101
|
Ding D, Chen C. Zucchini: the key ingredient to unveil piRNA precursor processing†. Biol Reprod 2020; 103:452-454. [PMID: 32524138 DOI: 10.1093/biolre/ioaa090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Deqiang Ding
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.,Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
102
|
Mondal M, Brown JK, Flynt A. Exploiting somatic piRNAs in Bemisia tabaci enables novel gene silencing through RNA feeding. Life Sci Alliance 2020; 3:3/10/e202000731. [PMID: 32764103 PMCID: PMC7425214 DOI: 10.26508/lsa.202000731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
RNAi usually relies on Dicer-produced siRNAs to induce gene silencing. In many arthropods, another type of RNAi is present in the soma—the piRNA pathway. This work finds exploiting this biology is a viable alternative for gene knockdown. RNAi promises to reshape pest control by being nontoxic, biodegradable, and species specific. However, due to the plastic nature of RNAi, there is a significant variability in responses. In this study, we investigate small RNA pathways and processing of ingested RNAi trigger molecules in a hemipteran plant pest, the whitefly Bemisia tabaci. Unlike Drosophila, where the paradigm for insect RNAi technology was established, whitefly has abundant somatic piwi-associated RNAs (piRNAs). Long regarded as germline restricted, piRNAs are common in the soma of many invertebrates. We sought to exploit this for a novel gene silencing approach. The main principle of piRNA biogenesis is the recruitment of target RNA fragments into the pathway. As such, we designed synthetic RNAs to possess complementarity to the loci we annotated. Following feeding of these exogenous piRNA triggers knockdown as effective as conventional siRNA-only approaches was observed. These results demonstrate a new approach for RNAi technology that could be applicable to dsRNA-recalcitrant pest species and could be fundamental to realizing insecticidal RNAi against pests.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alex Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
103
|
Abstract
Liver cancer is one of the most common and deadly cancers in the world. In recent years, non-coding RNA has been a hot topic in liver cancer research. piRNAs (PIWI-interacting RNAs) are a new type of small non-coding RNA, which are formed by the PIWI proteins interacting with RNA. The latest research shows that piRNA and PIWI proteins are abnormally expressed in various cancers, including pancreatic, colorectal, breast, etc. piRNA plays an important regulatory role in liver cancer. In this review, we discuss the biological function of piRNAs and new progress in the development of liver cancer, and new targets and ideas for piRNA and PIWI proteins in the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Jiamin Xu
- Graduate School of Nursing, Huzhou University, Huzhou, China
| | - Xi Yang
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops Huzhou University, Huzhou, China
| | - Qing Zhou
- Department of Critical Care Medicine, Huzhou Cent Hosp, Affiliated Cent Hops Huzhou University, Huzhou, China
| | - Jing Zhuang
- Graduate School of Nursing, Huzhou University, Huzhou, China
| | - Shuwen Han
- Department of Oncology, Huzhou Cent Hosp, Affiliated Cent Hops Huzhou University, Huzhou, China
| |
Collapse
|
104
|
Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 2020; 52:728-739. [PMID: 32601478 PMCID: PMC7383350 DOI: 10.1038/s41588-020-0657-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Pachytene PIWI-interacting RNAs (piRNAs), which comprise >80% of small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like microRNAs, cleave targets like short interfering RNAs or lack biological function altogether. Although piRNA pathway protein mutants are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that males lacking piRNAs from a conserved mouse pachytene piRNA locus on chromosome 6 (pi6) produce sperm with defects in capacitation and egg fertilization. Moreover, heterozygous embryos sired by pi6-/- fathers show reduced viability in utero. Molecular analyses suggest that pi6 piRNAs repress gene expression by cleaving messenger RNAs encoding proteins required for sperm function. pi6 also participates in a network of piRNA-piRNA precursor interactions that initiate piRNA production from a second piRNA locus on chromosome 10, as well as pi6 itself. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Yu Fu
- Bioinformatics Program, Boston University, Boston, MA, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Oncology Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Katharine Cecchini
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deniz M Özata
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amena Arif
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cansu Colpan
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
105
|
Conserved Small Nucleotidic Elements at the Origin of Concerted piRNA Biogenesis from Genes and lncRNAs. Cells 2020; 9:cells9061491. [PMID: 32570966 PMCID: PMC7349650 DOI: 10.3390/cells9061491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/22/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) target transcripts by sequence complementarity serving as guides for RNA slicing in animal germ cells. The piRNA pathway is increasingly recognized as critical for essential cellular functions such as germline development and reproduction. In the Anopheles gambiae ovary, as much as 11% of piRNAs map to protein-coding genes. Here, we show that ovarian mRNAs and long non-coding RNAs (lncRNAs) are processed into piRNAs that can direct other transcripts into the piRNA biogenesis pathway. Targeting piRNAs fuel transcripts either into the ping-pong cycle of piRNA amplification or into the machinery of phased piRNA biogenesis, thereby creating networks of inter-regulating transcripts. RNAs of the same network share related genomic repeats. These repeats give rise to piRNAs, which target other transcripts and lead to a cascade of concerted RNA slicing. While ping-pong networks are based on repeats of several hundred nucleotides, networks that rely on phased piRNA biogenesis operate through short ~40-nucleotides long repeats, which we named snetDNAs. Interestingly, snetDNAs are recurring in evolution from insects to mammals. Our study brings to light a new type of conserved regulatory pathway, the snetDNA-pathway, by which short sequences can include independent genes and lncRNAs in the same biological pathway.
