101
|
Debons N, Matsumoto K, Hirota N, Coradin T, Ikoma T, Aimé C. Magnetic Field Alignment, a Perspective in the Engineering of Collagen-Silica Composite Biomaterials. Biomolecules 2021; 11:749. [PMID: 34069793 PMCID: PMC8157240 DOI: 10.3390/biom11050749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023] Open
Abstract
Major progress in the field of regenerative medicine is expected from the design of artificial scaffolds that mimic both the structural and functional properties of the ECM. The bionanocomposites approach is particularly well fitted to meet this challenge as it can combine ECM-based matrices and colloidal carriers of biological cues that regulate cell behavior. Here we have prepared bionanocomposites under high magnetic field from tilapia fish scale collagen and multifunctional silica nanoparticles (SiNPs). We show that scaffolding cues (collagen), multiple display of signaling peptides (SiNPs) and control over the global structuration (magnetic field) can be combined into a unique bionanocomposite for the engineering of biomaterials with improved cell performances.
Collapse
Affiliation(s)
- Nicolas Debons
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 75005 Paris, France; (N.D.); (T.C.)
| | - Kenta Matsumoto
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550, Japan; (K.M.); (T.I.)
| | - Noriyuki Hirota
- National Institute for Materials Science, Fine Particles Engineering Group, 3-13 Sakura, Tuskuba 305-0003, Japan;
| | - Thibaud Coradin
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 75005 Paris, France; (N.D.); (T.C.)
| | - Toshiyuki Ikoma
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550, Japan; (K.M.); (T.I.)
| | - Carole Aimé
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 75005 Paris, France; (N.D.); (T.C.)
- Ecole Normale Supérieure, CNRS-ENS-SU UMR 8640, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
102
|
Aoyama S, Nakagawa R, Mulé JJ, Mailloux AW. Inducible Tertiary Lymphoid Structures: Promise and Challenges for Translating a New Class of Immunotherapy. Front Immunol 2021; 12:675538. [PMID: 34054863 PMCID: PMC8160316 DOI: 10.3389/fimmu.2021.675538] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopically formed aggregates of organized lymphocytes and antigen-presenting cells that occur in solid tissues as part of a chronic inflammation response. Sharing structural and functional characteristics with conventional secondary lymphoid organs (SLO) including discrete T cell zones, B cell zones, marginal zones with antigen presenting cells, reticular stromal networks, and high endothelial venues (HEV), TLS are prominent centers of antigen presentation and adaptive immune activation within the periphery. TLS share many signaling axes and leukocyte recruitment schemes with SLO regarding their formation and function. In cancer, their presence confers positive prognostic value across a wide spectrum of indications, spurring interest in their artificial induction as either a new form of immunotherapy, or as a means to augment other cell or immunotherapies. Here, we review approaches for inducible (iTLS) that utilize chemokines, inflammatory factors, or cellular analogues vital to TLS formation and that often mirror conventional SLO organogenesis. This review also addresses biomaterials that have been or might be suitable for iTLS, and discusses remaining challenges facing iTLS manufacturing approaches for clinical translation.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Ryosuke Nakagawa
- Department of Surgery, Institute of Gastroenterology, Tokyo Women’s Medical University, Tokyo, Japan
| | - James J. Mulé
- Immunology Program, Moffitt Cancer Center, Tampa, FL, United States
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Adam W. Mailloux
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
103
|
Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel) 2021; 8:63. [PMID: 34064689 PMCID: PMC8151502 DOI: 10.3390/bioengineering8050063] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided.
Collapse
Affiliation(s)
| | | | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.S.M.-S.); (S.R.)
| |
Collapse
|
104
|
Injectable Hydrogels for Chronic Skin Wound Management: A Concise Review. Biomedicines 2021; 9:biomedicines9050527. [PMID: 34068490 PMCID: PMC8150772 DOI: 10.3390/biomedicines9050527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic foot ulcers (DFU) are a predominant impediment among diabetic patients, increasing morbidity and wound care costs. There are various strategies including using biomaterials have been explored for the management of DFU. This paper will review the injectable hydrogel application as the most studied polymer-based hydrogel based on published journals and articles. The main key factors that will be discussed in chronic wounds focusing on diabetic ulcers include the socioeconomic burden of chronic wounds, biomaterials implicated by the government for DFU management, commercial hydrogel product, mechanism of injectable hydrogel, the current study of novel injectable hydrogel and the future perspectives of injectable hydrogel for the management of DFU.
Collapse
|
105
|
Municoy S, Antezana PE, Pérez CJ, Bellino MG, Desimone MF. Tuning the antimicrobial activity of collagen biomaterials through a liposomal approach. J Appl Polym Sci 2021. [DOI: 10.1002/app.50330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofia Municoy
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica Buenos Aires Argentina
| | - Pablo E. Antezana
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica Buenos Aires Argentina
| | - Claudio J. Pérez
- Ciencia e Ingeniería de Polímeros, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) Universidad Nacional de Mar del Plata (UNMdP) Mar del Plata Argentina
| | - Martin G. Bellino
- Instituto de Nanociencia y Nanotecnología Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín Argentina
| | - Martín F. Desimone
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica Buenos Aires Argentina
| |
Collapse
|
106
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
107
|
Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021; 109:1909-1923. [PMID: 33871951 DOI: 10.1002/jbm.b.34835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
As life expectancy and the age of the general population increases so does the need for improved implants. A major contributor to the failure of implants is poor osseointegration, which is typically described as the direct connection between bone and implant. This leads to unnecessary complications and an increased burden on the patient population. Modification of the implant surfaces through novel techniques, such as varying topography and/or applying coatings, has become a popular method to enhance the osseointegration capability of implants. Recent research has shown that particular surface features influence how bone cells interact with a material; however, it is unknown which exact features achieve optimal bone integration. In this review, current methods of modifying surfaces will be highlighted, and the resulting surface characteristics and biological responses are discussed. Review of the current strategies of surface modifications found that many coating types are more advantageous when used in combination; however, finding a surface modification that utilizes the mutual beneficial effects of important surface characteristics while still maintaining commercial viability is where future challenges exist.
