101
|
Wu M, Lu LH, Lowes A, Yang S, Passarotti AM, Zhou XJ, Pavuluri MN. Development of superficial white matter and its structural interplay with cortical gray matter in children and adolescents. Hum Brain Mapp 2014; 35:2806-16. [PMID: 24038932 PMCID: PMC6869421 DOI: 10.1002/hbm.22368] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 11/09/2022] Open
Abstract
Healthy human brain undergoes significant changes during development. The developmental trajectory of superficial white matter (SWM) is less understood relative to cortical gray matter (GM) and deep white matter. In this study, a multimodal imaging strategy was applied to vertexwise map SWM microstructure and cortical thickness to characterize their developmental pattern and elucidate SWM-GM associations in children and adolescents. Microscopic changes in SWM were evaluated with water diffusion parameters including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in 133 healthy subjects aged 10-18 years. Results demonstrated distinct maturational patterns in SWM and GM. SWM showed increasing FA and decreasing MD and RD underneath bilateral motor sensory cortices and superior temporal auditory cortex, suggesting increasing myelination. A second developmental pattern in SWM was increasing FA and AD in bilateral orbitofrontal regions and insula, suggesting improved axonal coherence. These SWM patterns diverge from the more widespread GM maturation, suggesting that cortical thickness changes in adolescence are not explained by the encroachment of SWM myelin into the GM-WM boundary. Interestingly, age-independent intrinsic association between SWM and cortical GM seems to follow functional organization of polymodal and unimodal brain regions. Unimodal sensory areas showed positive correlation between GM thickness and FA whereas polymodal regions showed negative correlation. Axonal coherence and differences in interstitial neuron composition between unimodal and polymodal regions may account for these SWM-GM association patterns. Intrinsic SWM-GM relationships unveiled by neuroimaging in vivo can be useful for examining psychiatric disorders with known WM/GM disturbances.
Collapse
Affiliation(s)
- Minjie Wu
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| | - Lisa H. Lu
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychologyRoosevelt UniversityIllinois
| | - Allison Lowes
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| | - Shaolin Yang
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Departments of Radiology and BioengineeringUniversity of Illinois at ChicagoIllinois
| | - Alessandra M. Passarotti
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| | - Xiaohong J. Zhou
- Departments of Radiology and BioengineeringUniversity of Illinois at ChicagoIllinois
- Department of NeurosurgeryUniversity of Illinois at ChicagoIllinois
- Center for Magnetic Resonance ResearchUniversity of Illinois at ChicagoIllinois
| | - Mani N. Pavuluri
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of PsychiatryUniversity of Illinois at ChicagoIllinois
- Department of PsychiatryUniversity of Illinois at ChicagoIllinois
| |
Collapse
|
102
|
Fakhran S, Yaeger K, Collins M, Alhilali L. Sex differences in white matter abnormalities after mild traumatic brain injury: localization and correlation with outcome. Radiology 2014; 272:815-23. [PMID: 24802388 DOI: 10.1148/radiol.14132512] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate sex differences in diffusion-tensor imaging (DTI) white matter abnormalities after mild traumatic brain injury (mTBI) using tract-based spatial statistics (TBSS) and to compare associated clinical outcomes. MATERIALS AND METHODS The institutional review board approved this study, with waiver of informed consent. DTI in 69 patients with mTBI (47 male and 22 female patients) and 21 control subjects (10 male and 11 female subjects) with normal conventional magnetic resonance (MR) images were retrospectively reviewed. Fractional anisotropy (FA) maps were generated as a measure of white matter integrity. Patients with mTBI underwent serial neurocognitive testing with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). Correlation between sex, white matter FA values, ImPACT scores, and time to symptom resolution (TSR) were analyzed with multivariate analysis and TBSS. RESULTS No significant difference in age was seen between males and females (control subjects, P = .3; patients with mTBI, P = .34). No significant difference was seen in initial ImPACT symptom scores (P = .33) between male and female patients with mTBI. Male patients with mTBI had significantly decreased FA values in the uncinate fasciculus (UF) bilaterally (mean FA, 0.425; 95% confidence interval: 0.375, 0.476) compared with female patients with mTBI and control subjects (P < .05), with a significantly longer TSR (P = .04). Multivariate analysis showed sex and UF FA values independently correlated with TSR longer than 3 months (adjusted odds ratios, 2.27 and 2.38; P = .04 and P < .001, respectively), but initial symptom severity did not (adjusted odds ratio, 1.15; P = .35). CONCLUSION Relative sparing of the UF is seen in female compared with male patients after mTBI, with sex and UF FA values as stronger predictors of TSR than initial symptom severity.
Collapse
Affiliation(s)
- Saeed Fakhran
- From the Department of Radiology (S.F., K.Y., L.A.) and Sports Medicine Concussion Program (M.C.), University of Pittsburgh School of Medicine, 200 Lothrop St, Presby South Tower, 8th Floor, 8 North, Pittsburgh, PA 15213
| | | | | | | |
Collapse
|
103
|
Ehrlich S, Geisler D, Yendiki A, Panneck P, Roessner V, Calhoun VD, Magnotta VA, Gollub RL, White T. Associations of white matter integrity and cortical thickness in patients with schizophrenia and healthy controls. Schizophr Bull 2014; 40:665-74. [PMID: 23661633 PMCID: PMC3984509 DOI: 10.1093/schbul/sbt056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Typical brain development includes coordinated changes in both white matter (WM) integrity and cortical thickness (CT). These processes have been shown to be disrupted in schizophrenia, which is characterized by abnormalities in WM microstructure and by reduced CT. The aim of this study was to identify patterns of association between WM markers and cortex-wide CT in healthy controls (HCs) and patients with schizophrenia (SCZ). Using diffusion tensor imaging and structural magnetic resonance imaging data of the Mind Clinical Imaging Consortium study (130 HC and 111 SCZ), we tested for associations between (a) fractional anisotropy in selected manually labeled WM pathways (corpus callosum, anterior thalamic radiation, and superior longitudinal fasciculus) and CT, and (b) the number of lesion-like WM regions ("potholes") and CT. In HC, but not SCZ, we found highly significant negative associations between WM integrity and CT in several pathways, including frontal, temporal, and occipital brain regions. Conversely, in SCZ the number of WM potholes correlated with reduced CT in the left lateral temporal gyrus, left fusiform, and left lateral occipital brain area. Taken together, we found differential patterns of association between WM integrity and CT in HC and SCZ. Although the pattern in HC can be explained from a developmental perspective, the reduced gray matter CT in SCZ patients might be the result of focal but spatially heterogeneous disruptions of WM integrity.
Collapse
Affiliation(s)
- Stefan Ehrlich
- *To whom correspondence should be addressed; Department of Child and Adolescent Psychiatry, Translational Developmental Neuroscience Section, Dresden University of Technology, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany; tel: +49 (0)351-458-2244, fax: +49 (0)351-458-5754, e-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Wendelken C, Lee JK, Pospisil J, Sastre M, Ross JM, Bunge SA, Ghetti S. White Matter Tracts Connected to the Medial Temporal Lobe Support the Development of Mnemonic Control. Cereb Cortex 2014; 25:2574-83. [PMID: 24675870 DOI: 10.1093/cercor/bhu059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the most important factors driving the development of memory during childhood is mnemonic control, or the capacity to initiate and maintain the processes that guide encoding and retrieval operations. The ability to selectively attend to and encode relevant stimuli is a particularly useful form of mnemonic control, and is one that undergoes marked improvement over childhood. We hypothesized that structural integrity of white matter tracts, in particular those connecting medial temporal lobe memory regions to other cortical areas, and/or those connecting frontal and parietal control regions, should contribute to successful mnemonic control. To test this hypothesis, we examined the relationship between structural integrity of selected white matter tracts and an experimental measure of mnemonic control, involving enhancement of memory by attention at encoding, in 116 children aged 7-11 and 25 young adults. We observed a positive relationship between integrity of uncinate fasciculus and mnemonic enhancement across age groups. In adults, but not in children, we also observed an association between mnemonic enhancement and integrity of ventral cingulum bundle and ventral fornix/fimbria. Integrity of fronto-parietal tracts, including dorsal cingulum and superior longitudinal fasciculus, was unrelated to mnemonic enhancement.
Collapse
Affiliation(s)
| | - Joshua K Lee
- Psychology, University of California Davis, Davis, CA, USA
| | | | - Marcos Sastre
- Psychology, University of California Davis, Davis, CA, USA
| | - Julia M Ross
- Psychology, University of California Davis, Davis, CA, USA
| | - Silvia A Bunge
- Psychology, UC Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
| | - Simona Ghetti
- Center for Mind and Brain and Department of Psychology, University of California Davis, Davis, CA 95618, USA
| |
Collapse
|
105
|
Yan Y, Nair G, Li L, Patel S, Wilson M, Hu X, Sanchez M, Zhang X. In vivo evaluation of optic nerve development in non-human primates by using diffusion tensor imaging. Int J Dev Neurosci 2014; 32:64-8. [PMID: 23831120 PMCID: PMC3859836 DOI: 10.1016/j.ijdevneu.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/08/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022] Open
Abstract
Developmental abnormalities of optic nerve are the leading cause of child blindness. The goal of this study was to use diffusion tensor imaging (DTI) to characterize the optic nerve development of non-human primates during the normal maturation from birth to adulthood. Forty healthy rhesus monkeys aged from 2 weeks to 6 years old were scanned with a clinical 3T scanner. It was demonstrated that the DTI parameters followed an exponential pattern during optic nerve maturation. The time constants of mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (λ∥) and radial diffusivity (λ⊥) were 16, 14, 18 and 15 months in rhesus monkeys, respectively. Significant decrease in RD was observed firstly at 12 months after birth (p<0.05). No significant differences were observed between the left and right optic nerves in any age group. The in vivo imaging results reveal the normal evolution patterns of DTI parameters during optic nerve maturation in primates. The data might be used as a reference in the examination of optic nerve developmental abnormalities or injury in children or preclinical studies.
