101
|
Berendzen KM, Manoli DS. Rethinking the Architecture of Attachment: New Insights into the Role for Oxytocin Signaling. AFFECTIVE SCIENCE 2022; 3:734-748. [PMID: 36519145 PMCID: PMC9743890 DOI: 10.1007/s42761-022-00142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Social attachments, the enduring bonds between individuals and groups, are essential to health and well-being. The appropriate formation and maintenance of social relationships depend upon a number of affective processes, including stress regulation, motivation, reward, as well as reciprocal interactions necessary for evaluating the affective state of others. A genetic, molecular, and neural circuit level understanding of social attachments therefore provides a powerful substrate for probing the affective processes associated with social behaviors. Socially monogamous species form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment. Now, molecular genetic tools permit manipulations in monogamous species. Studies using these tools reveal new insights into the genetic and neuroendocrine factors that design and control the neural architecture underlying attachment behavior. We focus this discussion on the prairie vole and oxytocinergic signaling in this and related species as a model of attachment behavior that has been studied in the context of genetic and pharmacological manipulations. We consider developmental processes that impact the demonstration of bonding behavior across genetic backgrounds, the modularity of mechanisms underlying bonding behaviors, and the distributed circuitry supporting these behaviors. Incorporating such theoretical considerations when interpreting reverse genetic studies in the context of the rich ethological and pharmacological data collected in monogamous species provides an important framework for studies of attachment behavior in both animal models and studies of human relationships.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158 USA
| |
Collapse
|
102
|
Girven KS, Mangieri L, Bruchas MR. Emerging approaches for decoding neuropeptide transmission. Trends Neurosci 2022; 45:899-912. [PMID: 36257845 PMCID: PMC9671847 DOI: 10.1016/j.tins.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Neuropeptides produce robust effects on behavior across species, and recent research has benefited from advances in high-resolution techniques to investigate peptidergic transmission and expression throughout the brain in model systems. Neuropeptides exhibit distinct characteristics which includes their post-translational processing, release from dense core vesicles, and ability to activate G-protein-coupled receptors (GPCRs). These complex properties have driven the need for development of specialized tools that can sense neuropeptide expression, cell activity, and release. Current research has focused on isolating when and how neuropeptide transmission occurs, as well as the conditions in which neuropeptides directly mediate physiological and adaptive behavioral states. Here we describe the current technological landscape in which the field is operating to decode key questions regarding these dynamic neuromodulators.
Collapse
Affiliation(s)
- Kasey S Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Leandra Mangieri
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; University of Washington Center for the Neurobiology of Addiction, Pain, and Emotion, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
103
|
Skatchkovsky N, Jang H, Simeone O. Bayesian continual learning via spiking neural networks. Front Comput Neurosci 2022; 16:1037976. [PMID: 36465962 PMCID: PMC9708898 DOI: 10.3389/fncom.2022.1037976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Among the main features of biological intelligence are energy efficiency, capacity for continual adaptation, and risk management via uncertainty quantification. Neuromorphic engineering has been thus far mostly driven by the goal of implementing energy-efficient machines that take inspiration from the time-based computing paradigm of biological brains. In this paper, we take steps toward the design of neuromorphic systems that are capable of adaptation to changing learning tasks, while producing well-calibrated uncertainty quantification estimates. To this end, we derive online learning rules for spiking neural networks (SNNs) within a Bayesian continual learning framework. In it, each synaptic weight is represented by parameters that quantify the current epistemic uncertainty resulting from prior knowledge and observed data. The proposed online rules update the distribution parameters in a streaming fashion as data are observed. We instantiate the proposed approach for both real-valued and binary synaptic weights. Experimental results using Intel's Lava platform show the merits of Bayesian over frequentist learning in terms of capacity for adaptation and uncertainty quantification.
Collapse
Affiliation(s)
- Nicolas Skatchkovsky
- King's Communication, Learning and Information Processing (KCLIP) Lab, Department of Engineering, King's College London, London, United Kingdom
| | - Hyeryung Jang
- Department of Artificial Intelligence, Dongguk University, Seoul, South Korea
| | - Osvaldo Simeone
- King's Communication, Learning and Information Processing (KCLIP) Lab, Department of Engineering, King's College London, London, United Kingdom
| |
Collapse
|
104
|
Lu Y, Ahamed T, Mulcahy B, Meng J, Witvliet D, Guan SA, Holmyard D, Hung W, Wen Q, Chisholm AD, Samuel ADT, Zhen M. Extrasynaptic signaling enables an asymmetric juvenile motor circuit to produce symmetric undulation. Curr Biol 2022; 32:4631-4644.e5. [PMID: 36182701 PMCID: PMC9643663 DOI: 10.1016/j.cub.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 01/28/2023]
Abstract
In many animals, there is a direct correspondence between the motor patterns that drive locomotion and the motor neuron innervation. For example, the adult C. elegans moves with symmetric and alternating dorsal-ventral bending waves arising from symmetric motor neuron input onto the dorsal and ventral muscles. In contrast to the adult, the C. elegans motor circuit at the juvenile larval stage has asymmetric wiring between motor neurons and muscles but still generates adult-like bending waves with dorsal-ventral symmetry. We show that in the juvenile circuit, wiring between excitatory and inhibitory motor neurons coordinates the contraction of dorsal muscles with relaxation of ventral muscles, producing dorsal bends. However, ventral bending is not driven by analogous wiring. Instead, ventral muscles are excited uniformly by premotor interneurons through extrasynaptic signaling. Ventral bends occur in anti-phasic entrainment to activity of the same motor neurons that drive dorsal bends. During maturation, the juvenile motor circuit is replaced by two motor subcircuits that separately drive dorsal and ventral bending. Modeling reveals that the juvenile's immature motor circuit is an adequate solution to generate adult-like dorsal-ventral bending before the animal matures. Developmental rewiring between functionally degenerate circuit solutions, which both generate symmetric bending patterns, minimizes behavioral disruption across maturation.
