101
|
Hopp AK, Hottiger MO. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight. Cells 2021; 10:680. [PMID: 33808662 PMCID: PMC8003356 DOI: 10.3390/cells10030680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD+)-dependent post-translational modification that is found on proteins as well as on nucleic acids. While ARTD1/PARP1-mediated poly-ADP-ribosylation has extensively been studied in the past 60 years, comparably little is known about the physiological function of mono-ADP-ribosylation and the enzymes involved in its turnover. Promising technological advances have enabled the development of innovative tools to detect NAD+ and NAD+/NADH (H for hydrogen) ratios as well as ADP-ribosylation. These tools have significantly enhanced our current understanding of how intracellular NAD dynamics contribute to the regulation of ADP-ribosylation as well as to how mono-ADP-ribosylation integrates into various cellular processes. Here, we discuss the recent technological advances, as well as associated new biological findings and concepts.
Collapse
Affiliation(s)
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
102
|
Mateju D, Chao JA. Stress granules: regulators or by-products? FEBS J 2021; 289:363-373. [PMID: 33725420 DOI: 10.1111/febs.15821] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Cells have to deal with conditions that can cause damage to biomolecules and eventually cell death. To protect against these adverse conditions and promote recovery, cells undergo dramatic changes upon exposure to stress. This involves activation of signaling pathways, cell cycle arrest, translational reprogramming, and reorganization of the cytoplasm. Notably, many stress conditions cause a global inhibition of mRNA translation accompanied by the formation of cytoplasmic condensates called stress granules (SGs), which sequester mRNA together with RNA-binding proteins, translation initiation factors, and other components. SGs are highly conserved in eukaryotes, suggesting that they perform an important function during the stress response. Over the years, many different roles have been assigned to SGs, including translational control, mRNA storage, regulation of mRNA decay, antiviral innate immune response, and modulation of signaling pathways. Most of our understanding, however, has been deduced from correlative data based upon the composition of SGs and only recently have technological innovations allowed hypotheses for SG function to be directly tested. Here, we discuss these challenges and explore the evidence related to the function of SGs.
Collapse
Affiliation(s)
- Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
103
|
Challa S, Stokes MS, Kraus WL. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Cells 2021; 10:313. [PMID: 33546365 PMCID: PMC7913519 DOI: 10.3390/cells10020313] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Mono(ADP-ribosyl)ation (MARylation) is a regulatory post-translational modification of proteins that controls their functions through a variety of mechanisms. MARylation is catalyzed by mono(ADP-ribosyl) transferase (MART) enzymes, a subclass of the poly(ADP-ribosyl) polymerase (PARP) family of enzymes. Although the role of PARPs and poly(ADP-ribosyl)ation (PARylation) in cellular pathways, such as DNA repair and transcription, is well studied, the role of MARylation and MARTs (i.e., the PARP 'monoenzymes') are not well understood. Moreover, compared to PARPs, the development of MART-targeted therapeutics is in its infancy. Recent studies are beginning to shed light on the structural features, catalytic targets, and biological functions of MARTs. The development of new technologies to study MARTs have uncovered essential roles for these enzymes in the regulation of cellular processes, such as RNA metabolism, cellular transport, focal adhesion, and stress responses. These insights have increased our understanding of the biological functions of MARTs in cancers, neuronal development, and immune responses. Furthermore, several novel inhibitors of MARTs have been developed and are nearing clinical utility. In this review, we summarize the biological functions and molecular mechanisms of MARTs and MARylation, as well as recent advances in technology that have enabled detection and inhibition of their activity. We emphasize PARP-7, which is at the forefront of the MART subfamily with respect to understanding its biological roles and the development of therapeutically useful inhibitors. Collectively, the available studies reveal a growing understanding of the biochemistry, chemical biology, physiology, and pathology of MARTs.
Collapse
Affiliation(s)
- Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - MiKayla S. Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
104
|
Rodriguez KM, Buch-Larsen SC, Kirby IT, Siordia IR, Hutin D, Rasmussen M, Grant DM, David LL, Matthews J, Nielsen ML, Cohen MS. Chemical genetics and proteome-wide site mapping reveal cysteine MARylation by PARP-7 on immune-relevant protein targets. eLife 2021; 10:60480. [PMID: 33475084 PMCID: PMC7880690 DOI: 10.7554/elife.60480] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase 7 (PARP-7) has emerged as a critically important member of a large enzyme family that catalyzes ADP-ribosylation in mammalian cells. PARP-7 is a critical regulator of the innate immune response. What remains unclear is the mechanism by which PARP-7 regulates this process, namely because the protein targets of PARP-7 mono-ADP-ribosylation (MARylation) are largely unknown. Here, we combine chemical genetics, proximity labeling, and proteome-wide amino acid ADP-ribosylation site profiling for identifying the direct targets and sites of PARP-7-mediated MARylation in a cellular context. We found that the inactive PARP family member, PARP-13-a critical regulator of the antiviral innate immune response-is a major target of PARP-7. PARP-13 is preferentially MARylated on cysteine residues in its RNA binding zinc finger domain. Proteome-wide ADP-ribosylation analysis reveals cysteine as a major MARylation acceptor of PARP-7. This study provides insight into PARP-7 targeting and MARylation site preference.
Collapse
Affiliation(s)
- Kelsie M Rodriguez
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sara C Buch-Larsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ilsa T Kirby
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - Ivan Rodriguez Siordia
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Larry L David
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States
| |
Collapse
|
105
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:cells10010128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| |
Collapse
|
106
|
Köritzer J, Blenn C, Bürkle A, Beneke S. Mitochondria are devoid of poly(ADP-ribose)polymerase-1, but harbor its product oligo(ADP-ribose). J Cell Biochem 2021; 122:507-523. [PMID: 33417272 DOI: 10.1002/jcb.29887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
There are conflicting data about localization of poly(ADP-ribose)polymerase-1 and its product poly(ADP-ribose) in mitochondria. To finally clarify the discussion, we investigated with biochemical and cell biological methods the potential presence of poly(ADP-ribose) polymerase-1 in these organelles. Our data show that endogenous and overexpressed poly(ADP-ribose)polymerase 1 is only localized to the nucleus with a clear exclusion of cytosolic compartments. In addition, highly purified mitochondria devoid of nuclear contaminations do not contain poly(ADP-ribose)polymerase-1. Although no poly(ADP-ribose)polymerase-1 enzyme is detectable in mitochondria, a shorter variant of its product poly(ADP-ribose) is present, associated specifically with a small subset of mitochondrial proteins as revealed by immunoprecipitation and protein fingerprint analysis. These proteins are located at key-points of the Krebs-cycle, are chaperones involved in mitochondrial functionality and quality-control, and are RNA-binding proteins important for transcript stability, respectively. Of note, despite the fact that especially poly(ADP-ribose)polymerase-1 is its own major target for modification, we could not detect this enzyme by mass spectrometry in these organelles. These data suggests a new way of targeted nuclear-mitochondrial signaling, mediated by nuclear poly(ADP-ribosyl)ation dependent on poly(ADP-ribose)polymerase-1.