Collapse
|
106
|
Mentis AFA, Dardiotis E, Romas NA, Papavassiliou AG. PIWI family proteins as prognostic markers in cancer: a systematic review and meta-analysis. Cell Mol Life Sci 2020; 77:2289-2314. [PMID: 31814070 PMCID: PMC11104808 DOI: 10.1007/s00018-019-03403-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND P-element-induced-wimpy-testis-(PIWI)-like proteins are implicated in germ cells' regulation and detected in numerous cancer types. In this meta-analysis, we aimed to associate, for the first time, the prognosis in cancer patients with intratumoral expression of PIWI family proteins. METHODS PubMed, Embase, and Web of Knowledge databases were searched, and studies investigating the association between intratumoral mRNA or protein expression of different PIWI family proteins and survival, metastasis, or recurrence of various cancer types were reviewed. Study qualities were assessed using the REMARK criteria. Studies' heterogeneity was evaluated using I2 index and Cochran Q test. Publication bias was assessed by funnel plots and Egger's regression. Pooled hazard ratios (HR) with 95% confidence intervals (95% CIs) were calculated for different PIWI family proteins separately. Specifically, log of calculated HR was pooled using random-effects model. RESULTS Twenty-six studies (4299 participants) were included. The pooled HR of mortality in high versus low expression of PIWIL1, PIWIL2, and PIWIL4 was 1.87 (95% CI: 1.31-2.66, p < 0.05), 1.09 (95% CI: 0.58-2.07, p = 0.79), and 0.44 (95% CI: 0.25-0.76, p < 0.05), respectively. The pooled HR of recurrence in high versus low expression of PIWIL1 and PIWIL2 was 1.72 (95% CI: 1.20-2.49, p < 0.05) and 1.98 (95% CI: 0.65-5.98, p = 0.23), respectively. CONCLUSIONS Highly variable results were observed for different cancer types. Higher PIWIL1 and lower piwil4 and PIWIL4 expression levels could potentially indicate worse prognosis in cancer. These proteins' expressions could be used for personalized prognosis and treatment in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
- Department of Microbiology, University Hospital of Thessaly, Larissa, Greece
| | | | - Nicholas A Romas
- Department of Urology, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, New York, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg. 16, 11527, Athens, Greece.
| |
Collapse
|
107
|
Tan M, van Tol HT, Rosenkranz D, Roovers EF, Damen MJ, Stout TA, Wu W, Roelen BA. PIWIL3 Forms a Complex with TDRKH in Mammalian Oocytes. Cells 2020; 9:cells9061356. [PMID: 32486081 PMCID: PMC7349845 DOI: 10.3390/cells9061356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 01/09/2023] Open
Abstract
P-element induced wimpy testis (PIWIs) are crucial guardians of genome integrity, particularly in germ cells. While mammalian PIWIs have been primarily studied in mouse and rat, a homologue for the human PIWIL3 gene is absent in the Muridae family, and hence the unique function of PIWIL3 in germ cells cannot be effectively modeled by mouse knockouts. Herein, we investigated the expression, distribution, and interaction of PIWIL3 in bovine oocytes. We localized PIWIL3 to mitochondria, and demonstrated that PIWIL3 expression is stringently controlled both spatially and temporally before and after fertilization. Moreover, we identified PIWIL3 in a mitochondrial-recruited three-membered complex with Tudor and KH domain-containing protein (TDRKH) and poly(A)-specific ribonuclease-like domain containing 1 (PNLDC1), and demonstrated by mutagenesis that PIWIL3 N-terminal arginines are required for complex assembly. Finally, we sequenced the piRNAs bound to PIWIL3-TDRKH-PNLDC1 and report here that about 50% of these piRNAs map to transposable elements, recapitulating the important role of PIWIL3 in maintaining genome integrity in mammalian oocytes.
Collapse
Affiliation(s)
- Minjie Tan
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands; (M.T.); (H.T.A.v.T.)
| | - Helena T.A. van Tol
- Farm Animal Health, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands; (M.T.); (H.T.A.v.T.)
| | - David Rosenkranz
- Johannes Gutenberg-University Mainz, Institute of Organismic and Molecular Evolution, Anselm-Franz-von-Bentzel-Weg 7, 55128 Mainz, Germany;
| | - Elke F. Roovers
- Biology of Non-coding RNA Group, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany;
| | - Mirjam J. Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tom A.E. Stout
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands;
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Correspondence: (W.W.); (B.A.J.R.)
| | - Bernard A.J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Correspondence: (W.W.); (B.A.J.R.)