Collapse
Affiliation(s)
- Yangning Lu
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tosif Ahamed
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jun Meng
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Sihui Asuka Guan
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Quan Wen
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; School of Life Sciences, University of Science and Technology, Hefei, Anhui 230027, China
| | - Andrew D Chisholm
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aravinthan D T Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mei Zhen
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
105
|
Oxytocin-Modulated Ion Channel Ensemble Controls Depolarization, Integration and Burst Firing in CA2 Pyramidal Neurons. J Neurosci 2022; 42:7707-7720. [PMID: 36414006 PMCID: PMC9581561 DOI: 10.1523/jneurosci.0921-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Oxytocin (OXT) and OXT receptor (OXTR)-mediated signaling control excitability, firing patterns, and plasticity of hippocampal CA2 pyramidal neurons, which are pivotal in generation of brain oscillations and social memory. Nonetheless, the ionic mechanisms underlying OXTR-induced effects in CA2 neurons are not fully understood. Using slice physiology in a reporter mouse line and interleaved current-clamp and voltage-clamp experiments, we systematically identified the ion channels modulated by OXT signaling in CA2 pyramidal cells (PYRs) in mice of both sexes and explored how changes in channel conductance support altered electrical activity. Activation of OXTRs inhibits an outward potassium current mediated by inward rectifier potassium channels (I Kir) and thus favoring membrane depolarization. Concomitantly, OXT signaling also diminishes inward current mediated by hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels (I h), providing a hyperpolarizing drive. The combined reduction in both I Kir and I h synergistically elevate the membrane resistance and favor dendritic integration while the membrane potential is restrained from quickly depolarizing from rest. As a result, the responsiveness of CA2 PYRs to synaptic inputs is highly sharpened during OXTR activation. Unexpectedly, OXTR signaling also strongly enhances a tetrodotoxin-resistant (TTX-R), voltage-gated sodium current that helps drive the membrane potential to spike threshold and thus promote rhythmic firing. This novel array of OXTR-stimulated ionic mechanisms operates in close coordination and underpins OXT-induced burst firing, a key step in CA2 PYRs' contribution to hippocampal information processing and broader influence on brain circuitry. Our study deepens our understanding of underpinnings of OXT-promoted social memory and general neuropeptidergic control of cognitive states.SIGNIFICANCE STATEMENT Oxytocin (OXT) plays key roles in reproduction, parenting and social and emotional behavior, and deficiency in OXT receptor (OXTR) signaling may contribute to neuropsychiatric disorders. We identified a novel array of OXTR-modulated ion channels that operate in close coordination to retune hippocampal CA2 pyramidal neurons, enhancing responsiveness to synaptic inputs and sculpting output. OXTR signaling inhibits both potassium conductance (I Kir) and mixed cation conductance (I h), engaging opposing influences on membrane potential, stabilizing it while synergistically elevating membrane resistance and electrotonic spread. OXT signaling also facilitates a tetrodotoxin-resistant (TTX-R) Na+ current, not previously described in hippocampus (HP), engaged on further depolarization. This TTX-R current lowers the spike threshold and supports rhythmic depolarization and burst firing, a potent driver of downstream circuitry.
Collapse
|
106
|
Prakash SS, Mayo JP, Ray S. Decoding of attentional state using local field potentials. Curr Opin Neurobiol 2022; 76:102589. [PMID: 35751949 PMCID: PMC9840850 DOI: 10.1016/j.conb.2022.102589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023]
Abstract
We review recent efforts to decode visual spatial attention from different types of brain signals, such as spikes and local field potentials (LFPs). Combining signals from more electrodes improves decoding, but the pattern of improvement varies considerably depending on the signal as well as the task (for example, decoding of sensory stimulus/motor intention versus location of attention). We argue that this pattern of results conveys important information not only about the usefulness of a particular brain signal for decoding attention, but also about the spatial scale over which attention operates in the brain. The spatial scale, in turn, likely depends on the extent of underlying mechanisms such as normalization, gain control via excitation-inhibition interactions, and neuromodulatory regulation of attention.
Collapse
Affiliation(s)
- Surya S. Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - J. Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
107
|
Abstract
Progress in neuroimmunology established that the nervous and the immune systems are two functionally related physiological systems. Unique sensory and immune receptors enable them to control interactions of the organism with the inner and the outer worlds. Both systems undergo an experience-driven selection process during their ontogeny. They share the same mediators/neurotransmitters and use synapses for intercellular communication. They keep a memory of previous experiences. Immune cells can affect nervous cells, nervous cells can affect immune cells, and they regulate each other. I however argue that the two systems differ by three major points: 1) Unlike the nervous system, the immune system has a loose anatomical structure, in which molecular and cellular events mostly occur at random; 2) The immune system can respond to molecules of the living world whereas the nervous system can respond to phenomena of the physical world; 3) Responses of the immune system act both on the organism and on the stimulus that triggered the response, whereas responses of the nervous system act on the organism only. The nervous and the immune systems therefore appear as two complementary systems of relations that closely work together, and whose reactivities are well-suited to deal with physical and biological stimuli, respectively. Its ability both to adapt the organism to the living world and to adapt the living world to the organism endows the immune system with powerful adaptive properties that enable the organism to live in peace with itself and with other living beings, whether pathogens or commensals.
Collapse
Affiliation(s)
- Marc Daëron
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université-CNRS-Inserm, Marseille, France
- Institut Pasteur-Université Paris Cité, Paris, France
- Institut d’histoire et de philosophie des sciences et des techniques, Université Paris 1 Panthéon Sorbonne-CNRS, Paris, France
- *Correspondence: Marc Daëron,
| |
Collapse
|
108
|
Wagle M, Zarei M, Lovett-Barron M, Poston KT, Xu J, Ramey V, Pollard KS, Prober DA, Schulkin J, Deisseroth K, Guo S. Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Mol Psychiatry 2022; 27:3777-3793. [PMID: 35484242 PMCID: PMC9613822 DOI: 10.1038/s41380-022-01567-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Salient sensory stimuli are perceived by the brain, which guides both the timing and outcome of behaviors in a context-dependent manner. Light is such a stimulus, which is used in treating mood disorders often associated with a dysregulated hypothalamic-pituitary-adrenal stress axis. Relationships between the emotional valence of light and the hypothalamus, and how they interact to exert brain-wide impacts remain unclear. Employing larval zebrafish with analogous hypothalamic systems to mammals, we show in free-swimming animals that hypothalamic corticotropin releasing factor (CRFHy) neurons promote dark avoidance, and such role is not shared by other hypothalamic peptidergic neurons. Single-neuron projection analyses uncover processes extended by individual CRFHy neurons to multiple targets including sensorimotor and decision-making areas. In vivo calcium imaging uncovers a complex and heterogeneous response of individual CRFHy neurons to the light or dark stimulus, with a reduced overall sum of CRF neuronal activity in the presence of light. Brain-wide calcium imaging under alternating light/dark stimuli further identifies distinct and distributed photic response neuronal types. CRFHy neuronal ablation increases an overall representation of light in the brain and broadly enhances the functional connectivity associated with an exploratory brain state. These findings delineate brain-wide photic perception, uncover a previously unknown role of CRFHy neurons in regulating the perception and emotional valence of light, and suggest that light therapy may alleviate mood disorders through reducing an overall sum of CRF neuronal activity.
Collapse
Affiliation(s)
- Mahendra Wagle
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Mahdi Zarei
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kristina Tyler Poston
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA
| | - Jin Xu
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Vince Ramey
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Invitae Inc., San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - David A Prober
- Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jay Schulkin
- Department of Obstetrics & Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94143-2811, USA.