Collapse
Affiliation(s)
- Julia Köritzer
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Christian Blenn
- Institute of Pharmacology and Toxicology, University of Zurich/Vetsuisse, Zurich, Switzerland
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Sascha Beneke
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany.,Human and Environmental Toxicology Group, University of Konstanz, Konstanz, Germany
| |
Collapse
|
107
|
Novel tankyrase inhibitors suppress TDP-43 aggregate formation. Biochem Biophys Res Commun 2020; 537:85-92. [PMID: 33387887 DOI: 10.1016/j.bbrc.2020.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Transactive response DNA-binding protein of 43 kDa (TDP-43) abnormally forms aggregates in certain subtypes of frontotemporal lobar degeneration (FTLD) and in amyotrophic lateral sclerosis (ALS). The pathological forms of TDP-43 have reported to be associated with poly(ADP-ribose) (PAR), which regulates the properties of these aggregates. A recent study has indicated that tankyrase, a member of the PAR polymerase (PARP) family, regulates pathological TDP-43 formation under conditions of stress, and tankyrase inhibitors suppress TDP-43 aggregate formation and cytotoxicity. Since we reported the development of tankyrase inhibitors that are more specific than conventional inhibitors, in this study, we examined their effects on the formation of TDP-43 aggregates in cultured cells. Time-lapse imaging showed that TDP-43 aggregates appeared in the nucleus within 30 min of treatment with sodium arsenite. Several tankyrase inhibitors suppressed the formation of aggregates and decreased the levels of the tankyrase protein. Immunohistochemical studies demonstrated that tankyrase was localized to neuronal cytoplasmic inclusions in the spinal cords of patients with ALS. Moreover, the tankyrase protein levels were significantly higher in the brains of patients with FTLD than in the brains of control subjects. These findings suggest that the inhibition of tankyrase activity protects against TDP-43 toxicity. Tankyrase inhibitors may be a potential treatment to suppress the progression of TDP-43 proteinopathies.
Collapse
|
108
|
Marmor-Kollet H, Siany A, Kedersha N, Knafo N, Rivkin N, Danino YM, Moens TG, Olender T, Sheban D, Cohen N, Dadosh T, Addadi Y, Ravid R, Eitan C, Toth Cohen B, Hofmann S, Riggs CL, Advani VM, Higginbottom A, Cooper-Knock J, Hanna JH, Merbl Y, Van Den Bosch L, Anderson P, Ivanov P, Geiger T, Hornstein E. Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Mol Cell 2020; 80:876-891.e6. [PMID: 33217318 PMCID: PMC7816607 DOI: 10.1016/j.molcel.2020.10.032] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/30/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.
Collapse
Affiliation(s)
- Hagai Marmor-Kollet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nancy Kedersha
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Naama Knafo
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natalia Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas G Moens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daoud Sheban
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Revital Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beata Toth Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarah Hofmann
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Claire L Riggs
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek M Advani
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Paul Anderson
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tamar Geiger
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
109
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
110
|
Hofmann S, Kedersha N, Anderson P, Ivanov P. Molecular mechanisms of stress granule assembly and disassembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118876. [PMID: 33007331 DOI: 10.1016/j.bbamcr.2020.118876] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
Stress granules (SGs) are membrane-less ribonucleoprotein (RNP)-based cellular compartments that form in the cytoplasm of a cell upon exposure to various environmental stressors. SGs contain a large set of proteins, as well as mRNAs that have been stalled in translation as a result of stress-induced polysome disassembly. Despite the fact that SGs have been extensively studied for many years, their function is still not clear. They presumably help the cell to cope with the encountered stress, and facilitate the recovery process after stress removal upon which SGs disassemble. Aberrant formation of SGs and impaired SG disassembly majorly contribute to various pathological phenomena in cancer, viral infections, and neurodegeneration. The assembly of SGs is largely driven by liquid-liquid phase separation (LLPS), however, the molecular mechanisms behind that are not fully understood. Recent studies have proposed a novel mechanism for SG formation that involves the interplay of a large interaction network of mRNAs and proteins. Here, we review this novel concept of SG assembly, and discuss the current insights into SG disassembly.
Collapse
Affiliation(s)
- Sarah Hofmann
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Kedersha
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Anderson
- Brigham and Women's Hospital, Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Pavel Ivanov
- Brigham and Women's Hospital, Harvard Medical School, Harvard Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
111
|
Fernandes N, Nero L, Lyons SM, Ivanov P, Mittelmeier TM, Bolger TA, Buchan JR. Stress Granule Assembly Can Facilitate but Is Not Required for TDP-43 Cytoplasmic Aggregation. Biomolecules 2020; 10:biom10101367. [PMID: 32992901 PMCID: PMC7650667 DOI: 10.3390/biom10101367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
Stress granules (SGs) are hypothesized to facilitate TAR DNA-binding protein 43 (TDP-43) cytoplasmic mislocalization and aggregation, which may underly amyotrophic lateral sclerosis pathology. However, much data for this hypothesis is indirect. Additionally, whether P-bodies (PBs; related mRNA-protein granules) affect TDP-43 phenotypes is unclear. Here, we determine that induction of TDP-43 expression in yeast results in the accumulation of SG-like foci that in >90% of cases become the sites where TDP-43 cytoplasmic foci first appear. Later, TDP-43 foci associate less with SGs and more with PBs, though independent TDP-43 foci also accumulate. However, depleting or over-expressing yeast SG and PB proteins reveals no consistent trend between SG or PB assembly and TDP-43 foci formation, toxicity or protein abundance. In human cells, immunostaining endogenous TDP-43 with different TDP-43 antibodies reveals distinct localization and aggregation behaviors. Following acute arsenite stress, all phospho-TDP-43 foci colocalize with SGs. Interestingly, in SG assembly mutant cells (G3BP1/2ΔΔ), TDP-43 is enriched in nucleoli. Finally, formation of TDP-43 cytoplasmic foci following low-dose chronic arsenite stress is impaired, but not completely blocked, in G3BP1/2ΔΔ cells. Collectively, our data suggest that SG and PB assembly may facilitate TDP-43 cytoplasmic localization and aggregation but are likely not essential for these events.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Luke Nero
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Shawn M. Lyons
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (S.M.L.); (P.I.)
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pavel Ivanov
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (S.M.L.); (P.I.)
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Telsa M. Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - Timothy A. Bolger
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; (N.F.); (L.N.); (T.M.M.); (T.A.B.)
