101
|
Matthews TE, Berry BN, Smelko J, Moretto J, Moore B, Wiltberger K. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production. Biotechnol Bioeng 2016; 113:2416-24. [DOI: 10.1002/bit.26018] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Thomas E. Matthews
- Cell Culture Development; Biogen, Inc.; 5000 Davis Drive Research Triangle Park 27709 North Carolina
| | | | - John Smelko
- Cell Culture Development; Biogen, Inc.; 5000 Davis Drive Research Triangle Park 27709 North Carolina
| | - Justin Moretto
- Cell Culture Development; Biogen, Inc.; 5000 Davis Drive Research Triangle Park 27709 North Carolina
| | - Brandon Moore
- Cell Culture Development; Biogen, Inc.; 5000 Davis Drive Research Triangle Park 27709 North Carolina
| | - Kelly Wiltberger
- Manufacturing, Biogen Inc.; Research Triangle Park North Carolina
| |
Collapse
|
102
|
Hyoung Park J, Sin Lim M, Rang Woo J, Won Kim J, Min Lee G. The molecular weight and concentration of dextran sulfate affect cell growth and antibody production in CHO cell cultures. Biotechnol Prog 2016; 32:1113-1122. [DOI: 10.1002/btpr.2287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Jin Hyoung Park
- Department of Biological Sciences; KAIST; 373-1 Kusong-Dong Yusong-Gu, Daejon 305-701 Republic of Korea
| | - Myung Sin Lim
- New Drug Development Center; Cheongju Republic of Korea
| | - Ju Rang Woo
- New Drug Development Center; Cheongju Republic of Korea
| | - Jong Won Kim
- New Drug Development Center; Cheongju Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences; KAIST; 373-1 Kusong-Dong Yusong-Gu, Daejon 305-701 Republic of Korea
| |
Collapse
|
103
|
Zalai D, Hevér H, Lovász K, Molnár D, Wechselberger P, Hofer A, Párta L, Putics Á, Herwig C. A control strategy to investigate the relationship between specific productivity and high-mannose glycoforms in CHO cells. Appl Microbiol Biotechnol 2016; 100:7011-24. [PMID: 26910040 PMCID: PMC4947490 DOI: 10.1007/s00253-016-7380-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/26/2022]
Abstract
The integration of physiological knowledge into process control strategies is a cornerstone for the improvement of biopharmaceutical cell culture technologies. The present contribution investigates the applicability of specific productivity as a physiological control parameter in a cell culture process producing a monoclonal antibody (mAb) in CHO cells. In order to characterize cell physiology, the on-line oxygen uptake rate (OUR) was monitored and the time-resolved specific productivity was calculated as physiological parameters. This characterization enabled to identify the tight link between the deprivation of tyrosine and the decrease in cell respiration and in specific productivity. Subsequently, this link was used to control specific productivity by applying different feeding profiles. The maintenance of specific productivity at various levels enabled to identify a correlation between the rate of product formation and the relative abundance of high-mannose glycoforms. An increase in high mannose content was assumed to be the result of high specific productivity. Furthermore, the high mannose content as a function of cultivation pH and specific productivity was investigated in a design of experiment approach. This study demonstrated how physiological parameters could be used to understand interactions between process parameters, physiological parameters, and product quality attributes.
Collapse
Affiliation(s)
- Dénes Zalai
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary.,Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - Helga Hevér
- Spectroscopic Research Department, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Krisztina Lovász
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Dóra Molnár
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Patrick Wechselberger
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.,CD Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria
| | - Alexandra Hofer
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria
| | - László Párta
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Ákos Putics
- Department of Biotechnology, Gedeon Richter Plc., 19-21, Gyömrői út, Budapest, 1103, Hungary
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060, Vienna, Austria. .,CD Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna, Austria.
| |
Collapse
|
104
|
Toussaint C, Henry O, Durocher Y. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. J Biotechnol 2015; 217:122-31. [PMID: 26603123 DOI: 10.1016/j.jbiotec.2015.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/03/2015] [Accepted: 11/13/2015] [Indexed: 01/19/2023]
Abstract
Recombinant yeast pyruvate carboxylase (PYC2) expression was previously shown to be an effective metabolic engineering strategy for reducing lactate formation in a number of relevant mammalian cell lines, but, in the case of CHO cells, did not consistently lead to significant improvement in terms of cell growth, product titer and energy metabolism efficiency. In the present study, we report on the establishment of a PYC2-expressing CHO cell line producing a monoclonal antibody and displaying a significantly altered lactate metabolism compared to its parental line. All clones exhibiting strong PYC2 expression were shown to experience a significant and systematic metabolic shift toward lactate consumption, as well as a prolonged exponential growth phase leading to an increased maximum cell concentration and volumetric product titer. Of salient interest, PYC2-expressing CHO cells were shown to maintain a highly efficient metabolism in fed-batch cultures, even when exposed to high glucose levels, thereby alleviating the need of controlling nutrient at low levels and the potential negative impact of such strategy on product glycosylation. In bioreactor operated in fed-batch mode, the higher maximum cell density achieved with the PYC2 clone led to a net gain (20%) in final volumetric productivity.