- Programs in Human Genetics and Biological Sciences, Kavli Institute of Fundamental Neuroscience, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Aging Research Institute, University of California, San Francisco, CA, 94143-2811, USA.
| |
Collapse
|
109
|
Padilla-Coreano N, Tye KM, Zelikowsky M. Dynamic influences on the neural encoding of social valence. Nat Rev Neurosci 2022; 23:535-550. [PMID: 35831442 PMCID: PMC9997616 DOI: 10.1038/s41583-022-00609-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Social signals can serve as potent emotional triggers with powerful impacts on processes from cognition to valence processing. How are social signals dynamically and flexibly associated with positive or negative valence? How do our past social experiences and present social standing shape our motivation to seek or avoid social contact? We discuss a model in which social attributes, social history, social memory, social rank and social isolation can flexibly influence valence assignment to social stimuli, termed here as 'social valence'. We emphasize how the brain encodes each of these four factors and highlight the neural circuits and mechanisms that play a part in the perception of social attributes, social memory and social rank, as well as how these factors affect valence systems associated with social stimuli. We highlight the impact of social isolation, dissecting the neural and behavioural mechanisms that mediate the effects of acute versus prolonged periods of social isolation. Importantly, we discuss conceptual models that may account for the potential shift in valence of social stimuli from positive to negative as the period of isolation extends in time. Collectively, this Review identifies factors that control the formation and attribution of social valence - integrating diverse areas of research and emphasizing their unique contributions to the categorization of social stimuli as positive or negative.
Collapse
Affiliation(s)
- Nancy Padilla-Coreano
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kay M Tye
- HHMI-Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
110
|
Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the circadian timing of sleep. Proc Natl Acad Sci U S A 2022; 119:e2206066119. [PMID: 35969763 PMCID: PMC9407311 DOI: 10.1073/pnas.2206066119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuromodulation is essential for adaptive animal behaviors among other physiological processes. It is essential to reliably manipulate neuromodulator pathways to understand their functions in animal physiology. In this study, we generated a CRISPR-Cas9-based guide library to target every G-Protein Coupled Receptor (GPCR) in the Drosophila genome and applied it to the well-studied clock neuron network. Notably, these GPCRs are highly enriched and differentially expressed in this small network, making it an ideal candidate to investigate their function. We cell-type specifically mutated GPCRs highly efficiently with no background gene editing detected. Applying this strategy to a specific node of the clock network revealed a role for dopamine in prolonging daytime sleep, suggesting network-specific functions of dopamine receptors in sleep-wake regulation. The metronome-like circadian regulation of sleep timing must still adapt to an uncertain environment. Recent studies in Drosophila indicate that neuromodulation not only plays a key role in clock neuron synchronization but also affects interactions between the clock network and brain sleep centers. We show here that the targets of neuromodulators, G Protein Coupled Receptors (GPCRs), are highly enriched in the fly brain circadian clock network. Single-cell sequencing indicates that they are not only enriched but also differentially expressed and contribute to clock neuron identity. We generated a comprehensive guide library to mutagenize individual GPCRs in specific neurons and verified the strategy by introducing a targeted sequencing approach. Combined with a behavioral screen, the mutagenesis strategy revealed a role of dopamine in sleep regulation by identifying two dopamine receptors and a clock neuron subpopulation that gate the timing of sleep.
Collapse
|
111
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
112
|
Suryadi, Cheng RK, Birkett E, Jesuthasan S, Chew LY. Dynamics and potential significance of spontaneous activity in the habenula. eNeuro 2022; 9:ENEURO.0287-21.2022. [PMID: 35981869 PMCID: PMC9450562 DOI: 10.1523/eneuro.0287-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
The habenula is an evolutionarily conserved structure of the vertebrate brain that is essential for behavioural flexibility and mood control. It is spontaneously active and is able to access diverse states when the animal is exposed to sensory stimuli. Here we investigate the dynamics of habenula spontaneous activity, to gain insight into how sensitivity is optimized. Two-photon calcium imaging was performed in resting zebrafish larvae at single cell resolution. An analysis of avalanches of inferred spikes suggests that the habenula is subcritical. Activity had low covariance and a small mean, arguing against dynamic criticality. A multiple regression estimator of autocorrelation time suggests that the habenula is neither fully asynchronous nor perfectly critical, but is reverberating. This pattern of dynamics may enable integration of information and high flexibility in the tuning of network properties, thus providing a potential mechanism for the optimal responses to a changing environment.Significance StatementSpontaneous activity in neurons shapes the response to stimuli. One structure with a high level of spontaneous neuronal activity is the habenula, a regulator of broadly acting neuromodulators involved in mood and learning. How does this activity influence habenula function? We show here that the habenula of a resting animal is near criticality, in a state termed reverberation. This pattern of dynamics is consistent with high sensitivity and flexibility, and may enable the habenula to respond optimally to a wide range of stimuli.