- Correspondence: ; Tel.: +1-520-626-1881
| |
Collapse
|
112
|
Sanderson DJ, Cohen MS. Mechanisms governing PARP expression, localization, and activity in cells. Crit Rev Biochem Mol Biol 2020; 55:541-554. [PMID: 32962438 DOI: 10.1080/10409238.2020.1818686] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Poly-(ADP)-ribose polymerases (PARPs) are a family of 17 enzymes in humans that have diverse roles in cell physiology including DNA damage repair, transcription, innate immunity, and regulation of signaling pathways. The modular domain architecture of PARPs gives rise to this functional diversity. PARPs catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to targets-proteins and poly-nucleic acids. This enigmatic post-translational modification comes in two varieties: the transfer of a single unit of ADP-ribose, known as mono-ADP-ribosylation (MARylation) or the transfer of multiple units of ADP-ribose, known as poly-ADP-ribosylation (PARylation). Emerging data shows that PARPs are regulated at multiple levels to control when and where PARP-mediated M/PARylation occurs in cells. In this review, we will discuss the latest knowledge regarding the regulation of PARPs in cells: from transcription and protein stability to subcellular localization and modulation of catalytic activity.
Collapse
Affiliation(s)
- Daniel J Sanderson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Michael S Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
113
|
Daniels CM, Kaplan PR, Bishof I, Bradfield C, Tucholski T, Nuccio AG, Manes NP, Katz S, Fraser IDC, Nita-Lazar A. Dynamic ADP-Ribosylome, Phosphoproteome, and Interactome in LPS-Activated Macrophages. J Proteome Res 2020; 19:3716-3731. [PMID: 32529831 PMCID: PMC11040592 DOI: 10.1021/acs.jproteome.0c00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have used mass spectrometry (MS) to characterize protein signaling in lipopolysaccharide (LPS)-stimulated macrophages from human blood, human THP1 cells, mouse bone marrow, and mouse Raw264.7 cells. Protein ADP-ribosylation was truncated down to phosphoribose, allowing for enrichment and identification of the resulting phosphoribosylated peptides alongside phosphopeptides. Size exclusion chromatography-MS (SEC-MS) was used to separate proteoforms by size; protein complexes were then identified by weighted correlation network analysis (WGCNA) based on their correlated movement into or out of SEC fractions following stimulation, presenting an analysis method for SEC-MS that does not rely on established databases. We highlight two modules of interest: one linked to the apoptosis signal-regulating kinase (ASK) signalosome and the other containing poly(ADP-ribose) polymerase 9 (PARP9). Finally, PARP inhibition was used to perturb the characterized systems, demonstrating the importance of ADP-ribosylation for the global interactome. All post-translational modification (PTM) and interactome data have been aggregated into a meta-database of 6729 proteins, with ADP-ribosylation characterized on 2905 proteins and phosphorylation characterized on 2669 proteins. This database-titled MAPCD, for Macrophage ADP-ribosylation, Phosphorylation, and Complex Dynamics-serves as an invaluable resource for studying crosstalk between the ADP-ribosylome, phosphoproteome, and interactome.
Collapse
|
114
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
115
|
Cai J, Liu W, Wong CW, Zhu W, Lin Y, Hu J, Xu W, Zhang J, Sander M, Wang Z, Dan J, Zhang J, Liu Y, Guo L, Qin Z, Liu X, Liu Y, Yan G, Wu S, Liang J. Zinc-finger antiviral protein acts as a tumor suppressor in colorectal cancer. Oncogene 2020; 39:5995-6008. [PMID: 32770142 DOI: 10.1038/s41388-020-01416-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Avoiding immune destruction is essential for tumorigenesis. Current research into the interaction between tumor and immunological niches complement tumor pathology beyond cancer genetics. Intrinsic host defense immunity is a specialized innate immunity component to restrict viral infection. However, whether intrinsic immunity participates in tumor pathology is unclear. Previously, we identified a zinc-finger antiviral protein ZAP that is commonly downregulated in a panel of clinical cancer specimens. However, whether ZAP has an impact on tumor development was unknown. Here we report ZAP as a genuine tumor suppressor. Pan-caner analysis with TCGA data from 712 patients and large-scale immunohistochemistry in tissue microarrays from 1552 patients reveal that ZAP is prevalently downregulated, and associated with poor survival in liver, colon, and bladder cancer patients. Ectopic over-expression of ZAP inhibits the malignant phenotypes of colorectal tumor by cell cycle arrest. Using RNA immunoprecipitation and RNA decay assays, we demonstrate that ZAP directly and specifically binds to and degrades the transcript of TRAILR4, which in turn represses TRAILR4 expression and inhibits the aggressiveness of colorectal cancer cells. Furthermore, our CRISPR-engineered mice models show that loss-of-function of ZAP synergizes with APC-deficiency to drive malignant colorectal cancer in vivo. Overall, we identify a previously unknown function of the antiviral factor ZAP in colorectal tumorigenesis, linking intrinsic immunity to tumor pathogenetics.
Collapse
Affiliation(s)
- Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun Wa Wong
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Jifu Zhang
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Max Sander
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia Dan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayu Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Guo
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen Qin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xincheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Sihan Wu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA.
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
116
|
Doaa S. El Sayed, Sabine Foro. X-Ray Structure, DFT Study of p-Chlorobenzoic Acid, and the Effect of In Silico Molecular Docking on Tankyrase I Enzyme. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
117
|
Libner CD, Salapa HE, Levin MC. The Potential Contribution of Dysfunctional RNA-Binding Proteins to the Pathogenesis of Neurodegeneration in Multiple Sclerosis and Relevant Models. Int J Mol Sci 2020; 21:E4571. [PMID: 32604997 PMCID: PMC7369711 DOI: 10.3390/ijms21134571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration in multiple sclerosis (MS) is believed to underlie disease progression and permanent disability. Many mechanisms of neurodegeneration in MS have been proposed, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, and RNA-binding protein dysfunction. The purpose of this review is to highlight mechanisms of neurodegeneration in MS and its models, with a focus on RNA-binding protein dysfunction. Studying RNA-binding protein dysfunction addresses a gap in our understanding of the pathogenesis of MS, which will allow for novel therapies to be generated to attenuate neurodegeneration before irreversible central nervous system damage occurs.
Collapse
Affiliation(s)
- Cole D. Libner
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
| | - Hannah E. Salapa
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Michael C. Levin
- Office of Saskatchewan Multiple Sclerosis Clinical Research Chair, CMSNRC (Cameco MS Neuroscience. Research Center), University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada;
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| |
Collapse
|
118
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
119
|
Žaja R, Aydin G, Lippok BE, Feederle R, Lüscher B, Feijs KLH. Comparative analysis of MACROD1, MACROD2 and TARG1 expression, localisation and interactome. Sci Rep 2020; 10:8286. [PMID: 32427867 PMCID: PMC7237415 DOI: 10.1038/s41598-020-64623-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
The posttranslational modification ADP-ribosylation is involved in many cellular processes, with distinct roles for poly- and mono(ADP-ribosyl)ation (PAR- and MARylation, respectively). Reversibility of intracellular MARylation was demonstrated with the discovery of MACROD1, MACROD2 and TARG1, three macrodomain-containing enzymes capable of reversing MARylation of proteins and RNA. While the three enzymes have identical activities in vitro, their roles in cells are unclear and published data are partially contradictory, possibly due to a lack of validated reagents. We developed monoclonal antibodies to study these proteins and analysed their tissue distribution and intracellular localisation. MACROD1 is most prevalent in mitochondria of skeletal muscle, MACROD2 localises to nucleo- and cytoplasm and is found so far only in neuroblastoma cells, whereas the more ubiquitously expressed TARG1 is present in nucleoplasm, nucleolus and stress granules. Loss of MACROD1 or loss of TARG1 leads to disruption of mitochondrial or nucleolar morphology, respectively, hinting at their importance for these organelles. To start elucidating the underlying mechanisms, we have mapped their interactomes using BioID. The cellular localisation of interactors supports the mitochondrial, nucleolar and stress granule localisation of MACROD1 and TARG1, respectively. Gene ontology analysis suggests an involvement of MACROD1 and TARG1 in RNA metabolism in their respective compartments. The detailed description of the hydrolases’ expression, localisation and interactome presented here provides a solid basis for future work addressing their physiological function in more detail.