Collapse
Affiliation(s)
- Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Randall S Williamson
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
108
|
Luo X, Huo Q, Liu X, Zheng C, Liu Y. Effect of hydrophilic or hydrophobic interactions on the self-assembly behavior and micro-morphology of a collagen mimetic peptide. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00054-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Peptide self-assembles with bionic properties have been widely utilized for bioactive drugs and biomedical materials. Collagen mimetic peptide (CMP) gains more attention due to its unique advantages in biosecurity and function. Unfortunately, the self-assembly mechanism of CMP, particularly the effect of intermolecular forces on its self-assembly behavior and morphology, is still unrecognized. Herein, the hydrophilic glycidol (GCD) and hydrophobic Y-glycidyl ether oxypropyl trimethoxysilane (GLH) were grafted onto the side chains of CMP through the ring-opening reaction (GCD/CMP, GLH/CMP). Subsequently, the effects of hydrophilic and hydrophobic interactions on the self-assembly behavior and morphology of CMP were further studied. The results substantiated that the GCD/CMP and GLH/CMP self-assembly followed “nucleation-growth” mechanism, and the supererogatory hydrophilic and hydrophobic groups prolonged the nucleation and growth time of CMP self-assembly. Noted that the hydrophilic interaction had stronger driving effects than hydrophobic interaction on the self-assembly of CMP. The GCD/CMP and GLH/CMP self-assembles exhibited fibrous 3D network and microsphere morphology, respectively. Furthermore, the GLH/CMP self-assembles had better resistance to degradation. Consequently, the microtopography and degradation properties of CMP self-assembles could be controlled by the hydrophilic and hydrophobic interactions between CMP, which would further provide a way for subsequent purposeful design of biomedical materials.
Graphical abstract
Collapse
|
109
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 347] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
110
|
Nguyen BC, Kha TC, Nguyen KHN, Nguyen HMX. Optimization of enzymatic hydrolysis of collagen from yellowfin tuna skin (
Thunnus albacares
) by response surface methodology and properties of hydrolyzed collagen. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Binh Cong Nguyen
- Faculty of Food Science and Technology Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
- Faculty of Fisheries Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Tuyen Chan Kha
- Faculty of Food Science and Technology Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Kha Hoang Nam Nguyen
- Faculty of Fisheries Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Hong Minh Xuan Nguyen
- Faculty of Food Science and Technology Nong Lam University Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
111
|
Theodoridis K, Manthou ME, Aggelidou E, Kritis A. In Vivo Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:206-245. [PMID: 33470169 DOI: 10.1089/ten.teb.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Articular cartilage can be easily damaged from human's daily activities, leading to inflammation and to osteoarthritis, a situation that can diminish the patients' quality of life. For larger cartilage defects, scaffolds are employed to provide cells the appropriate three-dimensional environment to proliferate and differentiate into healthy cartilage tissue. Natural biomaterials used as scaffolds, attract researchers' interest because of their relative nontoxic nature, their abundance as natural products, their easy combination with other materials, and the relative easiness to establish Marketing Authorization. The last 15 years were chosen to review, document, and elucidate the developments on cell-seeded natural biomaterials for articular cartilage treatment in vivo. The parameters of the experimental designs and their results were all documented and presented. Considerations about the newly formed cartilage and the treatment of cartilage defects were discussed, along with difficulties arising when applying natural materials, research limitations, and tissue engineering approaches for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology, Embryology, and Anthropology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| |
Collapse
|
112
|
Craciunescu O, Seciu AM, Zarnescu O. In vitro and in vivo evaluation of a biomimetic scaffold embedding silver nanoparticles for improved treatment of oral lesions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112015. [PMID: 33812634 DOI: 10.1016/j.msec.2021.112015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND New materials are currently designed for efficient treatment of oral tissue lesions by guided tissue regeneration. The aim of this study was to develop a multifunctional 3D hybrid biomaterial consisting of extracellular matrix components, collagen, chondroitin 4-sulfate and fibronectin, functionalised with silver nanoparticles, intended to improve periodontitis treatment protocols. METHODS Structural observations were performed by autometallography, scanning and transmission electron microscopy. In vitro tests of 3D constructs of embedded gingival fibroblasts within hybrid biomaterial were performed by MTS and Live/Dead assays. Genotoxicity was assessed by comet assay. In vivo experiments using chick embryo chorioallantoic membrane (CAM) assay analysed the degradation and nanoparticles release, but also angiogenesis, new tissue formation in 3D constructs and the regenerative potential of the hybrid material. Biological activity was investigated in experimental models of inflamed THP-1 macrophages and oral specific bacterial cultures. RESULTS Light micrographs showed distribution of silver nanoparticles on collagen fibrils. Scanning electron micrographs revealed a microstructure with interconnected pores, which favoured cell adhesion and infiltration. Cell viability and proliferation were significantly higher within the 3D hybrid biomaterial than in 2D culture conditions, while absence of the hybrid material's genotoxic effect was found. In vivo experiments showed that the hybrid material was colonised by cells and blood vessels, initiating synthesis of new extracellular matrix. Besides the known effect of chondroitin sulfate, incorporated silver nanoparticles increased the anti-inflammatory activity of the hybrid biomaterial. The silver nanoparticles maintained their antibacterial activity even after embedding in the polymeric scaffold and inhibited the growth of F. nucleatum and P. gingivalis. CONCLUSION The novel biomimetic scaffold functionalised with silver nanoparticles presented regenerative, anti-inflammatory and antimicrobial potential for oral cavity lesions repair.
Collapse
Affiliation(s)
- Oana Craciunescu
- Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania
| | - Ana-Maria Seciu
- Department of Cellular and Molecular Biology, National Institute R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; University of Bucharest, Faculty of Biology, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Otilia Zarnescu
- University of Bucharest, Faculty of Biology, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| |
Collapse
|
113
|
Amann E, Amirall A, Franco AR, Poh PSP, Sola Dueñas FJ, Fuentes Estévez G, Leonor IB, Reis RL, van Griensven M, Balmayor ER. A Graded, Porous Composite of Natural Biopolymers and Octacalcium Phosphate Guides Osteochondral Differentiation of Stem Cells. Adv Healthc Mater 2021; 10:e2001692. [PMID: 33448144 PMCID: PMC11468142 DOI: 10.1002/adhm.202001692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Lesions involving the osteochondral unit are difficult to treat. Biomimetic scaffolds are previously shown as promising alternative. Such devices often lack multiple functional layers that mimic bone, cartilage, and the interface. In this study, multilayered scaffolds are developed based on the use of natural extracellular matrix (ECM)-like biopolymers. Particular attention is paid to obtain a complex matrix that mimics the native osteochondral transition. Porous, sponge-like chitosan-collagen-octacalcium phosphate (OCP) scaffolds are obtained. Collagen content increases while the amount of OCP particles decreases toward the cartilage layer. The scaffolds are bioactive as a mineral layer is deposited containing hydroxyapatite at the bony side. The scaffolds stimulate proliferation of human adipose-derived mesenchymal stem cells, but the degree of proliferation depends on the cell seeding density. The scaffolds give rise to a zone-specific gene expression. RUNX2, COL1A1, BGLAP, and SPP1 are upregulated in the bony layer of the scaffold. SOX9 is upregulated concomitant with COL2A1 expression in the cartilage zone. Mineralization in presence of the cells is prominent in the bone area with Ca and P steadily increasing over time. These results are encouraging for the fabrication of biomimetic scaffolds using ECM-like materials and featuring gradients that mimic native tissues and their interface.