Collapse
Affiliation(s)
- Cécile Toussaint
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec H4P 2R2, Canada.
| | - Olivier Henry
- Département de Génie Chimique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec H3C 3A7, Canada.
| | - Yves Durocher
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Life Sciences, NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec H4P 2R2, Canada.
| |
Collapse
|
105
|
Zalai D, Koczka K, Párta L, Wechselberger P, Klein T, Herwig C. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process. Biotechnol Prog 2015; 31:1657-68. [DOI: 10.1002/btpr.2179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/25/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Dénes Zalai
- Dept. of Biotechnology; Gedeon Richter Plc.; 19-21, Gyömrői Út Budapest H-1103 Hungary
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering; Vienna Austria
| | - Krisztina Koczka
- Dept. of Biotechnology; Gedeon Richter Plc.; 19-21, Gyömrői Út Budapest H-1103 Hungary
| | - László Párta
- Dept. of Biotechnology; Gedeon Richter Plc.; 19-21, Gyömrői Út Budapest H-1103 Hungary
| | - Patrick Wechselberger
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering; Vienna Austria
- CD Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses; Vienna Austria
| | - Tobias Klein
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering; Vienna Austria
- CD Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses; Vienna Austria
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering; Vienna Austria
- CD Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses; Vienna Austria
| |
Collapse
|
106
|
Zhang A, Tsang VL, Moore B, Shen V, Huang YM, Kshirsagar R, Ryll T. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Biotechnol Bioeng 2015; 112:2495-504. [DOI: 10.1002/bit.25684] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/12/2015] [Accepted: 06/18/2015] [Indexed: 12/14/2022]
Affiliation(s)
- An Zhang
- Cell Culture Development; Biogen Idec, Inc.; Research Triangle Park 5000 Davis Drive North Carolina 27709
| | - Valerie Liu Tsang
- Cell Culture Development; Biogen Idec, Inc.; Research Triangle Park 5000 Davis Drive North Carolina 27709
| | - Brandon Moore
- Cell Culture Development; Biogen Idec, Inc.; Research Triangle Park 5000 Davis Drive North Carolina 27709
| | - Vivian Shen
- Cell Culture Development; Biogen Idec, Inc.; Research Triangle Park 5000 Davis Drive North Carolina 27709
| | - Yao-Ming Huang
- Cell Culture Development; Biogen Idec, Inc.; Research Triangle Park 5000 Davis Drive North Carolina 27709
| | - Rashmi Kshirsagar
- Cell Culture Development; Biogen Idec, Inc.; Cambridge Massachusetts
| | - Thomas Ryll
- Cell Culture Development; Biogen Idec, Inc.; Cambridge Massachusetts
| |
Collapse
|
107
|
Sellick CA, Croxford AS, Maqsood AR, Stephens GM, Westerhoff HV, Goodacre R, Dickson AJ. Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness. Biotechnol J 2015. [DOI: 10.1002/biot.201400664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
108
|
Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures. Appl Microbiol Biotechnol 2015; 99:9951-60. [DOI: 10.1007/s00253-015-6855-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022]
|
109
|
Nargund S, Qiu J, Goudar CT. Elucidating the role of copper in CHO cell energy metabolism using13C metabolic flux analysis. Biotechnol Prog 2015; 31:1179-86. [DOI: 10.1002/btpr.2131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Shilpa Nargund
- Drug Substance Technologies, Process Development; Amgen Inc., One Amgen Center Drive; Thousand Oaks CA 91320
| | - Jinshu Qiu
- Attribute Sciences, Process Development, Amgen Inc., One Amgen Center Drive; Thousand Oaks CA 91320
| | - Chetan T. Goudar
- Drug Substance Technologies, Process Development; Amgen Inc., One Amgen Center Drive; Thousand Oaks CA 91320
| |
Collapse
|
110
|
Villiger-Oberbek A, Yang Y, Zhou W, Yang J. Development and application of a high-throughput platform for perfusion-based cell culture processes. J Biotechnol 2015. [PMID: 26197419 DOI: 10.1016/j.jbiotec.2015.06.428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A high-throughput (HT) cell culture model has been established for the support of perfusion-based cell culture processes operating at high cell densities. To mimic perfusion, the developed platform takes advantage of shake tubes and operates them in a batch-refeed mode with daily medium exchange to supply the cultures with nutrients and remove toxic byproducts. By adjusting the shaking parameters, such as the speed and setting angle, we have adapted the shake tubes to a semi-continuous production of a recombinant enzyme in a perfusion-like mode. We have demonstrated that the developed model can be used to select clones and cell culture media ahead of process optimization studies in bioreactors and confirmed the applicability of shake tubes to a perfusion-like cell culture reaching ∼50E6 viable cells/mL. Furthermore, through regular cell mass removal and periodic medium exchange we have successfully maintained satellite cultures of bench-top perfusion bioreactors, achieving a sustainable cell culture performance at ≥30E6 viable cells/mL and viabilities >80% for over 58 days. The established HT model is a unique and powerful tool that can be used for the development and screening of media formulations, or for testing selected process parameters during both process optimization and manufacturing support campaigns.