| |
Collapse
|
108
|
Effect of ovarian stimulation on the expression of piRNA pathway proteins. PLoS One 2020; 15:e0232629. [PMID: 32365144 PMCID: PMC7197780 DOI: 10.1371/journal.pone.0232629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) play an important role in gametogenesis, fertility and embryonic development. The current study investigated the effect of different doses of pregnant mare serum gonadotrophin/human chorionic gonadotrophin (PMSG/hCG) and repeated ovarian stimulation (OS) on the expression of the Mili, Miwi, Mael, Tdrd1, Tdrd9, qnd Mitopld genes, which have crucial roles in the biogenesis and function of piRNAs. Here, we found that after treatment with 7.5 I.U. PMSG/hCG and two repeated rounds of OS, both the mRNA and protein levels of Tdrd9, Tdrd1 and Mael showed the greatest decrease in the ovarian tissue, but the plasma E2 levels showed the strongest increases (p<0.05). However, we found that the Mitopld, Miwi and Mili gene levels were decreased significantly after treatment with 12.5 I.U. PMSG/hCG. Our results suggested that exogenous gonadotropin administration leads to a significant decrease in the expression of the Mili, Miwi, Mael, Tdrd1, Tdrd9 and Mitopld genes, which are critically important in the piRNA pathway, and the changes in the expression levels of Tdrd9, Tdrd1 and Mael may be associated with plasma E2 levels. New comprehensive studies are needed to reduce the potential effects of OS on the piRNA pathway, which silences transposable elements and maintains genome integrity, and to contribute to the safety of OS.
Collapse
|
109
|
Aguiar ERGR, de Almeida JPP, Queiroz LR, Oliveira LS, Olmo RP, de Faria IJDS, Imler JL, Gruber A, Matthews BJ, Marques JT. A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes. RNA (NEW YORK, N.Y.) 2020; 26:581-594. [PMID: 31996404 PMCID: PMC7161354 DOI: 10.1261/rna.073965.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Endogenous viral elements (EVEs) are found in many eukaryotic genomes. Despite considerable knowledge about genomic elements such as transposons (TEs) and retroviruses, we still lack information about nonretroviral EVEs. Aedes aegypti mosquitoes have a highly repetitive genome that is covered with EVEs. Here, we identified 129 nonretroviral EVEs in the AaegL5 version of the A. aegypti genome. These EVEs were significantly associated with TEs and preferentially located in repeat-rich clusters within intergenic regions. Genome-wide transcriptome analysis showed that most EVEs generated transcripts although only around 1.4% were sense RNAs. The majority of EVE transcription was antisense and correlated with the generation of EVE-derived small RNAs. A single genomic cluster of EVEs located in a 143 kb repetitive region in chromosome 2 contributed with 42% of antisense transcription and 45% of small RNAs derived from viral elements. This region was enriched for TE-EVE hybrids organized in the same coding strand. These generated a single long antisense transcript that correlated with the generation of phased primary PIWI-interacting RNAs (piRNAs). The putative promoter of this region had a conserved binding site for the transcription factor Cubitus interruptus, a key regulator of the flamenco locus in Drosophila melanogaster Here, we have identified a single unidirectional piRNA cluster in the A. aegypti genome that is the major source of EVE transcription fueling the generation of antisense small RNAs in mosquitoes. We propose that this region is a flamenco-like locus in A. aegypti due to its relatedness to the major unidirectional piRNA cluster in Drosophila melanogaster.
Collapse
Affiliation(s)
- Eric Roberto Guimarães Rocha Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BA, CEP 40101-909, Brazil
| | - João Paulo Pereira de Almeida
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
| | - Lucio Rezende Queiroz
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
| | - Liliane Santana Oliveira
- Department of Parasitology, Instituto de Ciências Biomédicas, USP, São Paulo, SP, 05508-000, Brazil
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
- Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| | - Isaque João da Silva de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| | - Arthur Gruber
- Department of Parasitology, Instituto de Ciências Biomédicas, USP, São Paulo, SP, 05508-000, Brazil
| | - Benjamin J Matthews
- Department of Zoology, University of British Columbia, V6T 1Z4, Vancouver, Canada
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 30270-901, Brazil
- Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| |
Collapse
|
110
|
Teefy BB, Siebert S, Cazet JF, Lin H, Juliano CE. PIWI-piRNA pathway-mediated transposable element repression in Hydra somatic stem cells. RNA (NEW YORK, N.Y.) 2020; 26:550-563. [PMID: 32075940 PMCID: PMC7161359 DOI: 10.1261/rna.072835.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/17/2020] [Indexed: 05/09/2023]
Abstract
Transposable elements (TEs) can damage genomes, thus organisms use a variety of mechanisms to repress TE expression. The PIWI-piRNA pathway is a small RNA pathway that represses TE expression in the germline of animals. Here we explore the function of the pathway in the somatic stem cells of Hydra, a long-lived freshwater cnidarian. Hydra have three stem cell populations, all of which express PIWI proteins; endodermal and ectodermal epithelial stem cells (ESCs) are somatic, whereas the interstitial stem cells have germline competence. To study somatic function of the pathway, we isolated piRNAs from Hydra that lack the interstitial lineage and found that these somatic piRNAs map predominantly to TE transcripts and display the conserved sequence signatures typical of germline piRNAs. Three lines of evidence suggest that the PIWI-piRNA pathway represses TEs in Hydra ESCs. First, epithelial knockdown of the Hydra piwi gene hywi resulted in up-regulation of TE expression. Second, degradome sequencing revealed evidence of PIWI-mediated cleavage of TE RNAs in epithelial cells using the ping-pong mechanism. Finally, we demonstrated a direct association between Hywi protein and TE transcripts in epithelial cells using RNA immunoprecipitation. Altogether, our data reveal that the PIWI-piRNA pathway represses TE expression in the somatic cell lineages of Hydra, which we propose contributes to the extreme longevity of the organism. Furthermore, our results, in combination with others, suggest that somatic TE repression is an ancestral function of the PIWI-piRNA pathway.