Collapse
Affiliation(s)
- Elisabeth Amann
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
| | | | - Albina R. Franco
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Patrina S. P. Poh
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
| | | | | | - Isabel B. Leonor
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of MinhoAveparkBarcoGuimarães4805‐017Portugal
| | - Martijn van Griensven
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Elizabeth R. Balmayor
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
114
|
Wiesli MG, Kaiser JP, Gautier E, Wick P, Maniura-Weber K, Rottmar M, Wahl P. Influence of ceftriaxone on human bone cell viability and in vitro mineralization potential is concentration- and time-dependent. Bone Joint Res 2021; 10:218-225. [PMID: 33739124 PMCID: PMC7998344 DOI: 10.1302/2046-3758.103.bjr-2020-0412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. Methods Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied. Results Ceftriaxone showed a cytotoxic effect on human bone progenitor cells at 24 h and 48 h at concentrations above 15,000 mg/l. With a longer incubation time of ten days, subtoxic effects could be observed at concentrations above 500 mg/l. Gene and protein expression of collagen, as well as mineralization levels of human bone progenitor cells, showed a continuous decrease with increasing ceftriaxone concentrations by days 14 and 28, respectively. Notably, mineralization was negatively affected already at concentrations above 250 mg/l. Conclusion This study demonstrates a concentration-dependent influence of ceftriaxone on the viability and mineralization potential of primary human bone progenitor cells. While local application of ceftriaxone is highly established in orthopaedic and trauma surgery, a therapeutic threshold of 250 mg/l or lower should diminish the risk of reduced osseointegration of prosthetic implants. Cite this article: Bone Joint Res 2021;10(3):218–225.
Collapse
Affiliation(s)
- Matthias Guido Wiesli
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Jean-Pierre Kaiser
- Laboratory for Particles-Biology Interactions, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Emanuel Gautier
- Department of Orthopaedics, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Peter Wahl
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| |
Collapse
|
115
|
Seon GM, Lee MH, Koo MA, Hong SH, Park YJ, Jeong HK, Kwon BJ, Kim D, Park JC. Asiaticoside and polylysine-releasing collagen complex for effectively reducing initial inflammatory response using inflamed induced in vitro model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111837. [PMID: 33579475 DOI: 10.1016/j.msec.2020.111837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/31/2022]
Abstract
Inflammation is a significant clinical problem that can arise from full-thickness wounds or burn injuries or microbial disease. Although topical wound healing substances could promote rapid wound healing by preventing or reducing the consequences of inflammation, there still remains a need for the development of novel substances that can effectively reduce infection and inflammation in initial wound healing phase. In this study, collagen was combined with asiaticoside (AS) and ε-poly-l-lysine (εPLL). This complex was then applied to in vitro models of infection and inflammation. Collagen-AS coatings inhibited the initial inflammatory response to LPS through a sustained release of AS, and a bilayer coating-εPLL showed a notable antimicrobial effect using microbial infection test. In this study, we determined whether asiaticoside and εPLL have anti-inflammatory and antibacterial effects through different mechanisms. Collectively, the collagen-AS/εPLL complex indicated great therapeutic potentials for accelerate wound healing and the complex may be considered as a artificial scaffold substitute product to full-thickness wound healing.
Collapse
Affiliation(s)
- Gyeung Mi Seon
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Device Industry, Yonsei University College of Medicine, Republic of Korea
| | - Ha Kyeong Jeong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Device Industry, Yonsei University College of Medicine, Republic of Korea
| | - Byeong-Ju Kwon
- Department of Medical Device Industry, Yonsei University College of Medicine, Republic of Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea.
| |
Collapse
|
116
|
Garcia CF, Marangon CA, Massimino LC, Klingbeil MFG, Martins VCA, Plepis AMDG. Development of collagen/nanohydroxyapatite scaffolds containing plant extract intended for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111955. [PMID: 33812583 DOI: 10.1016/j.msec.2021.111955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023]
Abstract
In this study scaffolds of nanohydroxyapatite (nHA) and anionic collagen (C) combined with plant extracts intended for bone tissue repair were developed. Grape seed (P), pomegranate peel (R) and jabuticaba peel (J) extracts were used as collagen crosslinker agents in order to improve the materials properties. All crude extracts were effective against Staphylococcus aureus, but only for CR scaffold inhibition zone was noticed. The extracts acted as crosslinking agents, increasing enzymatic resistance and thermal stability of collagen. The extracts showed cytotoxicity at the concentrations tested, while nHA increased cell viability. The scaffolds presented porosity and pore size appropriate for bone growth. CR, CnHAP, CnHAR and CnHAJ increased the cell viability after 24 h. The combination of collagen, nHA and plant extracts offers a promising strategy to design novel biomaterials for bone tissue regeneration.
Collapse
Affiliation(s)
- Claudio Fernandes Garcia
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos 13560-970, Brazil.