Collapse
Affiliation(s)
- Suryadi
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Elliot Birkett
- Institute of Molecular and Cell Biology, Singapore 138673
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Institute of Molecular and Cell Biology, Singapore 138673
| | - Lock Yue Chew
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Complexity Institute, Nanyang Technological University, Singapore 637335
| |
Collapse
|
113
|
Marder E, Kedia S, Morozova EO. New insights from small rhythmic circuits. Curr Opin Neurobiol 2022; 76:102610. [PMID: 35986971 DOI: 10.1016/j.conb.2022.102610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Small rhythmic circuits, such as those found in invertebrates, have provided fundamental insights into how circuit dynamics depend on individual neuronal and synaptic properties. Degenerate circuits are those with different network parameters and similar behavior. New work on degenerate circuits and their modulation illustrates some of the rules that help maintain stable and robust circuit function despite environmental perturbations. Advances in neuropeptide isolation and identification provide enhanced understanding of the neuromodulation of circuits for behavior. The advent of molecular studies of mRNA expression provides new insight into animal-to-animal variability and the homeostatic regulation of excitability in neurons and networks.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Sonal Kedia
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA. https://twitter.com/Sonal_Kedia
| | - Ekaterina O Morozova
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
114
|
Chai CM, Park H, Sternberg PW. Brain-wide bidirectional neuropeptide modulation of individual neuron classes regulates a developmental decision. Curr Biol 2022; 32:3365-3373.e6. [PMID: 35679871 PMCID: PMC10588560 DOI: 10.1016/j.cub.2022.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Secreted neuromodulators, like biogenic amines and neuropeptides, can reconfigure circuit functions both locally and at a distance and establish global brain states that alter circuit outputs over prolonged timescales.1-3 Despite their diversity and ubiquitous presence, many studies on neuromodulation tend to focus on dissecting the function and site of action of individual neuropeptides. Here, we take a different approach by conducting a systems-level investigation of neuropeptide receptor signaling function and cell-type-specific distribution in the context of the Caenorhabditis elegans diapause entry developmental decision. C. elegans diapause entry is controlled by sensory perception of external factors and is regulated by neuropeptide signaling.4-8 We performed a comprehensive functional screen of neuropeptide receptor mutants for pheromone-induced diapause entry phenotypes and integrated these results with published C. elegans single-cell RNA-seq data to reveal that almost all neuron classes expressed at least one receptor with a role in diapause entry.9 Our receptor expression analysis also identified four highly modulated neural hubs with no previously reported roles in diapause entry that are distributed throughout the animal's body, possibly as a means of synchronizing the whole-organism transition into the appropriate larval morph. Furthermore, most neuron classes expressed unique neuropeptide receptor repertoires that have opposing effects on the diapause entry decision. We propose that brain-wide antagonistic neuropeptide modulation of individual neuron classes by distinct neuropeptide receptor subsets could serve as a strategy against overmodulation and that this motif might generalize to other decision-making paradigms in other organisms.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| | - Heenam Park
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
115
|
Athira A, Dondorp D, Rudolf J, Peytral O, Chatzigeorgiou M. Comprehensive analysis of locomotion dynamics in the protochordate Ciona intestinalis reveals how neuromodulators flexibly shape its behavioral repertoire. PLoS Biol 2022; 20:e3001744. [PMID: 35925898 PMCID: PMC9352054 DOI: 10.1371/journal.pbio.3001744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Vertebrate nervous systems can generate a remarkable diversity of behaviors. However, our understanding of how behaviors may have evolved in the chordate lineage is limited by the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we combine high-throughput video acquisition with pharmacological perturbations of bioamine signaling to systematically reveal the global structure of the motor behavioral repertoire in the Ciona intestinalis larvae. Most of Ciona’s postural variance can be captured by 6 basic shapes, which we term “eigencionas.” Motif analysis of postural time series revealed numerous stereotyped behavioral maneuvers including “startle-like” and “beat-and-glide.” Employing computational modeling of swimming dynamics and spatiotemporal embedding of postural features revealed that behavioral differences are generated at the levels of motor modules and the transitions between, which may in part be modulated by bioamines. Finally, we show that flexible motor module usage gives rise to diverse behaviors in response to different light stimuli. Vertebrate nervous systems can generate a remarkable diversity of behaviors, but how did these evolve in the chordate lineage? A study of the protochordate Ciona intestinalis reveals novel insights into how a simple chordate brain uses neuromodulators to control its behavioral repertoire.
Collapse
Affiliation(s)
- Athira Athira
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Daniel Dondorp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Jerneja Rudolf
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Olivia Peytral
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Marios Chatzigeorgiou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
116
|
Mondal Y, Pena RFO, Rotstein HG. Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales. J Comput Neurosci 2022; 50:395-429. [DOI: 10.1007/s10827-022-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 10/16/2022]
|
117
|
Debnath A, Williams PDE, Bamber BA. Reduced Ca2+ transient amplitudes may signify increased or decreased depolarization depending on the neuromodulatory signaling pathway. Front Neurosci 2022; 16:931328. [PMID: 35937887 PMCID: PMC9354622 DOI: 10.3389/fnins.2022.931328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromodulators regulate neuronal excitability and bias neural circuit outputs. Optical recording of neuronal Ca2+ transients is a powerful approach to study the impact of neuromodulators on neural circuit dynamics. We are investigating the polymodal nociceptor ASH in Caenorhabditis elegans to better understand the relationship between neuronal excitability and optically recorded Ca2+ transients. ASHs depolarize in response to the aversive olfactory stimulus 1-octanol (1-oct) with a concomitant rise in somal Ca2+, stimulating an aversive locomotory response. Serotonin (5-HT) potentiates 1-oct avoidance through Gαq signaling, which inhibits L-type voltage-gated Ca2+ channels in ASH. Although Ca2+ signals in the ASH soma decrease, depolarization amplitudes increase because Ca2+ mediates inhibitory feedback control of membrane potential in this context. Here, we investigate octopamine (OA) signaling in ASH to assess whether this negative correlation between somal Ca2+ and depolarization amplitudes is a general phenomenon, or characteristic of certain neuromodulatory pathways. Like 5-HT, OA reduces somal Ca2+ transient amplitudes in ASH neurons. However, OA antagonizes 5-HT modulation of 1-oct avoidance behavior, suggesting that OA may signal through a different pathway. We further show that the pathway for OA diminution of ASH somal Ca2+ consists of the OCTR-1 receptor, the Go heterotrimeric G-protein, and the G-protein activated inwardly rectifying channels IRK-2 and IRK-3, and this pathway reduces depolarization amplitudes in parallel with somal Ca2+ transient amplitudes. Therefore, even within a single neuron, somal Ca2+ signal reduction may indicate either increased or decreased depolarization amplitude, depending on which neuromodulatory signaling pathways are activated, underscoring the need for careful interpretation of Ca2+ imaging data in neuromodulatory studies.
Collapse
Affiliation(s)
- Arunima Debnath
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Paul D. E. Williams
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bruce A. Bamber
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Bruce A. Bamber,
| |
Collapse
|
118
|
Schneider AC, Itani O, Bucher D, Nadim F. Neuromodulation reduces interindividual variability of neuronal output. eNeuro 2022; 9:ENEURO.0166-22.2022. [PMID: 35853725 PMCID: PMC9361792 DOI: 10.1523/eneuro.0166-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
In similar states, neural circuits produce similar outputs across individuals despite substantial interindividual variability in neuronal ionic conductances and synapses. Circuit states are largely shaped by neuromodulators that tune ionic conductances. It is therefore possible that, in addition to producing flexible circuit output, neuromodulators also contribute to output similarity despite varying ion channel expression. We studied whether neuromodulation at saturating concentrations can increase the output similarity of a single identified neuron across individual animals. Using the LP neuron of the crab stomatogastric ganglion (STG), we compared the variability of f-I curves and rebound properties in the presence of neuropeptides. The two neuropeptides we used converge to activate the same target current, which increases neuronal excitability. Output variability was lower in the presence of the neuropeptides, regardless of whether the neuropeptides significantly changed the mean of the corresponding parameter or not. However, the addition of the second neuropeptide did not add further to the reduction of variability. With a family of computational LP-like models, we explored how increased excitability and target variability contribute to output similarity and found two mechanisms: Saturation of the responses and a differential increase in baseline activity. Saturation alone can reduce the interindividual variability only if the population shares a similar ceiling for the responses. In contrast, reduction of variability due to the increase in baseline activity is independent of ceiling effects.Significance StatementThe activity of single neurons and neural circuits can be very similar across individuals even though the ionic currents underlying activity are variable. The mechanisms that compensate for the underlying variability and promote output similarity are poorly understood but may involve neuromodulation. Using an identified neuron, we show that neuropeptide modulation of excitability can reduce interindividual variability of response properties at a single-neuron level in two ways. First, the neuropeptide increases baseline excitability in a differential manner, resulting in similar response thresholds. Second, the neuropeptide increases excitability towards a shared saturation level, promoting similar maximal firing rates across individuals. Such tuning of neuronal excitability could be an important mechanism compensating for interindividual variability of ion channel expression.