Collapse
Affiliation(s)
- Bryan B Teefy
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - Haifan Lin
- Department of Cell Biology, Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
111
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
112
|
Sun YH, Zhu J, Xie LH, Li Z, Meduri R, Zhu X, Song C, Chen C, Ricci EP, Weng Z, Li XZ. Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nat Cell Biol 2020; 22:200-212. [PMID: 32015435 PMCID: PMC8041231 DOI: 10.1038/s41556-019-0457-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs essential for fertility. In adult mouse testes, most piRNAs are derived from long single-stranded RNAs lacking annotated open reading frames (ORFs). The mechanisms underlying how piRNA sequences are defined during the cleavages of piRNA precursors remain elusive. Here, we show that 80S ribosomes translate the 5'-proximal short ORFs (uORFs) of piRNA precursors. The MOV10L1/Armitage RNA helicase then facilitates the translocation of ribosomes into the uORF downstream regions (UDRs). The ribosome-bound UDRs are targeted by piRNA processing machinery, with the processed ribosome-protected regions becoming piRNAs. The dual modes of interaction between ribosomes and piRNA precursors underlie the distinct piRNA biogenesis requirements at uORFs and UDRs. Ribosomes also mediate piRNA processing in roosters and green lizards, implying that this mechanism is evolutionarily conserved in amniotes. Our results uncover a function for ribosomes on non-coding regions of RNAs and reveal the mechanisms underlying how piRNAs are defined.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jiang Zhu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Li Huitong Xie
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ziwei Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Rajyalakshmi Meduri
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaopeng Zhu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Emiliano P Ricci
- Université de Lyon, ENSL, UCBL, INSERM, CNRS, LBMC, Lyon, France
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Urology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
113
|
Zucchini consensus motifs determine the mechanism of pre-piRNA production. Nature 2020; 578:311-316. [PMID: 31996847 DOI: 10.1038/s41586-020-1966-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
PIWI-interacting RNAs (piRNAs) of between approximately 24 and 31 nucleotides in length guide PIWI proteins to silence transposons in animal gonads, thereby ensuring fertility1. In the biogenesis of piRNAs, PIWI proteins are first loaded with 5'-monophosphorylated RNA fragments called pre-pre-piRNAs, which then undergo endonucleolytic cleavage to produce pre-piRNAs1,2. Subsequently, the 3'-ends of pre-piRNAs are trimmed by the exonuclease Trimmer (PNLDC1 in mouse)3-6 and 2'-O-methylated by the methyltransferase Hen1 (HENMT1 in mouse)7-9, generating mature piRNAs. It is assumed that the endonuclease Zucchini (MitoPLD in mouse) is a major enzyme catalysing the cleavage of pre-pre-piRNAs into pre-piRNAs10-13. However, direct evidence for this model is lacking, and how pre-piRNAs are generated remains unclear. Here, to analyse pre-piRNA production, we established a Trimmer-knockout silkworm cell line and derived a cell-free system that faithfully recapitulates Zucchini-mediated cleavage of PIWI-loaded pre-pre-piRNAs. We found that pre-piRNAs are generated by parallel Zucchini-dependent and -independent mechanisms. Cleavage by Zucchini occurs at previously unrecognized consensus motifs on pre-pre-piRNAs, requires the RNA helicase Armitage, and is accompanied by 2'-O-methylation of pre-piRNAs. By contrast, slicing of pre-pre-piRNAs with weak Zucchini motifs is achieved by downstream complementary piRNAs, producing pre-piRNAs without 2'-O-methylation. Regardless of the endonucleolytic mechanism, pre-piRNAs are matured by Trimmer and Hen1. Our findings highlight multiplexed processing of piRNA precursors that supports robust and flexible piRNA biogenesis.
Collapse
|
114
|
Monga I, Banerjee I. Computational Identification of piRNAs Using Features Based on RNA Sequence, Structure, Thermodynamic and Physicochemical Properties. Curr Genomics 2020; 20:508-518. [PMID: 32655289 PMCID: PMC7327968 DOI: 10.2174/1389202920666191129112705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
Rationale PIWI-interacting RNAs (piRNAs) are a recently-discovered class of small non-coding RNAs (ncRNAs) with a length of 21-35 nucleotides. They play a role in gene expression regulation, transposon silencing, and viral infection inhibition. Once considered as "dark matter" of ncRNAs, piRNAs emerged as important players in multiple cellular functions in different organisms. However, our knowledge of piRNAs is still very limited as many piRNAs have not been yet identified due to lack of robust computational predictive tools. Methods To identify novel piRNAs, we developed piRNAPred, an integrated framework for piRNA prediction employing hybrid features like k-mer nucleotide composition, secondary structure, thermodynamic and physicochemical properties. A non-redundant dataset (D3349 or D1684p+1665n) comprising 1684 experimentally verified piRNAs and 1665 non-piRNA sequences was obtained from piRBase and NONCODE, respectively. These sequences were subjected to the computation of various sequence-structure based features in binary format and trained using different machine learning techniques, of which support vector machine (SVM) performed the best. Results During the ten-fold cross-validation approach (10-CV), piRNAPred achieved an overall accuracy of 98.60% with Mathews correlation coefficient (MCC) of 0.97 and receiver operating characteristic (ROC) of 0.99. Furthermore, we achieved a dimensionality reduction of feature space using an attribute selected classifier. Conclusion We obtained the highest performance in accurately predicting piRNAs as compared to the current state-of-the-art piRNA predictors. In conclusion, piRNAPred would be helpful to expand the piRNA repertoire, and provide new insights on piRNA functions.