| | - Crisiane Aparecida Marangon
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil
| | - Lívia Contini Massimino
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil
| | | | | | - Ana Maria de Guzzi Plepis
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos 13560-970, Brazil; Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil
| |
Collapse
|
117
|
Hybrid Collagen Hydrogel/Chondroitin-4-Sulphate Fortified with Dermal Fibroblast Conditioned Medium for Skin Therapeutic Application. Polymers (Basel) 2021; 13:polym13040508. [PMID: 33567703 PMCID: PMC7914873 DOI: 10.3390/polym13040508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
The current strategy for rapid wound healing treatment involves combining a biomaterial and cell-secreted proteins or biomolecules. This study was aimed at characterizing 3-dimensional (3D) collagen hydrogels fortified with dermal fibroblast-conditioned medium (DFCM) as a readily available acellular skin substitute. Confluent fibroblasts were cultured with serum-free keratinocyte-specific medium (KM1 and KM2) and fibroblast-specific medium (FM) to obtain DFCM. Subsequently, the DFCM was mixed with collagen (Col) hydrogel and chondroitin-4-sulphate (C4S) to fabricate 3D constructs termed Col/C4S/DFCM-KM1, Col/C4S/DFCM-KM2, and Col/C4S/DFCM-FM. The constructs successfully formed soft, semi-solid and translucent hydrogels within 1 h of incubation at 37 °C with strength of <2.5 Newton (N). The Col/C4S/DFCM demonstrated significantly lower turbidity compared to the control groups. The Col/C4S/DFCM also showed a lower percentage of porosity (KM1: 35.15 ± 9.76%; KM2: 6.85 ± 1.60%; FM: 14.14 ± 7.65%) compared to the Col (105.14 ± 11.87%) and Col/C4S (143.44 ± 27.72%) constructs. There were no changes in both swelling and degradation among all constructs. Fourier transform infrared spectrometry showed that all groups consisted of oxygen–hydrogen bonds (O-H) and amide I, II, and III. In conclusion, the Col/C4S/DFCM constructs maintain the characteristics of native collagen and can synergistically deliver essential biomolecules for future use in skin therapeutic applications.
Collapse
|
118
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
119
|
Pei Y, Jordan KE, Xiang N, Parker RN, Mu X, Zhang L, Feng Z, Chen Y, Li C, Guo C, Tang K, Kaplan DL. Liquid-Exfoliated Mesostructured Collagen from the Bovine Achilles Tendon as Building Blocks of Collagen Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3186-3198. [PMID: 33398989 DOI: 10.1021/acsami.0c20330] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesoscaled assemblies are organized in native collagen tissues to achieve remarkable and diverse performance and functions. In this work, a facile, low-cost, and controllable liquid exfoliation method was applied to directly extract these collagen mesostructures from bovine Achilles tendons using a sodium hydroxide (NaOH)/urea aqueous system with freeze-thaw cycles and sonication. A series of collagen fibrils with diameters of 26-230 nm were harvested using this process, and in situ observations under polarizing microscopy (POM) and using molecular dynamics simulations revealed the influence of the NaOH/urea system on the tendon collagen. FTIR and XRD results confirmed that these collagen fibrils preserved typical structural characteristics of type I collagen. These isolated collagen fibrils were then utilized as building blocks to fabricate free-standing collagen membranes, which exhibited good stability in solvents and outstanding mechanical properties and transparency, with potential for utility in optical and electronic sensors. Moreover, in vitro and vivo evaluations demonstrated that these new resulting collagen membranes had good cytocompatibility, biocompatibility, and degradability for potential applications in biomedicine. This work provides a new approach for collagen processing by liquid exfoliation with utility for the formation of robust collagen materials that consist of native collagen mesostructures as building blocks.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kathryn E Jordan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Rachael N Parker
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Luan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhibin Feng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310012, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
120
|
Abstract
Collagen is the most abundant fibrous protein in nature and widely exists in tissues such as connective tissue, tendon, skin, bone, and cartilage. On the one hand, collagen provides mechanical support in tissues, and on the other hand, plays an important role in controlling cell adhesion, cell migration, and tissue repair. A systematic understanding of the structure of collagen can promote the understanding of the biological functions of collagen scaffolds, and also provide theoretical guidance for applications of these natural fibrous protein materials. Therefore, this chapter centers on introducing the structure of collagen. As collagen has a typical hierarchical structure, the introduction to its structure will also be divided into different structural levels, from primary structure to quaternary structure. Due to the diversity of collagen types, this chapter will mainly focus on type I collagen.
Collapse
Affiliation(s)
- Chenxi Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuelong Xiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
121
|
Borrego-González S, Rico-Llanos G, Becerra J, Díaz-Cuenca A, Visser R. Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111679. [DOI: 10.1016/j.msec.2020.111679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
|
122
|
Patil VA, Masters KS. Engineered Collagen Matrices. Bioengineering (Basel) 2020; 7:E163. [PMID: 33339157 PMCID: PMC7765577 DOI: 10.3390/bioengineering7040163] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Collagen is the most abundant protein in mammals, accounting for approximately one-third of the total protein in the human body. Thus, it is a logical choice for the creation of biomimetic environments, and there is a long history of using collagen matrices for various tissue engineering applications. However, from a biomaterial perspective, the use of collagen-only scaffolds is associated with many challenges. Namely, the mechanical properties of collagen matrices can be difficult to tune across a wide range of values, and collagen itself is not highly amenable to direct chemical modification without affecting its architecture or bioactivity. Thus, many approaches have been pursued to design scaffold environments that display critical features of collagen but enable improved tunability of physical and biological characteristics. This paper provides a brief overview of approaches that have been employed to create such engineered collagen matrices. Specifically, these approaches include blending of collagen with other natural or synthetic polymers, chemical modifications of denatured collagen, de novo creation of collagen-mimetic chains, and reductionist methods to incorporate collagen moieties into other materials. These advancements in the creation of tunable, engineered collagen matrices will continue to enable the interrogation of novel and increasingly complex biological questions.
Collapse
Affiliation(s)
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
123
|
Foroushani ZH, Mahdavi SS, Abdekhodaie MJ, Baradaran-Rafii A, Tabatabei MR, Mehrvar M. A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111430. [PMID: 33255025 DOI: 10.1016/j.msec.2020.111430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced successfully up to 7 days which was much longer time compared to fibrin-only gel with 38 h of degradation time. More than 45% of FGG initial mass was preserved on day 7 in the presence of aprotinin. Human corneal fibroblast cells (HCFCs) were seeded on the FGG, fibrin-only gel and GG scaffolds for 5 days. The FGG scaffold showed excellent cell viability over 5 days, and the proliferation of HCFCs also increased significantly in comparison with fibrin-only gel and GG scaffolds. The FGG scaffold illustrates the great potential to use in which appropriate stability and mechanical properties are essential to tissue functionality.