Collapse
Affiliation(s)
- Agata Villiger-Oberbek
- Genzyme, a Sanofi company, Commercial Cell Culture Development, 45 New York Avenue, Framingham, MA 01701, USA.
| | - Yang Yang
- Genzyme, a Sanofi company, Commercial Cell Culture Development, 45 New York Avenue, Framingham, MA 01701, USA
| | - Weichang Zhou
- Genzyme, a Sanofi company, Commercial Cell Culture Development, 45 New York Avenue, Framingham, MA 01701, USA
| | - Jianguo Yang
- Genzyme, a Sanofi company, Commercial Cell Culture Development, 45 New York Avenue, Framingham, MA 01701, USA
| |
Collapse
|
111
|
Nossol C, Barta-Böszörményi A, Kahlert S, Zuschratter W, Faber-Zuschratter H, Reinhardt N, Ponsuksili S, Wimmers K, Diesing AK, Rothkötter HJ. Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism. PLoS One 2015; 10:e0132323. [PMID: 26147118 PMCID: PMC4493080 DOI: 10.1371/journal.pone.0132323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 11/23/2022] Open
Abstract
The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2) - spontaneously immortalised cell lines from the porcine intestine - are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like “lysosome”, “pathways in cancer”, “regulation of actin cytoskeleton” and “oxidative phosphorylation” in IPEC-J2 in comparison to IPEC-1. On the other hand, “spliceosome”, “ribosome”, “RNA-degradation” and “tight junction” are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway “ribosome” was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
- * E-mail:
| | | | - Stefan Kahlert
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | | | | | - Nicole Reinhardt
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Siriluk Ponsuksili
- Leibniz Institute of Farm Animal Biology (FBN) Dummerstorf, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute of Farm Animal Biology (FBN) Dummerstorf, 18196, Dummerstorf, Germany
| | - Anne-Kathrin Diesing
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | | |
Collapse
|
112
|
Mulukutla BC, Yongky A, Grimm S, Daoutidis P, Hu WS. Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 2015; 10:e0121561. [PMID: 25806512 PMCID: PMC4373774 DOI: 10.1371/journal.pone.0121561] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
Cultured mammalian cells exhibit elevated glycolysis flux and high lactate production. In the industrial bioprocesses for biotherapeutic protein production, glucose is supplemented to the culture medium to sustain continued cell growth resulting in the accumulation of lactate to high levels. In such fed-batch cultures, sometimes a metabolic shift from a state of high glycolysis flux and high lactate production to a state of low glycolysis flux and low lactate production or even lactate consumption is observed. While in other cases with very similar culture conditions, the same cell line and medium, cells continue to produce lactate. A metabolic shift to lactate consumption has been correlated to the productivity of the process. Cultures that exhibited the metabolic shift to lactate consumption had higher titers than those which didn't. However, the cues that trigger the metabolic shift to lactate consumption state (or low lactate production state) are yet to be identified. Metabolic control of cells is tightly linked to growth control through signaling pathways such as the AKT pathway. We have previously shown that the glycolysis of proliferating cells can exhibit bistability with well-segregated high flux and low flux states. Low lactate production (or lactate consumption) is possible only at a low glycolysis flux state. In this study, we use mathematical modeling to demonstrate that lactate inhibition together with AKT regulation on glycolysis enzymes can profoundly influence the bistable behavior, resulting in a complex steady-state topology. The transition from the high flux state to the low flux state can only occur in certain regions of the steady state topology, and therefore the metabolic fate of the cells depends on their metabolic trajectory encountering the region that allows such a metabolic state switch. Insights from such switch behavior present us with new means to control the metabolism of mammalian cells in fed-batch cultures.