Collapse
Affiliation(s)
- Yumei Yan
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Govind Nair
- Biomedical Imaging Technology Center, Wallace H. Coulter Department of Biomedical Engineering, School of Medicine, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, United States
| | - Longchuan Li
- Marcus Autism Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Sudeep Patel
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Mark Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Xiaoping Hu
- Biomedical Imaging Technology Center, Wallace H. Coulter Department of Biomedical Engineering, School of Medicine, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, United States
| | - Mar Sanchez
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States
| | - Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States.
| |
Collapse
|
106
|
Abstract
Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization - or asymmetry - and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA
| |
Collapse
|
107
|
Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage 2013; 92:356-68. [PMID: 24384150 DOI: 10.1016/j.neuroimage.2013.12.044] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022] Open
Abstract
White matter (WM) continues to mature through adolescence in parallel with gains in cognitive ability. To date, developmental changes in human WM microstructure have been inferred using analyses of cross-sectional or two time-point follow-up studies, limiting our understanding of individual developmental trajectories. The aims of the present longitudinal study were to characterize the timing of WM growth and investigate how sex and behavior are associated with different developmental trajectories. We utilized diffusion tensor imaging (DTI) in 128 individuals aged 8-28, who received annual scans for up to 5 years and completed motor and cognitive tasks. Flexible nonlinear growth curves indicated a hierarchical pattern of WM development. By late childhood, posterior cortical-subcortical connections were similar to adults. During adolescence, WM microstructure reached adult levels, including frontocortical, frontosubcortical and cerebellar connections. Later to mature in adulthood were major corticolimbic association tracts and connections at terminal gray matter sites in cortical and basal ganglia regions. These patterns may reflect adolescent maturation of frontal connectivity supporting cognitive abilities, particularly the protracted refinement of corticolimbic connectivity underlying cognition-emotion interactions. Sex and behavior also played a large role. Males showed continuous WM growth from childhood through early adulthood, whereas females mainly showed growth during mid-adolescence. Further, earlier WM growth in adolescence was associated with faster and more efficient responding and better inhibitory control whereas later growth in adulthood was associated with poorer performance, suggesting that the timing of WM growth is important for cognitive development.
Collapse
|
108
|
Jacobus J, Squeglia LM, Bava S, Tapert SF. White matter characterization of adolescent binge drinking with and without co-occurring marijuana use: a 3-year investigation. Psychiatry Res 2013; 214:374-81. [PMID: 24139957 PMCID: PMC3900025 DOI: 10.1016/j.pscychresns.2013.07.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/08/2013] [Accepted: 07/31/2013] [Indexed: 01/24/2023]
Abstract
The aims of this study were to investigate the consequences of prolonged patterns of alcohol and marijuana use on white matter integrity and neurocognitive functioning in late adolescence, and examine neurodevelopmental trajectories over three years of regular follow-up visits. Three groups of demographically similar teens received assessments every 1.5 years (controls with consistently minimal substance use, n=16; teens who gradually increase their heavy episodic drinking n=17, and continuous binge drinkers with heavy marijuana use, n=21), including comprehensive neuropsychological evaluations, diffusion tensor imaging, and detailed substance use interviews. One-way ANOVA identified fifteen white matter clusters that significantly differed between groups at 3-year follow-up, ages 19-22; controls consistently demonstrated higher values of tissue integrity across fiber tracts. Repeated measures ANOVA revealed significant declines in white matter integrity from baseline to 3-year follow-up in the subsample of substance users, along with poorer global neurocognitive performance in alcohol users with heavy marijuana use by the 18-month follow-up. Findings suggest healthier brain white matter microstructure and better neurocognitive performance for teens free from heavy alcohol and marijuana use. Long-term engagement in these substances may adversely influence white matter and increase vulnerability for development of neuropathology purported to underlie future risk-taking and addictive behaviors.
Collapse
Affiliation(s)
| | | | | | - Susan F. Tapert
- Correspondence to: S. F. Tapert, Ph.D., VA San Diego Healthcare System, Psychology Service (116B), University of California, San Diego, 3350 La Jolla Village Drive, San Diego, CA 92161, Telephone: 858-552-8585, Fax: (858) 552-7414,
| |
Collapse
|
109
|
Chen Z, Liu M, Gross DW, Beaulieu C. Graph theoretical analysis of developmental patterns of the white matter network. Front Hum Neurosci 2013; 7:716. [PMID: 24198774 PMCID: PMC3814848 DOI: 10.3389/fnhum.2013.00716] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/09/2013] [Indexed: 01/02/2023] Open
Abstract
Understanding the development of human brain organization is critical for gaining insight into how the enhancement of cognitive processes is related to the fine-tuning of the brain network. However, the developmental trajectory of the large-scale white matter (WM) network is not fully understood. Here, using graph theory, we examine developmental changes in the organization of WM networks in 180 typically-developing participants. WM networks were constructed using whole brain tractography and 78 cortical regions of interest were extracted from each participant. The subjects were first divided into 5 equal sample size (n = 36) groups (early childhood: 6.0–9.7 years; late childhood: 9.8–12.7 years; adolescence: 12.9–17.5 years; young adult: 17.6–21.8 years; adult: 21.9–29.6 years). Most prominent changes in the topological properties of developing brain networks occur at late childhood and adolescence. During late childhood period, the structural brain network showed significant increase in the global efficiency but decrease in modularity, suggesting a shift of topological organization toward a more randomized configuration. However, while preserving most topological features, there was a significant increase in the local efficiency at adolescence, suggesting the dynamic process of rewiring and rebalancing brain connections at different growth stages. In addition, several pivotal hubs were identified that are vital for the global coordination of information flow over the whole brain network across all age groups. Significant increases of nodal efficiency were present in several regions such as precuneus at late childhood. Finally, a stable and functionally/anatomically related modular organization was identified throughout the development of the WM network. This study used network analysis to elucidate the topological changes in brain maturation, paving the way for developing novel methods for analyzing disrupted brain connectivity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | | | | | | |
Collapse
|
110
|
Dennis EL, Thompson PM. Mapping connectivity in the developing brain. Int J Dev Neurosci 2013; 31:525-42. [PMID: 23722009 PMCID: PMC3800504 DOI: 10.1016/j.ijdevneu.2013.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization - or asymmetry - and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| | | |
Collapse
|
111
|
Abstract
Since this journal's inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical-cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology-context interactions, represent the field's most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled.
Collapse
|
112
|
Mwansisya TE, Wang Z, Tao H, Zhang H, Hu A, Guo S, Liu Z. The diminished interhemispheric connectivity correlates with negative symptoms and cognitive impairment in first-episode schizophrenia. Schizophr Res 2013; 150:144-50. [PMID: 23920057 DOI: 10.1016/j.schres.2013.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/17/2013] [Accepted: 07/06/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Previous studies imply that interhemispheric disconnectivity plays a more important role on information processing in schizophrenia. However, the role of the aberrant interhemispheric connection in the pathophysiology of this disorder remains unclear. Recently, resting-state functional Magnetic Resonance Imaging (fMRI) has reported to have potentials of mapping functional interactions between pairs of brain hemispheres. METHODS Resting-state whole-brain functional connectivity analyses were performed on 41 schizophrenia patients and 33 healthy controls. RESULTS The first-episode schizophrenia patients showed significant aberrant interhemispheric connection in the globus pallidus, medial frontal gyrus and inferior temporal gyrus. The correlation of Wechsler Adult Intelligence Scale scores with odds ratio of the aberrant interhemispheric connections revealed positive correlation in the pallidum (rho=0.335, p=.003) and medial frontal gyrus (rho=0.260, p=.025). The connection in the pallidum was also positively correlated with duration of illness (rho=-0.407, p=.009). Whereas, the aberrant interhemispheric connection in the inferior temporal gyrus was positively correlated with scores of Scale for the Assessment of Negative Symptoms (rho=0.393, p=.012). CONCLUSION The present study provides fMRI evidence for the aberrant interhemispheric resting-state functional connectivity within resting-state networks in first-episode schizophrenia patients. These aberrant interhemispheric connections, in particular the pallidum, due to its anatomical and functional connectivities, may be the primary disturbance for cognitive impairment, negative symptoms and chronicity of schizophrenia.
Collapse
Affiliation(s)
- Tumbwene E Mwansisya
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, China; College of Health Sciences, University of Dodoma, P.O Box 395, Dodoma, Tanzania
| | | | | | | | | | | | | |
Collapse
|
113
|
Craiu D. What is special about the adolescent (JME) brain? Epilepsy Behav 2013; 28 Suppl 1:S45-51. [PMID: 23756479 DOI: 10.1016/j.yebeh.2012.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/09/2012] [Indexed: 01/23/2023]
Abstract
Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed.