Collapse
Affiliation(s)
- R Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - G Aydin
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - B E Lippok
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - R Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - B Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - K L H Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
120
|
Frydrýšková K, Mašek T, Pospíšek M. Changing faces of stress: Impact of heat and arsenite treatment on the composition of stress granules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1596. [PMID: 32362075 DOI: 10.1002/wrna.1596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/07/2022]
Abstract
Stress granules (SGs), hallmarks of the cellular adaptation to stress, promote survival, conserve cellular energy, and are fully dissolved upon the cessation of stress treatment. Different stresses can initiate the assembly of SGs, but arsenite and heat are the best studied of these stresses. The composition of SGs and posttranslational modifications of SG proteins differ depending on the type and severity of the stress insult, methodology used, cell line, and presence of overexpressed and tagged proteins. A group of 18 proteins showing differential localization to SGs in heat- and arsenite-stressed mammalian cell lines is described. Upon severe and prolonged stress, physiological SGs transform into more solid protein aggregates that are no longer reversible and do not contain mRNA. Similar pathological inclusions are hallmarks of neurodegenerative diseases. SGs induced by heat stress are less dynamic than SGs induced by arsenite and contain a set of unique proteins and linkage-specific polyubiquitinated proteins. The same types of ubiquitin linkages have been found to contribute to the development of neurodegenerative disorders such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis (ALS). We propose heat stress-induced SGs as a possible model of an intermediate stage along the transition from dynamic, fully reversible arsenite stress-induced SGs toward aberrant SGs, the hallmark of neurodegenerative diseases. Stress- and methodology-specific differences in the compositions of SGs and the transition of SGs to aberrant protein aggregates are discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
| | | | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
121
|
Cao X, Jin X, Liu B. The involvement of stress granules in aging and aging-associated diseases. Aging Cell 2020; 19:e13136. [PMID: 32170904 PMCID: PMC7189987 DOI: 10.1111/acel.13136] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are nonmembrane assemblies formed in cells in response to stress conditions. SGs mainly contain untranslated mRNA and a variety of proteins. RNAs and scaffold proteins with intrinsically disordered regions or RNA-binding domains are essential for the assembly of SGs, and multivalent macromolecular interactions among these components are thought to be the driving forces for SG assembly. The SG assembly process includes regulation through post-translational modification and involvement of the cytoskeletal system. During aging, many intracellular bioprocesses become disrupted by factors such as cellular environmental changes, mitochondrial dysfunction, and decline in the protein quality control system. Such changes could lead to the formation of aberrant SGs, as well as alterations in their maintenance, disassembly, and clearance. These aberrant SGs might in turn promote aging and aging-associated diseases. In this paper, we first review the latest progress on the molecular mechanisms underlying SG assembly and SG functioning under stress conditions. Then, we provide a detailed discussion of the relevance of SGs to aging and aging-associated diseases.
Collapse
Affiliation(s)
- Xiuling Cao
- State Key Laboratory of Subtropical Silviculture School of Forestry and Biotechnology Zhejiang A&F University Hangzhou China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture School of Forestry and Biotechnology Zhejiang A&F University Hangzhou China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture School of Forestry and Biotechnology Zhejiang A&F University Hangzhou China
- Department of Chemistry and Molecular Biology University of Gothenburg Goteborg Sweden
- Center for Large‐scale Cell‐based Screening Faculty of Science University of Gothenburg Goteborg Sweden
| |
Collapse
|
122
|
Alhammad YMO, Fehr AR. The Viral Macrodomain Counters Host Antiviral ADP-Ribosylation. Viruses 2020; 12:E384. [PMID: 32244383 PMCID: PMC7232374 DOI: 10.3390/v12040384] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.
Collapse
Affiliation(s)
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
123
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
124
|
Leung AKL. Poly(ADP-ribose): A Dynamic Trigger for Biomolecular Condensate Formation. Trends Cell Biol 2020; 30:370-383. [PMID: 32302549 DOI: 10.1016/j.tcb.2020.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
Poly(ADP-ribose) (PAR) is a nucleic acid-like protein modification that can seed the formation of microscopically visible cellular compartments that lack enveloping membranes, recently termed biomolecular condensates. These PAR-mediated condensates are linked to cancer, viral infection, and neurodegeneration. Recent data have shown the therapeutic potential of modulating PAR conjugation (PARylation): PAR polymerase (PARP) inhibitors can modulate the formation and dynamics of these condensates as well as the trafficking of their components - many of which are key disease factors. However, the way in which PARylation facilitates these functions remains unclear, partly because of our lack of understanding of the fundamental parameters of intracellular PARylation, including the sites that are conjugated, PAR chain length and structure, and the physicochemical properties of the conjugates. This review first introduces the role of PARylation in regulating biomolecular condensates, followed by discussion of current knowledge gaps, potential solutions, and therapeutic applications.
Collapse
Affiliation(s)
- Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
125
|
Abstract
Liquid-liquid phase separation is emerging as the universal mechanism by which membraneless cellular granules form. Despite many previous studies on condensation of intrinsically disordered proteins and low complexity domains, we lack understanding about the role of RNA, which is the essential component of all ribonucleoprotein (RNP) granules. RNA, as an anionic polymer, is inherently an excellent platform for achieving multivalency and can accommodate many RNA binding proteins. Recent findings have highlighted the diverse function of RNA in tuning phase-separation propensity up or down, altering viscoelastic properties and thereby driving immiscibility between different condensates. In addition to contributing to the biophysical properties of droplets, RNA is a functionally critical constituent that defines the identity of cellular condensates and controls the temporal and spatial distribution of specific RNP granules. In this review, we summarize what we have learned so far about such roles of RNA in the context of in vitro and in vivo studies.