Collapse
Affiliation(s)
- Bhanu Chandra Mulukutla
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew Yongky
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Simon Grimm
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
113
|
Juraschek SP, Bower JK, Selvin E, Subash Shantha GP, Hoogeveen RC, Ballantyne CM, Young JH. Plasma lactate and incident hypertension in the atherosclerosis risk in communities study. Am J Hypertens 2015; 28:216-24. [PMID: 24994607 PMCID: PMC4357800 DOI: 10.1093/ajh/hpu117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/17/2014] [Accepted: 05/08/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recent evidence suggests that insufficient oxidative capacity or mitochondrial dysfunction may play a causal role in the development of high blood pressure. However, this hypothesis has not been tested in the general population. We hypothesized that lactate, a measure of oxidative capacity, would be positively associated with incident hypertension even after accounting for traditional hypertension risk factors. METHODS Plasma lactate was measured in 5,554 participants from the Atherosclerosis Risk in Communities (ARIC) Study with no subclinical or diagnosed hypertension at baseline (1996-1998). Incident hypertension was defined by self-report or hypertension medication use. Analyses were performed with Cox proportional hazards models. RESULTS The mean age was 61.9 years, and the mean lactate was 0.8 mmol/L. During a median follow-up period of 11.9 years (range = 26.9 days to 13.4 years), there were 3,849 new cases of hypertension. The fourth quartile of lactate (compared with the first quartile) was associated with an elevated risk of hypertension (hazard ratio (HR) = 1.18; 95% confidence interval (CI) = 1.07-1.31) even after adjustment for traditional risk factors, including baseline systolic and diastolic blood pressure. This association was stronger when the population was restricted to participants with normal blood pressure (<120mm Hg/<80mm Hg; HR = 1.42; 95% CI = 1.23-1.63). In strata of sex, the association was strong in women vs. null in men (P interaction = 0.01). CONCLUSIONS Plasma lactate is associated with incident hypertension in women, especially with a normal blood pressure (<120mm Hg/<80mm Hg). Future studies should elucidate the mechanisms underlying these observations.
Collapse
Affiliation(s)
- Stephen P Juraschek
- School of Medicine, John Hopkins University, Baltimore, Maryland; Johns Hopkins Bloomberg School of Public Health and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Julie K Bower
- Johns Hopkins Bloomberg School of Public Health and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elizabeth Selvin
- School of Medicine, John Hopkins University, Baltimore, Maryland; Johns Hopkins Bloomberg School of Public Health and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ghanshyam Palamaner Subash Shantha
- Johns Hopkins Bloomberg School of Public Health and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ron C Hoogeveen
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas; Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, Houston, Texas
| | - Christie M Ballantyne
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas; Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart Center, Houston, Texas
| | - J Hunter Young
- School of Medicine, John Hopkins University, Baltimore, Maryland; Johns Hopkins Bloomberg School of Public Health and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland;
| |
Collapse
|
114
|
Bayrak ES, Wang T, Cinar A, Undey C. Computational Modeling of Fed-Batch Cell Culture Bioreactor: Hybrid Agent-Based Approach. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ifacol.2015.09.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
115
|
|
116
|
Yuk IH, Russell S, Tang Y, Hsu WT, Mauger JB, Aulakh RPS, Luo J, Gawlitzek M, Joly JC. Effects of copper on CHO cells: Cellular requirements and product quality considerations. Biotechnol Prog 2014; 31:226-38. [DOI: 10.1002/btpr.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/11/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Inn H. Yuk
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Stephen Russell
- Analytical Operations; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Yun Tang
- Analytical Operations; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Wei-Ting Hsu
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Jacob B. Mauger
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Rigzen P. S. Aulakh
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - Jun Luo
- Vacaville Manufacturing Sciences and Technology; Genentech, 1000 New Horizons Way Vacaville CA 95688
| | - Martin Gawlitzek
- Late Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| | - John C. Joly
- Early Stage Cell Culture, Bioprocess Development; Genentech, 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
117
|
Kyriakopoulos S, Kontoravdi C. A framework for the systematic design of fed-batch strategies in mammalian cell culture. Biotechnol Bioeng 2014; 111:2466-76. [PMID: 24975682 DOI: 10.1002/bit.25319] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/20/2023]
Abstract
A methodology to calculate the required amount of amino acids (a.a.) and glucose in feeds for animal cell culture from monitoring their levels in batch experiments is presented herein. Experiments with the designed feeds on an antibody-producing Chinese hamster ovary cell line resulted in a 3-fold increase in titer compared to batch culture. Adding 40% more nutrients to the same feed further increases the yield to 3.5 higher than in batch culture. Our results show that above a certain threshold there is no linear correlation between nutrient addition and the integral of viable cell concentration. In addition, although high ammonia levels hinder cell growth, they do not appear to affect specific antibody productivity, while we hypothesize that high extracellular lactate concentration is the cause for the metabolic shift towards lactate consumption for the cell line used. Overall, the performance of the designed feeds is comparable to that of a commercial feed that was tested in parallel. Expanding this approach to more nutrients, as well as changing the ratio of certain amino acids as informed by flux balance analysis, could achieve even higher yields.