Collapse
Affiliation(s)
- Dana Craiu
- Pediatric Neurology Clinic, Alexandru Obregia Clinical Hospital, Carol Davila University of Medicine, Bucharest, Romania.
| |
Collapse
|
114
|
Seghete KLM, Herting MM, Nagel BJ. White matter microstructure correlates of inhibition and task-switching in adolescents. Brain Res 2013; 1527:15-28. [PMID: 23811486 DOI: 10.1016/j.brainres.2013.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/22/2013] [Accepted: 06/02/2013] [Indexed: 11/15/2022]
Abstract
Although protracted prefrontal gray matter development is associated with concomitant executive function (EF) development in adolescents, few studies have explored the relationship between white matter and EF. This study examined the relationship between white matter microstructure and two aspects of EF, inhibition and task-switching, in a sample of 84 adolescents using diffusion tensor imaging (DTI). Tract-Based Spatial Statistics (TBSS) were used to examine fractional anisotropy (FA) and mean diffusivity (MD). Adolescents completed the Color-Word Interference task from the Delis-Kaplan Executive Function System, a clinical version of the Stroop task. Inhibition and task-switching performance were group normalized and measured using both reaction time and errors. Performance and the interaction of age and performance were regressed on FA and MD white matter skeletons, controlling for age and IQ, separately for inhibition and task-switching. Follow up analyses examined the relative contributions of axial and radial diffusivities. Greater FA in the anterior corona radiata (ACR) was associated with better inhibition, independent of age. Greater FA in the SCR and precentral gyrus white matter were associated with better task-switching, regardless of age, whereas an association between FA in the ACR and task-switching was dependent on age. There were no significant associations between MD and performance. Results suggest better inhibition and task-switching are associated with greater integrity of white matter microstructure in regions supporting cross-cortical and cortical-subcortical connections stemming from the prefrontal cortex. These findings are consistent with functional studies of cognitive control and models of EF that propose separate, yet related, latent factors.
Collapse
Affiliation(s)
- Kristen L Mackiewicz Seghete
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L470, Portland, OR 97239, USA.
| | | | | |
Collapse
|
115
|
Dennis EL, Thompson PM. WITHDRAWN: Mapping Connectivity in the Developing Brain. Int J Dev Neurosci 2013:S0736-5748(13)00069-5. [PMID: 23702184 DOI: 10.1016/j.ijdevneu.2013.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/27/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.ijdevneu.2013.05.007. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
116
|
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai SY, Weickert TW, Shannon Weickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci 2013; 7:60. [PMID: 23720610 PMCID: PMC3654207 DOI: 10.3389/fncel.2013.00060] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/16/2013] [Indexed: 01/11/2023] Open
Abstract
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes identified in adult brain tissue can be accounted for by aberrant developmental processes occurring during fetal, childhood, or adolescent periods. To place schizophrenia neuropathology in a neurodevelopmental context requires solid, scrutinized evidence of changes occurring during normal development of the human brain, particularly in the cortex; however, too often data on normative developmental change are selectively referenced. This paper focuses on the development of the prefrontal cortex and charts major molecular, cellular, and behavioral events on a similar time line. We first consider the time at which human cognitive abilities such as selective attention, working memory, and inhibitory control mature, emphasizing that attainment of full adult potential is a process requiring decades. We review the timing of neurogenesis, neuronal migration, white matter changes (myelination), and synapse development. We consider how molecular changes in neurotransmitter signaling pathways are altered throughout life and how they may be concomitant with cellular and cognitive changes. We end with a consideration of how the response to drugs of abuse changes with age. We conclude that the concepts around the timing of cortical neuronal migration, interneuron maturation, and synaptic regression in humans may need revision and include greater emphasis on the protracted and dynamic changes occurring in adolescence. Updating our current understanding of post-natal neurodevelopment should aid researchers in interpreting gray matter changes and derailed neurodevelopmental processes that could underlie emergence of psychosis.
Collapse
Affiliation(s)
- Vibeke S. Catts
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Samantha J. Fung
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Leonora E. Long
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Dipesh Joshi
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Ans Vercammen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
- School of Psychology, Australian Catholic UniversitySydney, NSW, Australia
| | - Katherine M. Allen
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Stu G. Fillman
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Debora A. Rothmond
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
| | - Duncan Sinclair
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Yash Tiwari
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Shan-Yuan Tsai
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Thomas W. Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Schizophrenia Research InstituteSydney, NSW, Australia
- Neuroscience Research AustraliaSydney, NSW, Australia
- School of Psychiatry, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
117
|
Bodini B, Cercignani M, Toosy A, De Stefano N, Miller DH, Thompson AJ, Ciccarelli O. A novel approach with "skeletonised MTR" measures tract-specific microstructural changes in early primary-progressive MS. Hum Brain Mapp 2013; 35:723-33. [PMID: 23616276 DOI: 10.1002/hbm.22196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/26/2012] [Accepted: 08/20/2012] [Indexed: 11/05/2022] Open
Abstract
We combined tract-based spatial statistics (TBSS) and magnetization transfer (MT) imaging to assess white matter (WM) tract-specific short-term changes in early primary-progressive multiple sclerosis (PPMS) and their relationships with clinical progression. Twenty-one PPMS patients within 5 years from onset underwent MT and diffusion tensor imaging (DTI) at baseline and after 12 months. Patients' disability was assessed. DTI data were processed to compute fractional anisotropy (FA) and to generate a common WM "skeleton," which represents the tracts that are "common" to all subjects using TBSS. The MT ratio (MTR) was computed from MT data and co-registered with the DTI. The skeletonization procedure derived for FA was applied to each subject's MTR image to obtain a "skeletonised" MTR map for every subject. Permutation tests were used to assess (i) changes in FA, principal diffusivities, and MTR over the follow-up, and (ii) associations between changes in imaging parameters and changes in disability. Patients showed significant decreases in MTR over one year in the corpus callosum (CC), bilateral corticospinal tract (CST), thalamic radiations, and superior and inferior longitudinal fasciculi. These changes were located both within lesions and the normal-appearing WM. No significant longitudinal change in skeletonised FA was found, but radial diffusivity (RD) significantly increased in several regions, including the CST bilaterally and the right inferior longitudinal fasciculus. MTR decreases, RD increases, and axial diffusivity decreases in the CC and CST correlated with a deterioration in the upper limb function. We detected tract-specific multimodal imaging changes that reflect the accrual of microstructural damage and possibly contribute to clinical impairment in PPMS. We propose a novel methodology that can be extended to other diseases to map cross-subject and tract-specific changes in MTR.
Collapse
Affiliation(s)
- Benedetta Bodini
- Department of Brain Repair and Rehabilitation, University College London Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
118
|
Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies. J Neural Transm (Vienna) 2013; 120:1369-95. [PMID: 23328950 DOI: 10.1007/s00702-013-0971-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Delineating the normal development of brain white matter (WM) over the human lifespan is crucial to improved understanding of underlying WM pathology in neuropsychiatric and neurological conditions. We review the extant literature concerning diffusion tensor imaging studies of brain WM development in healthy individuals available until October 2012, summarise trends of normal development of human brain WM and suggest possible future research directions. Temporally, brain WM maturation follows a curvilinear pattern with an increase in fractional anisotropy (FA) from newborn to adolescence, decelerating in adulthood till a plateau around mid-adulthood, and a more rapid decrease of FA from old age onwards. Spatially, brain WM tracts develop from central to peripheral regions, with evidence of anterior-to-posterior maturation in commissural and projection fibres. The corpus callosum and fornix develop first and decline earlier, whilst fronto-temporal WM tracts like cingulum and uncinate fasciculus have protracted maturation and decline later. Prefrontal WM is most vulnerable with greater age-related FA reduction compared with posterior WM. Future large scale studies adopting longitudinal design will better clarify human brain WM changes over time.
