of these cells which were boosted by enrichment of TEXs with miR-34a. CONCLUSION Exosomes isolated from the starved CT-26 cells were found to have a potential to deliver miR-34a into tumor cells properly with high functionality maintenance for miR-34a in case of regulating genes related to tumor progression and TEXs which showed no positive effect favoring cancer cells, presumably act as a favorable adjuvant in the CRC therapy.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
107
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
108
|
Dittmar RL, Liu S, Tai MC, Rajapakshe K, Huang Y, Longton G, DeCapite C, Hurd MW, Paris PL, Kirkwood KS, Coarfa C, Maitra A, Brand RE, Killary AM, Sen S. Plasma miRNA Biomarkers in Limited Volume Samples for Detection of Early-stage Pancreatic Cancer. Cancer Prev Res (Phila) 2021; 14:729-740. [PMID: 33893071 PMCID: PMC8818322 DOI: 10.1158/1940-6207.capr-20-0303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/11/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Early detection of pancreatic ductal adenocarcinoma (PDAC) is key to improving patient outcomes; however, PDAC is usually diagnosed late. Therefore, blood-based minimally invasive biomarker assays for limited volume clinical samples are urgently needed. A novel miRNA profiling platform (Abcam Fireplex-Oncology Panel) was used to investigate the feasibility of developing early detection miRNA biomarkers with 20 μL plasma from a training set (58 stage II PDAC cases and 30 controls) and two validation sets (34 stage II PDAC cases and 25 controls; 44 stage II PDAC cases and 18 controls). miR-34a-5p [AUC = 0.77; 95% confidence interval (CI), 0.66-0.87], miR-130a-3p (AUC = 0.74; 95% CI, 0.63-0.84), and miR-222-3p (AUC = 0.70; 95% CI, 0.58-0.81) were identified as significantly differentially abundant in plasma from stage II PDAC versus controls. Although none of the miRNAs individually outperformed the currently used serologic biomarker for PDAC, carbohydrate antigen 19-9 (CA19-9), combining the miRNAs with CA 19-9 improved AUCs from 0.89 (95% CI, 0.81-0.95) for CA 19-9 alone to 0.92 (95% CI, 0.86-0.97), 0.94 (95% CI, 0.89-0.98), and 0.92 (95% CI, 0.87-0.97), respectively. Gene set enrichment analyses of transcripts correlated with high and low expression of the three miRNAs in The Cancer Genome Atlas PDAC sample set. These miRNA biomarkers, assayed in limited volume plasma together with CA19-9, discriminate stage II PDAC from controls with good sensitivity and specificity. Unbiased profiling of larger cohorts should help develop an informative early detection biomarker assay for diagnostic settings. PREVENTION RELEVANCE: Development of minimally invasive biomarker assays for detection of premalignant disease and early-stage pancreatic cancer is key to improving patient survival. This study describes a limited volume plasma miRNA biomarker assay that can detect early-stage resectable pancreatic cancer in clinical samples necessary for effective prevention and clinical intervention.
Collapse
Affiliation(s)
- Rachel L Dittmar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Suyu Liu
- University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
- Department of Biostatistics, Division of Science, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mei Chee Tai
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics University of Washington, Seattle, Washington
| | - Gary Longton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christine DeCapite
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mark W Hurd
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela L Paris
- Department of Urology and Division of Hematology Oncology, UCSF Helen Diller Cancer Research Center, San Francisco, California
| | - Kimberly S Kirkwood
- Department of Surgery, Division of General Surgery, UCSF Helen Diller Cancer Research Center, San Francisco, California
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Randall E Brand
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ann M Killary
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Subrata Sen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas.
- University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
109
|
Wang S, Geng Q, Zhang H, Du Q, Wei Q, Cui Y, Zhang X, Yuan M. Downregulation of miR-98-5p expression induces interleukin-6 expression in rheumatoid fibroblast-like synoviocytes. Int J Rheum Dis 2021; 24:1024-1031. [PMID: 34155816 DOI: 10.1111/1756-185x.14160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
AIM The increased level of interleukin-6 (IL-6) plays a significant role in the pathogenesis of rheumatoid arthritis (RA). Specific blockade of IL-6 or its receptor has been used successfully in treating RA. MicroRNAs can regulate gene expression and act as regulators of target genes. Manipulation of specific microRNAs provides a novel therapeutic strategy for treating/preventing diseases. This study explored the role of miR-98-5p in the regulation of IL-6 expression in rheumatoid fibroblast-like synoviocytes (RA-FLSs). METHODS Real-time PCR was used to detect miR-98-5p expression in RA-FLSs and normal human fibroblast-like synovial cells (HFLSs). Site-directed gene mutagenesis and reporter gene assay were performed to identify the interaction between miR-98-5p and IL-6. Manipulation of miR-98-5p expression in RA-FLS used transfection with miR-98-5p mimic or inhibitor. Stimulation of FLSs with IL-1β induced IL-6 production. Enzyme-linked immunosorbent assay was used to detect the level of IL-6 secreted into the RA-FLS culture supernatant. RESULTS Compared with HFLSs, the expression of miR-98-5p in RA-FLSs was significantly downregulated, and was negatively correlated with DAS28 scores and rheumatoid factor. In patients with anti-keratin antibody-positive RA, the expression level of miR-98-5p was lower. miR-98-5p negatively regulated the expression of IL-6 in RA-FLSs. After IL-1β stimulation, the expression of miR-98-5p decreased and the level of IL-6 protein was upregulated during IL-6 secretion. CONCLUSION These data suggest that manipulation of miR-98-5p, which negatively modulates IL-6 expression, may be a potential clinical approach in RA.
Collapse
Affiliation(s)
- Shujun Wang
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| | - Qin Geng
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| | - Hongju Zhang
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| | - Qing Du
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| | - Qiaofeng Wei
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| | - Yanhui Cui
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| | - Xiuying Zhang
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| | - Min Yuan
- Department of Rheumatology, People's Hospital of Liaocheng, Liaocheng, China
| |
Collapse
|
110
|
Zhao W, Quansah E, Yuan M, Li P, Yi C, Cai X, Zhu J. Next-generation sequencing analysis reveals segmental patterns of microRNA expression in yak epididymis. Reprod Fertil Dev 2021; 32:1067-1083. [PMID: 32758354 DOI: 10.1071/rd20113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as potent regulators of gene expression and are widely expressed in biological systems. In reproduction, they have been shown to have a significant role in the acquisition and maintenance of male fertility, whereby deletion of Dicer in mouse germ cells leads to infertility. Evidence indicates that this role of miRNAs extends from the testis into the epididymis, controlling gene expression and contributing to regional variations in gene expression. In this study, RNA sequencing technology was used to investigate miRNA expression patterns in the yak epididymis. Region-specific miRNA expression was found in the yak epididymis. In all, 683 differentially expressed known miRNAs were obtained; 190, 186 and 307 differentially expressed miRNAs were identified for caput versus corpus, corpus versus cauda and caput versus cauda region pairs respectively. Kyoto Encyclopedia of Genes and Genomes results showed endocytosis as the most enriched pathway across region pairs, followed by protein processing in the endoplasmic reticulum, phagosome, spliceosome and biosynthesis of amino acids in region pair-specific hierarchical order. Gene ontology results showed varied enrichment in terms including cell, biogenesis, localisation, binding and locomotion across region pairs. In addition, significantly higher miR-34c expression was seen in the yak caput epididymidis relative to the corpus and cauda epididymidis.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Eugene Quansah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Pengcheng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010 Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation (Southwest Minzu University), Ministry of Education, Chengdu, Sichuan 610041, China; and Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China; and Corresponding authors. ;
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation (Southwest Minzu University), Ministry of Education, Chengdu, Sichuan 610041, China; and Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilisation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China; and Corresponding authors. ;
| |
Collapse
|
111
|
The Clinical Assessment of MicroRNA Diagnostic, Prognostic, and Theranostic Value in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122916. [PMID: 34208056 PMCID: PMC8230660 DOI: 10.3390/cancers13122916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary MiRNAs are of great interest within colorectal cancers in diagnosis, prognosis, and within the field of personalized treatments; they are present within different biological fluids such as blood and can lead to specific information for daily clinical use. Herein, we review the current literature focusing on miRNAs as potential diagnostic and prognostic biomarkers in patients treated for colorectal cancers. Detection and analysis of miRNA expression are cost-effective and lead to high sensitivity and specificity rates. However, it is now necessary to highlight the most sensitive and specific miRNAs for each goal, either diagnostic, prognostic, or theranostic, thanks to multicentric prospective studies. Abstract MiRNAs have recently become a subject of great interest within cancers and especially colorectal cancers in diagnosis, prognosis, and therapy decisions; herein we review the current literature focusing on miRNAs in colorectal cancers, and we discuss future challenges to use this tool on a daily clinical basis. In liquid biopsies, miRNAs seem easily accessible and can give important information toward each step of the management of colorectal cancers. However, it is now necessary to highlight the most sensitive and specific miRNAs for each goal thanks to multicentric prospective studies. Conclusions: by their diversity and the feasibility of their use, miRNAs are getting part of the armamentarium of healthcare management of colorectal cancers.