Collapse
Affiliation(s)
- Sarantos Kyriakopoulos
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | | |
Collapse
|
118
|
Stabilization of cellular mitochondrial enzyme complex and sialyltransferase activity through supplementation of 30Kc19 protein. Appl Microbiol Biotechnol 2014; 99:2155-63. [PMID: 25193421 DOI: 10.1007/s00253-014-6045-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022]
Abstract
In previous studies, 30Kc19, a lipoprotein in silkworm hemolymph, enhanced productivity and glycosylation by expression of a 30Kc19 gene or supplementation with a recombinant 30Kc19 protein. Additionally, 30Kc19 exhibited enzyme-stabilizing and cell-penetrating abilities in vitro. In this study, we hypothesized that supplemented 30Kc19 penetrated into the cell and enhanced the stability of the cellular enzyme. We investigated this using in vitro and cellular assessments. The activity of sialyltransferase (ST) and isolated mitochondrial complex I/III was enhanced with 30Kc19 in dose-dependent manner while initial reaction rate was unchanged, suggesting that 30Kc19 enhanced enzyme stability rather than specific activity. For intracellular enzyme activity assessment, ST activity inside erythropoietin (EPO)-producing Chinese hamster ovary (CHO) cells increased more than 25 % and mitochondrial complex II activity in HeLa cells increased more than 50 % with 30Kc19. The increase in intracellular ST activity resulted in an increase in sialic acid content of glycoproteins produced in CHO cells supplemented with 30Kc19. Similarly, enhanced mitochondrial complex activity increased mitochondrial membrane potential and ATP production in HeLa cells with 30Kc19 by over 50 %. Because 30Kc19 stabilized intracellular enzymes for glycosylation and enhanced protein productivity with supplementation in the culture medium, we expect that 30Kc19 can be a valuable tool for effective industrial recombinant protein production.
Collapse
|
119
|
Templeton N, Lewis A, Dorai H, Qian EA, Campbell MP, Smith KD, Lang SE, Betenbaugh MJ, Young JD. The impact of anti-apoptotic gene Bcl-2∆ expression on CHO central metabolism. Metab Eng 2014; 25:92-102. [DOI: 10.1016/j.ymben.2014.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 11/27/2022]
|
120
|
Kang S, Xiao G, Ren D, Zhang Z, Le N, Trentalange M, Gupta S, Lin H, Bondarenko PV. Proteomics analysis of altered cellular metabolism induced by insufficient copper level. J Biotechnol 2014; 189:15-26. [PMID: 25150618 DOI: 10.1016/j.jbiotec.2014.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/25/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
Abstract
Insufficient copper level in the mammalian cell culture medium resulted in lactate accumulation while maintaining similar growth and culture viability profiles. Label-free, LC-MS/MS-based shotgun proteomics method was applied to compare the protein expression profiles obtained from the cultures exposed to suboptimal copper level to those provided with sufficient amount of copper. Under copper deficient condition, a substantial reduction of the protein levels of the multiple subunits of Complex IV, also known as cytochrome c oxidase, of the mitochondrial electron transport chain was observed for all three different Chinese Hamster Ovary (CHO) cell lines expressing therapeutic monoclonal antibodies tested. Additional proteins affected by suboptimal copper level included peroxiredoxin (PRDX) and hepatocyte-derived growth factor (HDGF), which were affected during early phase of the fed-batch production, several days prior to initiation of lactate accumulation. In contrast, proteins such as syntenin (SDCBP) and integral membrane 2C (ITM2C) showed altered expression patterns toward the end of culture duration, after lactate divergence had occurred. For all conditions tested, time was the most predominant factor facilitating the direction of global protein expression trend, with substantial number of proteins subjected to time-dependent changes in expression, independent of copper.
Collapse
Affiliation(s)
- Sohye Kang
- Product Attribute Sciences, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Gang Xiao
- Product Attribute Sciences, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Da Ren
- Product Attribute Sciences, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Zhongqi Zhang
- Product Attribute Sciences, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Nicole Le
- Drug Substance Development, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Michael Trentalange
- Drug Substance Development, Amgen, Inc. , 1201 Amgen Court West, Seattle, WA 98119, USA
| | - Shivani Gupta
- Drug Substance Development, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Henry Lin
- Drug Substance Development, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Pavel V Bondarenko
- Product Attribute Sciences, Amgen, Inc. , One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
121
|
Rajkovic A, Grootaert C, Butorac A, Cucu T, Meulenaer BD, van Camp J, Bracke M, Uyttendaele M, Bačun-Družina V, Cindrić M. Sub-emetic toxicity of Bacillus cereus toxin cereulide on cultured human enterocyte-like Caco-2 cells. Toxins (Basel) 2014; 6:2270-90. [PMID: 25093386 PMCID: PMC4147582 DOI: 10.3390/toxins6082270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022] Open
Abstract
Cereulide (CER) intoxication occurs at relatively high doses of 8 µg/kg body weight. Recent research demonstrated a wide prevalence of low concentrations of CER in rice and pasta dishes. However, the impact of exposure to low doses of CER has not been studied before. In this research, we investigated the effect of low concentrations of CER on the behavior of intestinal cells using the Caco-2 cell line. The MTT (mitochondrial 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and the SRB (sulforhodamine B) reactions were used to measure the mitochondrial activity and cellular protein content, respectively. Both assays showed that differentiated Caco-2 cells were sensitive to low concentrations of CER (in a MTT reaction of 1 ng/mL after three days of treatment; in an SRB reaction of 0.125 ng/mL after three days of treatment). Cell counts revealed that cells were released from the differentiated monolayer at 0.5 ng/mL of CER. Additionally, 0.5 and 2 ng/mL of CER increased the lactate presence in the cell culture medium. Proteomic data showed that CER at a concentration of 1 ng/mL led to a significant decrease in energy managing and H2O2 detoxification proteins and to an increase in cell death markers. This is amongst the first reports to describe the influence of sub-emetic concentrations of CER on a differentiated intestinal monolayer model showing that low doses may induce an altered enterocyte metabolism and membrane integrity.