Collapse
|
119
|
Samartzis L, Dima D, Fusar-Poli P, Kyriakopoulos M. White Matter Alterations in Early Stages of Schizophrenia: A Systematic Review of Diffusion Tensor Imaging Studies. J Neuroimaging 2013; 24:101-10. [DOI: 10.1111/j.1552-6569.2012.00779.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/18/2012] [Accepted: 10/06/2012] [Indexed: 12/15/2022] Open
Affiliation(s)
- Lampros Samartzis
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- Athalassa Psychiatric Hospital; Cyprus Mental Health Services; Nicosia Cyprus
| | - Danai Dima
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
| | - Marinos Kyriakopoulos
- Department of Psychosis Studies; Institute of Psychiatry; King's Health Partners, King's College London; London UK
- National and Specialist Children's Inpatient Unit; South London and Maudsley NHS Foundation Trust; London UK
| |
Collapse
|
120
|
Vasung L, Fischi-Gomez E, Hüppi PS. Multimodality evaluation of the pediatric brain: DTI and its competitors. Pediatr Radiol 2013; 43:60-8. [PMID: 23288478 DOI: 10.1007/s00247-012-2515-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 12/18/2022]
Abstract
The development of the human brain, from the fetal period until childhood, happens in a series of intertwined neurogenetical and histogenetical events that are influenced by environment. Neuronal proliferation and migration, cell aggregation, axonal ingrowth and outgrowth, dendritic arborisation, synaptic pruning and myelinisation contribute to the 'plasticity of the developing brain'. These events taken together contribute to the establishment of adult-like neuroarchitecture required for normal brain function. With the advances in technology today, mostly due to the development of non-invasive neuroimaging tools, it is possible to analyze these structural events not only in anatomical space but also longitudinally in time. In this review we have highlighted current 'state of the art' neuroimaging tools. Development of the new MRI acquisition sequences (DTI, CHARMED and phase imaging) provides valuable insight into the changes of the microstructural environment of the cortex and white matter. Development of MRI imaging tools dedicated for analysis of the acquired images (i) TBSS and ROI fiber tractography, (ii) new tissue segmentation techniques and (iii) morphometric analysis of the cortical mantle (cortical thickness and convolutions) allows the researchers to map the longitudinal changes in the macrostructure of the developing brain that go hand-in-hand with the acquisition of cognitive skills during childhood. Finally, the latest and the newest technologies, like connectom analysis and resting state fMRI connectivity analysis, today, for the first time provide the opportunity to study the developing brain through the prism of maturation of the systems and networks beyond individual anatomical areas. Combining these methods in the future and modeling the hierarchical organization of the brain might ultimately help to understand the mechanisms underlying complex brain structure function relationships of normal development and of developmental disorders.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Development and Growth, Department of Pediatrics, University of Geneva, University Hospital Geneva, Rue Willy-Donzé 6, 1211 Genève 14, Geneva, Switzerland
| | | | | |
Collapse
|
121
|
Genetics of ageing-related changes in brain white matter integrity - a review. Ageing Res Rev 2013; 12:391-401. [PMID: 23128052 DOI: 10.1016/j.arr.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/05/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022]
Abstract
White matter (WM) plays a vital role in the efficient transfer of information between grey matter regions. Modern imaging techniques such as diffusion tensor imaging (DTI) have enabled the examination of WM microstructural changes across the lifespan, but there is limited knowledge about the role genetics plays in the pattern and aetiology of age-related WM microstructural changes. Family and twin studies suggest that the heritability of WM integrity measures changes over the lifespan, with the common DTI measure, fractional anisotropy (FA), showing moderate to high heritability in adults. However, few heritability studies have been undertaken in older adults. Linkage studies in middle-aged adults suggest that specific regions on chromosomes 3 and 15 may harbour genetic variants for WM integrity. A number of studies have investigated candidate genes, with the APOE ɛ4 polymorphism being the most frequently studied. Although these candidate gene studies suggest associations of particular genes with WM integrity measures in some specific brain regions, the findings remain inconsistent due to differences in their methodologies, samples and the outcome measures used. The APOE ɛ4 allele has been associated with decreased WM integrity (FA) in the cingulum, corpus callosum and parahippocampal gyrus. Only one genome-wide association study of global WM integrity measures in older adults has been published, and reported suggestive single nucleotide polymorphisms await replication. Overall, genetic age-related WM integrity studies are lacking and a concerted effort to examine the genetic determinants of age-related decline in WM integrity is clearly needed to improve our understanding of the ageing brain.
Collapse
|
122
|
Bava S, Jacobus J, Thayer RE, Tapert SF. Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res 2012; 37 Suppl 1:E181-9. [PMID: 23240741 DOI: 10.1111/j.1530-0277.2012.01920.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/30/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND The influence of repeated substance use during adolescent neurodevelopment remains unclear as there have been few prospective investigations. The aims of this study were to identify longitudinal changes in fiber tract integrity associated with alcohol- and marijuana-use severity over the course of 1.5 years. METHODS Adolescents with extensive marijuana- and alcohol-use histories by mid-adolescence (n = 41) and youth with consistently minimal if any substance use (n = 51) were followed over 18 months. Teens received diffusion tensor imaging and detailed substance-use assessments with toxicology screening at baseline and 18-month follow-ups (i.e., 182 scans in all), as well as interim substance-use interviews each 6 months. RESULTS At an 18-month follow-up, substance users showed poorer white matter integrity in 7 tracts: (i) right superior longitudinal fasciculus, (ii) left superior longitudinal fasciculus, (iii) right posterior thalamic radiations, (iv) right prefrontal thalamic fibers, (v) right superior temporal gyrus white matter, (vi) right inferior longitudinal fasciculus, and (vii) left posterior corona radiata (ps < 0.01). More alcohol use during the interscan interval predicted higher mean diffusivity (i.e., worsened integrity) in right (p < 0.05) and left (p = 0.06) superior longitudinal fasciculi, above and beyond baseline values in these bundles. Marijuana use during the interscan interval did not predict change over time. More externalizing behaviors at Time 1 predicted lower fractional anisotropy and higher radial diffusivity (i.e., poorer integrity) of the right prefrontal thalamic fibers (p < 0.025). CONCLUSIONS Findings add to previous cross-sectional studies reporting white matter disadvantages in youth with substance-use histories. In particular, alcohol use during adolescent neurodevelopment may be linked to reductions in white matter quality in association fiber tracts with frontal connections. In contrast, youth who engage in a variety of risk-taking behaviors may have unique neurodevelopmental trajectories characterized by truncated development in fronto-thalamic tracts, which could have functional and clinical consequences in young adulthood.
Collapse
Affiliation(s)
- Sunita Bava
- VA San Diego Healthcare System, Psychology Service (116B), San Diego, California 92161, USA
| | | | | | | |
Collapse
|
123
|
Peters BD, Szeszko PR, Radua J, Ikuta T, Gruner P, DeRosse P, Zhang JP, Giorgio A, Qiu D, Tapert SF, Brauer J, Asato MR, Khong P, James AC, Gallego JA, Malhotra AK. White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophr Bull 2012; 38:1308-17. [PMID: 22499780 PMCID: PMC3494037 DOI: 10.1093/schbul/sbs054] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In light of the evidence for brain white matter (WM) abnormalities in schizophrenia, study of normal WM maturation in adolescence may provide critical insights relevant to the neurodevelopment of the disorder. Voxel-wise diffusion tensor imaging (DTI) studies have consistently demonstrated increases in fractional anisotropy (FA), a putative measure of WM integrity, from childhood into adolescence. However, the WM tracts that show FA increases have been variable across studies. Here, we aimed to assess which WM tracts show the most pronounced changes across adolescence. METHODS DTI was performed in 78 healthy subjects aged 8-21 years, and voxel-wise analysis conducted using tract-based spatial statistics (TBSS). In addition, we performed the first meta-analysis of TBSS studies on WM development in adolescence. RESULTS In our sample, we observed bilateral increases in FA with age, which were most significant in the left superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and anterior thalamic radiation. These findings were confirmed by the meta-analysis, and FA increase in the bilateral SLF was the most consistent finding across studies. Moreover, in our sample, FA of the bilateral SLF showed a positive association with verbal working memory performance and partially mediated increases in verbal fluency as a function of increasing age. CONCLUSIONS These data highlight increasing connectivity in the SLF during adolescence. In light of evidence for compromised SLF integrity in high-risk and first-episode patients, these data suggest that abnormal maturation of the SLF during adolescence may be a key target in the neurodevelopment of schizophrenia.
Collapse
Affiliation(s)
- Bart D. Peters
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,To whom correspondence should be addressed; tel: 1-718-470-8168, fax: 1-718-343-1659, e-mail:
| | - Philip R. Szeszko
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK,Department of Statistics, FIDMAG, CIBERSAM, Sant Boi de Llobregat, Spain
| | - Toshikazu Ikuta
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Patricia Gruner
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Pamela DeRosse
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Jian-Ping Zhang
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Antonio Giorgio
- Centre for Functional Magnetic Resonance Imaging of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK,Department of Neurological and Behavioral Sciences, University of Siena, Siena, Italy
| | - Deqiang Qiu
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, Hong Kong,Department of Radiology, Stanford University, Stanford, CA
| | - Susan F. Tapert
- VA San Diego Healthcare System and Department of Psychiatry, University of California, San Diego, CA
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Miya R. Asato
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - P.L. Khong
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong, Hong Kong
| | - Anthony C. James
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Juan A. Gallego
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| | - Anil K. Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY,Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY
| |
Collapse
|
124
|
Travers BG, Adluru N, Ennis C, Tromp DPM, Destiche D, Doran S, Bigler ED, Lange N, Lainhart JE, Alexander AL. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res 2012; 5:289-313. [PMID: 22786754 PMCID: PMC3474893 DOI: 10.1002/aur.1243] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/04/2012] [Indexed: 12/18/2022]
Abstract
White matter tracts of the brain allow neurons and neuronal networks to communicate and function with high efficiency. The aim of this review is to briefly introduce diffusion tensor imaging methods that examine white matter tracts and then to give an overview of the studies that have investigated white matter integrity in the brains of individuals with autism spectrum disorder (ASD). From the 48 studies we reviewed, persons with ASD tended to have decreased fractional anisotropy and increased mean diffusivity in white matter tracts spanning many regions of the brain but most consistently in regions such as the corpus callosum, cingulum, and aspects of the temporal lobe. This decrease in fractional anisotropy was often accompanied by increased radial diffusivity. Additionally, the review suggests possible atypical lateralization in some white matter tracts of the brain and a possible atypical developmental trajectory of white matter microstructure in persons with ASD. Clinical implications and future research directions are discussed.