Collapse
|
112
|
Inoue J, Inazawa J. Cancer-associated miRNAs and their therapeutic potential. J Hum Genet 2021; 66:937-945. [PMID: 34088973 DOI: 10.1038/s10038-021-00938-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
MicroRNA (miRNA; miR) is a functionally small non-coding RNA and can negatively regulate gene expression by directly binding to the target gene. Some miRNAs are closely involved in the development and progression of cancer and are abnormally expressed in many cancer types. Therefore, control of the expression of cancer-associated miRNAs is expected as a next-generation drug modality to treat advanced types of cancers with high unmet medical needs. Indeed, miRNA therapeutics, which are based on the functional inhibition of oncogenic miRNA (OncomiR) using antisense oligonucleotides (anti-miR) and the replacement via the introduction of a synthetic miRNA mimic for tumor suppressive miRNA (TS-miR), have been developed. In this review, we summarize cancer-associated miRNAs related to various cancer pathologies and their clinical application to miRNA therapeutics for cancer.
Collapse
Affiliation(s)
- Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan. .,Bioresource Research Center, TMDU, Tokyo, Japan.
| |
Collapse
|
113
|
Yao J, Liu X, Sun Y, Dong X, Liu L, Gu H. Curcumin-Alleviated Osteoarthritic Progression in Rats Fed a High-Fat Diet by Inhibiting Apoptosis and Activating Autophagy via Modulation of MicroRNA-34a. J Inflamm Res 2021; 14:2317-2331. [PMID: 34103964 PMCID: PMC8179815 DOI: 10.2147/jir.s312139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The mechanism underlying curcumin’s protective effect on osteoarthritis (OA) has not been clarified. This study aimed to determine whether curcumin exerts a chondroprotective effect by inhibiting apoptosis via upregulation of E2F1/PITX1 and activation of autophagy via the Akt/mTOR pathway by targeting microRNA-34a (miR-34a). Methods Male Sprague–Dawley rats were fed a normal diet (ND) or high-fat diet (HFD) for 28 weeks. Five rats from each diet group were selected randomly for histological analysis of OA characteristics. Rats fed a HFD were given a single intra-stifle joint injection of the miR-34a mimic agomir-34a or negative control agomir (NC), followed by weekly low-dose (200 μg/kg body weight) or high-dose (400 μg/kg body weight) curcumin intra-joint injections from weeks 29 to 32. The rats’ stifle joints were submitted to histological analysis and to an apoptotic assay. Expression of miR-34a was detected using a real-time RT-PCR. E2F1 and PITX1 protein levels were determined by Western blot analysis, and the expressions of Beclin1, LC3B, p62, phosphorylated (p)-Akt, and p-mTOR were measured using immunofluorescence analysis. Results We found that rats fed a HFD had OA-like lesions in their articular cartilage and had increased apoptosis of chondrocytes and decreased autophagy compared to rats fed a ND. Curcumin treatment alleviated OA changes, inhibited apoptosis, and upregulated autophagy. Agomir-34a treatment reduced E2F1, PITX1, Beclin1, and LC3B expression and increased p62, p-Akt, and p-mTOR expression in HFD-fed rats given low- or high-dose curcumin. Greater numbers of apoptotic cells, lesser expression of p62, p-Akt, and p-mTOR, and greater expression of E2F1, PITX1, and LC3B were observed in the agomir-34a and high-dose curcumin-treated group than in agomir-34a and low-dose curcumin-treated group. Conclusion Curcumin’s chondroprotective effect was mediated by its suppression of miR-34a, apparently by reducing apoptosis, via upregulation of E2F1/PITX1, and by augmenting autophagy, likely via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jiayu Yao
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yingxu Sun
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xin Dong
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, 110004, People's Republic of China
| |
Collapse
|
114
|
Gajek A, Gralewska P, Marczak A, Rogalska A. Current Implications of microRNAs in Genome Stability and Stress Responses of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13112690. [PMID: 34072593 PMCID: PMC8199164 DOI: 10.3390/cancers13112690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Genomic alterations and aberrant DNA damage signaling are hallmarks of ovarian cancer (OC), the leading cause of mortality among gynecological cancers worldwide. Owing to the lack of specific symptoms and late-stage diagnosis, survival chances of patients are significantly reduced. Poly (ADP-ribose) polymerase (PARP) inhibitors and replication stress response inhibitors present attractive therapeutic strategies for OC. Recent research has focused on ovarian cancer-associated microRNAs (miRNAs) that play significant regulatory roles in various cellular processes. While miRNAs have been shown to participate in regulation of tumorigenesis and drug responses through modulating the DNA damage response (DDR), little is known about their potential influence on sensitivity to chemotherapy. The main objective of this review is to summarize recent findings on the utility of miRNAs as cancer biomarkers, in particular, ovarian cancer, and their regulation of DDR or modified replication stress response proteins. We further discuss the suppressive and promotional effects of various miRNAs on ovarian cancer and their participation in cell cycle disturbance, response to DNA damage, and therapeutic functions in multiple cancer types, with particular focus on ovarian cancer. Improved understanding of the mechanisms by which miRNAs regulate drug resistance should facilitate the development of effective combination therapies for ovarian cancer.
Collapse
|
115
|
Wang Y, Guan E, Li D, Sun L. miRNA-34a-5p regulates progression of neuroblastoma via modulating the Wnt/β-catenin signaling pathway by targeting SOX4. Medicine (Baltimore) 2021; 100:e25827. [PMID: 34011046 PMCID: PMC8137035 DOI: 10.1097/md.0000000000025827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/06/2021] [Indexed: 01/05/2023] Open
Abstract
Neuroblastoma is an embryonal tumor of the autonomic nervous system with poor prognosis in children. In present study, we demonstrated the relationship of miRNA-34a-5p in the regulating of the Wnt/β-catenin signaling pathway by targeting SRY-related HMG-box (SOX4)Reverse transcription-quantitative PCR was used to detect the expression levels of miRNA-34a-5p and SoX4. Western blotting was performed to assess the protein expression levels of SoX4, Wnt, MMP9, Bax, and Bcl-2. The proliferation, apoptosis, migration and invasion of neuroblastoma cells were determined using MTT, flow cytometry and Transwell assays.In this study, we sought to investigate the role of miRNA-34a-5p on neuroblastoma and the possible molecular mechanism. We had performed in-vitro and in-vivo experiments to evaluate the effects of miRNA-34a-5p on neuroblastoma cell proliferation and invasion by altering its expression level via cell transfection. On the basis of our study, miRNA-34a-5p showed decreased expression levels in neuroblastoma. Subsequently, we manipulated miRNA-34a-5p expression through cell transfection and observed abnormal expression of β-catenin as well as the downstream targets of the Wnt/β-catenin pathway in neuroblastoma cells. With all these evidences, we determined that miRNA-34a-5p regulated Wnt/β-catenin pathway by targeting SOX4.In conclusion, our study demonstrates that miRNA-34a-5p can inhibit the over-activation of the Wnt/β-catenin signaling pathway via targeting SOX4 and further regulate proliferation, invasion of neuroblastoma cells.
Collapse
Affiliation(s)
- Yue Wang
- Qingdao Municipal Hospital Affiliated to Qingdao University
| | - Enqing Guan
- Qingdao Municipal Hospital Affiliated to Qingdao University
| | - Dehua Li
- Qingdao Women and Children's Hospital
| | - Lirong Sun
- The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, P.R. China
| |
Collapse
|
116
|
Janjusevic M, Fluca AL, Ferro F, Gagno G, D’Alessandra Y, Beltrami AP, Sinagra G, Aleksova A. Traditional and Emerging Biomarkers in Asymptomatic Left Ventricular Dysfunction-Promising Non-Coding RNAs and Exosomes as Biomarkers in Early Phases of Cardiac Damage. Int J Mol Sci 2021; 22:ijms22094937. [PMID: 34066533 PMCID: PMC8125492 DOI: 10.3390/ijms22094937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is one of the major causes of morbidity and mortality worldwide and represents an escalating problem for healthcare systems. The identification of asymptomatic patients with underlying cardiac subclinical disease would create an opportunity for early intervention and prevention of symptomatic HF. Traditional biomarkers are very useful as diagnostic and prognostic tools in the cardiovascular field; however, their application is usually limited to overt cardiac disease. On the other hand, a growing number of studies is investigating the diagnostic and prognostic potential of new biomarkers, such as micro-RNAs (miRNA), long non-coding RNAs, and exosome cargo, because of their involvement in the early phases of cardiac dysfunction. Unfortunately, their use in asymptomatic phases remains a distant goal. The aim of this review is to gather the current knowledge of old and novel biomarkers in the early diagnosis of cardiac dysfunction in asymptomatic individuals.