Collapse
Affiliation(s)
- Zahra Hajian Foroushani
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - S Sharareh Mahdavi
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Labbafinejad Medical Center and Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrab Mehrvar
- Department of Chemical Engineering, Ryerson University, Toronto, Canada
| |
Collapse
|
124
|
Girotti A, Escalera-Anzola S, Alonso-Sampedro I, González-Valdivieso J, Arias FJ. Aptamer-Functionalized Natural Protein-Based Polymers as Innovative Biomaterials. Pharmaceutics 2020; 12:E1115. [PMID: 33228250 PMCID: PMC7699523 DOI: 10.3390/pharmaceutics12111115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Biomaterials science is one of the most rapidly evolving fields in biomedicine. However, although novel biomaterials have achieved well-defined goals, such as the production of devices with improved biocompatibility and mechanical properties, their development could be more ambitious. Indeed, the integration of active targeting strategies has been shown to allow spatiotemporal control of cell-material interactions, thus leading to more specific and better-performing devices. This manuscript reviews recent advances that have led to enhanced biomaterials resulting from the use of natural structural macromolecules. In this regard, several structural macromolecules have been adapted or modified using biohybrid approaches for use in both regenerative medicine and therapeutic delivery. The integration of structural and functional features and aptamer targeting, although still incipient, has already shown its ability and wide-reaching potential. In this review, we discuss aptamer-functionalized hybrid protein-based or polymeric biomaterials derived from structural macromolecules, with a focus on bioresponsive/bioactive systems.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| | - Sara Escalera-Anzola
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Irene Alonso-Sampedro
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Juan González-Valdivieso
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Francisco. Javier Arias
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| |
Collapse
|
125
|
Abstract
After decades of research and development, recombinant protein polymers have begun to find applications outside the pharmaceutical and biomedical fields. Several recombinant derivatives of natural structural proteins are now being sold in personal care products, providing novel functionality while also being animal-free, not derived from petroleum, biocompatible, and biodegradable. Consumers are now demanding these material characteristics in their personal care products, and a backlog of well-characterized recombinant protein polymers could become the future of personal care ingredients.
Collapse
Affiliation(s)
- David N Breslauer
- Bolt Threads, 5858 Horton Street, Suite 400, Emeryville, California 94608, United States
| |
Collapse
|
126
|
Karagiorgis S, Tsamis A, Voutouri C, Turcu R, Porav SA, Socoliuc V, Vekas L, Louca M, Stylianopoulos T, Vavourakis V, Krasia-Christoforou T. Engineered magnetoactive collagen hydrogels with tunable and predictable mechanical response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111089. [PMID: 32994019 DOI: 10.1016/j.msec.2020.111089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
In the present study, the synthesis of superparamagnetic collagen-based nanocomposite hydrogels with tunable swelling, mechanical and magnetic properties is reported. The fabrication strategy involved the preparation of pristine collagen type-I hydrogels followed by their immersion in highly stable aqueous solutions containing pre-formed double-layer oleic acid-coated hydrophilic magnetite nanoparticles (OA.OA.Fe3O4) at different concentrations, to interrogate nanoparticles' deposition within the 3D fibrous collagen matrix. Besides the investigation of the morphology, composition and magnetic properties of the produced materials, their mechanical properties were experimentally evaluated under confined compressive loading conditions while an exponential constitutive equation was employed to describe their mechanical response. Moreover, the deposition of the nanoparticles in the collagenous matrix was modeled mathematically with respect to the swelling of the gel and the effective stiffness of the matrix. The model recapitulated nanoparticle diffusion and deposition as well as hydrogel swelling, in terms of nanoparticles' size and concentration of OA.OA.Fe3O4 aqueous solution.
Collapse
Affiliation(s)
- Savvas Karagiorgis
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Alkiviadis Tsamis
- University of Leicester, School of Engineering, University Road, LE1 7RH Leicester, UK
| | - Chrysovalantis Voutouri
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Sebastian Alin Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Vlad Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223, Timisoara, Romania
| | - Ladislau Vekas
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223, Timisoara, Romania; Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| | - Maria Louca
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Triantafyllos Stylianopoulos
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Vasileios Vavourakis
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS; University College London, Department of Medical Physics and Biomedical Engineering, Gower Street, WC1E 6BT London, UK
| | - Theodora Krasia-Christoforou
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS.
| |
Collapse
|
127
|
Zhang Y, Leng H, Du Z, Huang Y, Liu X, Zhao Z, Zhang X, Cai Q, Yang X. Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel. Biomed Mater 2020; 15:065005. [DOI: 10.1088/1748-605x/ab9422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
128
|
Jiang H, Qian Y, Fan C, Ouyang Y. Polymeric Guide Conduits for Peripheral Nerve Tissue Engineering. Front Bioeng Biotechnol 2020; 8:582646. [PMID: 33102465 PMCID: PMC7546820 DOI: 10.3389/fbioe.2020.582646] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are usually caused by trauma, immune diseases, and genetic factors. Peripheral nerve injury (PNI) may lead to limb numbness, muscle atrophy, and loss of neurological function. Although an abundance of theories have been proposed, very few treatments can effectively lead to complete recovery of neurological function. Autologous nerve transplantation is currently the gold standard. Nevertheless, only 50% of all patients were successfully cured using this method. In addition, it causes inevitable damage to the donor site, and available donor sites in humans are very limited. Tissue engineering has become a research hotspot aimed at achieving a better therapeutic effect from peripheral nerve regeneration. Nerve guide conduits (NGCs) show great potential in the treatment of PNI. An increasing number of scaffold materials, including natural and synthetic polymers, have been applied to fabricate NGCs for peripheral nerve regeneration. This review focuses on recent nerve guide conduit (NGC) composite scaffold materials that are applied for nerve tissue engineering. Furthermore, the development tendency of NGCs and future areas of interest are comprehensively discussed.
Collapse
Affiliation(s)
- Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
129
|
Highly elastic, electroconductive, immunomodulatory graphene crosslinked collagen cryogel for spinal cord regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111518. [PMID: 33255073 DOI: 10.1016/j.msec.2020.111518] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022]
Abstract
Novel amino-functionalized graphene crosslinked collagen based nerve conduit having appropriate electric (3.8 ± 0.2 mSiemens/cm) and mechanical cues (having young modulus value of 100-347 kPa) for stem cell transplantation and neural tissue regeneration was fabricated using cryogelation. The developed conduit has shown sufficiently high porosity with interconnectivity between the pores. Raman spectroscopy analysis revealed the increase in orderliness and crosslinking of collagen molecules in the developed cryogel due to the incorporation of amino-functionalized graphene. BM-MSCs grown on graphene collagen cryogels have shown enhanced expression of CD90 and CD73 gene upon electric stimulation (100 mV/mm) contributing towards maintaining their stemness. Furthermore, an increased secretion of ATP from BM-MSCs grown on graphene collagen cryogel was also observed upon electric stimulation that may help in regeneration of neurons and immuno-modulation. Neuronal differentiation of BM-MSCs on graphene collagen cryogel in the presence of electric stimulus showed an enhanced expression of MAP-2 kinase and β-tubulin III. Immunohistochemistry studies have also demonstrated the improved neuronal differentiation of BM-MSCs. BM-MSCs grown on electro-conductive collagen cryogels under inflammatory microenvironment in vitro showed high indoleamine 2,3 dioxygenase activity. Moreover, macrophages cells grown on graphene collagen cryogels have shown high CD206 (M2 polarization marker) and CD163 (M2 polarization marker) and low CD86 (M1 polarization marker) gene expression demonstrating M2 polarization of macrophages, which may aid in tissue repair. In an organotypic culture, the developed cryogel conduit has supported cellular growth and migration from adult rat spinal cord. Thus, this novel electro-conductive graphene collagen cryogels have potential for suppressing the neuro-inflammation and promoting the neuronal cellular migration and proliferation, which is a major barrier during the spinal cord regeneration.