Collapse
Affiliation(s)
- Kevin Rhine
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Velinda Vidaurre
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA; .,Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
126
|
Kim DS, Challa S, Jones A, Kraus WL. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev 2020; 34:302-320. [PMID: 32029452 PMCID: PMC7050490 DOI: 10.1101/gad.334433.119] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Kim et al. discuss the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. ADP-ribosylation (ADPRylation) is a posttranslational modification of proteins discovered nearly six decades ago, but many important questions remain regarding its molecular functions and biological roles, as well as the activity of the ADP-ribose (ADPR) transferase enzymes (PARP family members) that catalyze it. Growing evidence indicates that PARP-mediated ADPRylation events are key regulators of the protein biosynthetic pathway, leading from rDNA transcription and ribosome biogenesis to mRNA synthesis, processing, and translation. In this review we describe the role of PARP proteins and ADPRylation in all facets of this pathway. PARP-1 and its enzymatic activity are key regulators of rDNA transcription, which is a critical step in ribosome biogenesis. An emerging role of PARPs in alternative splicing of mRNAs, as well as direct ADPRylation of mRNAs, highlight the role of PARP members in RNA processing. Furthermore, PARP activity, stimulated by cellular stresses, such as viral infections and ER stress, leads to the regulation of mRNA stability and protein synthesis through posttranscriptional mechanisms. Dysregulation of PARP activity in these processes can promote disease states. Collectively, these results highlight the importance of PARP family members and ADPRylation in gene regulation, mRNA processing, and protein abundance. Future studies in these areas will yield new insights into the fundamental mechanisms and a broader utility for PARP-targeted therapeutic agents.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Aarin Jones
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Program in Genetics, Development, and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
127
|
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev 2020; 34:341-359. [PMID: 32029454 PMCID: PMC7050484 DOI: 10.1101/gad.334425.119] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.
Collapse
Affiliation(s)
- Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Shin Mukai
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health, Moscow 119146, Russian Federation
| |
Collapse
|
128
|
Delving into PARP inhibition from bench to bedside and back. Pharmacol Ther 2020; 206:107446. [DOI: 10.1016/j.pharmthera.2019.107446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
|
129
|
Müller M, Fazi F, Ciaudo C. Argonaute Proteins: From Structure to Function in Development and Pathological Cell Fate Determination. Front Cell Dev Biol 2020; 7:360. [PMID: 32039195 PMCID: PMC6987405 DOI: 10.3389/fcell.2019.00360] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The highly conserved Argonaute protein family members play a central role in the regulation of gene expression networks, orchestrating the establishment and the maintenance of cell identity throughout the entire life cycle, as well as in several human disorders, including cancers. Four functional Argonaute proteins (AGO1-4), with high structure similarity, have been described in humans and mice. Interestingly, only AGO2 is robustly expressed during human and mouse early development, in contrast to the other AGOs. Consequently, AGO2 is indispensable for early development in vivo and in vitro. Here, we review the roles of Argonaute proteins during early development by focusing on the interplay between specific domains of the protein and their function. Moreover, we report recent works highlighting the importance of AGO posttranslational modifications in cancer.
Collapse
Affiliation(s)
- Madlen Müller
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, Zurich, Switzerland
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, IMHS, Zurich, Switzerland
| |
Collapse
|
130
|
Eisemann T, Pascal JM. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell Mol Life Sci 2020; 77:19-33. [PMID: 31754726 PMCID: PMC11104942 DOI: 10.1007/s00018-019-03366-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/15/2023]
Abstract
DNA damage response (DDR) relies on swift and accurate signaling to rapidly identify DNA lesions and initiate repair. A critical DDR signaling and regulatory molecule is the posttranslational modification poly(ADP-ribose) (PAR). PAR is synthesized by a family of structurally and functionally diverse proteins called poly(ADP-ribose) polymerases (PARPs). Although PARPs share a conserved catalytic domain, unique regulatory domains of individual family members endow PARPs with unique properties and cellular functions. Family members PARP-1, PARP-2, and PARP-3 (DDR-PARPs) are catalytically activated in the presence of damaged DNA and act as damage sensors. Family members tankyrase-1 and closely related tankyrase-2 possess SAM and ankyrin repeat domains that regulate their diverse cellular functions. Recent studies have shown that the tankyrases share some overlapping functions with the DDR-PARPs, and even perform novel functions that help preserve genomic integrity. In this review, we briefly touch on DDR-PARP functions, and focus on the emerging roles of tankyrases in genome maintenance. Preservation of genomic integrity thus appears to be a common function of several PARP family members, depicting PAR as a multifaceted guardian of the genome.
Collapse
Affiliation(s)
- Travis Eisemann
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
131
|
Li P, Huang P, Li X, Yin D, Ma Z, Wang H, Song H. Tankyrase Mediates K63-Linked Ubiquitination of JNK to Confer Stress Tolerance and Influence Lifespan in Drosophila. Cell Rep 2019; 25:437-448. [PMID: 30304683 DOI: 10.1016/j.celrep.2018.09.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Tankyrase (Tnks) transfers poly(ADP-ribose) on substrates. Whereas studies have highlighted the pivotal roles of Tnks in cancer, cherubism, systemic sclerosis, and viral infection, the requirement for Tnks under physiological contexts remains unclear. Here, we report that the loss of Tnks or its muscle-specific knockdown impairs lifespan, stress tolerance, and energy homeostasis in adult Drosophila. We find that Tnks is a positive regulator in the JNK signaling pathway, and modest alterations in the activity of JNK signaling can strengthen or suppress the Tnks mutant phenotypes. We further identify JNK as a direct substrate of Tnks. Although Tnks-dependent poly-ADP-ribosylation is tightly coupled to proteolysis in the proteasome, we demonstrate that Tnks initiates degradation-independent ubiquitination on two lysine residues of JNK to promote its kinase activity and in vivo functions. Our study uncovers a type of posttranslational modification of Tnks substrates and provides insights into Tnks-mediated physiological roles.
Collapse
Affiliation(s)
- Ping Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojiao Li
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dingzi Yin
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwei Ma
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyun Song
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
132
|
Mizutani A, Seimiya H. Tankyrase promotes primary precursor miRNA processing to precursor miRNA. Biochem Biophys Res Commun 2019; 522:945-951. [PMID: 31806370 DOI: 10.1016/j.bbrc.2019.11.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 01/29/2023]
Abstract
Tankyrases (TNKS and TNKS2) are members of poly(ADP-ribose) polymerase (PARP) family proteins. Tankyrase has multiple ankyrin repeat cluster (ARC) domains, which recognize the tankyrase-binding motifs in proteins including the telomeric protein, TRF1 and Wnt signal regulators, AXINs. However, the functional significance of tankyrase interaction with many other putative binding proteins remains unknown. Here, we found that several proteins involved in microRNA (miRNA) processing have putative tankyrase-binding motifs and their functions are regulated by tankyrase. First, chemical inhibition of tankyrase PARP activity downregulated the expression levels of precursor miRNAs (pre-miRNAs) but not primary precursor miRNAs (pri-miRNAs). A subsequent reporter assay revealed that tankyrase inhibitors or PARP-dead mutant tankyrase overexpression repress pri-miRNA processing to pre-miRNA. Conversely, a PARP-1/2 inhibitor, olaparib, did not affect pri-miRNA processing. Tankyrase ARCs bound to DGCR8 and DROSHA, which are essential components for pri-miRNA processing and have putative tankyrase-binding motifs. These observations indicate that tankyrase binds to Microprocessor, DGCR8 and DROSHA complex and modulates pri-miRNA processing to pre-miRNA.