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (F.F.); (G.G.); (G.S.)
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (F.F.); (G.G.); (G.S.)
| | - Federico Ferro
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (F.F.); (G.G.); (G.S.)
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (F.F.); (G.G.); (G.S.)
| | - Yuri D’Alessandra
- Cardiovascular Proteomics Unit, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy;
| | | | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (F.F.); (G.G.); (G.S.)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (F.F.); (G.G.); (G.S.)
- Correspondence: or ; Tel.: +39-3405507762; Fax: +39-040-3994878
| |
Collapse
|
117
|
Jamialahmadi K, Zahedipour F, Karimi G. The role of microRNAs on doxorubicin drug resistance in breast cancer. J Pharm Pharmacol 2021; 73:997-1006. [PMID: 33942851 DOI: 10.1093/jpp/rgaa031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Resistance to chemotherapeutic drugs is a serious challenge for effective therapy of cancers. Doxorubicin is a drug which is typically used for breast cancer treatment. Several mechanisms are involved in resistance to doxorubicin including overexpression of ATP-binding cassette (ABC) transporters, altering apoptosis, autophagy and cell cycle arrest. In this review, we focus on the potential effects of microRNAs on doxorubicin resistance in breast cancer. METHODS Literature review focusing on the 'microRNAs and doxorubicin drug resistance in breast cancer' was conducted comprehensively. The search was performed in PubMed, Scopus, Google and Google Scholar databases and reference lists of relevant articles were also included. KEY FINDINGS MicroRNAs play essential role in resistance of breast cancer to doxorubicin by affecting several key cellular pathways, including overexpression of ABC transporters, altering apoptosis, autophagy and cell signaling pathways, cell cycle arrest, epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). CONCLUSIONS Cancer treatment methods are moving from conventional therapies to targeted therapies such as using microRNAs. MiRNAs can act as regulatory molecules to overcome breast cancer doxorubicin resistance by controlling the expression levels of genes involved in different cellular pathways. Thus, exact elucidation of their role in different cellular processes can help overcome the breast cancer development and drug resistance.
Collapse
Affiliation(s)
- Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
118
|
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med 2021; 14:152-160. [PMID: 33988919 DOI: 10.1111/jebm.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs of 19-24 nucleotides in length and are tightly related to tumorigenesis and progression. Recent studies have demonstrated that the tumor suppressor p53 and its negative controller MDMX are regulated by miRNAs in different ways. Some miRNAs directly target p53 and regulate its expression and function, whereas some miRNAs target MDMX and regulate p53's activity indirectly. The overexpression of several miRNAs can restore the activity of p53 by negatively regulating MDMX in cancer cells. Therefore, a better understanding of the miRNAs-MDMX-p53 network will put forward potential research directions for developing anticancer therapeutics. In the present review, we mainly focus on the regulatory effects of miRNAs on the MDMX-p53 interplay as well as the role of the miRNAs-MDMX-p53 network in human cancer.
Collapse
Affiliation(s)
- Dehua Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiangjiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
119
|
Wang S, Tang Q, Ge F, Guo Q. Typhae pollen polysaccharides protect hypoxia-induced PC12 cell injury via regulation of miR-34a/SIRT1. Int J Immunopathol Pharmacol 2021; 34:2058738420910005. [PMID: 32635836 PMCID: PMC7346697 DOI: 10.1177/2058738420910005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This current research was performed to investigate the role of typhae pollen polysaccharides (TPP) in hypoxia-treated PC12 cell which was an in vitro cell model of cerebral ischemia. Hypoxia-treated cells were treated with TPP for 12 h. Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2 5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. Cell apoptotic proteins and PI3K/AKT and Ras/Raf/MEK/ERK signal pathway–associated proteins were also examined by western blot. Furthermore, abnormal expression of miR-34a and silent information regulator 1 (SIRT1) was achieved by transfection. Besides, the expression of miR-34a and SIRT1 was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of SIRT1 was detected by qRT-PCR and western blot. The relationship between miR-34a and SIRT1 was verified by luciferase assay. We found that TPP enhanced cell viability and inhibited apoptosis in hypoxia-treated PC12 cells. Moreover, TPP increased the accumulated levels of Bcl-2 while decreased expression of Bax, cleaved Caspase-3, and cleaved PARP. TPP downregulated miR-34a expression while induced by hypoxia. Further results showed that miR-34a overexpression reversed the results led by TPP in cell viability, apoptosis, and its related proteins. In addition, SIRT1 was upregulated by TPP and was verified to be a target of miR-34a. Silence of SIRT1 led to the opposite results led by TPP. In the end, TPP activated PI3K/AKT and Ras/Raf/MEK/ERK signal pathways. In conclusion, TPP plays important roles in regulating cell viability and apoptosis in hypoxia-treated PC12 cells via modulating miR-34a/SIRT1, as well as activating PI3K/AKT and Ras/Raf/MEK/ERK signal pathways.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Critical Care Medicine, Juancheng People's Hospital, Heze, China
| | - Qianqian Tang
- Department of Neurology, Heze Municipal Hospital, Heze, China
| | - Fuchao Ge
- Department of Respiratory Medicine, Heze Municipal Hospital, Heze, China
| | - Qing Guo
- Department of Neurology, Heze Municipal Hospital, Heze, China
| |
Collapse
|
120
|
Role of p53-miRNAs circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention. Semin Cell Dev Biol 2021; 124:15-25. [PMID: 33875349 DOI: 10.1016/j.semcdb.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/07/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
The genome's guardian, p53, is a master regulatory transcription factor that occupies sequence-specific response elements in many genes and modulates their expression. The target genes transcribe both coding RNA and non-coding RNA involved in regulating several biological processes such as cell division, differentiation, and cell death. Besides, p53 also regulates tumor immunology via regulating the molecules related to the immune response either directly or via regulating other molecules, including microRNAs (miRNAs). At the post-transcriptional level, the regulations of genes by miRNAs have been an emerging mechanism. Interestingly, p53 and various miRNAs cross-talk at different regulation levels. The cross-talk between p53 and miRNAs creates loops, turns, and networks that can influence cell metabolism, cell fate, cellular homeostasis, and tumor formation. Further, p53-miRNAs circuit has also been insinuated in the regulation of immune surveillance machinery. There are several examples of p53-miRNAs circuitry where p53 regulates immunomodulatory miRNA expression, such as miR-34a and miR-17-92. Similarly, a reverse process occurs in which miRNAs such as miR-125b and miR-let-7 regulate the expression of p53. Thus, the p53-miRNAs circuitry connects the immunomodulatory pathways and may shift the pro-inflammatory balance towards the pro-tumorigenic condition. In this review, we discuss the influence of p53-miRNAs circuitry in modulating the immune response in cancer development. We assume that thorough studies on the p53-miRNAs circuitry in various cancers may prove useful in developing effective new cancer therapeutics for successfully combating this disease.
Collapse
|
121
|
Das P, Shah D, Bhandari V. miR34a: a novel small molecule regulator with a big role in bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L228-L235. [PMID: 33825492 DOI: 10.1152/ajplung.00279.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preterm infants with bronchopulmonary dysplasia (BPD), characterized by pulmonary inflammation leading to impaired alveolarization and vascular dysregulation, have an increased risk of abnormal lung function in infancy, childhood, and adulthood. These include a heightened risk of pulmonary hypertension, and respiratory illnesses. MicroRNAs (miRNAs) are known to disrupt normal lung development and function by interrupting alveolarization and vascularization resulting in the development of BPD. Among the various miRs involved in BPD, miR34a has been shown to have a significant role in BPD pathogenesis. Targeting miR34a or its downstream targets may be a promising therapeutic intervention for BPD. In this review, we summarize the data on cellular arrest, proliferation, differentiation, epithelial-mesenchymal transition, mitochondrial dysfunction, and apoptosis impacted by miR34a in the development of BPD pulmonary phenotypes while predicting the future perspective of miR34a in BPD.