Collapse
Affiliation(s)
- Isha Monga
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali) Sector 81, S.A.S. Nagar, Mohali-140306, India
| | - Indranil Banerjee
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali) Sector 81, S.A.S. Nagar, Mohali-140306, India
| |
Collapse
|
115
|
Özata DM, Yu T, Mou H, Gainetdinov I, Colpan C, Cecchini K, Kaymaz Y, Wu PH, Fan K, Kucukural A, Weng Z, Zamore PD. Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat Ecol Evol 2020; 4:156-168. [PMID: 31900453 PMCID: PMC6961462 DOI: 10.1038/s41559-019-1065-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
In the fetal mouse testis, PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence transposons but, after birth, most post-pubertal pachytene piRNAs map to the genome uniquely and are thought to regulate genes required for male fertility. In the human male, the developmental classes, precise genomic origins and transcriptional regulation of postnatal piRNAs remain undefined. Here, we demarcate the genes and transcripts that produce postnatal piRNAs in human juvenile and adult testes. As in the mouse, human A-MYB drives transcription of both pachytene piRNA precursor transcripts and messenger RNAs encoding piRNA biogenesis factors. Although human piRNA genes are syntenic to those in other placental mammals, their sequences are poorly conserved. In fact, pachytene piRNA loci are rapidly diverging even among modern humans. Our findings suggest that, during mammalian evolution, pachytene piRNA genes are under few selective constraints. We speculate that pachytene piRNA diversity may provide a hitherto unrecognized driver of reproductive isolation.
Collapse
Affiliation(s)
- Deniz M Özata
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cansu Colpan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yasin Kaymaz
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pei-Hsuan Wu
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Alper Kucukural
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
116
|
Zhang SF, Gao J, Liu CM. The Role of Non-Coding RNAs in Neurodevelopmental Disorders. Front Genet 2019; 10:1033. [PMID: 31824553 PMCID: PMC6882276 DOI: 10.3389/fgene.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs, a group of ribonucleic acids that are ubiquitous in the body and do not encode proteins, emerge as important regulatory factors in almost all biological processes in the brain. Extensive studies have suggested the involvement of non-coding RNAs in brain development and neurodevelopmental disorders, and dysregulation of non-coding RNAs is associated with abnormal brain development and the etiology of neurodevelopmental disorders. Here we provide an overview of the roles and working mechanisms of non-coding RNAs, and discuss potential clinical applications of non-coding RNAs as diagnostic and prognostic markers and as therapeutic targets in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shuang-Feng Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
117
|
piRNA-Guided CRISPR-like Immunity in Eukaryotes. Trends Immunol 2019; 40:998-1010. [DOI: 10.1016/j.it.2019.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
|
118
|
Joosten J, Miesen P, Taşköprü E, Pennings B, Jansen PWTC, Huynen MA, Vermeulen M, Van Rij RP. The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in Aedes mosquitoes. Nucleic Acids Res 2019; 47:2546-2559. [PMID: 30566680 PMCID: PMC6411831 DOI: 10.1093/nar/gky1266] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) comprise a class of small RNAs best known for suppressing transposable elements in germline tissues. The vector mosquito Aedes aegypti encodes seven PIWI genes, four of which are somatically expressed. This somatic piRNA pathway generates piRNAs from viral RNA during infection with cytoplasmic RNA viruses through ping-pong amplification by the PIWI proteins Ago3 and Piwi5. Yet, additional insights into the molecular mechanisms mediating non-canonical piRNA production are lacking. TUDOR-domain containing (Tudor) proteins facilitate piRNA biogenesis in Drosophila melanogaster and other model organisms. We thus hypothesized that Tudor proteins are required for viral piRNA production and performed a knockdown screen targeting all A. aegypti Tudor genes. Knockdown of the Tudor genes AAEL012437, Vreteno, Yb, SMN and AAEL008101-RB resulted in significantly reduced viral piRNA levels, with AAEL012437-depletion having the strongest effect. This protein, which we named Veneno, associates directly with Ago3 in an sDMA-dependent manner and localizes in cytoplasmic foci reminiscent of piRNA processing granules of Drosophila. Veneno-interactome analyses reveal a network of co-factors including the orthologs of the Drosophila piRNA pathway components Vasa and Yb, which in turn interacts with Piwi5. We propose that Veneno assembles a multi-protein complex for ping-pong dependent piRNA production from viral RNA.
Collapse
Affiliation(s)
- Joep Joosten
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ezgi Taşköprü
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bas Pennings
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Ronald P Van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
119
|
Zhao K, Cheng S, Miao N, Xu P, Lu X, Zhang Y, Wang M, Ouyang X, Yuan X, Liu W, Lu X, Zhou P, Gu J, Zhang Y, Qiu D, Jin Z, Su C, Peng C, Wang JH, Dong MQ, Wan Y, Ma J, Cheng H, Huang Y, Yu Y. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat Cell Biol 2019; 21:1261-1272. [PMID: 31570835 DOI: 10.1038/s41556-019-0396-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
The repression of transposons by the Piwi-interacting RNA (piRNA) pathway is essential to protect animal germ cells. In Drosophila, Panoramix enforces transcriptional silencing by binding to the target-engaged Piwi-piRNA complex, although the precise mechanisms by which this occurs remain elusive. Here, we show that Panoramix functions together with a germline-specific paralogue of a nuclear export factor, dNxf2, and its cofactor dNxt1 (p15), to suppress transposon expression. The transposon RNA-binding protein dNxf2 is required for animal fertility and Panoramix-mediated silencing. Transient tethering of dNxf2 to nascent transcripts leads to their nuclear retention. The NTF2 domain of dNxf2 competes dNxf1 (TAP) off nucleoporins, a process required for proper RNA export. Thus, dNxf2 functions in a Panoramix-dNxf2-dependent TAP/p15 silencing (Pandas) complex that counteracts the canonical RNA exporting machinery and restricts transposons to the nuclear peripheries. Our findings may have broader implications for understanding how RNA metabolism modulates heterochromatin formation.