Collapse
|
130
|
Elastin-Collagen Based Hydrogels as Model Scaffolds to Induce Three-Dimensional Adipocyte Culture from Adipose Derived Stem Cells. Bioengineering (Basel) 2020; 7:bioengineering7030110. [PMID: 32932577 PMCID: PMC7552710 DOI: 10.3390/bioengineering7030110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to probe the effect of formulation of scaffolds prepared using collagen and elastin-like polypeptide (ELP) and their resulting physico-chemical and mechanical properties on the adipogenic differentiation of human adipose derived stem cells (hASCs). Six different ELP-collagen scaffolds were prepared by varying the collagen concentration (2 and 6 mg/mL), ELP addition (6 mg/mL), or crosslinking of the scaffolds. FTIR spectroscopy indicated secondary bonding interactions between collagen and ELP, while scanning electron microscopy revealed a porous structure for all scaffolds. Increased collagen concentration, ELP addition, and presence of crosslinking decreased swelling ratio and increased elastic modulus and compressive strength of the scaffolds. The scaffold characteristics influenced cell morphology, wherein the hASCs seeded in the softer, non-crosslinked scaffolds displayed a spread morphology. We determined that stiffer and/or crosslinked elastin-collagen based scaffolds constricted the spreading of hASCs, leading to a spheroid morphology and yielded an enhanced adipogenic differentiation as indicated by Oil Red O staining. Overall, this study underscored the importance of spheroid morphology in adipogenic differentiation, which will allow researchers to create more physiologically-relevant three-dimensional, in vitro culture models.
Collapse
|
131
|
Georgilis E, Abdelghani M, Pille J, Aydinlioglu E, van Hest JC, Lecommandoux S, Garanger E. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. Int J Pharm 2020; 586:119537. [DOI: 10.1016/j.ijpharm.2020.119537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
|
132
|
Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020; 12:E1637. [PMID: 32717878 PMCID: PMC7465920 DOI: 10.3390/polym12081637] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fabrication of nerve conduits for perfectly repairing or replacing damaged peripheral nerve is an urgent demand worldwide, but it is also a formidable clinical challenge. In the last decade, with the rapid development of manufacture technologies, 3D printing and bioprinting have been becoming remarkable stars in the field of neural engineering. In this review, we explore that the biomaterial inks (hydrogels, thermoplastic, and thermoset polyesters and composite) and bioinks have been selected for 3D printing and bioprinting of peripheral nerve conduits. This review covers 3D manufacturing technologies, including extrusion printing, inkjet printing, stereolithography, and bioprinting with inclusion of cells, bioactive molecules, and drugs. Finally, an outlook on the future directions of 3D printing and 4D printing in customizable nerve therapies is presented.
Collapse
Affiliation(s)
- Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|
133
|
Bone Regeneration Using Duck's Feet-Derived Collagen Scaffold as an Alternative Collagen Source. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32601934 DOI: 10.1007/978-981-15-3262-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Collagen is an important component that makes 25-35% of our body proteins. Over the past decades, tissue engineers have been designing collagen-based biocompatible materials and studying their applications in different fields. Collagen obtained from cattle and pigs has been mainly used until now, but collagen derived from fish and other livestock has attracted more attention since the outbreak of mad cow disease, and they are also used as a raw material for cosmetics and foods. Due to the zoonotic infection using collagen derived from pigs and cattle, their application in developing biomaterials is limited; hence, the development of new animal-derived collagen is required. In addition, there is a religion (Islam, Hinduism, and Judaism) limited to export raw materials and products derived from cattle and pig. Hence, high-value collagen that is universally accessible in the world market is required. Therefore, in this review, we have dealt with the use of duck's feet-derived collagen (DC) as an emerging alternative to solve this problem and also presenting few original investigated bone regeneration results performed using DC.
Collapse
|
134
|
Samadian H, Maleki H, Fathollahi A, Salehi M, Gholizadeh S, Derakhshankhah H, Allahyari Z, Jaymand M. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration. Int J Biol Macromol 2020; 154:795-817. [DOI: 10.1016/j.ijbiomac.2020.03.155] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
135
|
Wang Y, Chu Y, Li K, Zhang G, Guo Z, Wu X, Qiu C, Li Y, Wan X, Sui J, Zhang D, Xiang H, Chen B. Exosomes Secreted by Adipose-Derived Mesenchymal Stem Cells Foster Metastasis and Osteosarcoma Proliferation by Increasing COLGALT2 Expression. Front Cell Dev Biol 2020; 8:353. [PMID: 32523950 PMCID: PMC7262406 DOI: 10.3389/fcell.2020.00353] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Homosapien collagen beta (1-O) galactosyl transferase 2 (COLGALT2) is an important enzyme during collagen glycosylation, yet its biological functions in cancer are incompletely understood. Our previous study revealed that in the osteosarcoma microenvironment, adipose-derived mesenchymal stem cells (ADSCs) demonstrate cancer-promoting effects, but the exact mechanisms remain unclear. The aim of this study was to investigate the role of COLGALT2 in the osteosarcoma-fostering effects of ADSCs. Materials and Methods In this study, we compared COLGALT2 expression between primary and metastatic osteosarcoma tissues and found that metastatic tissues expressed significantly higher COLGALT2 levels. Then, we isolated and identified exosomes secreted by ADSCs. Additionally, we assessed the roles of ADSC exosomes and COLGALT2 in the osteosarcoma-promoting effects of ADSCs. Results Our results showed that ADSC exosomes could foster the invasion, migration, and proliferation of osteosarcoma cells, together with increasing COLGALT2 expression. COLGALT2 inhibition in MG63 cells suppressed the ADSC exosome-mediated fostering of osteosarcoma cell invasion, migration and proliferation in vitro. Conversely, COLGALT2 overexpression promoted U-2OS cell invasion, migration and proliferation in vitro. Additionally, COLGALT2 inhibition attenuated metastasis and tumor growth, and ADSC exosomes promoted tumor progression, as demonstrated in a nude mouse model of osteosarcoma. Conclusion According to these data, ADSC exosomes foster osteosarcoma progression by increasing COLGALT2 expression in osteosarcoma cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqing Zhang
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Zhu Guo
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Xiaolin Wu
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Chensheng Qiu
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Wan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Sui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Zhang
- Department of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Xiang
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| | - Bohua Chen
- Department of Spinal Surgery, Qingdao University Affiliated Hospital, Qingdao, China
| |
Collapse
|
136
|
Antioxidant Peptides from Collagen Hydrolysate of Redlip Croaker ( Pseudosciaena polyactis) Scales: Preparation, Characterization, and Cytoprotective Effects on H 2O 2-Damaged HepG2 Cells. Mar Drugs 2020; 18:md18030156. [PMID: 32168851 PMCID: PMC7142964 DOI: 10.3390/md18030156] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1–RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.