Collapse
Affiliation(s)
- Brittany G Travers
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Lu LH, Zhou XJ, Fitzgerald J, Keedy SK, Reilly JL, Passarotti AM, Sweeney JA, Pavuluri M. Microstructural abnormalities of white matter differentiate pediatric and adult-onset bipolar disorder. Bipolar Disord 2012; 14:597-606. [PMID: 22882719 PMCID: PMC3612992 DOI: 10.1111/j.1399-5618.2012.01045.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES White-matter microstructure, known to undergo significant developmental transformation, is abnormal in bipolar disorder (BD). Available evidence suggests that white-matter deviation may be more pronounced in pediatric than adult-onset BD. The present study aimed to examine how white-matter microstructure deviates from a typical maturational trajectory in BD. METHODS Fractional anisotropy (FA) was measured in 35 individuals presenting with first episode BD (type I) and 46 healthy controls (HC) (aged 9-42) using diffusion tensor imaging (DTI). Patients were medication free and close to illness onset at the time of the DTI scans. Tract-based spatial statistics were used to examine the center of white-matter tracts, and FA was extracted from nine tracts of interest. Axial, radial, and mean diffusivity were examined in post-hoc analyses. RESULTS The left anterior limb of the internal capsule (ALIC) showed significantly lower FA in pediatric than adult-onset BD. The lower FA in BD was due primarily to greater radial, rather than decreased axial, diffusivity. CONCLUSIONS The ALIC connects the frontal lobes with archistriatum, thalamus, and medial temporal regions, and alteration in these pathways may contribute to mood dysregulation in BD. Abnormalities in this pathway appear to be associated with an earlier onset of illness and thus may reflect a greater susceptibility to illness.
Collapse
Affiliation(s)
- Lisa H Lu
- Department of Psychiatry, Pediatric Brain Research and Intervention Center, University of Illinois at Chicago, IL 60608, USA.
| | - Xiaohong Joe Zhou
- Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois at Chicago,Center for Magnetic Resonance Research, University of Illinois at Chicago
| | - Jacklynn Fitzgerald
- Pediatric Brain Research and Intervention Center, Department of Psychiatry, University of Illinois at Chicago
| | - Sarah K Keedy
- Department of Psychiatry, University of Illinois at Chicago
| | - James L Reilly
- Department of Psychiatry, Northwestern University, Chicago, IL
| | - Alessandra M Passarotti
- Pediatric Brain Research and Intervention Center, Department of Psychiatry, University of Illinois at Chicago,Department of Psychiatry, University of Illinois at Chicago
| | - John A Sweeney
- Departments of Psychiatry and Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Mani Pavuluri
- Pediatric Brain Research and Intervention Center, Department of Psychiatry, University of Illinois at Chicago,Department of Psychiatry, University of Illinois at Chicago
| |
Collapse
|
126
|
Jayarajan RN, Venkatasubramanian G, Viswanath B, Janardhan Reddy YC, Srinath S, Vasudev MK, Chandrashekar CR. White matter abnormalities in children and adolescents with obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety 2012; 29:780-8. [PMID: 22323419 DOI: 10.1002/da.21890] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/10/2011] [Accepted: 11/20/2011] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND There is paucity of data on white matter (WM) abnormalities in juvenile obsessive-compulsive disorder (OCD). This study aimed to identify WM microstructure changes in juvenile OCD. METHODS Fifteen children and adolescents with OCD and 15 matched healthy controls underwent diffusion tensor imaging using a 3 Tesla (Achieva, Best, The Netherlands) magnetic resonance imaging scanner. Voxelwise analyses were conducted on data processed through tract-based spatial statistics (TBSS). RESULTS Patients significantly differed from controls in axial as well as radial diffusivities, but not in fractional anisotropy. Patients demonstrated significantly increased axial diffusivity in corpus callosum (genu, body, and splenium), right and left superior longitudinal fasciculi, left inferior longitudinal fasciculus, right and left cingulum, bilateral anterior thalamic radiations, bilateral anterior limb of internal capsule, left posterior limb of the internal capsule, and middle cerebellar peduncle. In addition, significantly increased radial diffusivity was seen in patients in genu of the corpus, right and left superior longitudinal fasciculi, left inferior longitudinal fasciculus, right and left uncinate fasciculi, bilateral anterior thalamic radiation, bilateral inferior fronto-occipital fasciculus, left posterior limb of internal capsule, right superior cerebellar peduncle, middle cerebellar peduncle, and right inferior cerebellar peduncle. CONCLUSIONS Our findings suggest involvement of multiple WM tracts in juvenile OCD. In addition to the widely proposed hypothesis of orbitofrontal-striato-thalamo-cortical circuitry deficits in the development of OCD, our findings suggest involvement of additional brain regions, possibly parietal cortex, lateral prefrontal cortex, and limbic system. The widespread differences in WM among cases and controls also points to the possibility of underlying myelination changes.
Collapse
|
127
|
Franke K, Luders E, May A, Wilke M, Gaser C. Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. Neuroimage 2012; 63:1305-12. [PMID: 22902922 DOI: 10.1016/j.neuroimage.2012.08.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/05/2012] [Accepted: 08/02/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neural development during human childhood and adolescence involves highly coordinated and sequenced events, characterized by both progressive and regressive processes. Despite a multitude of results demonstrating the age-dependent development of gray matter, white matter, and total brain volume, a reference curve allowing prediction of structural brain maturation is still lacking but would be clinically valuable. For the first time, the present study provides a validated reference curve for structural brain maturation during childhood and adolescence, based on structural MRI data. METHODS AND FINDINGS By employing kernel regression methods, a novel but well-validated BrainAGE framework uses the complex multidimensional maturation pattern across the whole brain to estimate an individual's brain age. The BrainAGE framework was applied to a large human sample (n=394) of healthy children and adolescents, whose image data had been acquired during the NIH MRI study of normal brain development. Using this approach, we were able to predict individual brain maturation with a clinically meaningful accuracy: the correlation between predicted brain age and chronological age resulted in r=0.93. The mean absolute error was only 1.1 years. Moreover, the predicted brain age reliably differentiated between all age groups (i.e., preschool childhood, late childhood, early adolescence, middle adolescence, late adolescence). Applying the framework to preterm-born adolescents resulted in a significantly lower estimated brain age than chronological age in subjects who were born before the end of the 27th week of gestation, demonstrating the successful clinical application and future potential of this method. CONCLUSIONS Consequently, in the future this novel BrainAGE approach may prove clinically valuable in detecting both normal and abnormal brain maturation, providing important prognostic information.
Collapse
Affiliation(s)
- Katja Franke
- Department of Psychiatry, Jena University Hospital, 07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
128
|
Deoni SCL, Dean DC, O'Muircheartaigh J, Dirks H, Jerskey BA. Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage 2012; 63:1038-53. [PMID: 22884937 PMCID: PMC3711836 DOI: 10.1016/j.neuroimage.2012.07.037] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 01/08/2023] Open
Abstract
The elaboration of the myelinated white matter is essential for normal neurodevelopment, establishing and mediating rapid communication pathways throughout the brain. These pathways facilitate the synchronized communication required for higher order behavioral and cognitive functioning. Altered neural messaging (or ‘disconnectivity’) arising from abnormal white matter and myelin development may underlie a number of neurodevelopmental psychiatric disorders. Despite the vital role myelin plays, few imaging studies have specifically examined its maturation throughout early infancy and childhood. Thus, direct investigations of the relationship(s) between evolving behavioral and cognitive functions and the myelination of the supporting neural systems have been sparse. Further, without knowledge of the ‘normative’ developmental time-course, identification of early abnormalities associated with developmental disorders remains challenging. In this work, we examined the use of longitudinal (T1) and transverse (T2) relaxation time mapping, and myelin water fraction (MWF) imaging to investigate white matter and myelin development in 153 healthy male and female children, 3 months through 60 months in age. Optimized age-specific acquisition protocols were developed using the DESPOT and mcDESPOT imaging techniques; and mean T1, T2 and MWF trajectories were determined for frontal, temporal, occipital, parietal and cerebellar white matter, and genu, body and splenium of the corpus callosum. MWF results provided a spatio-temporal pattern in-line with prior histological studies of myelination. Comparison of T1, T2 and MWF measurements demonstrates dissimilar sensitivity to tissue changes associated with neurodevelopment, with each providing differential but complementary information.
Collapse
Affiliation(s)
- Sean C L Deoni
- Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI, USA.
| | | | | | | | | |
Collapse
|
129
|
Pfeifer JH, Allen NB. Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders. Trends Cogn Sci 2012; 16:322-9. [PMID: 22613872 DOI: 10.1016/j.tics.2012.04.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/17/2012] [Accepted: 04/27/2012] [Indexed: 01/25/2023]
Abstract
The dual-systems model of a ventral affective system, whose reactivity confers risks and liabilities, and a prefrontal control system, whose regulatory capacities buffer against these vulnerabilities, is an intuitive account that pervades many fields in the cognitive neurosciences--especially in the study of populations that differ from neurotypical adults, such as adolescents or individuals with affective or impulse regulation disorders. However, recent evidence that is inconsistent with dual-systems models illustrates the complexity of developmental and clinical variations in brain function. Building new models to account for this complexity is critical to progress in these fields, and will be facilitated by research that emphasizes network-based approaches and maps relationships between structure and function, as well as brain and behavior, over time.