Collapse
Affiliation(s)
- Anna Mizutani
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
133
|
Spannl S, Tereshchenko M, Mastromarco GJ, Ihn SJ, Lee HO. Biomolecular condensates in neurodegeneration and cancer. Traffic 2019; 20:890-911. [PMID: 31606941 DOI: 10.1111/tra.12704] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease.
Collapse
Affiliation(s)
- Stephanie Spannl
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Sean J Ihn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Canada Research Chairs Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
134
|
Owen I, Shewmaker F. The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins. Int J Mol Sci 2019; 20:ijms20215501. [PMID: 31694155 PMCID: PMC6861982 DOI: 10.3390/ijms20215501] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/23/2022] Open
Abstract
Advances in genomics and proteomics have revealed eukaryotic proteomes to be highly abundant in intrinsically disordered proteins that are susceptible to diverse post-translational modifications. Intrinsically disordered regions are critical to the liquid-liquid phase separation that facilitates specialized cellular functions. Here, we discuss how post-translational modifications of intrinsically disordered protein segments can regulate the molecular condensation of macromolecules into functional phase-separated complexes.
Collapse
|
135
|
Peters XQ, Malinga TH, Agoni C, Olotu FA, Soliman MES. Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies. Anticancer Agents Med Chem 2019; 19:1920-1934. [PMID: 31648650 DOI: 10.2174/1871520619666191019114321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. METHODS In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. RESULTS Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? CONCLUSION The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Thembeka H Malinga
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
136
|
Youn JY, Dyakov BJ, Zhang J, Knight JD, Vernon RM, Forman-Kay JD, Gingras AC. Properties of Stress Granule and P-Body Proteomes. Mol Cell 2019; 76:286-294. [DOI: 10.1016/j.molcel.2019.09.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
|
137
|
The Role of PARPs in Inflammation-and Metabolic-Related Diseases: Molecular Mechanisms and Beyond. Cells 2019; 8:cells8091047. [PMID: 31500199 PMCID: PMC6770262 DOI: 10.3390/cells8091047] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an essential post-translational modification catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. Poly(ADP-ribose) polymerase 1 (PARP1) is a well-characterized member of the PARP family. PARP1 plays a crucial role in multiple biological processes and PARP1 activation contributes to the development of various inflammatory and malignant disorders, including lung inflammatory disorders, cardiovascular disease, ovarian cancer, breast cancer, and diabetes. In this review, we will focus on the role and molecular mechanisms of PARPs enzymes in inflammation- and metabolic-related diseases. Specifically, we discuss the molecular mechanisms and signaling pathways that PARP1 is associated with in the regulation of pathogenesis. Recently, increasing evidence suggests that PARP inhibition is a promising strategy for intervention of some diseases. Thus, our in-depth understanding of the mechanism of how PARPs are activated and how their signaling downstream effecters can provide more potential therapeutic targets for the treatment of the related diseases in the future is crucial.
Collapse
|
138
|
Benabdallah NS, Williamson I, Illingworth RS, Kane L, Boyle S, Sengupta D, Grimes GR, Therizols P, Bickmore WA. Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation. Mol Cell 2019; 76:473-484.e7. [PMID: 31494034 PMCID: PMC6838673 DOI: 10.1016/j.molcel.2019.07.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
Enhancers can regulate the promoters of their target genes over very large genomic distances. It is widely assumed that mechanisms of enhancer action involve the reorganization of three-dimensional chromatin architecture, but this is poorly understood. The predominant model involves physical enhancer-promoter interaction by looping out the intervening chromatin. However, studying the enhancer-driven activation of the Sonic hedgehog gene (Shh), we have identified a change in chromosome conformation that is incompatible with this simple looping model. Using super-resolution 3D-FISH and chromosome conformation capture, we observe a decreased spatial proximity between Shh and its enhancers during the differentiation of embryonic stem cells to neural progenitors. We show that this can be recapitulated by synthetic enhancer activation, is impeded by chromatin-bound proteins located between the enhancer and the promoter, and appears to involve the catalytic activity of poly (ADP-ribose) polymerase. Our data suggest that models of enhancer-promoter communication need to encompass chromatin conformations other than looping. Super-resolution microscopy reveals increased enhancer-promoter separation upon activation Synthetic enhancer activation supports decreased enhancer-promoter proximity Enhancer-promoter separation can be driven by poly(ADP-ribose) polymerase 1
Collapse
Affiliation(s)
- Nezha S Benabdallah
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Edinburgh Super Resolution Imaging Consortium (ESRIC), Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Robert S Illingworth
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dipta Sengupta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Therizols
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; UMR INSERM 944, CNRS 7212, Bâtiment Jean Bernard, Hôpital Saint Louis, Paris, France
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
139
|
Ke Y, Zhang J, Lv X, Zeng X, Ba X. Novel insights into PARPs in gene expression: regulation of RNA metabolism. Cell Mol Life Sci 2019; 76:3283-3299. [PMID: 31055645 PMCID: PMC6697709 DOI: 10.1007/s00018-019-03120-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an important post-translational modification in which an ADP-ribose group is transferred to the target protein by poly(ADP-riboses) polymerases (PARPs). Since the discovery of poly-ADP-ribose (PAR) 50 years ago, its roles in cellular processes have been extensively explored. Although research initially focused on the functions of PAR and PARPs in DNA damage detection and repair, our understanding of the roles of PARPs in various nuclear and cytoplasmic processes, particularly in gene expression, has increased significantly. In this review, we discuss the current advances in understanding the roles of PARylation with a particular emphasis in gene expression through RNA biogenesis and processing. In addition to updating PARP's significance in transcriptional regulation, we specifically focus on how PARPs and PARylation affect gene expression, especially inflammation-related genes, at the post-transcriptional levels by modulating RNA processing and degrading. Increasing evidence suggests that PARP inhibition is a promising treatment for inflammation-related diseases besides conventional chemotherapy for cancer.
Collapse
Affiliation(s)
- Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Jing Zhang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueping Lv
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Institute of Genetics and Cytology, School of Life Science, Northeast Normal University, Changchun, 130024, Jilin, China.