Collapse
Affiliation(s)
- Kang Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sha Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Na Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaohua Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhan Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuan Ouyang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Yuan
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Liu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Lu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Gu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiqun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ding Qiu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Sciences of Medical Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Youzhong Wan
- National Engineering Laboratory of AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Cheng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
120
|
Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat Commun 2019; 10:3389. [PMID: 31358756 PMCID: PMC6662892 DOI: 10.1038/s41467-019-11312-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Small RNAs have important functions. However, small RNAs in primate oocytes remain unexplored. Herein, we develop CAS-seq, a single-cell small RNA sequencing method, and profile the small RNAs in human oocytes and embryos. We discover a class of ~20-nt small RNAs that are predominantly expressed in human and monkey oocytes, but not in mouse oocytes. They are specifically associated with HIWI3 (PIWIL3), whereas significantly shorter than the commonly known PIWI-interacting RNAs (piRNAs), designated as oocyte short piRNAs (os-piRNAs). Notably, the os-piRNAs in human oocytes lack 2’-O-methylation at the 3’ end, a hallmark of the classic piRNAs. In addition, the os-piRNAs have a strong 1U/10 A bias and are enriched on the antisense strands of recently evolved transposable elements (TEs), indicating the potential function of silencing TEs by cleavage. Therefore, our study has identified an oocyte-specific piRNA family with distinct features and provides valuable resources for studying small RNAs in primate oocytes. PIWI-interacting RNAs (piRNAs) are ~25–33 nt small RNAs expressed in animal germ cells. Here, the authors develop a single-cell small RNA sequencing method and report that a class of ~20-nt piRNAs lacking 3′ end 2′-O-methylation are associated with PIWIL3 protein and predominantly expressed in human and monkey oocytes.
Collapse
|
121
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 666] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
122
|
Gebert D, Zischler H, Rosenkranz D. Primate piRNA Cluster Evolution Suggests Limited Relevance of Pseudogenes in piRNA-Mediated Gene Regulation. Genome Biol Evol 2019; 11:1088-1104. [PMID: 30888404 PMCID: PMC6461890 DOI: 10.1093/gbe/evz060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2019] [Indexed: 12/11/2022] Open
Abstract
PIWI proteins and their guiding Piwi-interacting (pi-) RNAs direct the silencing of target nucleic acids in the animal germline and soma. Although in mammal testes fetal piRNAs are involved in extensive silencing of transposons, pachytene piRNAs have additionally been shown to act in post-transcriptional gene regulation. The bulk of pachytene piRNAs is produced from large genomic loci, named piRNA clusters. Recently, the presence of reversed pseudogenes within piRNA clusters prompted the idea that piRNAs derived from such sequences might direct regulation of their parent genes. Here, we examine primate piRNA clusters and integrated pseudogenes in a comparative approach to gain a deeper understanding about mammalian piRNA cluster evolution and the presumed gene-regulatory role of pseudogene-derived piRNAs. Initially, we provide a broad analysis of the evolutionary relationships of piRNA clusters and their differential activity among six primate species. Subsequently, we show that pseudogenes in reserve orientation relative to piRNA cluster transcription direction generally do not exhibit signs of selection pressure and cause weakly conserved targeting of homologous genes among species, suggesting a lack of functional constraints and thus only a minor significance for gene regulation in most cases. Finally, we report that piRNA-producing loci generally tend to be located in active genomic regions with elevated gene and pseudogene density. Thus, we conclude that the presence of most pseudogenes in piRNA clusters might be regarded as a byproduct of piRNA cluster generation, whereas this does not exclude that some pseudogenes nevertheless play critical roles in individual cases.
Collapse
Affiliation(s)
- Daniel Gebert
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University, Mainz, Germany
| | - Hans Zischler
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University, Mainz, Germany
| | - David Rosenkranz
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
123
|
Munafò M, Manelli V, Falconio FA, Sawle A, Kneuss E, Eastwood EL, Seah JWE, Czech B, Hannon GJ. Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery. Genes Dev 2019; 33:844-856. [PMID: 31123065 PMCID: PMC6601507 DOI: 10.1101/gad.325662.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
The Piwi-interacting RNA (piRNA) pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. piRNA biogenesis requires a specialized machinery that converts long single-stranded precursors into small RNAs of ∼25-nucleotides in length. This process involves factors that operate in two different subcellular compartments: the nuage/Yb body and mitochondria. How these two sites communicate to achieve accurate substrate selection and efficient processing remains unclear. Here, we investigate a previously uncharacterized piRNA biogenesis factor, Daedalus (Daed), that is located on the outer mitochondrial membrane. Daed is essential for Zucchini-mediated piRNA production and the correct localization of the indispensable piRNA biogenesis factor Armitage (Armi). We found that Gasz and Daed interact with each other and likely provide a mitochondrial "anchoring platform" to ensure that Armi is held in place, proximal to Zucchini, during piRNA processing. Our data suggest that Armi initially identifies piRNA precursors in nuage/Yb bodies in a manner that depends on Piwi and then moves to mitochondria to present precursors to the mitochondrial biogenesis machinery. These results represent a significant step in understanding a critical aspect of transposon silencing; namely, how RNAs are chosen to instruct the piRNA machinery in the nature of its silencing targets.