Collapse
Affiliation(s)
- Anna C Schneider
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| | - Omar Itani
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102
| |
Collapse
|
119
|
Gómez-Ocádiz R, Trippa M, Zhang CL, Posani L, Cocco S, Monasson R, Schmidt-Hieber C. A synaptic signal for novelty processing in the hippocampus. Nat Commun 2022; 13:4122. [PMID: 35840595 PMCID: PMC9287442 DOI: 10.1038/s41467-022-31775-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/04/2022] [Indexed: 12/25/2022] Open
Abstract
Episodic memory formation and recall are complementary processes that rely on opposing neuronal computations in the hippocampus. How this conflict is resolved in hippocampal circuits is unclear. To address this question, we obtained in vivo whole-cell patch-clamp recordings from dentate gyrus granule cells in head-fixed mice trained to explore and distinguish between familiar and novel virtual environments. We find that granule cells consistently show a small transient depolarisation upon transition to a novel environment. This synaptic novelty signal is sensitive to local application of atropine, indicating that it depends on metabotropic acetylcholine receptors. A computational model suggests that the synaptic response to novelty may bias granule cell population activity, which can drive downstream attractor networks to a new state, favouring the switch from recall to new memory formation when faced with novelty. Such a novelty-driven switch may enable flexible encoding of new memories while preserving stable retrieval of familiar ones. Memory formation and recall are complementary processes within the hippocampus. Here the authors demonstrate a synaptic signal of novelty in the hippocampus and provide a computational framework for how such a novelty-driven switch may enable flexible encoding of new memories while preserving stable retrieval of familiar ones.
Collapse
Affiliation(s)
- Ruy Gómez-Ocádiz
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France.,Sorbonne Université, Collège Doctoral, F-75005, Paris, France.,Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Massimiliano Trippa
- Laboratory of Physics of the École Normale Supérieure, PSL Research and CNRS UMR 8023, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Chun-Lei Zhang
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
| | - Lorenzo Posani
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France.,Center for Theoretical Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Simona Cocco
- Laboratory of Physics of the École Normale Supérieure, PSL Research and CNRS UMR 8023, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Rémi Monasson
- Laboratory of Physics of the École Normale Supérieure, PSL Research and CNRS UMR 8023, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Christoph Schmidt-Hieber
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France.
| |
Collapse
|
120
|
Abstract
Breathing is a vital rhythmic motor behavior with a surprisingly broad influence on the brain and body. The apparent simplicity of breathing belies a complex neural control system, the breathing central pattern generator (bCPG), that exhibits diverse operational modes to regulate gas exchange and coordinate breathing with an array of behaviors. In this review, we focus on selected advances in our understanding of the bCPG. At the core of the bCPG is the preBötzinger complex (preBötC), which drives inspiratory rhythm via an unexpectedly sophisticated emergent mechanism. Synchronization dynamics underlying preBötC rhythmogenesis imbue the system with robustness and lability. These dynamics are modulated by inputs from throughout the brain and generate rhythmic, patterned activity that is widely distributed. The connectivity and an emerging literature support a link between breathing, emotion, and cognition that is becoming experimentally tractable. These advances bring great potential for elucidating function and dysfunction in breathing and other mammalian neural circuits.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, California, USA;
| | - Kaiwen Kam
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | | | - Jack L Feldman
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
121
|
Taylor NL, D'Souza A, Munn BR, Lv J, Zaborszky L, Müller EJ, Wainstein G, Calamante F, Shine JM. Structural connections between the noradrenergic and cholinergic system shape the dynamics of functional brain networks. Neuroimage 2022; 260:119455. [PMID: 35809888 PMCID: PMC10114918 DOI: 10.1016/j.neuroimage.2022.119455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Complex cognitive abilities are thought to arise from the ability of the brain to adaptively reconfigure its internal network structure as a function of task demands. Recent work has suggested that this inherent flexibility may in part be conferred by the widespread projections of the ascending arousal systems. While the different components of the ascending arousal system are often studied in isolation, there are anatomical connections between neuromodulatory hubs that we hypothesise are crucial for mediating key features of adaptive network dynamics, such as the balance between integration and segregation. To test this hypothesis, we estimated the strength of structural connectivity between key hubs of the noradrenergic and cholinergic arousal systems (the locus coeruleus [LC] and nucleus basalis of Meynert [nbM], respectively). We then asked whether the strength of structural LC and nbM inter-connectivity was related to individual differences in the emergent, dynamical signatures of functional integration measured from resting state fMRI data, such as network and attractor topography. We observed a significant positive relationship between the strength of white-matter connections between the LC and nbM and the extent of network-level integration following BOLD signal peaks in LC relative to nbM activity. In addition, individuals with denser white-matter streamlines interconnecting neuromodulatory hubs also demonstrated a heightened ability to shift to novel brain states. These results suggest that individuals with stronger structural connectivity between the noradrenergic and cholinergic systems have a greater capacity to mediate the flexible network dynamics required to support complex, adaptive behaviour. Furthermore, our results highlight the underlying static features of the neuromodulatory hubs can impose some constraints on the dynamic features of the brain.