Collapse
Affiliation(s)
- Pragnya Das
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper/Cooper University Health Care, Camden, New Jersey
| | - Dilip Shah
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper/Cooper University Health Care, Camden, New Jersey
| | - Vineet Bhandari
- Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper/Cooper University Health Care, Camden, New Jersey
| |
Collapse
|
122
|
Di Fiore R, Suleiman S, Pentimalli F, O’Toole SA, O’Leary JJ, Ward MP, Conlon NT, Sabol M, Ozretić P, Erson-Bensan AE, Reed N, Giordano A, Herrington CS, Calleja-Agius J. Could MicroRNAs Be Useful Tools to Improve the Diagnosis and Treatment of Rare Gynecological Cancers? A Brief Overview. Int J Mol Sci 2021; 22:ijms22083822. [PMID: 33917022 PMCID: PMC8067678 DOI: 10.3390/ijms22083822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gynecological cancers pose an important public health issue, with a high incidence among women of all ages. Gynecological cancers such as malignant germ-cell tumors, sex-cord-stromal tumors, uterine sarcomas and carcinosarcomas, gestational trophoblastic neoplasia, vulvar carcinoma and melanoma of the female genital tract, are defined as rare with an annual incidence of <6 per 100,000 women. Rare gynecological cancers (RGCs) are associated with poor prognosis, and given the low incidence of each entity, there is the risk of delayed diagnosis due to clinical inexperience and limited therapeutic options. There has been a growing interest in the field of microRNAs (miRNAs), a class of small non-coding RNAs of ∼22 nucleotides in length, because of their potential to regulate diverse biological processes. miRNAs usually induce mRNA degradation and translational repression by interacting with the 3' untranslated region (3'-UTR) of target mRNAs, as well as other regions and gene promoters, as well as activating translation or regulating transcription under certain conditions. Recent research has revealed the enormous promise of miRNAs for improving the diagnosis, therapy and prognosis of all major gynecological cancers. However, to date, only a few studies have been performed on RGCs. In this review, we summarize the data currently available regarding RGCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Napoli, Italy;
| | - Sharon A. O’Toole
- Departments of Obstetrics and Gynaecology and Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland;
| | - John J. O’Leary
- Department of Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Trinity College Dublin, 8 Dublin, Ireland; (J.J.O.); (M.P.W.)
| | - Neil T. Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, 9 Dublin, Ireland;
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.S.); (P.O.)
| | - Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University, Ankara 06810, Turkey;
| | - Nicholas Reed
- Beatson Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK;
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - C. Simon Herrington
- Cancer Research UK Edinburgh Centre, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Correspondence: (R.D.F.); (J.C.-A.); Tel.: +356-2340-3871 (R.D.F.); +356-2340-1892 (J.C.-A.)
| |
Collapse
|
123
|
Javadi M, Rad JS, Farashah MSG, Roshangar L. An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases. Reprod Sci 2021; 29:1395-1407. [PMID: 33825167 DOI: 10.1007/s43032-021-00556-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Exosomes are small bilayer-lipid membrane vesicles secreted by living cells that are able to transfer regulatory molecules and genetic information from one cell to another. These vesicles are enriched with several nucleic acids including mRNAs, microRNAs (miRNAs), other non-coding RNAs, as well as proteins and lipids. Alterations in the exosomal content and functions are observed in numerous reproductive diseases in both animals and human cases. MicroRNAs, a class of small endogenous RNA molecules, can negatively regulate gene expression at the post-transcription level. Aberrant microRNA expression has been reported in multiple human reproductive diseases such as polycystic ovary syndrome, preeclampsia, uterine leiomyomata, ovarian cancer, endometriosis, and Asherman's syndrome. This study focuses to review recent research on alterations of microRNA expression and the role of exosomes in female reproductive diseases. It has been demonstrated that exosomes may be a potential therapeutic approach in various female reproductive diseases. In addition, changes in expression of microRNAs act as molecular biomarkers for diagnosis of several reproductive diseases in women, and regulation of their expression can potentially reduce infertility.
Collapse
Affiliation(s)
- Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
124
|
Azizi MIHN, Othman I, Naidu R. The Role of MicroRNAs in Lung Cancer Metabolism. Cancers (Basel) 2021; 13:cancers13071716. [PMID: 33916349 PMCID: PMC8038585 DOI: 10.3390/cancers13071716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short-strand non-coding RNAs that are responsible for post-transcriptional regulation of many biological processes. Their differential expression is important in supporting tumorigenesis by causing dysregulation in normal biological functions including cell proliferation, apoptosis, metastasis and invasion and cellular metabolism. Cellular metabolic processes are a tightly regulated mechanism. However, cancer cells have adapted features to circumvent these regulations, recognizing metabolic reprogramming as an important hallmark of cancer. The miRNA expression profile may differ between localized lung cancers, advanced lung cancers and solid tumors, which lead to a varying extent of metabolic deregulation. Emerging evidence has shown the relationship between the differential expression of miRNAs with lung cancer metabolic reprogramming in perpetuating tumorigenesis. This review provides an insight into the role of different miRNAs in lung cancer metabolic reprogramming by targeting key enzymes, transporter proteins or regulatory components alongside metabolic signaling pathways. These discussions would allow a deeper understanding of the importance of miRNAs in tumor progression therefore providing new avenues for diagnostic, therapeutic and disease management applications.
Collapse
|
125
|
Alshehri B. Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation. Saudi J Biol Sci 2021; 28:2408-2422. [PMID: 33911956 PMCID: PMC8071896 DOI: 10.1016/j.sjbs.2021.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomal microRNAs (miRNAs) critically regulate several major intracellular and metabolic activities, including cancer evolution. Currently, increasing evidence indicates that exosome harbor and transport these miRNAs from donor cells to neighboring and distantly related recipient cells, often in a cross-species manner. Several studies have reported that plant-based miRNAs can be absorbed into the serum of humans, where they hinder the expression of human disease-related genes. Moreover, few recent studies have demonstrated the role of these xenomiRs in cancer development and progression. However, the cross-kingdom gene regulation hypothesis remains highly debatable, and many follow up studies fail to reproduce the same. There are reports that show no effect of plant-derived miRNAs on mammalian cancers. The foremost cause of this controversy remains the lack of reproducibility of the results. Here, we reassess the latest developments in the field of cross-kingdom transference of miRNAs, emphasizing on the role of the diet-based xenomiRs on cancer progression.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|
126
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
127
|
Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM, Nigam M. Micro-RNA: The darkhorse of cancer. Cell Signal 2021; 83:109995. [PMID: 33785398 DOI: 10.1016/j.cellsig.2021.109995] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
The discovery of micro RNAs (miRNA) in cancer has opened up new vistas for researchers in recent years. Micro RNAs area set of small, endogenous, highly conserved, non-coding RNAs that control the expression of about 30% genes at post-transcriptional levels. Typically, microRNAs impede the translation and stability of messenger RNAs (mRNA), control genes associated with cellular processes namely inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Compelling findings revealed that miRNA mutations or disruption correspond to diverse human cancers and suggest that miRNAs can function as tumor suppressors or oncogenes. Here we summarize the literature on these master regulators in clinical settings from last three decades as both abrupt cancer therapeutics and as an approach to sensitize tumors to chemotherapy. This review highlights (I) the prevailing perception of miRNA genomics, biogenesis, as well as function; (II) the significant advancements in regulatory mechanisms in the expression of carcinogenic genes; and (III) explains, how miRNA is utilized as a diagnostic and prognostic biomarker for the disease stage indicating survival as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Mridul Budakoti
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Abhay Shikhar Panwar
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Diksha Molpa
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Rahul Kunwar Singh
- Department of Microbiology, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | | | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| |
Collapse
|
128
|
Tai Y, Pu M, Yuan L, Guo H, Qiao J, Lu H, Wang G, Chen J, Qi X, Tao Z, Ren J. miR-34a-5p regulates PINK1-mediated mitophagy via multiple modes. Life Sci 2021; 276:119415. [PMID: 33775690 DOI: 10.1016/j.lfs.2021.119415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
AIMS PTEN induced putative kinase 1 (PINK1)-mediated mitophagy process is tightly associated with various age-dependent diseases in mammals. The roles of miRNAs (miRNAs) in the PINK1-mediated mitophagy process are not fully understood. Here we discovered that miR-34a-5p suppresses PINK1 expression directly though two post-transcriptional non-classical binding modes, resulting in inhibition of PINK1-mediated mitophagy process. MAIN METHODS For in vivo experiments, brains were dissected from 8 weeks old and 40 weeks old C57BL/6 male mice to measure miR-34a-5p expression and PINK1 expression. For in vitro experiments, overexpression of miR-34a-5p mimics in HEK293 cells was performed to investigate the effect of miR-34a-5p on PINK1 expression and its regulatory mechanism, parkin recruitment and mitophagy process. KEY FINDINGS The level of miR-34a-5p was upregulated and the level of PINK1 mRNA was downregulated in brains of aged mice. Both the 3'-untranslated region (3'UTR) and the Coding DNA sequence (CDS) of PINK1 mRNA were bound to the non-seed region of miR-34a-5p, rather than the seed region, resulting in a decrease in PINK1 expression. Endogenous miR-34a-5p knockout increased PINK1 expression. Further results indicated that miR-34a-5p inhibits mitophagy process by reduction of PINK1. miR-34a-5p hinders phosphorylated Ser65-ubiquitin (pS65-Ub) accumulation, prevents the mitochondrial recruitment of Parkin, attenuates ubiquitination and delays the clearance of damaged mitochondria. SIGNIFICANCE We firstly found that miR-34a-5p suppresses PINK1 directly and further regulates mitophagy through non-canonical modes. This finding hints at a crucial role of miR-34a-5p implicated in accelerating the pathogenesis of age-related neurological diseases.