Collapse
|
137
|
Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104501] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
138
|
Andonegi M, Peñalba M, de la Caba K, Guerrero P. ZnO nanoparticle-incorporated native collagen films with electro-conductive properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110394. [DOI: 10.1016/j.msec.2019.110394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022]
|
139
|
Menezes MDLLR, Ribeiro HL, Abreu FDOMDS, Feitosa JPDA, Filho MDSMDS. Optimization of the collagen extraction from Nile tilapia skin (Oreochromis niloticus) and its hydrogel with hyaluronic acid. Colloids Surf B Biointerfaces 2020; 189:110852. [PMID: 32062110 DOI: 10.1016/j.colsurfb.2020.110852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/04/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022]
Abstract
Nile tilapia skin, an abundant waste from fish processing, can be used for collagen extraction, which has a high aggregated value for biomedical applications. Collagen extraction was conducted under different reaction conditions (time, temperature, and concentration of acetic acid) in order to optimize the yield without compromising the integrity of the collagen. Temperature and time were responsible for increased yield. The extraction at 4 and 20 °C produced the acid-solubilized collagen (ASC) with the intact triple helix and was analysed by Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism (CD). The optimized ASC (which used 0.35 mol/L of acetic acid at 20 °C) was consumed to obtain for the first-time fish-based hydrogels with hyaluronic acid (HA) crosslinked with 1-ethyl-3-(3-dimethylaminopropryl carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The hydrogel was characterized by FT-IR, rheology, swelling, and scanning electron microscopy (SEM), confirming that cross-linking was accomplished. It possesses a robust organized network, swells 255 % in PBS and bears interconnected pores with a diameter in the range of 10-100 μm. Until now, col-HA hydrogels crosslinked with EDC/NHS have not been reported in literature with collagen from Nile Tilapia skin. Fish collagen can be a better option than those from land-based animals (cow and pig).
Collapse
Affiliation(s)
- Maria do L Linhares Rodrigues Menezes
- Departamento De Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Fortaleza, CE, Brazil; Departamento De Engenharia De Alimentos, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Hálisson Lucas Ribeiro
- Departamento De Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Fortaleza, CE, Brazil; Departamento De Engenharia De Alimentos, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | | | | | | |
Collapse
|
140
|
Feng X, Xu P, Shen T, Zhang Y, Ye J, Gao C. Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo. J Mater Chem B 2020; 8:391-405. [DOI: 10.1039/c9tb01558b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aligned scaffolds facilitate migration of endogenous reparative cells, leading to better regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Peifang Xu
- Department of Ophthalmology
- The Second Affiliated Hospital of Zhejiang University
- College of Medicine
- Hangzhou
- P. R. China
| | - Tao Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yihan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Juan Ye
- Department of Ophthalmology
- The Second Affiliated Hospital of Zhejiang University
- College of Medicine
- Hangzhou
- P. R. China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
141
|
Xu X, Chen X, Li J. Natural protein bioinspired materials for regeneration of hard tissues. J Mater Chem B 2020; 8:2199-2215. [DOI: 10.1039/d0tb00139b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes the protein bioinspired materials for the repair of hard tissues such as enamel, dentin and bone.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610003
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
142
|
Sun M, Wei X, Wang H, Xu C, Wei B, Zhang J, He L, Xu Y, Li S. Structure Restoration of Thermally Denatured Collagen by Ultrahigh Pressure Treatment. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02389-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
143
|
Liu X, Zheng M, Wang X, Luo X, Hou M, Yue O. Biofabrication and Characterization of Collagens with Different Hierarchical Architectures. ACS Biomater Sci Eng 2019; 6:739-748. [DOI: 10.1021/acsbiomaterials.9b01252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
144
|
Zheng C, Liu X, Luo X, Zheng M, Wang X, Dan W, Jiang H. Development of a novel bio-inspired "cotton-like" collagen aggregate/chitin based biomaterial with a biomimetic 3D microstructure for efficient hemostasis and tissue repair. J Mater Chem B 2019; 7:7338-7350. [PMID: 31693046 DOI: 10.1039/c9tb02028d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hemostatic materials based on collagen and chitin are commonly assessed with regard to their topical absorbability and bioactivity. However, their clinical application faces challenges such as relatively long hemostatic and wound healing times, single function, as well as wound bleeding in patients with blood diseases. Herein, a novel bio-inspired "cotton-like" collagen aggregate/chitin based biomaterial for rapid hemostatic and tissue repair (V-3D-Ag-col) was fabricated by a specific gradient-removal solvent approach. Significantly, for the first time, an advanced collagen aggregate (Ag-col) composed of typical D-periodic cross-striated collagen fibrils and thick collagen fiber bundles was used instead of traditional collagen molecules (Col) to construct a hemostatic material. The target material showed a biomimetic 3D microstructure and "cotton-like" appearance, as expected, which were conducive to platelet adhesion and aggregation. The fabricated V-3D-Ag-col exhibited superior thermo-stability, hemostatic activity and biodegradability. More importantly, V-3D-Ag-col could significantly promote cell growth and proliferation. Further, V-3D-Ag-col could accelerate the wound healing process better than the same material based on conventional collagen (V-3D-Col). In consequence, V-3D-Ag-col has the potential to become a new generation of collagen-absorbable functional hemostatic materials. Furthermore, Ag-col can replace the currently available conventional collagen materials as raw materials for the new generation of collagen-based biomedical materials.