Collapse
Affiliation(s)
- Jennifer H Pfeifer
- Department of Psychology, University of Oregon, Eugene, OR 97403-1227, USA
| | | |
Collapse
|
130
|
Chung T, Pajtek S, Clark DB. White matter integrity as a link in the association between motivation to abstain and treatment outcome in adolescent substance users. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2012; 27:533-42. [PMID: 22369222 DOI: 10.1037/a0026716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Readiness to change constitutes an important treatment target. This study examined white matter (WM) integrity as a possible link in the pathway between motivation to abstain and treatment outcome. Adolescents (age 14-18 years, n = 32) were recruited from intensive outpatient (IOP) substance use treatment and reported on motivation to abstain from alcohol and marijuana shortly after treatment admission (i.e., at baseline). Diffusion tensor imaging data were collected approximately 7 weeks after starting IOP and were used to quantify WM integrity (indexed by fractional anisotropy, FA) using a region of interest (ROI) approach. Treatment outcomes were assessed 6 months after baseline. Indirect effects analyses tested FA in prefrontal, orbitofrontal, and temporal ROIs as a linking variable in the pathway from motivation to abstain to alcohol and marijuana outcomes. Bivariate correlations indicated that greater motivation to abstain from alcohol was associated with lower FA in prefrontal, orbitofrontal, and temporal ROIs and that lower FA in these three ROIs was associated with greater 6-month alcohol problem severity. The indirect effect of FA was significant for the prefrontal ROI in the pathway from motivation to outcome for alcohol. FA values were not associated with motivation to abstain from marijuana or marijuana-related outcomes. Results suggest that lower WM integrity, particularly in the prefrontal brain region, may help to explain greater alcohol problem severity at 6 months despite higher motivation to abstain from alcohol. Interventions that aim to enhance WM integrity warrant attention to improve adolescent treatment outcomes.
Collapse
Affiliation(s)
- Tammy Chung
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
131
|
Fisher PA, Pfeifer JH. Conceptual and methodological issues in neuroimaging studies of the effects of child maltreatment. ACTA ACUST UNITED AC 2012; 165:1133-4. [PMID: 22147781 DOI: 10.1001/archpediatrics.2011.1046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
132
|
Shi Y, Short SJ, Knickmeyer RC, Wang J, Coe CL, Niethammer M, Gilmore JH, Zhu H, Styner MA. Diffusion tensor imaging-based characterization of brain neurodevelopment in primates. ACTA ACUST UNITED AC 2012; 23:36-48. [PMID: 22275483 DOI: 10.1093/cercor/bhr372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Primate neuroimaging provides a critical opportunity for understanding neurodevelopment. Yet the lack of a normative description has limited the direct comparison with changes in humans. This paper presents for the first time a cross-sectional diffusion tensor imaging (DTI) study characterizing primate brain neurodevelopment between 1 and 6 years of age on 25 healthy undisturbed rhesus monkeys (14 male, 11 female). A comprehensive analysis including region-of-interest, voxel-wise, and fiber tract-based approach demonstrated significant changes of DTI properties over time. Changes in fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), and radial diffusivity (RD) exhibited a heterogeneous pattern across different regions as well as along fiber tracts. Most of these patterns are similar to those from human studies yet a few followed unique patterns. Overall, we observed substantial increase in FA and AD and a decrease in RD for white matter (WM) along with similar yet smaller changes in gray matter (GM). We further observed an overall posterior-to-anterior trend in DTI property changes over time and strong correlations between WM and GM development. These DTI trends provide crucial insights into underlying age-related biological maturation, including myelination, axonal density changes, fiber tract reorganization, and synaptic pruning processes.
Collapse
Affiliation(s)
- Yundi Shi
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599-7160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Ladouceur CD, Peper JS, Crone EA, Dahl RE. White matter development in adolescence: the influence of puberty and implications for affective disorders. Dev Cogn Neurosci 2012; 2:36-54. [PMID: 22247751 PMCID: PMC3256931 DOI: 10.1016/j.dcn.2011.06.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/03/2011] [Accepted: 06/05/2011] [Indexed: 12/19/2022] Open
Abstract
There have been rapid advances in understanding a broad range of changes in brain structure and function during adolescence, and a growing interest in identifying which of these neurodevelopmental changes are directly linked with pubertal maturation—at least in part because of their potential to provide insights into the numerous emotional and behavioral health problems that emerge during this developmental period. This review focuses on what is known about the influence of puberty on white matter development in adolescence.We focus on white matter because of its role in providing the structural architectural organization of the brain and as a structural correlate of communication within complex neural systems. We begin with a review of studies that report sex differences or sex by age interactions in white matter development as these findings can provide, although indirectly,information relevant to puberty-related changes. Studies are also critically reviewed based on methodological procedures used to assess pubertal maturation and relations with white matter changes. Findings are discussed in light of their implications for the development of neural systems underlying the regulation of emotion and behavior and how alterations in the development of these systems may mediate risk for affective disorders in vulnerable adolescents.
Collapse
Affiliation(s)
- Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O’Hara St., Pittsburgh, PA 15213, United States.
| | | | | | | |
Collapse
|
134
|
Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 2011; 60:340-52. [PMID: 22178809 DOI: 10.1016/j.neuroimage.2011.11.094] [Citation(s) in RCA: 804] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/31/2011] [Accepted: 11/30/2011] [Indexed: 01/12/2023] Open
Abstract
Diffusion tensor imaging (DTI) has been used widely to show structural brain changes during both development and aging. Lifespan studies are valuable because they connect these two processes, yet few DTI studies have been conducted that include both children and elderly subjects. This study used DTI tractography to investigate 12 major white matter connections in 403 healthy subjects aged 5-83 years. Poisson fits were used to model changes of fractional anisotropy (FA) and mean diffusivity (MD) across the age span, and were highly significant for all tracts. FA increased during childhood and adolescence, reached a peak between 20 and 42 years of age, and then decreased. MD showed an opposite trend, decreasing first, reaching a minimum at 18-41 years, and then increasing later in life. These trajectories demonstrate rates and timing of development and degradation that vary regionally in the brain. The corpus callosum and fornix showed early reversals of development trends, while frontal-temporal connections (cingulum, uncinate, superior longitudinal) showed more prolonged maturation and delayed declines. FA changes were driven by perpendicular diffusivity, suggesting changes of myelination and/or axonal density. Tract volume changed significantly with age for most tracts, but did not greatly influence the FA and MD trajectories. This study demonstrates clear age-related microstructural changes throughout the brain white matter, and provides normative data that will be useful for studying white matter development in a variety of diseases and abnormal conditions.
Collapse
Affiliation(s)
- C Lebel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
135
|
Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 2011; 61:324-41. [PMID: 22120012 DOI: 10.1016/j.neuroimage.2011.11.006] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022] Open
Abstract
Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state.
Collapse
|
136
|
Florisson JMG, Dudink J, Koning IV, Hop WCJ, van Veelen MLC, Mathijssen IMJ, Lequin MH. Assessment of White Matter Microstructural Integrity in Children with Syndromic Craniosynostosis: A Diffusion-Tensor Imaging Study. Radiology 2011; 261:534-41. [DOI: 10.1148/radiol.11101024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
137
|
Diffusion-tensor imaging assessment of white matter maturation in childhood and adolescence. AJR Am J Roentgenol 2011; 197:704-12. [PMID: 21862815 DOI: 10.2214/ajr.10.6382] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to test a first hypothesis that fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values continue to change in late childhood and adolescence and a second hypothesis that less mature white matter (WM) regions have a higher rate of change than WM regions that are relatively more mature. SUBJECTS AND METHODS Eighty-seven healthy children (50 girls, 37 boys; mean age, 11.2 ± 3.6 years; range, 4.2-17.7 years) underwent six-direction diffusion-tensor imaging with a 3-T MRI system. Three neuroradiologists independently drew regions of interest in 10 WM regions and measured FA and ADC values. To test the first hypothesis, we correlated these values with subject age by linear regression analysis (p < 0.05). To test the second hypothesis, we determined whether regions with lower FA and higher ADC in the 4- to 7-year old group had a higher slope of FA increase and ADC decrease over the entire age range. For this assessment, we used linear regression analysis (p < 0.05) and curve fitting. RESULTS In the test of the first hypothesis, increases in FA with age were noted in all WM regions and were statistically significant in six regions. Decreases in ADC values with age were noted in all brain regions except the genu of the corpus callosum. In all other regions except the splenium of the corpus callosum, the decreases were statistically significant. In the test of the second hypothesis, the relation between FA in the 4- to 7-year-old subjects and the FA increase in the entire sample was best described with a linear equation. The rate of age-related FA increase tended to be greater with lower initial FA (r = -0.384, p = 0.271). The relation between ADC in the 4- to 7-year-old subjects and ADC decrease in the entire population was best described with a second-order equation. The rate of age-related ADC decrease tended to be greater with higher initial ADC (r = 0.846, p = 0.001). For ADC values of 100 or less at age 4-7 years, the rate of ADC change with age tended to be decrease as initial ADC increased. CONCLUSION In general, both hypotheses were verified. Overall, FA values continue to increase and ADC values continue to decrease during childhood and adolescence. The most rapid changes were found in WM regions that were least mature in the first few years of the study period.