Collapse
Affiliation(s)
- Yusi Tai
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mei Pu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Luyang Yuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huijie Guo
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Junwen Qiao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical, Soochow University, Suzhou, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhouteng Tao
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
129
|
Prel A, Dozier C, Combier JP, Plaza S, Besson A. Evidence That Regulation of Pri-miRNA/miRNA Expression Is Not a General Rule of miPEPs Function in Humans. Int J Mol Sci 2021; 22:ijms22073432. [PMID: 33810468 PMCID: PMC8038077 DOI: 10.3390/ijms22073432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
Some miRNAs are located in RNA precursors (pri-miRNAs) annotated as long non-coding (lncRNAs) due to absence of long open reading frames (ORFs). However, recent studies have shown that some lnc pri-miRNAs encode peptides called miPEPs (miRNA-encoded peptides). Initially discovered in plants, three miPEPs have also been identified in humans. Herein, we found that a dozen human pri-miRNAs potentially encode miPEPs, as revealed by ribosome profiling and proteomic databases survey. So far, the only known function of plant miPEPs is to enhance the transcription of their own pri-miRNAs, thereby increasing the level and activity of their associated miRNAs and downregulating the expression of their target genes. To date, in humans, only miPEP133 was shown to promote a positive autoregulatory loop. We investigated whether other human miPEPs are also involved in regulating the expression of their miRNAs by studying miPEP155, encoded by the lnc MIR155HG, miPEP497, a sORF-encoded peptide within lnc MIR497HG, and miPEP200a, encoded by the pri-miRNA of miR-200a/miR-200b. We show that overexpression of these miPEPs is unable to impact the expression/activity of their own pri-miRNA/miRNAs in humans, indicating that the positive feedback regulation observed with plant miPEPs and human miPEP133 is not a general rule of human miPEP function.
Collapse
Affiliation(s)
- Anne Prel
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, 31320 Auzeville-Tolosan, France; (A.P.); (J.-P.C.)
| | - Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
- Correspondence: (C.D.); (S.P.)
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, 31320 Auzeville-Tolosan, France; (A.P.); (J.-P.C.)
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, 31320 Auzeville-Tolosan, France; (A.P.); (J.-P.C.)
- Correspondence: (C.D.); (S.P.)
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France;
| |
Collapse
|
130
|
Jafari N, Abediankenari S, Hossein-Nataj H. miR-34a mimic or pre-mir-34a, which is the better option for cancer therapy? KatoIII as a model to study miRNA action in human gastric cancer cells. Cancer Cell Int 2021; 21:178. [PMID: 33740991 PMCID: PMC7980621 DOI: 10.1186/s12935-021-01872-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Aberrantly expressed microRNAs play important roles in gastric tumorigenesis. However, use of miRNAs as a therapeutic option in gastric cancer still remains as a challenging problem. Methods We performed transient transfection of miR-34a-5p mimic and stable transfection of pre-mir-34a into KatoIII cells. Then, we evaluated the effect of transfected miRNAs on numerous cellular and molecular processes. Results Following transient transfection of miR-34a-5p mimic at 25 nM—a commonly used concentration—into KatoIII cells, inhibition of two target genes expression, namely Notch1 and β-catenin, was not observed, but a non-significant marginal increase of these genes was detected. No changes were detected in the percentage of apoptotic cells as well as in CD44 + and EpCAM + cells after 25 nM miR-34a-5p mimic transfection. Interestingly, stable transfection of pre-mir-34a into KatoIII cells (named as KatoIII-pGFPC1-34a cells) caused a significant repression in β-catenin protein and Notch1 mRNA levels (p < 0.05 and p < 0.01, respectively) relative to equivalent control (KatoIII- pGFPC1-empty cells). The percentage of CD44 + cells in the KatoIII-pGFPC1-34a cells (< 40%) was significantly lower than that in control cells (~ 95%) (p < 0.05). An increase of ~ 3.5% in apoptotic cells and a slower proliferation rate were detected in KatoIII-pGFPC1-34a cells. Conclusions Our study revealed that the effect of miR mimic in target gene repression can be dependent to its concentration as well as to the cell type. Meanwhile, our findings further support a regulatory function for pre-miRNAs in target repression and will help to develop effective therapeutic strategies in cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01872-5.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran.
| | - Hadi Hossein-Nataj
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
131
|
Chen H, Guo Y, Huang J, Zhou L. Upregulating hsa-miR-128a Increased the Effects of Pembrolizumab on Laryngeal Cancer Cells via the p53 Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2342784. [PMID: 33791361 PMCID: PMC7997759 DOI: 10.1155/2021/2342784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Recently, immunotherapy and microRNA have shown much more promises in oncology research, inspiring new hope for a cure for various malignancies. Specifically, the function and mechanisms of action of pembrolizumab have been investigated in many cancers, but not in laryngeal squamous cell carcinoma. The present study thus focused on the effect of hsa-miR-128a on pembrolizumab in laryngeal cancer cells as well as tried to elucidate the mechanisms that may mediate this effect. METHODS Hep2 and AMC-HN8 cell lines were utilized to create stable cell lines that overexpressing hsa-miR-128a. Using the immunotherapy assay, the contribution of hsa-miR-128a to pembrolizumab sensitivity was evaluated. By performing the dual luciferase assay and quantitative real-time polymerase chain reaction, the possible mechanisms of hsa-miR-128a were identified. RESULTS Hsa-miR-128a was overexpressed in laryngeal cancer cell lines successfully. The immunotherapy assay revealed that upregulating hsa-miR-128a augmented the effect of pembrolizumab. Moreover, hsa-miR-128a targeted BMI-1 and might played a role in the p53 pathway. CONCLUSION Hsa-miR-128a boosted the effect of pembrolizumab on laryngeal cancer cells, perhaps via the p53 pathway. Therefore, hsa-miR-128a might be a novel target in laryngeal cancer treatment.
Collapse
Affiliation(s)
- Hui Chen
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| | - Yang Guo
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| | - Jiameng Huang
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| | - Liang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital of Fudan University, No. 83, Fenyang Road, Xuhui District, 200031 Shanghai, China
| |
Collapse
|
132
|
LSD1 silencing contributes to enhanced efficacy of anti-CD47/PD-L1 immunotherapy in cervical cancer. Cell Death Dis 2021; 12:282. [PMID: 33731702 PMCID: PMC7969769 DOI: 10.1038/s41419-021-03556-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/07/2023]
Abstract
Anti-CD47/PD-L1 immunotherapies aiming to enhance antitumor immunity are being intensively investigated and show promising results in cancer therapy; however, not all patients treated with these new drugs respond. Thus, developing new immunotherapy agents or combination treatments to enhance the efficacy of immunotherapy is an urgent challenge. Here, we found that LSD1 knockdown directly downregulated the expression of CD47 and PD-L1 through upregulating H3K4me2 levels in the CD47 and CD274 promoter regions. In addition, the LSD1/wild-type p53/miR-34a signaling axis was also involved in the regulation of CD47/PD-L1 expression by targeting the 3′ untranslated regions (3′UTRs) of CD47/PD-L1. Further, the results showed that an LSD1 inhibitor (ORY-1001) combined with anti-CD47/PD-L1 monoclonal antibodies inhibited tumor growth in an established subcutaneous xenograft model more effectively than a single blockade strategy. Collectively, these findings indicate that LSD1 inhibition enhances the therapeutic efficacy of PD-L1/CD47 blockade by reducing CD47 and PD-L1 expression in cervical cancer.