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
140
|
Characterization of Novel Splice Variants of Zinc Finger Antiviral Protein (ZAP). J Virol 2019; 93:JVI.00715-19. [PMID: 31118263 DOI: 10.1128/jvi.00715-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Given the unprecedented scale of the recent Ebola and Zika viral epidemics, it is crucial to understand the biology of host factors with broad antiviral action in order to develop novel therapeutic approaches. Here, we look into one such factor: zinc finger antiviral protein (ZAP) inhibits a variety of RNA and DNA viruses. Alternative splicing results in two isoforms that differ at their C termini: ZAPL (long) encodes a poly(ADP-ribose) polymerase (PARP)-like domain that is missing in ZAPS (short). Previously, it has been shown that ZAPL is more antiviral than ZAPS, while the latter is more induced by interferon (IFN). In this study, we discovered and confirmed the expression of two additional splice variants of human ZAP: ZAPXL (extralong) and ZAPM (medium). We also found two haplotypes of human ZAP. Since ZAPL and ZAPS have differential activities, we hypothesize that all four ZAP isoforms have evolved to mediate distinct antiviral and/or cellular functions. By taking a gene-knockout-and-reconstitution approach, we have characterized the antiviral, translational inhibition, and IFN activation activities of individual ZAP isoforms. Our work demonstrates that ZAPL and ZAPXL are more active against alphaviruses and hepatitis B virus (HBV) than ZAPS and ZAPM and elucidates the effects of splice variants on the action of a broad-spectrum antiviral factor.IMPORTANCE ZAP is an IFN-induced host factor that can inhibit a wide range of viruses, and there is great interest in fully characterizing its antiviral mechanism. This is the first study that defines the antiviral capacities of individual ZAP isoforms in the absence of endogenous ZAP expression and, hence, cross talk with other isoforms. Our data demonstrate that ZAP is expressed as four different forms: ZAPS, ZAPM, ZAPL, and ZAPXL. The longer ZAP isoforms better inhibit alphaviruses and HBV, while all isoforms equally inhibit Ebola virus transcription and replication. In addition, there is no difference in the abilities of ZAP isoforms to enhance the induction of type I IFN expression. Our results show that the full spectrum of ZAP activities can change depending on the virus target and the relative levels of basal expression and induction by IFN or infection.
Collapse
|
141
|
Singh A, Manjunath LE, Kundu P, Sahoo S, Das A, Suma HR, Fox PL, Eswarappa SM. Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor. EMBO J 2019; 38:e100727. [PMID: 31330067 PMCID: PMC6694283 DOI: 10.15252/embj.2018100727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023] Open
Abstract
Translational readthrough generates proteins with extended C-termini, which often possess distinct properties. Here, we have used various reporter assays to demonstrate translational readthrough of AGO1 mRNA. Analysis of ribosome profiling data and mass spectrometry data provided additional evidence for translational readthrough of AGO1. The endogenous readthrough product, Ago1x, could be detected by a specific antibody both in vitro and in vivo. This readthrough process is directed by a cis sequence downstream of the canonical AGO1 stop codon, which is sufficient to drive readthrough even in a heterologous context. This cis sequence has a let-7a miRNA-binding site, and readthrough is promoted by let-7a miRNA. Interestingly, Ago1x can load miRNAs on target mRNAs without causing post-transcriptional gene silencing, due to its inability to interact with GW182. Because of these properties, Ago1x can serve as a competitive inhibitor of miRNA pathway. In support of this, we observed increased global translation in cells overexpressing Ago1x. Overall, our results reveal a negative feedback loop in the miRNA pathway mediated by the translational readthrough product of AGO1.
Collapse
Affiliation(s)
- Anumeha Singh
- Department of BiochemistryIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Lekha E Manjunath
- Department of BiochemistryIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Pradipta Kundu
- Department of Microbiology and Cell BiologyIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Sarthak Sahoo
- Department of BiochemistryIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Arpan Das
- Department of BiochemistryIndian Institute of ScienceBengaluruKarnatakaIndia
- Present address:
Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderCOUSA
| | - Harikumar R Suma
- Department of BiochemistryIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Paul L Fox
- Department of Cellular and Molecular MedicineThe Lerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Sandeep M Eswarappa
- Department of BiochemistryIndian Institute of ScienceBengaluruKarnatakaIndia
| |
Collapse
|
142
|
McGurk L, Rifai OM, Bonini NM. Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends Genet 2019; 35:601-613. [PMID: 31182245 DOI: 10.1016/j.tig.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
A central and causative feature of age-related neurodegenerative disease is the deposition of misfolded proteins in the brain. To devise novel approaches to treatment, regulatory pathways that modulate these aggregation-prone proteins must be defined. One such pathway is post-translational modification by the addition of poly(ADP-ribose) (PAR), which promotes protein recruitment and localization in several cellular contexts. Mounting evidence implicates PAR in seeding the abnormal localization and accumulation of proteins that are causative of neurodegenerative disease. Inhibitors of PAR polymerase (PARP) activity have been developed as cancer therapeutics, raising the possibility that they could be used to treat neurodegenerative disease. We focus on pathways regulated by PAR in neurodegenerative disease, with emphasis on amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD).
Collapse
Affiliation(s)
- Leeanne McGurk
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
143
|
Abstract
ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.
Collapse
|
144
|
Law LMJ, Razooky BS, Li MMH, You S, Jurado A, Rice CM, MacDonald MR. ZAP's stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog 2019; 15:e1007798. [PMID: 31116799 PMCID: PMC6548403 DOI: 10.1371/journal.ppat.1007798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 06/04/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
Cellular antiviral programs encode molecules capable of targeting multiple steps in the virus lifecycle. Zinc-finger antiviral protein (ZAP) is a central and general regulator of antiviral activity that targets pathogen mRNA stability and translation. ZAP is diffusely cytoplasmic, but upon infection ZAP is targeted to particular cytoplasmic structures, termed stress granules (SGs). However, it remains unclear if ZAP’s antiviral activity correlates with SG localization, and what molecular cues are required to induce this localization event. Here, we use Sindbis virus (SINV) as a model infection and find that ZAP’s localization to SGs can be transient. Sometimes no apparent viral infection follows ZAP SG localization but ZAP SG localization always precedes accumulation of SINV non-structural protein, suggesting virus replication processes trigger SG formation and ZAP recruitment. Data from single-molecule RNA FISH corroborates this finding as the majority of cells with ZAP localization in SGs contain low levels of viral RNA. Furthermore, ZAP recruitment to SGs occurred in ZAP-expressing cells when co-cultured with cells replicating full-length SINV, but not when co-cultured with cells replicating a SINV replicon. ZAP recruitment to SGs is functionally important as a panel of alanine ZAP mutants indicate that the anti-SINV activity is correlated with ZAP’s ability to localize to SGs. As ZAP is a central component of the cellular antiviral programs, these data provide further evidence that SGs are an important cytoplasmic antiviral hub. These findings provide insight into how antiviral components are regulated upon virus infection to inhibit virus spread. Organisms encode immune programs, present in most somatic cells, to combat pathogens. The components of these antiviral programs are both constitutively expressed and highly upregulated upon pathogen recognition. Interestingly, a broadly acting antiviral factor is the zinc-finger antiviral protein (ZAP). ZAP is a primarily cytoplasmic protein that upon various cellular stresses, such as virus infection, can localize to specific cytoplasmic complexes termed stress granules (SGs). SGs are hubs that regulate mRNA stability and translation. Here, we show that SG localization is (i) correlated with ZAP’s antiviral function, (ii) most likely triggered during the early stages of virus replication, and (iii) a highly dynamic and transient process. Collectively, our data highlight the genetic and dynamic components of ZAP-mediated antiviral activity.