Collapse
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Ghent University, Ghent B-9000, Belgium; E-Mail:
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Ana Butorac
- Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, Zagreb University, Zagreb HR-10000, Croatia; E-Mails: (A.B.); (V.B.-D.)
| | - Tatiana Cucu
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Bruno De Meulenaer
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - John van Camp
- Laboratory of Food Chemistry and Human Nutrition, Ghent University, Ghent B-9000, Belgium; E-Mails: (C.G.); (T.C.); (B.D.M.); (J.C.)
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, University Hospital Ghent, Ghent B-9000, Belgium; E-Mail:
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Ghent University, Ghent B-9000, Belgium; E-Mail:
| | - Višnja Bačun-Družina
- Laboratory for Biology and Microbial Genetics, Faculty of Food Technology and Biotechnology, Zagreb University, Zagreb HR-10000, Croatia; E-Mails: (A.B.); (V.B.-D.)
| | - Mario Cindrić
- Laboratory for System Biomedicine and Centre for Proteomics and Mass Spectrometry, “Ruđer Bošković” Institute, Zagreb HR-10000, Croatia; E-Mail:
| |
Collapse
|
122
|
Lambrechts T, Papantoniou I, Sonnaert M, Schrooten J, Aerts JM. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnol Bioeng 2014; 111:1982-92. [PMID: 24771348 DOI: 10.1002/bit.25274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 01/31/2023]
Abstract
Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2) = 0.80) and the metabolic activity of the cells (R(2) = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring.
Collapse
Affiliation(s)
- T Lambrechts
- Division M3-BIORES: Measure, Model & Manage Bioresponses, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
123
|
Amino acid consumption in naïve and recombinant CHO cell cultures: producers of a monoclonal antibody. Cytotechnology 2014; 67:809-20. [PMID: 24798809 PMCID: PMC4545443 DOI: 10.1007/s10616-014-9720-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/20/2014] [Indexed: 11/03/2022] Open
Abstract
Most commercial media for mammalian cell culture are designed to satisfy the amino acid requirements for cell growth, but not necessarily those for recombinant protein production. In this study, we analyze the amino acid consumption pattern in naïve and recombinant Chinese hamster ovary (CHO) cell cultures. The recombinant model we chose was a CHO-S cell line engineered to produce a monoclonal antibody. We report the cell concentration, product concentration, and amino acid concentration profiles in naïve and recombinant cell cultures growing in CD OptiCHO™ medium with or without amino acid supplementation with a commercial supplement (CHO CD EfficientFeed™ B). We quantify and discuss the amino acid demands due to cell growth and recombinant protein production during long term fed batch cultivation protocols. We confirmed that a group of five amino acids, constituting the highest mass fraction of the product, shows the highest depletion rates and could become limiting for product expression. In our experiments, alanine, a non-important mass constituent of the product, is in high demand during recombinant protein production. Evaluation of specific amino acid demands could be of great help in the design of feeding/supplementation strategies for recombinant mammalian cell cultures.
Collapse
|
124
|
Sheikholeslami Z, Jolicoeur M, Henry O. Elucidating the effects of postinduction glutamine feeding on the growth and productivity of CHO cells. Biotechnol Prog 2014; 30:535-46. [PMID: 24692260 DOI: 10.1002/btpr.1907] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/14/2014] [Indexed: 12/11/2022]
Abstract
Inducible mammalian expression systems are increasingly being used for the production of valuable therapeutics. In such system, maximizing the product yield is achieved by carefully balancing the biomass concentration during the production phase and the specific productivity of the cells. These two factors are largely determined by the availability of nutrients and/or the presence of toxic waste metabolites in the culture environment. Glutamine is one of the most important components of cell culture medium, since this substrate is an important building block and source of energy for biomass and recombinant protein production. Its metabolism, however, ultimately leads to the formation of ammonia, a well known inhibitor of cellular growth and productivity. In this work, we show that nutrient feeding post-induction can greatly enhance the product yield by alleviating early limitations encountered in batch. Moreover, varying the amount of glutamine in the feed yielded two distinct culture behaviors post-induction; whereas excess glutamine allowed to reach greater cell concentrations, glutamine-limited fed-batch led to increased cell specific productivity. These two conditions also showed distinctive lactate metabolism. To further assess the physiological impact of glutamine levels on the cells, a comparative (13) C-metabolic flux analysis was conducted and a number of key intracellular fluxes were found to be affected by the amount of glutamine present in the feed during the production phase. Such information may provide useful clues for the identification of physiological markers of cell growth and productivity that could further guide the optimization of inducible expression systems.