Collapse
|
133
|
Liu Y, Jiang J, Liu C, Zhao W, Ma Y, Zheng Z, Zhou Q, Zhao Y. Synergistic anti-tumor effect of anti-PD-L1 antibody cationic microbubbles for delivery of the miR-34a gene combined with ultrasound on cervical carcinoma. Am J Transl Res 2021; 13:988-1005. [PMID: 33841635 PMCID: PMC8014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
This study explored the synergistic effect of anti-PD-L1 antibody cationic microbubbles (MBs) for delivery of the miR-34a gene combined with ultrasound in inhibiting the cervical cancer. H&E stain, TUNEL, immunohistochemistry and RT-PCR were used to detect the change of apoptosis regulatory factors, and immunofluorescence, Flow cytometry and LDH assays were applied to evaluate the changing of immunomodulatory. In this experiment the PD-L1 Ab/miR-34a-MBs were prepared successfully. The cell targeting assay showed that U14 cells were surrounded by the PD-L1 Ab/miR-34a-MBs and microbubbles had well contrast imaging capability in vivo. With the irradiation power was 1 W/cm2 and the irradiation time was 25 s, the gene transfection efficiency was the highest using EGFP plasmid lorded microbubbles. In vivo anti-tumor assays, the PD-L1 Ab/miR-34a-MBs showed a great potential in inhibiting tumor growth with a TGI of >50%. PD-L1 Ab/miR-34a-MBs treatment enhanced the anti-tumor effect compared with that induced by PD-L1 Ab or miR-34a alone. Firstly, PD-L1 Ab/miR-34a-MBs could gather miR-34a with high-concentration aggregation and releasing around the cervical cancer, which takes a significant role in promoting apoptosis by downregulated Bcl-2 and upregulated Bax. Furthermore, combination therapy was found to augment the activation of T lymphocytes proliferation and increase CD8+ T cells infiltration, to enhance antitumor immune killing effect. The anti-PD-L1 antibody microbubbles for delivery miR-34a gene with ultrasound were considered to be a promising combination therapy regimen via initiating apoptotic mechanism of the tumor and anti-tumor immune regulation.
Collapse
Affiliation(s)
- Yun Liu
- Echo Laboratory, Department of Ultrasound Imaging, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Jinjun Jiang
- Medical College of China Three Gorges UniversityYichang, China
| | - Chaoqi Liu
- Medical College of China Three Gorges UniversityYichang, China
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyYichang, China
| | - Wensi Zhao
- Cancer Center, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Yao Ma
- Medical College of China Three Gorges UniversityYichang, China
| | - Zhiwei Zheng
- Medical College of China Three Gorges UniversityYichang, China
| | - Qing Zhou
- Echo Laboratory, Department of Ultrasound Imaging, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Yun Zhao
- Medical College of China Three Gorges UniversityYichang, China
- Hubei Key Laboratory of Tumor Microenvironment and ImmunotherapyYichang, China
| |
Collapse
|
134
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
135
|
Li PC, Tu MJ, Ho PY, Batra N, Tran MM, Qiu JX, Wun T, Lara PN, Hu X, Yu AX, Yu AM. In vivo fermentation production of humanized noncoding RNAs carrying payload miRNAs for targeted anticancer therapy. Am J Cancer Res 2021; 11:4858-4871. [PMID: 33754032 PMCID: PMC7978307 DOI: 10.7150/thno.56596] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
Rationale: Noncoding RNAs (ncRNAs) such as microRNAs (miRs or miRNAs) play important roles in the control of cellular processes through posttranscriptional gene regulation. However, ncRNA research is limited to utilizing RNA agents synthesized in vitro. Recombinant RNAs produced and folded in living cells shall better recapitulate biologic RNAs. Methods: Herein, we developed a novel platform for in vivo fermentation production of humanized recombinant ncRNA molecules, namely hBERAs, carrying payload miRNAs or siRNAs. Target hBERAs were purified by anion exchange FPLC method. Functions of hBERA/miRNAs were investigated in human carcinoma cells and antitumor activities were determined in orthotopic osteosarcoma xenograft spontaneous lung metastasis mouse models. Results: Proper human tRNAs were identified to couple with optimal hsa-pre-miR-34a as new fully-humanized ncRNA carriers to accommodate warhead miRNAs or siRNAs. A group of 30 target hBERAs were all heterogeneously overexpressed (each accounting for >40% of total bacterial RNA), which facilitated large-scale production (8-31 mg of individual hBERAs from 1L bacterial culture). Model hBERA/miR-34a-5p and miR-124-3p were selectively processed to warhead miRNAs in human carcinoma cells to modulate target gene expression, enhance apoptosis and inhibit invasiveness. In addition, bioengineered miR-34a-5p and miR-124-3p agents both reduced orthotopic osteosarcoma xenograft tumor growth and spontaneous pulmonary metastases significantly. Conclusion: This novel ncRNA bioengineering technology and resulting recombinant ncRNAs are unique additions to conventional technologies and tools for basic research and drug development.
Collapse
|
136
|
Nomura S, Komuro I. Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. J Mol Cell Cardiol 2021; 152:29-39. [PMID: 33275937 DOI: 10.1016/j.yjmcc.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Japan.
| |
Collapse
|
137
|
Analyzing the impact of 900 MHz EMF short-term exposure to the expression of 667 miRNAs in human peripheral blood cells. Sci Rep 2021; 11:4444. [PMID: 33627699 PMCID: PMC7904780 DOI: 10.1038/s41598-021-82278-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
More than ever before, people around the world are frequently exposed to different sections of the electromagnetic spectrum, mainly emitted from wireless modern communication technologies. Especially, the level of knowledge on non-thermal biological EMF effects remains controversial. New technologies allow for a more detailed detection of non-coding RNAs which affect the post-transcriptional control. Such method shall be applied in this work to investigate the response of human blood cells to electromagnetic irradiation. In this ex vivo in vitro study, we exposed peripheral blood cells from 5 male donors to a continuous wave of 900 MHz EMF for 0, 30, 60 and 90 min. Significant micro RNA (miRNA) expression changes (p ≤ 0.05) above or below the SHAM exposed samples were evaluated using a quantitative real time PCR platform for simultaneous detection of 667 miRNAs called low density array. Only significant miRNA expression changes which were detectable in at least 60% of the samples per exposure group were analyzed. The results were compared with data from room temperature + 2 °C (RT + 2 °C) samples (here referred to as hyperthermia) to exclude miRNA expression altered by hyperthermia. The validation study by using the same donors and study design was performed after an interval of 2 years. When analyzing a total of 667 miRNAs during the screening study, 2 promising candidate miRNAs were identified, which were down regulated almost twice and showed a complete separation from the unexposed control group (miR-194 at 30 min and miR-939 at 60 min). The p-values even survived the Bonferroni correction for multiple comparisons (p = 0.0007 and p = 0.004, respectively). None of these miRNAs were expressed at a second time point after EMF exposure. Following an alternative analysis approach, we examined for miRNAs revealing an expected significant association of differential miRNA expression with the dose-time EMF exposure product, separately for each donor. Donors 2 and 3 revealed 11 and 10 miRNA species being significantly associated with EMF exposure which differed significantly from the other donors showing a minor number of differentially expressed miRNAs and could identify donors 2 and 3 as particularly EMF-responsive. The measurements were repeated after 2 years. The number of expressed/non-expressed miRNAs was almost similar (97.4%), but neither the number nor the previously differentially expressed miRNAs could be reproduced. Our data neither support evidence of early changes at miRNA expression level in human whole blood cells after 900 MHz EMF exposure nor the identification of EMF-responsive individuals.