Collapse
Affiliation(s)
- Chi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China. and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China.
| | - Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China. and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China.
| | - Xiaomin Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China. and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China.
| | - Manhui Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China. and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China.
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China. and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China.
| | - Weihua Dan
- Research Center of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China.
| | - Huie Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China. and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China.
| |
Collapse
|
145
|
Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:115. [PMID: 31599365 PMCID: PMC6787111 DOI: 10.1007/s10856-019-6318-7] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/27/2019] [Indexed: 05/18/2023]
Abstract
Hydrogels from different materials can be used in biomedical field as an innovative approach in regenerative medicine. Depending on the origin source, hydrogels can be synthetized through chemical and physical methods. Hydrogel can be characterized through several physical parameters, such as size, elastic modulus, swelling and degradation rate. Lately, research is focused on hydrogels derived from biologic materials. These hydrogels can be derived from protein polymers, such as collage, elastin, and polysaccharide polymers like glycosaminoglycans or alginate among others. Introduction of decellularized tissues into hydrogels synthesis displays several advantages compared to natural or synthetic based hydrogels. Preservation of natural molecules such as growth factors, glycans, bioactive cryptic peptides and natural proteins can promote cell growth, function, differentiation, angiogenesis, anti-angiogenesis, antimicrobial effects, and chemotactic effects. Versatility of hydrogels make possible multiple applications and combinations with several molecules on order to obtain the adequate characteristic for each scope. In this context, a lot of molecules such as cross link agents, drugs, grow factors or cells can be used. This review focuses on the recent progress of hydrogels synthesis and applications in order to classify the most recent and relevant matters in biomedical field.
Collapse
Affiliation(s)
- Marta Calvo Catoira
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara, 28100, Italy
| | - Luca Fusaro
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy.
- Tissuegraft srl, 28100, Novara, Italy.
- Center for Translational Research on Autoimmune & Allergic Diseases - CAAD, Novara, 28100, Italy.
| |
Collapse
|
146
|
Israeli B, Vaserman L, Amiram M. Multi‐Site Incorporation of Nonstandard Amino Acids into Protein‐Based Biomaterials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bar Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Livne Vaserman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|
147
|
Tihan GT, Rău I, Zgârian RG, Ungureanu C, Barbaresso RC, Kaya MGA, Dinu-Pîrvu C, Ghica MV. Oxytetracycline versus Doxycycline Collagen Sponges Designed as Potential Carrier Supports in Biomedical Applications. Pharmaceutics 2019; 11:pharmaceutics11080363. [PMID: 31344927 PMCID: PMC6722625 DOI: 10.3390/pharmaceutics11080363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 11/23/2022] Open
Abstract
Many research studies are directed toward developing safe and efficient collagen-based biomaterials as carriers for drug delivery systems. This article presents a comparative study of the properties of new collagen sponges prepared and characterized by different methods intended for biomedical applications. The structural integrity is one of the main properties for a biomaterial in order for it to be easily removed from the treated area. Thus, the effect of combining a natural polymer such as collagen with an antimicrobial drug such as oxytetracycline or doxycycline and glutaraldehyde as the chemical cross-linking agent influences the cross-linking degree of the material, which is in direct relation to its resistance to collagenase digestion, the drug kinetic release profile, and in vitro biocompatibility. The enzymatic degradation results identified oxytetracycline as the best inhibitor of collagenase when the collagen sponge was cross-linked with 0.5% glutaraldehyde. The drug release kinetics revealed an extended release of the antibiotic for oxytetracycline-loaded collagen sponges compared with doxycycline-loaded collagen sponges. Considering the behavior of differently prepared sponges, the collagen sponge with oxytetracycline and 0.5% glutaraldehyde could represent a viable polymeric support for the prevention/treatment of infections at the application site, favoring tissue regeneration.
Collapse
Affiliation(s)
- Graţiela Teodora Tihan
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1, 011061 Bucharest, Romania
| | - Ileana Rău
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1, 011061 Bucharest, Romania
| | - Roxana Gabriela Zgârian
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1, 011061 Bucharest, Romania.
| | - Camelia Ungureanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1, 011061 Bucharest, Romania.
| | - Răzvan Constantin Barbaresso
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1, 011061 Bucharest, Romania
| | - Mădălina Georgiana Albu Kaya
- Department of Collagen, Division Leather and Footwear Research Institute, National Research and Development Institute for Textile and Leather, 031215 Bucharest, Romania
| | - Cristina Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 20956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 20956 Bucharest, Romania
| |
Collapse
|
148
|
Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol 2019; 7:166. [PMID: 31355194 PMCID: PMC6639767 DOI: 10.3389/fbioe.2019.00166] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) account for the 31% of total death per year, making them the first cause of death in the world. Atherosclerosis is at the root of the most life-threatening CVDs. Vascular bypass/replacement surgery is the primary therapy for patients with atherosclerosis. The use of polymeric grafts for this application is still burdened by high-rate failure, mostly caused by thrombosis and neointima hyperplasia at the implantation site. As a solution for these problems, the fast re-establishment of a functional endothelial cell (EC) layer has been proposed, representing a strategy of crucial importance to reduce these adverse outcomes. Implant modifications using molecules and growth factors with the aim of speeding up the re-endothelialization process has been proposed over the last years. Collagen, by virtue of several favorable properties, has been widely studied for its application in vascular graft enrichment, mainly as a coating for vascular graft luminal surface and as a drug delivery system for the release of pro-endothelialization factors. Collagen coatings provide receptor-ligand binding sites for ECs on the graft surface and, at the same time, act as biological sealants, effectively reducing graft porosity. The development of collagen-based drug delivery systems, in which small-molecule and protein-based drugs are immobilized within a collagen scaffold in order to control their release for biomedical applications, has been widely explored. These systems help in protecting the biological activity of the loaded molecules while slowing their diffusion from collagen scaffolds, providing optimal effects on the targeted vascular cells. Moreover, collagen-based vascular tissue engineering substitutes, despite not showing yet optimal mechanical properties for their use in the therapy, have shown a high potential as physiologically relevant models for the study of cardiovascular therapeutic drugs and diseases. In this review, the current state of the art about the use of collagen-based strategies, mainly as a coating material for the functionalization of vascular graft luminal surface, as a drug delivery system for the release of pro-endothelialization factors, and as physiologically relevant in vitro vascular models, and the future trend in this field of research will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Francesca Boccafoschi
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|