Collapse
Affiliation(s)
- N L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - A D'Souza
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Sydney School of Medicine, Central Clinical School, The University of Sydney, Australia
| | - B R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - J Lv
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - L Zaborszky
- School of Arts and Sciences, Rutgers University, New Jersey, USA
| | - E J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - G Wainstein
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - F Calamante
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia; Sydney Imaging, The University of Sydney, Sydney, Australia
| | - J M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
122
|
Stimulus presentation can enhance spiking irregularity across subcortical and cortical regions. PLoS Comput Biol 2022; 18:e1010256. [PMID: 35789328 PMCID: PMC9286274 DOI: 10.1371/journal.pcbi.1010256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/15/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Stimulus presentation is believed to quench neural response variability as measured by fano-factor (FF). However, the relative contributions of within-trial spike irregularity and trial-to-trial rate variability to FF fluctuations have remained elusive. Here, we introduce a principled approach for accurate estimation of spiking irregularity and rate variability in time for doubly stochastic point processes. Consistent with previous evidence, analysis showed stimulus-induced reduction in rate variability across multiple cortical and subcortical areas. However, unlike what was previously thought, spiking irregularity, was not constant in time but could be enhanced due to factors such as bursting abating the quench in the post-stimulus FF. Simulations confirmed plausibility of a time varying spiking irregularity arising from within and between pool correlations of excitatory and inhibitory neural inputs. By accurate parsing of neural variability, our approach reveals previously unnoticed changes in neural response variability and constrains candidate mechanisms that give rise to observed rate variability and spiking irregularity within brain regions. Mounting evidence suggest neural response variability to be important for understanding and constraining the underlying neural mechanisms in a given brain area. Here, by analyzing responses across multiple brain areas and by using a principled method for parsing variability components into rate variability and spiking irregularity, we show that unlike what was previously thought, event-related quench of variability is not a brain-wide phenomenon and that point process variability and nonrenewal bursting can enhance post-stimulus spiking irregularity across certain cortical and subcortical regions. We propose possible presynaptic mechanisms that may underlie the observed heterogeneities in spiking variability across the brain.
Collapse
|
123
|
Bechtel W. Reductionistic Explanations of Cognitive Information Processing: Bottoming Out in Neurochemistry. Front Integr Neurosci 2022; 16:944303. [PMID: 35859708 PMCID: PMC9292585 DOI: 10.3389/fnint.2022.944303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
A common motivation for engaging in reductionistic research is to ground explanations in the most basic processes operative in the mechanism responsible for the phenomenon to be explained. I argue for a different motivation—directing inquiry to the level of organization at which the components of a mechanism enable the work that results in the phenomenon. In the context of reductionistic accounts of cognitive information processing I argue that this requires going down to a level that is largely overlooked in these discussions, that of chemistry. In discussions of cognitive information processing, the brain is often viewed as essentially an electrical switching system and many theorists treat electrical switching as the level at which mechanistic explanations should bottom out. I argue, drawing on examples of peptidergic and monoaminergic neurons, that how information is processed is determined by the specific chemical reactions occurring in individual neurons. Accordingly, mechanistic explanations of cognitive information processing need to take into account the chemical reactions involved.
Collapse
|
124
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
125
|
A. Samara M, Oikonomou GD, Trompoukis G, Madarou G, Adamopoulou M, Papatheodoropoulos C. Septotemporal variation in modulation of synaptic transmission, paired-pulse ratio and frequency facilitation/depression by adenosine and GABA B receptors in the rat hippocampus. Brain Neurosci Adv 2022; 6:23982128221106315. [PMID: 35782711 PMCID: PMC9240614 DOI: 10.1177/23982128221106315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Short-term synaptic plasticity represents a fundamental mechanism in
neural information processing and is regulated by neuromodulators.
Here, using field recordings from the CA1 region of adult rat
hippocampal slices, we show that excitatory synaptic transmission is
suppressed by strong but not moderate activation of adenosine
A1 receptors by
2-Chloro-N6-cyclopentyladenosine (CCPA) more in the dorsal
than the ventral hippocampus; in contrast, both mild and strong
activation of GABAB receptors by baclofen (1 μM, 10 μM)
suppress synaptic transmission more in the ventral than the dorsal
hippocampus. Using a 10-pulse stimulation train of variable frequency,
we found that CCPA modulates short-term synaptic plasticity
independently of the suppression of synaptic transmission in both
segments of the hippocampus and at stimulation frequencies greater
than 10 Hz. However, specifically regarding the paired-pulse ratio
(PPR) and frequency facilitation/depression (FF/D) we found
significant drug action before but not after adjusting conditioning
responses to control levels. Activation of GABABRs by
baclofen suppressed synaptic transmission more in the ventral than the
dorsal hippocampus. Furthermore, relatively high (10 μM) but not low
(1 μM) baclofen concentration enhanced both PPR and FF in both
hippocampal segments at stimulation frequencies greater than 1 Hz,
independently of the suppression of synaptic transmission by baclofen.
These results show that A1Rs and GABABRs control
synaptic transmission more effectively in the dorsal and the ventral
hippocampus, respectively, and suggest that these receptors modulate
PPR and FF/D at different frequency bands of afferent input, in both
segments of the hippocampus.
Collapse
Affiliation(s)
- Maria A. Samara
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George D. Oikonomou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Georgia Madarou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Maria Adamopoulou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
126
|
Biswas T, Fitzgerald JE. Geometric framework to predict structure from function in neural networks. PHYSICAL REVIEW RESEARCH 2022; 4:023255. [PMID: 37635906 PMCID: PMC10456994 DOI: 10.1103/physrevresearch.4.023255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Neural computation in biological and artificial networks relies on the nonlinear summation of many inputs. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function, but quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of threshold-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate the solution space of all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. A generalization accounting for noise further reveals that the solution space geometry can undergo topological transitions as the allowed error increases, which could provide insight into both neuroscience and machine learning. We ultimately use this geometric characterization to derive certainty conditions guaranteeing a nonzero synapse between neurons. Our theoretical framework could thus be applied to neural activity data to make rigorous anatomical predictions that follow generally from the model architecture.
Collapse
Affiliation(s)
- Tirthabir Biswas
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
- Department of Physics, Loyola University, New Orleans, Louisiana 70118, USA
| | - James E. Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| |
Collapse
|
127
|
Enkephalin release from VIP interneurons in the hippocampal CA2/3a region mediates heterosynaptic plasticity and social memory. Mol Psychiatry 2022; 27:2879-2900. [PMID: 33990774 PMCID: PMC8590711 DOI: 10.1038/s41380-021-01124-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022]
Abstract
The hippocampus contains a diverse array of inhibitory interneurons that gate information flow through local cortico-hippocampal circuits to regulate memory storage. Although most studies of interneurons have focused on their role in fast synaptic inhibition mediated by GABA release, different classes of interneurons express unique sets of neuropeptides, many of which have been shown to exert powerful effects on neuronal function and memory when applied pharmacologically. However, relatively little is known about whether and how release of endogenous neuropeptides from inhibitory cells contributes to their behavioral role in regulating memory formation. Here we report that vasoactive intestinal peptide (VIP)-expressing interneurons participate in social memory storage by enhancing information transfer from hippocampal CA3 pyramidal neurons to CA2 pyramidal neurons. Notably, this action depends on release of the neuropeptide enkephalin from VIP neurons, causing long-term depression of feedforward inhibition onto CA2 pyramidal cells. Moreover, VIP neuron activity in the CA2 region is increased selectively during exploration of a novel conspecific. Our findings, thus, enhance our appreciation of how GABAergic neurons can regulate synaptic plasticity and mnemonic behavior by demonstrating that such actions can be mediated by release of a specific neuropeptide, rather than through classic fast inhibitory transmission.