Collapse
Affiliation(s)
- Zahra Sheikholeslami
- Dépt. de Génie Chimique, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3A7
| | | | | |
Collapse
|
125
|
Ghorbaniaghdam A, Chen J, Henry O, Jolicoeur M. Analyzing clonal variation of monoclonal antibody-producing CHO cell lines using an in silico metabolomic platform. PLoS One 2014; 9:e90832. [PMID: 24632968 PMCID: PMC3954614 DOI: 10.1371/journal.pone.0090832] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibody producing Chinese hamster ovary (CHO) cells have been shown to undergo metabolic changes when engineered to produce high titers of recombinant proteins. In this work, we have studied the distinct metabolism of CHO cell clones harboring an efficient inducible expression system, based on the cumate gene switch, and displaying different expression levels, high and low productivities, compared to that of the parental cells from which they were derived. A kinetic model for CHO cell metabolism was further developed to include metabolic regulation. Model calibration was performed using intracellular and extracellular metabolite profiles obtained from shake flask batch cultures. Model simulations of intracellular fluxes and ratios known as biomarkers revealed significant changes correlated with clonal variation but not to the recombinant protein expression level. Metabolic flux distribution mostly differs in the reactions involving pyruvate metabolism, with an increased net flux of pyruvate into the tricarboxylic acid (TCA) cycle in the high-producer clone, either being induced or non-induced with cumate. More specifically, CHO cell metabolism in this clone was characterized by an efficient utilization of glucose and a high pyruvate dehydrogenase flux. Moreover, the high-producer clone shows a high rate of anaplerosis from pyruvate to oxaloacetate, through pyruvate carboxylase and from glutamate to α-ketoglutarate, through glutamate dehydrogenase, and a reduced rate of cataplerosis from malate to pyruvate, through malic enzyme. Indeed, the increase of flux through pyruvate carboxylase was not driven by an increased anabolic demand. It is in fact linked to an increase of the TCA cycle global flux, which allows better regulation of higher redox and more efficient metabolic states. To the best of our knowledge, this is the first time a dynamic in silico platform is proposed to analyze and compare the metabolomic behavior of different CHO clones.
Collapse
Affiliation(s)
- Atefeh Ghorbaniaghdam
- Canada Research Chair in Applied Metabolic Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Jingkui Chen
- Canada Research Chair in Applied Metabolic Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Olivier Henry
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Mario Jolicoeur
- Canada Research Chair in Applied Metabolic Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
126
|
Wahrheit J, Niklas J, Heinzle E. Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells. Metab Eng 2014; 23:9-21. [PMID: 24525334 DOI: 10.1016/j.ymben.2014.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/19/2014] [Accepted: 02/03/2014] [Indexed: 01/26/2023]
Abstract
Metabolism at the cytosol-mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.
Collapse
Affiliation(s)
- Judith Wahrheit
- Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbrücken, Germany
| | - Jens Niklas
- Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbrücken, Germany
| | - Elmar Heinzle
- Biochemical Engineering Institute, Saarland University, Campus A1.5, D-66123 Saarbrücken, Germany.
| |
Collapse
|
127
|
Yuk IH, Zhang JD, Ebeling M, Berrera M, Gomez N, Werz S, Meiringer C, Shao Z, Swanberg JC, Lee KH, Luo J, Szperalski B. Effects of copper on CHO cells: Insights from gene expression analyses. Biotechnol Prog 2014; 30:429-42. [DOI: 10.1002/btpr.1868] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Inn H. Yuk
- Early Stage Cell Culture; Genentech, 1 DNA Way; South San Francisco CA 94080
| | | | | | | | - Natalia Gomez
- Early Stage Cell Culture; Genentech, 1 DNA Way; South San Francisco CA 94080
| | - Silke Werz
- Pharma Technical Development Europe; Roche Penzberg 82377 Germany
| | | | - Zhixin Shao
- Pharma Technical Development Europe; Roche Penzberg 82377 Germany
| | - Jeffrey C. Swanberg
- Delaware Biotechnology Inst., University of Delaware; 15 Innovation Way Newark DE 19711
| | - Kelvin H. Lee
- Delaware Biotechnology Inst., University of Delaware; 15 Innovation Way Newark DE 19711
| | - Jun Luo
- Vacaville Manufacturing Sciences and Technology; Genentech, 1000 New Horizons Way Vacaville CA 95688
| | | |
Collapse
|
128
|
Abstract
Shaking technology in combination with small-scale disposable plastic vessels has become a notable bioprocess optimization tool widely exploited for cells grown in suspension. This chapter focuses on the two most accommodating culture systems: 50 mL centrifugation tubes and 96-deepwell plates. Used by many laboratories for routine passaging of suspension cultures and all types of optimization experiments as flexible culture system, the 50 mL shake tubes are the preferred vessels for manual manipulations, while microtiter plates are the ideal containers when automatic liquid handling systems are available. Both culture systems can offer to the cells a well-mixed environment which is close to the conditions found at larger scale in production bioreactors.