Collapse
Affiliation(s)
- Marzia Munafò
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Vera Manelli
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Federica A Falconio
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Jun Wen Eugene Seah
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
124
|
Cordeiro Rodrigues RJ, de Jesus Domingues AM, Hellmann S, Dietz S, de Albuquerque BFM, Renz C, Ulrich HD, Sarkies P, Butter F, Ketting RF. PETISCO is a novel protein complex required for 21U RNA biogenesis and embryonic viability. Genes Dev 2019; 33:857-870. [PMID: 31147388 PMCID: PMC6601512 DOI: 10.1101/gad.322446.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
Piwi proteins are important for germ cell development in most animals. These proteins are guided to specific targets by small guide RNAs, referred to as piRNAs or 21U RNAs in Caenorhabditis elegans In this organism, even though genetic screens have uncovered 21U RNA biogenesis factors, little is known about how these factors interact or what they do. Based on the previously identified 21U biogenesis factor PID-1 (piRNA-induced silencing-defective 1), we here define a novel protein complex, PETISCO (PID-3, ERH-2, TOFU-6, and IFE-3 small RNA complex), that is required for 21U RNA biogenesis. PETISCO contains both potential 5' cap and 5' phosphate RNA-binding domains and interacts with capped 21U precursor RNA. We resolved the architecture of PETISCO and revealed a second function for PETISCO in embryonic development. This essential function of PETISCO is mediated not by PID-1 but by the novel protein TOST-1 (twenty-one U pathway antagonist). In contrast, TOST-1 is not essential for 21U RNA biogenesis. Both PID-1 and TOST-1 interact directly with ERH-2 using a conserved sequence motif. Finally, our data suggest a role for TOST-1:PETISCO in SL1 homeostasis in the early embryo. Our work describes a key complex for 21U RNA processing in C. elegans and strengthens the view that 21U RNA biogenesis is built on an snRNA-related pathway.
Collapse
Affiliation(s)
- Ricardo J Cordeiro Rodrigues
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
| | | | - Svenja Hellmann
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Sabrina Dietz
- International PhD Programme on Gene Regulation, Epigenetics, and Genome Stability, 55128 Mainz, Germany
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Bruno F M de Albuquerque
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-003 Porto, Portugal
| | - Christian Renz
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Helle D Ulrich
- Maintenance of Genome Stability Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Peter Sarkies
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology, 55128 Mainz, Germany
| | - René F Ketting
- Biology of Non-coding RNA Group, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
125
|
MOV10L1 Binds RNA G-Quadruplex in a Structure-Specific Manner and Resolves It More Efficiently Than MOV10. iScience 2019; 17:36-48. [PMID: 31252377 PMCID: PMC6600044 DOI: 10.1016/j.isci.2019.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
MOV10L1 and its paralog MOV10 are evolutionally conserved RNA helicases involved in distinct RNA regulatory pathways. The testis-specific MOV10L1 is essential for spermatogenesis and PIWI-interacting RNAs biogenesis, whereas MOV10 is ubiquitous and multifunctional. Although both proteins have been implied to correlate with RNA G-quadruplex (RG4) in vivo, their capabilities in binding and resolving RG4 and their respective biological significance remain unclear. Herein, we comprehensively characterize and compare the activities of these two helicases on various nucleic acid substrates in vitro, with a focus on RG4 structure. We find that both MOV10L1 and MOV10 are able to resolve RG4, with MOV10L1 being more efficient in that. In contrast to MOV10, MOV10L1 prefers to bind to a junction between single-stranded RNA and RG4, which is mediated by both its N and C termini. Furthermore, we show that RG4 unwinding by MOV10L1 facilitates the cleavage of this specific RNA structure by an endonuclease. Both MOV10L1 and MOV10 can resolve RG4 structure in an ATP-dependent manner MOV10L1 unwinds RG4 more efficiently than MOV10 MOV10L1 preferentially binds to an ssRNA-RG4 junction RG4 unwinding by MOV10L1 facilitates its endonucleolytic cleavage
Collapse
|
126
|
Kolliopoulou A, Santos D, Taning CNT, Wynant N, Vanden Broeck J, Smagghe G, Swevers L. PIWI pathway against viruses in insects. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1555. [PMID: 31183996 DOI: 10.1002/wrna.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are an animal-specific class of small non-coding RNAs that are generated via a biogenesis pathway distinct from small interfering RNAs (siRNAs) and microRNAs (miRNAs). There are variations in piRNA biogenesis that depend on several factors, such as the cell type (germline or soma), the organism, and the purpose for which they are being produced, such as transposon-targeting, viral-targeting, or gene-derived piRNAs. Interestingly, the genes involved in the PIWI/piRNA pathway are more rapidly evolving compared with other RNA interference (RNAi) genes. In this review, the role of the piRNA pathway in the antiviral response is reviewed based on recent findings in insect models such as Drosophila, mosquitoes, midges and the silkworm, Bombyx mori. We extensively discuss the special features that characterize host-virus piRNA responses with respect to the proteins and the genes involved, the viral piRNAs' sequence characteristics, the target strand orientation biases as well as the viral piRNA target hotspots across the viral genomes. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