Collapse
|
128
|
Lawn T, Dipasquale O, Vamvakas A, Tsougos I, Mehta MA, Howard MA. Differential contributions of serotonergic and dopaminergic functional connectivity to the phenomenology of LSD. Psychopharmacology (Berl) 2022; 239:1797-1808. [PMID: 35322297 PMCID: PMC9166846 DOI: 10.1007/s00213-022-06117-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/11/2022] [Indexed: 02/25/2023]
Abstract
RATIONALE LSD is the prototypical psychedelic. Despite a clear central role of the 5HT2a receptor in its mechanism of action, the contributions of additional receptors for which it shows affinity and agonist activity remain unclear. OBJECTIVES We employed receptor-enriched analysis of functional connectivity by targets (REACT) to explore differences in functional connectivity (FC) associated with the distributions of the primary targets of LSD-the 5HT1a, 5HT1b, 5HT2a, D1 and D2 receptors. METHODS We performed secondary analyses of an openly available dataset (N = 15) to estimate the LSD-induced alterations in receptor-enriched FC maps associated with these systems. Principal component analysis (PCA) was employed as a dimension reduction strategy for subjective experiences associated with LSD captured by the Altered States of Consciousness (ASC) questionnaire. Correlations between these principal components as well as VAS ratings of subjective effects with receptor-enriched FC were explored. RESULTS Compared to placebo, LSD produced differences in FC when the analysis was enriched with each of the primary serotonergic and dopaminergic receptors. Altered receptor-enriched FC showed relationships with the subjective effects of LSD on conscious experience, with serotonergic and dopaminergic systems being predominantly associated with perceptual effects and perceived selfhood as well as cognition respectively. These relationships were dissociable, with different receptors showing the same relationships within, but not between, the serotonergic and dopaminergic systems. CONCLUSIONS These exploratory findings provide new insights into the pharmacology of LSD and highlight the need for additional investigation of non-5HT2a-mediated mechanisms.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Alexandros Vamvakas
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Medical Physics Department, School of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Tsougos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Medical Physics Department, School of Medicine, University of Thessaly, Larissa, Greece
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Matthew A. Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
129
|
Reeson P, Schager B, Van Sprengel M, Brown CE. Behavioral and Neural Activity-Dependent Recanalization of Plugged Capillaries in the Brain of Adult and Aged Mice. Front Cell Neurosci 2022; 16:876746. [PMID: 35722620 PMCID: PMC9204343 DOI: 10.3389/fncel.2022.876746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The capillaries of the brain, owing to their small diameter and low perfusion pressure, are vulnerable to interruptions in blood flow. These tiny occlusions can have outsized consequences on angioarchitecture and brain function; especially when exacerbated by disease states or accumulate with aging. A distinctive feature of the brain’s microvasculature is the ability for active neurons to recruit local blood flow. The coupling of neural activity to blood flow could play an important role in recanalizing obstructed capillaries. To investigate this idea, we experimentally induced capillary obstructions in mice by injecting fluorescent microspheres and then manipulated neural activity levels though behavioral or pharmacologic approaches. We show that engaging adult and aged mice with 12 h exposure to an enriched environment (group housing, novel objects, exercise wheels) was sufficient to significantly reduce the density of obstructed capillaries throughout the forebrain. In order to more directly manipulate neural activity, we pharmacologically suppressed or increased neuronal activity in the somatosensory cortex. When we suppressed cortical activity, recanalization was impaired given the density of obstructed capillaries was significantly increased. Conversely, increasing cortical activity improved capillary recanalization. Since systemic cardiovascular factors (changes in heart rate, blood pressure) could explain these effects on recanalization, we demonstrate that unilateral manipulations of neural activity through whisker trimming or injection of muscimol, still had significant and hemisphere specific effects on recanalization, even in mice exposed to enrichment where cardiovascular effects would be evident in both hemispheres. In summary, our studies reveal that neural activity bi-directionally regulates the recanalization of obstructed capillaries. Further, we show that stimulating brain activity through behavioral engagement (i.e., environmental enrichment) can promote vascular health throughout the lifespan.
Collapse
Affiliation(s)
- Patrick Reeson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Ben Schager
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Craig E. Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Craig E. Brown,
| |
Collapse
|
130
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
131
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
132
|
Smith SJ, von Zastrow M. A Molecular Landscape of Mouse Hippocampal Neuromodulation. Front Neural Circuits 2022; 16:836930. [PMID: 35601530 PMCID: PMC9120848 DOI: 10.3389/fncir.2022.836930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Adaptive neuronal circuit function requires a continual adjustment of synaptic network parameters known as “neuromodulation.” This process is now understood to be based primarily on the binding of myriad secreted “modulatory” ligands such as dopamine, serotonin and the neuropeptides to G protein-coupled receptors (GPCRs) that, in turn, regulate the function of the ion channels that establish synaptic weights and membrane excitability. Many of the basic molecular mechanisms of neuromodulation are now known, but the organization of neuromodulation at a network level is still an enigma. New single-cell RNA sequencing data and transcriptomic neurotaxonomies now offer bright new lights to shine on this critical “dark matter” of neuroscience. Here we leverage these advances to explore the cell-type-specific expression of genes encoding GPCRs, modulatory ligands, ion channels and intervening signal transduction molecules in mouse hippocampus area CA1, with the goal of revealing broad outlines of this well-studied brain structure’s neuromodulatory network architecture.
Collapse
Affiliation(s)
- Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA, United States
- *Correspondence: Stephen J Smith,
| | - Mark von Zastrow
- Departments of Psychiatry and Pharmacology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
133
|
Due MR, Wang Y, Barry MA, Jing J, Reaver CN, Weiss KR, Cropper EC. Convergent effects of neuropeptides on the feeding central pattern generator of Aplysia californica. J Neurophysiol 2022; 127:1445-1459. [PMID: 35507477 PMCID: PMC9142162 DOI: 10.1152/jn.00025.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulators that induce distinct motor programs act divergently on neural networks to specify output. We study a situation where modulators that act divergently also act convergently. We focus on an interneuron (B63) that is part of the feeding central pattern generator (CPG) in Aplysia californica. Previous work has established that B63 is critical for program initiation regardless of the type of evoked activity. B63 receives input from a number of different elements of the feeding circuit. Program initiation occurs reliably when some are activated, but we show it does not occur reliably with activation of others. When program initiation is reliable, modulatory neuropeptides are released. For example, previous work has established that an ingestive input to the feeding CPG, cerebral buccal interneuron 2 (CBI-2), releases feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP-2). Afferents with processes in the esophageal nerve (EN) that trigger egestive motor programs release small cardioactive peptide (SCP). Previous studies have described divergent effects of FCAP/CP-2 and SCP on the feeding circuit that specify motor activity. Here, we show that FCAP/CP-2 and SCP increase the B63 excitability. Thus, we show that peptides that have well characterized divergent effects on the feeding circuit additionally act convergently at the level of a single neuron. Since convergent effects of neuromodulators are not necessary for specifying network output, we ask why they might be important. Our data suggest that they have an impact during a task switch.