Collapse
Affiliation(s)
- Lok Man John Law
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Brandon S. Razooky
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Melody M. H. Li
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Shihyun You
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Andrea Jurado
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Charles M. Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
| | - Margaret R. MacDonald
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
145
|
UBAP2L arginine methylation by PRMT1 modulates stress granule assembly. Cell Death Differ 2019; 27:227-241. [PMID: 31114027 PMCID: PMC7205891 DOI: 10.1038/s41418-019-0350-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) are discrete assemblies of stalled messenger ribonucleoprotein complexes (mRNPs) that form when eukaryotic cells encounter environmental stress. RNA-binding proteins (RBPs) mediate their condensation by recruiting populations of mRNPs. However, the cellular and molecular mechanisms underlying the role of ubiquitin-associated protein 2-like (UBAP2L) in the regulation of SG dynamics remain elusive. Here, we show that UBAP2L is required for both SG assembly and disassembly. UBAP2L overexpression nucleated SGs under stress-null conditions. The UBAP2L Arg–Gly–Gly (RGG) motif was required for SG competence, and mediated the recruitment of SG components, including mRNPs, RBPs, and ribosomal subunits. The domain of unknown function (DUF) of UBAP2L-mediated interaction with ras GTPase-activating protein-binding protein (G3BP)1/2, and its deletion caused the cytoplasmic–nuclear transport of UBAP2L and G3BP1/2, thereby compromising SG formation. The protein arginine methyltransferase PRMT1 asymmetrically dimethylated UBAP2L by targeting the RGG motif. Increased arginine methylation blocked, whereas its decrease enhanced UBAP2L interactions with SG components, ablating and promoting SG assembly, respectively. These results provide new insights into the mechanisms by which UBAP2L regulates SG dynamics and RNA metabolism.
Collapse
|
146
|
Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D, Aikawa M, Sullivan CS, Perlman S, Fehr AR. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog 2019; 15:e1007756. [PMID: 31095648 PMCID: PMC6521996 DOI: 10.1371/journal.ppat.1007756] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
ADP-ribosylation is a ubiquitous post-translational addition of either monomers or polymers of ADP-ribose to target proteins by ADP-ribosyltransferases, usually by interferon-inducible diphtheria toxin-like enzymes known as PARPs. While several PARPs have known antiviral activities, these activities are mostly independent of ADP-ribosylation. Consequently, less is known about the antiviral effects of ADP-ribosylation. Several viral families, including Coronaviridae, Togaviridae, and Hepeviridae, encode for macrodomain proteins that bind to and hydrolyze ADP-ribose from proteins and are critical for optimal replication and virulence. These results suggest that macrodomains counter cellular ADP-ribosylation, but whether PARPs or, alternatively, other ADP-ribosyltransferases cause this modification is not clear. Here we show that pan-PARP inhibition enhanced replication and inhibited interferon production in primary macrophages infected with macrodomain-mutant but not wild-type coronavirus. Specifically, knockdown of two abundantly expressed PARPs, PARP12 and PARP14, led to increased replication of mutant but did not significantly affect wild-type virus. PARP14 was also important for the induction of interferon in mouse and human cells, indicating a critical role for this PARP in the regulation of innate immunity. In summary, these data demonstrate that the macrodomain is required to prevent PARP-mediated inhibition of coronavirus replication and enhancement of interferon production. ADP-ribosylation, an understudied post-translational modification, facilitates the host response to virus infection. Several viruses, including all members of the coronavirus family, encode a macrodomain to reverse ADP-ribosylation and combat this immune response. As such, viruses with mutations in the macrodomain are highly attenuated and cause minimal disease in vivo. Here, using primary macrophages and mice infected with a pathogenic murine coronavirus, we identify PARPs, specifically PARP12 and PARP14, as host cell ADP-ribosylating enzymes important for the attenuation of these mutant viruses and confirm their importance using inhibitors and siRNAs. These data demonstrate a broad strategy of virus-host interactions and indicate that the macrodomain may be a useful target for antiviral therapy.
Collapse
Affiliation(s)
- Matthew E. Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Yating Chen
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
| | - Chad Kuny
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
| | - Takashi Maejima
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Robert Lease
- McDaniel College, Westminster, MD, United States of America
| | - Dana Ferraris
- McDaniel College, Westminster, MD, United States of America
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Christopher S. Sullivan
- Department of Molecular Biosciences, University of Texas, Austin, TX, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- * E-mail: (SP); (ARF)
| | - Anthony R. Fehr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
- * E-mail: (SP); (ARF)
| |
Collapse
|
147
|
Grimaldi G, Catara G, Palazzo L, Corteggio A, Valente C, Corda D. PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochem Pharmacol 2019; 167:64-75. [PMID: 31102582 DOI: 10.1016/j.bcp.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Among the post-translational modifications, ADP-ribosylation has been for long time the least integrated in the scheme of the structural protein modifications affecting physiological functions. In spite of the original findings on bacterial-dependent ADP-ribosylation catalysed by toxins such as cholera and pertussis toxin, only with the discovery of the poly-ADP-ribosyl polymerase (PARP) family the field has finally expanded and the role of ADP-ribosylation has been recognised in both physiological and pathological processes, including cancer, infectious and neurodegenerative diseases. This is now a rapidly expanding field of investigation, centred on the role of the different PARPs and their substrates in various diseases, and on the potential of PARP inhibitors as novel pharmacological tools to be employed in relevant pathological context. In this review we analyse the role that members of the PARP family and poly-ADP-ribose (PAR; the product of PARP1 and PARP5a activity) play in the processes following the exposure of cells to different stresses. The cell response that arises following conditions such as heat, osmotic, oxidative stresses or viral infection relies on the formation of stress granules, which are transient cytoplasmic membrane-less structures, that include untranslated mRNA, specific proteins and PAR, this last one serving as the "collector" of all components (that bind to it in a non-covalent manner). The resulting phenotypes are cells in which translation, intracellular transport or pro-apoptotic pathways are reversibly inhibited, for the time the given stress holds. Interestingly, the formation of defective stress granules has been detected in diverse pathological conditions including neurological disorders and cancer. Analysing the molecular details of stress granule formation under these conditions offers a novel view on the pathogenesis of these diseases and, as a consequence, the possibility of identifying novel drug targets for their treatment.
Collapse
Affiliation(s)
- Giovanna Grimaldi
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| | - Giuliana Catara
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Luca Palazzo
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Annunziata Corteggio
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council of Italy, Via Pietro Castellino 111, Naples 80131, Italy.
| |
Collapse
|
148
|
|
149
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
150
|
Singatulina AS, Hamon L, Sukhanova MV, Desforges B, Joshi V, Bouhss A, Lavrik OI, Pastré D. PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. Cell Rep 2019; 27:1809-1821.e5. [DOI: 10.1016/j.celrep.2019.04.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/21/2018] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
|