Collapse
|
138
|
Abstract
Healthy human brain development is a complex process that continues during childhood and adolescence, as demonstrated by many cross-sectional and several longitudinal studies. However, whether these changes end in adolescence is not clear. We examined longitudinal white matter maturation using diffusion tensor tractography in 103 healthy subjects aged 5-32 years; each volunteer was scanned at least twice, with 221 total scans. Fractional anisotropy (FA) and mean diffusivity (MD), parameters indicative of factors including myelination and axon density, were assessed in 10 major white matter tracts. All tracts showed significant nonlinear development trajectories for FA and MD. Significant within-subject changes occurred in the vast majority of children and early adolescents, and these changes were mostly complete by late adolescence for projection and commissural tracts. However, association tracts demonstrated postadolescent within-subject maturation of both FA and MD. Diffusion parameter changes were due primarily to decreasing perpendicular diffusivity, although increasing parallel diffusivity contributed to the prolonged increases of FA in association tracts. Volume increased significantly with age for most tracts, and longitudinal measures also demonstrated postadolescent volume increases in several association tracts. As volume increases were not directly associated with either elevated FA or reduced MD between scans, the observed diffusion parameter changes likely reflect microstructural maturation of brain white matter tracts rather than just gross anatomy.
Collapse
|
139
|
Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia 2011; 49:3854-62. [PMID: 22001853 DOI: 10.1016/j.neuropsychologia.2011.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 11/23/2022]
Abstract
Two distinctly different maturational processes - cortical thinning and white matter maturation - take place in the brain as we mature from late childhood to adulthood. To what extent does each contribute to the development of complex cognitive functions like working memory? The independent and joint contributions of cortical thickness of regions of the left fronto-parietal network and the diffusion characteristics of the connecting pathway of the left superior longitudinal fasciculus (SLF) in accounting for verbal working memory performance were investigated, using a predefined regions of interest-approach. 108 healthy participants aged 8-19 years underwent MRI, including anatomical and diffusion tensor imaging (DTI), as well as cognitive testing using a digit span task. Radial diffusivity of the SLF, as well as cortical thickness of supramarginal gyrus and rostral middle frontal cortex, were negatively related to digit span forwards performance, independently of age. Radial diffusivity of the SLF was also negatively related to digit span backwards. A multi-modal analysis showed that cortical thickness and SLF microstructure were complementary in explaining working memory span. Furthermore, SLF microstructure and cortical thickness had different impact on working memory performance during the developmental period, suggesting a complex developmental interplay. The results indicate that cortical and white matter maturation each play unique roles in the development of working memory.
Collapse
|
140
|
Abstract
From their origin as simple techniques primarily used for detecting acute cerebral ischemia, diffusion MR imaging techniques have rapidly evolved into a versatile set of tools that provide the only noninvasive means of characterizing brain microstructure and connectivity, becoming a mainstay of both clinical and investigational brain MR imaging. In this article, the basic principles required for understanding diffusion MR imaging techniques are reviewed with clinical neuroradiologists in mind.
Collapse
Affiliation(s)
- Edward Yang
- Division of Neuroradiology, Department of Radiology, University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
141
|
Imperati D, Colcombe S, Kelly C, Di Martino A, Zhou J, Castellanos FX, Milham MP. Differential development of human brain white matter tracts. PLoS One 2011; 6:e23437. [PMID: 21909351 PMCID: PMC3166135 DOI: 10.1371/journal.pone.0023437] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 07/18/2011] [Indexed: 12/25/2022] Open
Abstract
Neuroscience is increasingly focusing on developmental factors related to human structural and functional connectivity. Unfortunately, to date, diffusion-based imaging approaches have only contributed modestly to these broad objectives, despite the promise of diffusion-based tractography. Here, we report a novel data-driven approach to detect similarities and differences among white matter tracts with respect to their developmental trajectories, using 64-direction diffusion tensor imaging. Specifically, using a cross-sectional sample comprising 144 healthy individuals (7 to 48 years old), we applied k-means cluster analysis to separate white matter voxels based on their age-related trajectories of fractional anisotropy. Optimal solutions included 5-, 9- and 14-clusters. Our results recapitulate well-established tracts (e.g., internal and external capsule, optic radiations, corpus callosum, cingulum bundle, cerebral peduncles) and subdivisions within tracts (e.g., corpus callosum, internal capsule). For all but one tract identified, age-related trajectories were curvilinear (i.e., inverted 'U-shape'), with age-related increases during childhood and adolescence followed by decreases in middle adulthood. Identification of peaks in the trajectories suggests that age-related losses in fractional anisotropy occur as early as 23 years of age, with mean onset at 30 years of age. Our findings demonstrate that data-driven analytic techniques may be fruitfully applied to extant diffusion tensor imaging datasets in normative and neuropsychiatric samples.
Collapse
Affiliation(s)
- Davide Imperati
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Child Study Center, Langone Medical Center, New York University, New York City, New York, United States of America
| | - Stan Colcombe
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - Clare Kelly
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Child Study Center, Langone Medical Center, New York University, New York City, New York, United States of America
| | - Adriana Di Martino
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Child Study Center, Langone Medical Center, New York University, New York City, New York, United States of America
| | - Juan Zhou
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Child Study Center, Langone Medical Center, New York University, New York City, New York, United States of America
| | - F. Xavier Castellanos
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Child Study Center, Langone Medical Center, New York University, New York City, New York, United States of America
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| | - Michael P. Milham
- Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience, Child Study Center, Langone Medical Center, New York University, New York City, New York, United States of America
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, United States of America
| |
Collapse
|
142
|
de Sonneville LMJ, Huijbregts SCJ, Licht R, Sergeant JA, van Spronsen FJ. Pre-attentive processing in children with early and continuously-treated PKU. Effects of concurrent Phe level and lifetime dietary control. J Inherit Metab Dis 2011; 34:953-62. [PMID: 21541727 PMCID: PMC3137776 DOI: 10.1007/s10545-011-9321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/08/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Sixty-four children, aged 7 to 14 years, with early-treated PKU, were compared with control children on visual evoked potential (VEP) amplitudes and latencies and auditory mismatch negativity (MMN) amplitudes. It was further investigated whether indices of dietary control would be associated with these evoked potentials parameters. There were no significant differences between controls and children with PKU in VEP- and MMN-indices. However, higher lifetime Phe levels were, in varying degree and stronger than concurrent Phe level, related to increased N75 amplitudes, suggesting abnormalities in attention, and longer P110 latencies, indicating a reduction in speed of neural processing, possibly due to deficits in myelination or reduced dopamine levels in brain and retina. Similarly, higher lifetime Phe levels and Index of Dietary Control (IDC) were associated with decreased MMN amplitudes, suggesting a reduced ability to respond to stimulus change and poorer triggering of the frontally mediated attention switch. In summary, the present study in children with PKU investigated bottom-up information processing, i.e., triggered by external events, a fundamental prerequisite for the individual's responsiveness to the outside world. Results provide evidence that quality of dietary control may affect the optimal development of these pre-attentive processes, and suggest the existence of windows of vulnerability to Phe exposure.
Collapse
Affiliation(s)
- Leo M J de Sonneville
- Leiden Institute for Brain and Cognition, and Dept. of Clinical Child and Adolescent Studies, Faculty of Social Sciences, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
143
|
Mato S, Victoria Sánchez-Gómez M, Matute C. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia 2011; 58:1739-47. [PMID: 20645411 DOI: 10.1002/glia.21044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heavy marijuana use has been linked to white matter histological alterations. However, the impact of cannabis constituents on oligodendroglial pathophysiology remains poorly understood. Here, we investigated the in vitro effects of cannabidiol, the main nonpsychoactive marijuana component, on oligodendrocytes. Exposure to cannabidiol induced an intracellular Ca(2+) rise in optic nerve oligodendrocytes that was not primarily mediated by entry from the extracellular space, nor by interactions with ryanodine or IP(3) receptors. Application of the mitochondrial protonophore carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 1 μM) completely prevented subsequent cannabidiol-induced Ca(2+) responses. Conversely, the increase in cytosolic Ca(2+) levels elicited by FCCP was reduced after previous exposure to cannabidiol, further suggesting that the mitochondria acts as the source of cannabidiol-evoked Ca(2+) rise in oligodendrocytes. n addition, brief exposure to cannabidiol (100 nM-10 μM) led to a concentration-dependent decrease of oligodendroglial viability that was not prevented by antagonists of CB(1), CB(2), vanilloid, A(2A) or PPARγ receptors, but was instead reduced in the absence of extracellular Ca(2+). The oligodendrotoxic effect of cannabidiol was partially blocked by inhibitors of caspase-3, -8 and -9, PARP-1 and calpains, suggesting the activation of caspase-dependent and -independent death pathways. Cannabidiol also elicited a concentration-dependent alteration of mitochondrial membrane potential, and an increase in reactive oxygen species (ROS) that was reduced in the absence of extracellular Ca(2+). Finally, cannabidiol-induced cytotoxicity was partially prevented by the ROS scavenger trolox. Together, these results suggest that cannabidiol causes intracellular Ca(2+) dysregulation which can lead to oligodendrocytes demise.