Collapse
|
138
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
139
|
Wang Z, Yang X, Shen J, Xu J, Pan M, Liu J, Han S. Gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas. Hum Immunol 2021; 82:279-287. [PMID: 33612391 DOI: 10.1016/j.humimm.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Breast carcinoma is one of the most common tumors in women. The immune microenvironment, especially T cell infiltration, is related to the occurrence and prognosis of breast carcinoma. OBJECTIVE This study investigated the gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas. METHODS The gene expression data and corresponding clinical phenotype data from the Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) were downloaded. The stromal and immune score were calculated using ESTIMATE. The differentially expressed genes (DEGs) with a high vs. low stromal score and a high vs. low immune score were screened and then functionally enriched. The tumor-infiltrating immune cells were investigated using the Cibersort algorithm, and the CD4+ and CD8+ T cell-related genes were identified using a Spearman correlation test of infiltrating abundance with the DEGs. Moreover, the miRNA-mRNA pairs and lncRNA-miRNA pairs were predicted to construct the competing endogenous RNAs (ceRNA) network. Kaplan-Meier (K-M) survival curves were also plotted. RESULTS In total, 478 DEGs with a high vs. low stromal score and 796 DEGs with a high vs. low immune score were identified. In addition, 39 CD4+ T cell-related genes and 78 CD8+ T cell-related genes were identified; of these, 14 genes were significantly associated with the prognosis of BRCA patients. Moreover, for CD4+ T cell-related genes, the chr22-38_28785274-29006793.1-miR-34a/c-5p-CAPN6 axis was identified from the ceRNA network, whereas the chr22-38_28785274-29006793.1-miR-494-3p-SLC9A7 axis was identified for CD8+ T cell-related genes. CONCLUSIONS The chr22-38_28785274-29006793.1-miR-34a/c-5p-CAPN6 axis and the chr22-38_28785274-29006793.1-miR-494-3p-SLC9A7 axis might regulate cellular activities associated with CD4+ and CD8+ T cell infiltration, respectively, in BRCA.
Collapse
Affiliation(s)
- Zhanwei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Xi Yang
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Junjun Shen
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Jiamin Xu
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Huzhou, Zhejiang Province 313000, China.
| | - Mingyue Pan
- Graduate School of Nursing, Huzhou University, NO.1 Bachelor Road, Huzhou, Zhejiang Province, 313000, China.
| | - Jin Liu
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| | - Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
140
|
Li FY, Fan TY, Zhang H, Sun YM. Demethylation of miR-34a upregulates expression of membrane palmitoylated proteins and promotes the apoptosis of liver cancer cells. World J Gastroenterol 2021; 27:470-486. [PMID: 33642822 PMCID: PMC7896437 DOI: 10.3748/wjg.v27.i6.470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cancer is a common cancer and the main cause of cancer-related deaths worldwide. Liver cancer is the sixth most common cancer in the world. Although miR-34a and palmitoyl membrane palmitoylated protein (MPP2) are reportedly involved in various cell processes, their precise roles in liver cancer are still unclear.
AIM To investigate the expression of micro RNA 34a (miR-34a), methylation of the miR-34a promoter and the expression of MPP2 in liver cancer cells and their related mechanisms.
METHODS Together, 78 cases of liver cancer tissues and 78 cases of adjacent tissues were collected. The methylation degree of miR-34a promoter in liver cancer/ paracancerous tissue and liver cancer cells/normal liver cells, and the expression levels of miR-34a and MPP2 in the above samples were detected. Demethylation of liver cancer cells or transfection of liver cancer cells with miR-34a mimetic was performed. The MPP2 overexpression vector was used to transfect liver cancer cells, and the changes in proliferation, invasion, apoptosis, migration, and other biological functions of liver cancer cells after the above interventions were observed. Double luciferase reporter genes were used to detect the targeting relationship between miR-34a and MPP2.
RESULTS Clinical samples showed that the expression levels of miR-34a and MPP2 in liver cancer tissues were lower than those in the normal tissues. The methylation degree of miR-34a promoter region in liver cancer cells was higher than that in normal liver cells. After miR-34a demethylation/mimetic transfection/MPP2 overexpression, the apoptosis of liver cancer cells was increased; the proliferation, invasion and migration capabilities were decreased; the expression levels of caspase 3, caspase 9, E-cadherin, and B-cell lymphoma 2 (Bcl-2)-associated X protein were increased; and the expression levels of Bcl-2, N-cadherin, and β-catenin were decreased. Double luciferase reporter genes confirmed that MPP2 is targeted by miR-34a. Rescue experiments showed that small interfering MPP2 could counteract the promoting effect of miR-34a demethylation on apoptosis and the inhibitory effect on cell proliferation, invasion, and migration.
CONCLUSION miR-34a demethylation upregulates the expression level of MPP2 in liver cancer cells and promotes the apoptosis of liver cancer cells. miR-34a demethylation is a potential method for liver cancer treatment.
Collapse
Affiliation(s)
- Fu-Yong Li
- Department of Interventional Radiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| | - Ting-Yong Fan
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Hao Zhang
- Department of Endoscopy, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Yu-Min Sun
- Department of Cardiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| |
Collapse
|
141
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
142
|
Heydari H, Ghiasi R, Hamidian G, Ghaderpour S, Keyhanmanesh R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Horm Mol Biol Clin Investig 2021; 42:253-263. [PMID: 33638320 DOI: 10.1515/hmbci-2020-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES High fat diet can lead to testicular structural and functional disturbances, spermatogenesis disorders as well as infertility. So, the present investigation was proposed to clarify whether voluntary exercise could prevent high fat diet induced reproductive complications in rats through testicular stress oxidative and apoptosis. METHODS Forty male Wistar rats were randomly divided into four groups; control (C), voluntary exercise (VE), high fat diet (HFD) and high fat diet and voluntary exercise (VE + HFD) groups. The rats in the VE and VE + HFD groups were accommodated in apart cages that had running wheels and the running distance was assessed daily for 10 weeks. In VE + HFD group, animals were fed with HFD for five weeks before commencing exercise. The sperm parameters, the expressions of testicular miR-34a gene, and P53 and SIRT1 proteins as well as testicular apoptosis were analyzed in all groups. RESULTS The results indicated that voluntary exercise in VE + HFD group led to significantly increased GPX and SOD activities, SIRT1 protein expression, sperm parameters, and decreased the expression of miR34a gene and Acp53 protein, and cellular apoptosis index compared to HFD group (p<0.001 to p<0.05). The SOD and catalase activities, SIRT1 protein expression, sperm parameters in VE + HFD group were lower than of those of VE group, however, MDA content, expression of Acp53 protein, apoptosis indexes in VE + HFD group was higher than that of VE group (p<0.001 to p<0.05). CONCLUSION This study revealed that voluntary exercise improved spermatogenesis, in part by decreasing the testicular oxidative stress status, apoptosis through alteration in miR-34a/SIRT1/p53 pathway.
Collapse
Affiliation(s)
- Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
143
|
Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. J Diabetes Metab Disord 2021; 19:1439-1446. [PMID: 33520845 DOI: 10.1007/s40200-020-00670-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Objective The present study sought to evaluate the miR-34a/Sirtuin1/p53 pro-apoptotic pathway, and reveal its modulation in diabetic rats undergoing swimming exercise. Methods Twenty-eight male Wistar rats were divided into four groups. They were inducted to develop diabetes by injection of streptozotocin. After 12 weeks of swimming, the pancreatic tissue of these rats were removed to be evaluated for the expression level of Sitruin1/P53/miR-34a through qPCR. Results Findings indicated a marked rise in the expression of miR-34 and P53 (P < 0.01) as well as a significant decrease in expression of Sitruin1 (P < 0.01) in the diabetic group. In contrast, swimming resulted in a significant decrease in miR-34a expression (P < 0.01), and a prominent rise in the level of Sitruin1 in the swimming-trained-diabetic group (P < 0.01). Additionally, high, moderate and low apoptosis rate were observed in the pancreatic tissue of the diabetic, swimming-trained diabetic, and control groups, respectively. Conclusion Our findings suggested a correlation between pancreatic tissue apoptosis rate and miR-34a/Sitruin1/p53 signaling, that was subject to modulation by training. Graphical abstract
Collapse
|
144
|
Nguyen DND, Chilian WM, Zain SM, Daud MF, Pung YF. MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases. Can J Physiol Pharmacol 2021; 99:827-838. [PMID: 33529092 DOI: 10.1139/cjpp-2020-0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is among the leading causes of death worldwide. MicroRNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification, and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs is also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages are discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression, and (or) miRNA-derived therapeutic approaches in CVD research.