Collapse
Affiliation(s)
- Martin Jordan
- Biotech Process Sciences, Merck Serono SA, Fenil-sur-Corsier, Switzerland
| | | |
Collapse
|
129
|
Datta P, Meli L, Li L, Migliore N, Schaefer E, Sharfstein ST, Dordick JS, Linhardt RJ. Microarray platform affords improved product analysis in mammalian cell growth studies. Biotechnol J 2013; 9:386-395. [PMID: 24227746 DOI: 10.1002/biot.201300288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/06/2013] [Accepted: 11/12/2013] [Indexed: 01/06/2023]
Abstract
High throughput (HT) platforms serve as a cost-efficient and rapid screening method for evaluating the effect of cell-culture conditions and screening of chemicals. We report the development of a HT cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/methionine sulphoximine (MSX) CHO cell line, which produces a therapeutic monoclonal antibody, was examined using a microarray system in conjunction with a conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60-nL spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production, and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base medium results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the HT microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as cell growth, metabolism, and productivity.
Collapse
Affiliation(s)
- Payel Datta
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Luciana Meli
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | | | | | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, University at Albany, Albany, NY
| | - Jonathan S Dordick
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Materials Science and Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Robert J Linhardt
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|
130
|
Fomina-Yadlin D, Gosink JJ, McCoy R, Follstad B, Morris A, Russell CB, McGrew JT. Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines. Biotechnol Bioeng 2013; 111:965-79. [DOI: 10.1002/bit.25155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/10/2013] [Accepted: 11/12/2013] [Indexed: 02/06/2023]
Affiliation(s)
| | - John J. Gosink
- Molecular Sciences & Computational Biology; Seattle Washington
| | - Rebecca McCoy
- Cell Sciences & Technology; Amgen, Inc.; Seattle Washington 98119
| | - Brian Follstad
- Cell Sciences & Technology; Amgen, Inc.; Seattle Washington 98119
| | - Arvia Morris
- Cell Sciences & Technology; Amgen, Inc.; Seattle Washington 98119
| | | | | |
Collapse
|
131
|
Matsushita K, Williams EK, Mongraw-Chaffin ML, Coresh J, Schmidt MI, Brancati FL, Hoogeveen RC, Ballantyne CM, Young JH. The association of plasma lactate with incident cardiovascular outcomes: the ARIC Study. Am J Epidemiol 2013; 178:401-9. [PMID: 23817916 DOI: 10.1093/aje/kwt002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We examined the association of plasma lactate at rest, a marker of oxidative capacity, with incident cardiovascular outcomes in 10,006 participants in the Atherosclerosis Risk in Communities (ARIC) Study visit 4 (1996-1998). We used Cox proportional-hazards models to estimate hazard ratios of incident coronary heart disease, stroke, heart failure, and all-cause mortality by quartiles of plasma lactate (Q1, ≤5.3 mg/dL; Q2, 5.4-6.6; Q3, 6.7-8.6; and Q4 ≥8.7). During a median follow-up time of 10.7 years, there were 1,105 coronary heart disease cases, 379 stroke cases, 820 heart failure cases, and 1,408 deaths. A significant graded relation between lactate level and cardiovascular events was observed in the demographically adjusted model (all P for trend < 0.001). After further adjustment for traditional and other potential confounders, the association remained significant for heart failure (Q4 vs. Q1: hazard ratio (HR) = 1.35, 95% confidence interval (CI): 1.07, 1.71) and all-cause mortality (HR = 1.27, 95% CI: 1.07, 1.51) (P for trend < 0.02 for these outcomes) but not for coronary heart disease (HR = 1.02, 95% CI: 0.84, 1.24) and stroke (HR = 1.26, 95% CI: 0.91, 1.75). The results for heart failure were robust across multiple subgroups, after further adjustment for N-terminal pro-B-type natriuretic peptide and after exclusion of participants with incident heart failure within 3 years. The independent associations of plasma lactate with heart failure and all-cause mortality suggest an important role for low resting oxidative capacity.
Collapse
Affiliation(s)
- Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Effect of culture pH on recombinant antibody production by a new human cell line, F2N78, grown in suspension at 33.0 °C and 37.0 °C. Appl Microbiol Biotechnol 2013; 97:5283-91. [DOI: 10.1007/s00253-013-4849-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 11/25/2022]
|
133
|
High expression of the aspartate–glutamate carrier Aralar1 favors lactate consumption in CHO cell culture. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
134
|
Abu-Absi S, Xu S, Graham H, Dalal N, Boyer M, Dave K. Cell Culture Process Operations for Recombinant Protein Production. MAMMALIAN CELL CULTURES FOR BIOLOGICS MANUFACTURING 2013; 139:35-68. [DOI: 10.1007/10_2013_252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|