127
|
Ge DT, Wang W, Tipping C, Gainetdinov I, Weng Z, Zamore PD. The RNA-Binding ATPase, Armitage, Couples piRNA Amplification in Nuage to Phased piRNA Production on Mitochondria. Mol Cell 2019; 74:982-995.e6. [PMID: 31076285 DOI: 10.1016/j.molcel.2019.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
PIWI-interacting RNAs (piRNAs) silence transposons in Drosophila ovaries, ensuring female fertility. Two coupled pathways generate germline piRNAs: the ping-pong cycle, in which the PIWI proteins Aubergine and Ago3 increase the abundance of pre-existing piRNAs, and the phased piRNA pathway, which generates strings of tail-to-head piRNAs, one after another. Proteins acting in the ping-pong cycle localize to nuage, whereas phased piRNA production requires Zucchini, an endonuclease on the mitochondrial surface. Here, we report that Armitage (Armi), an RNA-binding ATPase localized to both nuage and mitochondria, links the ping-pong cycle to the phased piRNA pathway. Mutations that block phased piRNA production deplete Armi from nuage. Armi ATPase mutants cannot support phased piRNA production and inappropriately bind mRNA instead of piRNA precursors. We propose that Armi shuttles between nuage and mitochondria, feeding precursor piRNAs generated by Ago3 cleavage into the Zucchini-dependent production of Aubergine- and Piwi-bound piRNAs on the mitochondrial surface.
Collapse
Affiliation(s)
- Daniel Tianfang Ge
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Wei Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cindy Tipping
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
128
|
Gan B, Chen S, Liu H, Min J, Liu K. Structure and function of eTudor domain containing TDRD proteins. Crit Rev Biochem Mol Biol 2019; 54:119-132. [DOI: 10.1080/10409238.2019.1603199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bing Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Sizhuo Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Huan Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, PR China
| |
Collapse
|
129
|
Abstract
In this issue of Molecular Cell, Gainetdinov et al. (2018) show that PIWI proteins direct both piRNA biogenesis and piRNA function in most animals.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
130
|
Chang TH, Mattei E, Gainetdinov I, Colpan C, Weng Z, Zamore PD. Maelstrom Represses Canonical Polymerase II Transcription within Bi-directional piRNA Clusters in Drosophila melanogaster. Mol Cell 2019; 73:291-303.e6. [PMID: 30527661 PMCID: PMC6551610 DOI: 10.1016/j.molcel.2018.10.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
In Drosophila, 23-30 nt long PIWI-interacting RNAs (piRNAs) direct the protein Piwi to silence germline transposon transcription. Most germline piRNAs derive from dual-strand piRNA clusters, heterochromatic transposon graveyards that are transcribed from both genomic strands. These piRNA sources are marked by the heterochromatin protein 1 homolog Rhino (Rhi), which facilitates their promoter-independent transcription, suppresses splicing, and inhibits transcriptional termination. Here, we report that the protein Maelstrom (Mael) represses canonical, promoter-dependent transcription in dual-strand clusters, allowing Rhi to initiate piRNA precursor transcription. Mael also represses promoter-dependent transcription at sites outside clusters. At some loci, Mael repression requires the piRNA pathway, while at others, piRNAs play no role. We propose that by repressing canonical transcription of individual transposon mRNAs, Mael helps Rhi drive non-canonical transcription of piRNA precursors without generating mRNAs encoding transposon proteins.
Collapse
MESH Headings
- Animals
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Binding Sites
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Transposable Elements
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Gene Expression Regulation
- Promoter Regions, Genetic
- Protein Binding
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- Transcription, Genetic
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Timothy H Chang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Eugenio Mattei
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, Worcester, MA, USA.
| |
Collapse
|
131
|
Almeida MV, Andrade-Navarro MA, Ketting RF. Function and Evolution of Nematode RNAi Pathways. Noncoding RNA 2019; 5:E8. [PMID: 30650636 PMCID: PMC6468775 DOI: 10.3390/ncrna5010008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Selfish genetic elements, like transposable elements or viruses, are a threat to genomic stability. A variety of processes, including small RNA-based RNA interference (RNAi)-like pathways, has evolved to counteract these elements. Amongst these, endogenous small interfering RNA and Piwi-interacting RNA (piRNA) pathways were implicated in silencing selfish genetic elements in a variety of organisms. Nematodes have several incredibly specialized, rapidly evolving endogenous RNAi-like pathways serving such purposes. Here, we review recent research regarding the RNAi-like pathways of Caenorhabditis elegans as well as those of other nematodes, to provide an evolutionary perspective. We argue that multiple nematode RNAi-like pathways share piRNA-like properties and together form a broad nematode toolkit that allows for silencing of foreign genetic elements.
Collapse
Affiliation(s)
| | - Miguel A Andrade-Navarro
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
- Faculty of Biology, Johannes Gutenberg Universität, 55122 Mainz, Germany.
| | - René F Ketting
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
132
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|