Collapse
Affiliation(s)
- Duong Ngoc Diem Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, P.O. Box 95, Rootstown, OH P.O. Box 95, USA
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, 43000 Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| |
Collapse
|
145
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
146
|
The Role, Function, and Mechanism of Long Intergenic Noncoding RNA1184 (linc01184) in Colorectal Cancer. DISEASE MARKERS 2021; 2021:8897906. [PMID: 33564344 PMCID: PMC7867457 DOI: 10.1155/2021/8897906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 01/07/2023]
Abstract
Background Long intergenic noncoding RNA1184 (linc01184) has been recently discovered; however, its role in human diseases is limited to date. The present study is aimed at investigating the expression pattern and mechanism of linc01184 in colorectal cancer (CRC) tumorigenesis. Methods The expression of linc01184 in CRC tissues and cell lines was compared with that in normal controls. The functions of linc01184 in CRC cells were identified by overexpression and small interfering RNA (siRNA) approaches in vitro. Meanwhile, the target gene prediction software, luciferase reporter, RNA pull-down, and western blotting assays were used to analyze the oncogenic mechanism. Results We found that linc01184 was obviously upregulated in CRC tissues and cells when compared to normal controls, and its upregulation had a positive association with the CRC progression. linc01184 knockdown significantly suppressed CRC cell proliferation and invasion and promoted apoptosis. Besides, linc01184 acted as a competitive endogenous RNA (ceRNA) by directly binding to microRNA-331 (miR-331), and its overexpression resulted in notable increases of human epidermal growth factor receptor 2 (HER2), phosphorylated Ser/Thr kinases (p-Akt), and extracellular regulated protein kinase 1/2 (p-ERK1/2) at posttranscriptional levels in CRC cells, which were antagonized by miR-331. Conclusions The findings reveal for the first time that linc01184 is an enhancer for the proliferation and invasion of CRC by functioning as a ceRNA through the linc01184-miR-331-HER2-p-Akt/ERK1/2 pathway regulatory network.
Collapse
|
147
|
Meng F, Yang M, Chen Y, Chen W, Wang W. miR-34a induces immunosuppression in colorectal carcinoma through modulating a SIRT1/NF-κB/B7-H3/TNF-α axis. Cancer Immunol Immunother 2021; 70:2247-2259. [PMID: 33492448 DOI: 10.1007/s00262-021-02862-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Although a number of studies have revealed the important roles of miR-34a in cancer, the regulatory roles of miR-34a in cancer immune response remain largely unknown. Our present study demonstrated a mechanism underlying miR-34a-mediated cancer immune evasion via a SIRT1/NF-κB/B7-H3/TNF-α axis. miR-34a upregulated B7-H3, an important immune checkpoint molecule, through direct inhibition of SIRT1 and consequent acetylation of NF-κB subunit p65 (a-p65), which promoted B7-H3 transcription by direct binding to its promoter. The elevated B7-H3 induced production of pro-inflammatory cytokines including TNF-α. This was further confirmed in the colon of Mir34a-deficient mice, where Sirt1 expression was boosted, and the expressions of a-p65, B7h3, and Tnf were repressed. Consequently, the in vivo inhibitory activity of miR-34a on colorectal cancer (CRC) was eradicated by the reinforced B7-H3 and TNF-α. In conclusion, our study uncovered an etiological mechanism underlying miR-34a-mediated CRC immune evasion through inhibition of SIRT1 and promotion of NF-κB/B7-H3/TNF-α axis.
Collapse
Affiliation(s)
- Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China.
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Yunxuan Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
148
|
Liu S, Fang Y, Yu J, Chang X. Hawthorn polyphenols reduce high glucose-induced inflammation and apoptosis in ARPE-19 cells by regulating miR-34a/SIRT1 to reduce acetylation. J Food Biochem 2021; 45:e13623. [PMID: 33491221 DOI: 10.1111/jfbc.13623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023]
Abstract
Diabetic retinopathy is a major complication in patients with diabetes. Herein, we investigate how hawthorn polyphenol extract (HPE) affects high glucose-induced oxidation, inflammation, and apoptosis in ARPE-19 cells. HPLC-MS/MS was used to determine HPE content and composition. Reactive oxygen species (ROS) production was assessed using fluorescence microscopy, while glucose-induced gene and protein expressions were analyzed using real-time PCR and western blotting in cells transfected with miR-34a mimics. We found that treating cells with 10 μg/ml of HPE, 30 μM procyanidin B2, chlorogenic acid, epicatechin, or resveratrol (positive control) significantly reduced ROS production and decreased apoptosis and inflammation-related factors (p < .01). Moreover, the expression level of SIRT1 was increased, while that of acetylated NF-κB p65 and p53 proteins was decreased. These data suggest that HPE can inhibit oxidative damage, inflammation, and apoptosis through the AMPK/SIRT1/NF-κB pathway, and decrease miR-34a/SIRT1/p53 pathway activation in ARPE-19 cells, thereby demonstrating a potential use as a food additive to mitigate hyperglycemia-induced retinal damage. PRACTICAL APPLICATIONS: Hawthorn polyphenol extract (HPE) significantly reduced ROS levels, apoptosis, and the expression of inflammation-related factors in ARPE-19 cells. HPE also inhibited the AMPK/SIRT1/NF-κB and miR-34a/SIRT1/p53 pathways, which are involved in hyperglycemia-induced inflammation and apoptosis of ARPE-19 cells by regulating acetylation. Thus, HPE, as a potential food additive, may mitigate hyperglycemia-induced retinal damage.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuan Fang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jincheng Yu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xuedong Chang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei (Chengde) Hawthorn Industrial Technology Research Institute, Chengde, China
| |
Collapse
|
149
|
Apoptotic effects of valproic acid on miR-34a, miR-520h and HDAC1 gene in breast cancer. Life Sci 2021; 269:119027. [PMID: 33453248 DOI: 10.1016/j.lfs.2021.119027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Identifying miRNAs involved in cancer and devising strategies to control their expression is a new therapeutic approach. Valproic acid (VPA) has attracted a lot of interest in cancer research. We evaluated the impact of VPA on the expression of miR-34a, miR-520h, and their target gene histone deacetylase 1 (HDAC1), as well as their relationship with apoptosis in breast cancer. First, through bioinformatics analyses, the possible target genes of miR-34a and miR-520h and their roles in apoptosis regulation were investigated. Then, miR-34a, miR-520h, and HDAC1 gene expression in tissues of breast cancer patients were determined using the qRT-PCR method. The anticancer impact of VPA on apoptosis and the expression levels of miR-34a, miR-520h, and HDAC1 gene were measured in MCF-7 and MDA-MB-231 cell lines. The bioinformatics analyses indicated that miR-34a and miR-520h might make a unique contribution in regulating the apoptosis pathway. The relative expression of miR-34a and miR-520h significantly decreased in cancer tissues, while the relative expression of HDAC1 increased. In the in vitro study, VPA led to apoptosis induction and increased lipid peroxidation products in breast cancer cells. Moreover, VPA increased the expression of miR- 34a and miR-520h and decreased HDAC1 expression in MCF-7 cells. In MDA-MB-231 cells, VPA decreased the expression of these miRNAs and increased the expression of HDAC1. It can be concluded that miR-34a and miR-520h are implicated in the apoptosis pathways, and thus, VPA can recruit as a possible option in breast cancer research due to its interference with epigenetic processes.
Collapse
|
150
|
Xie ZY, Wang FF, Xiao ZH, Liu SF, Tang SL, Lai YL. Overexpressing microRNA-34a overcomes ABCG2-mediated drug resistance to 5-FU in side population cells from colon cancer via suppressing DLL1. J Biochem 2021; 167:557-564. [PMID: 32044957 DOI: 10.1093/jb/mvaa012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023] Open
Abstract
Colon cancer side population (SP) cells are a small subset of cancer cells that have cancer stemness capacity and enhanced drug resistance. ABCG2 is a multidrug resistance-related protein in SP cells and has been demonstrated to be regulated by Notch signalling pathway. Recently, microRNAs are reported to play a critical role in SP cell fate. However, their role in ABCG2-mediated drug resistance in colon cancer SP cells remains unclear. In the current study, the different expressions of miR-552, miR-611, miR-34a and miR-5000-3p were compared within SP and non-SP cells, which were separated from human colon cancer cell lines (SW480 and LoVo). We found that miR-34a was significantly down-regulated in SP cells and that overexpressing miR-34a overcame drug resistance to 5-fluorouracil (5-FU). The luciferase reporter assay indicated that miR-34a negatively regulated DLL1, a ligand of Notch signalling pathway, via binding with 3'-untranslated region of its messenger RNA. In addition, overexpressing miR-34a overcame ABCG2-mediated resistance to 5-FU via DLL1/Notch pathway in vitro, and suppressed tumour growth under 5-FU treatment in vivo. In conclusion, our findings suggest that miR-34a acts as a tumour suppressor via enhancing chemosensitivity to 5-FU in SP cells, which provides a novel therapeutic target in chemotherapy-resistant colon cancer.
Collapse
Affiliation(s)
- Zheng-Yuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fen-Fen Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhi-Hua Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si-Fu Liu
- Medical College of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Sheng-Lan Tang
- Medical College of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yue-Liang Lai
- Medical College of Nanchang University, Nanchang, Jiangxi 330000, China
| |
Collapse
|