Collapse
Affiliation(s)
- Susana Mato
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | | |
Collapse
|
144
|
Lopez-Barroso D, de Diego-Balaguer R, Cunillera T, Camara E, Münte TF, Rodriguez-Fornells A. Language learning under working memory constraints correlates with microstructural differences in the ventral language pathway. ACTA ACUST UNITED AC 2011; 21:2742-50. [PMID: 21527790 DOI: 10.1093/cercor/bhr064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The present study combined behavioral measures and diffusion tensor imaging to investigate the neuroanatomical basis of language learning in relation to phonological working memory (WM). Participants were exposed to simplified artificial languages under WM constraints. The results underscore the role of the rehearsal subcomponent of WM in successful speech segmentation and rule learning. Moreover, when rehearsal was blocked task performance was correlated to the white matter microstructure of the left ventral pathway connecting frontal and temporal language-related cortical areas through the extreme/external capsule. This ventral pathway may therefore play an important additional role in language learning when the main dorsal pathway-dependent rehearsal mechanisms are not available.
Collapse
Affiliation(s)
- Diana Lopez-Barroso
- Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, 08097 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
145
|
Trivedi R, Anuradha H, Agarwal A, Rathore RKS, Prasad KN, Tripathi RP, Gupta RK. Correlation of quantitative diffusion tensor tractography with clinical grades of subacute sclerosing panencephalitis. AJNR Am J Neuroradiol 2011; 32:714-20. [PMID: 21330388 DOI: 10.3174/ajnr.a2380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE SSPE is a persistent infection of the central nervous system caused by the measles virus. The correlation between the clinical staging and conventional MR imaging is usually poor. The purpose of this study was to determine whether tract-specific DTI measures in the major white mater tracts correlate with clinical grades as defined by the Jabbour classification for SSPE. MATERIALS AND METHODS Quantitative DTT was performed on 20 patients with SSPE (mean age, 9 years) and 14 age- and sex-matched controls. All patients were graded on the basis of the Jabbour classification into grade II (n=9), grade III (n=6), and grade IV (n=5) SSPE. The major white matter tracts quantified included the CC, SLF, ILF, CST, CNG, SCP, MCP, ICP, ATR, STR, and PTR. RESULTS Although a successive decrease in mean FA values was observed in all the fiber tracts except for the SCP and ICP, moving from controls to grade IV, a significant inverse correlation between clinical grade and mean FA values was observed only in the splenium (r=-0.908, P<.001), CST (r=-0.663, P=.013), SLF (r=-0.533, P=.050), ILF (r=-0.776, P=.001), STR (r=-0.538, P=.047), and PTR (r=-0.686, P=.035) fibers. No significant correlation of mean MD values from these white matter tracts was observed with clinical grades of the disease. CONCLUSIONS We conclude that the grade of encephalopathy correlates inversely with the tract-specific mean FA values. This information may be valuable in studying the disease progression with time and in assessing the therapeutic response in the future.
Collapse
Affiliation(s)
- R Trivedi
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | | | | | |
Collapse
|
146
|
Crone EA, Ridderinkhof KR. The developing brain: from theory to neuroimaging and back. Dev Cogn Neurosci 2011; 1:101-9. [PMID: 22436435 PMCID: PMC6987573 DOI: 10.1016/j.dcn.2010.12.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 11/24/2022] Open
Abstract
Surprisingly little headway has been made towards understanding how brain growth maps onto mental growth during child development. This review aims at bridging and integrating recent human neuroscientific brain maturation findings with the conceptual thinking of theorists in the behavioural tradition of studying cognitive development. Developmental research in the field of internal control and self-regulation serves as a reference point for understanding the relation between brain maturation and mental growth. Using several recent neuroimaging findings as points in case, we show how a deeper appreciation of structural and functional neural development can be obtained from considering the traditional conceptual frameworks, and vice versa. We conclude that paradigmatic progress in developmental neuroscience can rely more on knowledge from developmental experimental psychology, and that developmental models of cognitive development can be constrained and articulated with more precision on the basis of knowledge of differential structural and functional brain maturation.
Collapse
Affiliation(s)
- Eveline A Crone
- Leiden University, Institute for Psychological Research, The Netherlands.
| | | |
Collapse
|
147
|
Li Y, Ding G, Booth JR, Huang R, Lv Y, Zang Y, He Y, Peng D. Sensitive period for white-matter connectivity of superior temporal cortex in deaf people. Hum Brain Mapp 2011; 33:349-59. [PMID: 21391270 DOI: 10.1002/hbm.21215] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/25/2010] [Accepted: 10/31/2010] [Indexed: 01/18/2023] Open
Abstract
Previous studies have shown that white matter in the deaf brain changes due to hearing loss. However, how white-matter development is influenced by early hearing experience of deaf people is still unknown. Using diffusion tensor imaging and tract-based spatial statistics, we compared white-matter structures among three groups of subjects including 60 congenitally deaf individuals, 36 acquired deaf (AD) individuals, and 38 sex- and age-matched hearing controls (HC). The result showed that the deaf individuals had significantly reduced fractional anisotropy (FA) values in bilateral superior temporal cortex and the splenium of corpus callosum compared to HC. The reduction of FA values in acquired deafness correlated with onset age of deafness, but not the duration of deafness. To explore the underlying mechanism of FA changes in the deaf groups, we further analyzed radial and axial diffusivities and found that (1) the reduced FA values in deaf individuals compared to HC is primarily driven by higher radial diffusivity values and (2) in the AD, higher radial diffusivity was correlated with earlier onset age of deafness, but not the duration of deafness. These findings imply that early sensory experience is critical for the growth of fiber myelination, and anatomical reorganization following auditory deprivation is sensitive to early plasticity in the brain.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
What does diffusion tensor imaging reveal about the brain and cognition in fetal alcohol spectrum disorders? Neuropsychol Rev 2011; 21:133-47. [PMID: 21347880 DOI: 10.1007/s11065-011-9162-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/15/2011] [Indexed: 12/29/2022]
Abstract
Over the past 5 years, Diffusion Tensor Imaging (DTI) has begun to provide new evidence about the effects of prenatal alcohol exposure on white matter development. DTI, which examines microstructural tissue integrity, is sensitive to more subtle white matter abnormalities than traditional volumetric MRI methods. Thus far, the available DTI data suggest that white matter microstructural abnormalities fall on a continuum of severity in Fetal Alcohol Spectrum Disorder (FASD). Abnormalities are prominent in the corpus callosum, but also evident in major anterior-posterior fiber bundles, corticospinal tracts, and cerebellum. These subtle abnormalities are correlated with neurocognitive deficits, especially in processing speed, non-verbal ability, and executive functioning. Future studies using larger samples, increasingly sophisticated DTI methods, and additional functional MRI connectivity measures will better characterize the full range of abnormalities in FASD. Ultimately, these measures may serve as indices of change in future longitudinal studies and in studies of interventions for FASD.
Collapse
|
149
|
Lodygensky GA, Vasung L, Sizonenko SV, Hüppi PS. Neuroimaging of cortical development and brain connectivity in human newborns and animal models. J Anat 2011; 217:418-28. [PMID: 20979587 DOI: 10.1111/j.1469-7580.2010.01280.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Significant human brain growth occurs during the third trimester, with a doubling of whole brain volume and a fourfold increase of cortical gray matter volume. This is also the time period during which cortical folding and gyrification take place. Conditions such as intrauterine growth restriction, prematurity and cerebral white matter injury have been shown to affect brain growth including specific structures such as the hippocampus, with subsequent potentially permanent functional consequences. The use of 3D magnetic resonance imaging (MRI) and dedicated postprocessing tools to measure brain tissue volumes (cerebral cortical gray matter, white matter), surface and sulcation index can elucidate phenotypes associated with early behavior development. The use of diffusion tensor imaging can further help in assessing microstructural changes within the cerebral white matter and the establishment of brain connectivity. Finally, the use of functional MRI and resting-state functional MRI connectivity allows exploration of the impact of adverse conditions on functional brain connectivity in vivo. Results from studies using these methods have for the first time illustrated the structural impact of antenatal conditions and neonatal intensive care on the functional brain deficits observed after premature birth. In order to study the pathophysiology of these adverse conditions, MRI has also been used in conjunction with histology in animal models of injury in the immature brain. Understanding the histological substrate of brain injury seen on MRI provides new insights into the immature brain, mechanisms of injury and their imaging phenotype.
Collapse
|
150
|
Abstract
PURPOSE OF REVIEW There has been a rapid increase in studies using diffusion-weighted magnetic resonance imaging (DWI) to interrogate white matter structure in the human brain. This review considers the evidence that interindividual variation in white matter structure is behaviourally relevant. RECENT FINDINGS Maturation or deterioration of white matter throughout the lifespan relates to development or decline in specific cognitive skills. In addition, age-independent relationships between white matter anatomy and ability are found in healthy adult populations. Such relationships may in part be determined by genetics but can also be driven by experience. SUMMARY Individual differences in white matter anatomy, visible using DWI, have consequences for behaviour. The discovery of such relationships highlights the potential for identification of imaging biomarkers that could predict how well patients will respond to specific interventions.
Collapse
|