Collapse
Affiliation(s)
- Michael R Due
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yanqing Wang
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michael A Barry
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Carrie N Reaver
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Klaudiusz R Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
134
|
Homchanthanakul J, Manoonpong P. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:1833-1845. [PMID: 34669583 DOI: 10.1109/tnnls.2021.3119127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Walking animals can continuously adapt their locomotion to deal with unpredictable changing environments. They can also take proactive steps to avoid colliding with an obstacle. In this study, we aim to realize such features for autonomous walking robots so that they can efficiently traverse complex terrains. To achieve this, we propose novel bioinspired adaptive neuroendocrine control. In contrast to conventional locomotion control methods, this approach does not require robot and environmental models, exteroceptive feedback, or multiple learning trials. It integrates three main modular neural mechanisms, relying only on proprioceptive feedback and short-term memory, namely: 1) neural central pattern generator (CPG)-based control; 2) an artificial hormone network (AHN); and 3) unsupervised input correlation-based learning (ICO). The neural CPG-based control creates insect-like gaits, while the AHN can continuously adapt robot joint movement individually with respect to the terrain during the stance phase using only the torque feedback. In parallel, the ICO generates short-term memory for proactive obstacle negotiation during the swing phase, allowing the posterior legs to step over the obstacle before hitting it. The control approach is evaluated on a bioinspired hexapod robot walking on complex unpredictable terrains (e.g., gravel, grass, and extreme random stepfield). The results show that the robot can successfully perform energy-efficient autonomous locomotion and online continuous adaptation with proactivity to overcome such terrains. Since our adaptive neural control approach does not require a robot model, it is general and can be applied to other bioinspired walking robots to achieve a similar adaptive, autonomous, and versatile function.
Collapse
|
135
|
Wu Z, Lin D, Li Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci 2022; 23:257-274. [PMID: 35361961 PMCID: PMC11163306 DOI: 10.1038/s41583-022-00577-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/26/2022]
Abstract
Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
136
|
Scherer JS, Riedesel OE, Arkhypchuk I, Meiser S, Kretzberg J. Initial Variability and Time-Dependent Changes of Neuronal Response Features Are Cell-Type-Specific. Front Cell Neurosci 2022; 16:858221. [PMID: 35573827 PMCID: PMC9092978 DOI: 10.3389/fncel.2022.858221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Different cell types are commonly defined by their distinct response features. But several studies proved substantial variability between cells of the same type, suggesting rather the appraisal of response feature distributions than a limitation to "typical" responses. Moreover, there is growing evidence that time-dependent changes of response features contribute to robust and functional network output in many neuronal systems. The individually characterized Touch (T), Pressure (P), and Retzius (Rz) cells in the medicinal leech allow for a rigid analysis of response features, elucidating differences between and variability within cell types, as well as their changes over time. The initial responses of T and P cells to somatic current injection cover a wide range of spike counts, and their first spike is generated with a high temporal precision after a short latency. In contrast, all Rz cells elicit very similar low spike counts with variable, long latencies. During prolonged electrical stimulation the resting membrane potential of all three cell types hyperpolarizes. At the same time, Rz cells reduce their spiking activity as expected for a departure from the spike threshold. In contrast, both mechanoreceptor types increase their spike counts during repeated stimulation, consistent with previous findings in T cells. A control experiment reveals that neither a massive current stimulation nor the hyperpolarization of the membrane potential is necessary for the mechanoreceptors' increase in excitability over time. These findings challenge the previously proposed involvement of slow K+-channels in the time-dependent activity changes. We also find no indication for a run-down of HCN channels over time, and a rigid statistical analysis contradicts several potential experimental confounders as the basis of the observed variability. We conclude that the time-dependent change in excitability of T and P cells could indicate a cell-type-specific shift between different spiking regimes, which also could explain the high variability in the initial responses. The underlying mechanism needs to be further investigated in more naturalistic experimental situations to disentangle the effects of varying membrane properties versus network interactions. They will show if variability in individual response features serves as flexible adaptation to behavioral contexts rather than just "randomness".
Collapse
Affiliation(s)
- Jens-Steffen Scherer
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Oda E. Riedesel
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Ihor Arkhypchuk
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Sonja Meiser
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
137
|
Abstract
On January 25, 2022, Professor Hans-Joachim Pflüger passed away. Hans-Joachim Pflüger conducted research in the field of neuroethology, with a focus on the development, anatomy, and function of sensorimotor networks underlying insect locomotion. As founding member and one of the presidents of the German Neuroscience Society, Hans-Joachim Pflüger was a driving force behind the development of the Neurosciences in Germany and Europe. This obituary reflects on his curriculum vitae. It shall honor his scientific and professional achievements, and importantly, also his wonderful personality, which makes this loss so sad across the manifold levels of his life and his legacy, the family, the professional and the scientific community.
Collapse
|
138
|
Zhuo Y, Li Y. New imaging methods for monitoring dopaminergic neurotransmission. SCIENCE CHINA. LIFE SCIENCES 2022; 65:838-841. [PMID: 35102465 DOI: 10.1007/s11427-021-2041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
139
|
Kanwal JK, Parker J. The neural basis of interspecies interactions in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100891. [PMID: 35218937 DOI: 10.1016/j.cois.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
As insects move through the world, they continuously engage in behavioral interactions with other species. These interactions take on a spectrum of forms, from inconsequential encounters to predation, defense, and specialized symbiotic partnerships. All such interactions rely on sensorimotor pathways that carry out efficient categorization of different organisms and enact behaviors that cross species boundaries. Despite the universality of interspecies interactions, how insect brains perceive and process salient features of other species remains unexplored. Here, we present an overview of major questions concerning the neurobiology and evolution of behavioral interactions between species, providing a framework for future research on this critical role of the insect nervous system.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
140
|
Ben-Iwhiwhu E, Dick J, Ketz NA, Pilly PK, Soltoggio A. Context meta-reinforcement learning via neuromodulation. Neural Netw 2022; 152:70-79. [DOI: 10.1016/j.neunet.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
141
|
Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration: Understanding How Social Behavior Emerges From Integrated Circuits. Front Integr Neurosci 2022; 16:862437. [PMID: 35431824 PMCID: PMC9010670 DOI: 10.3389/fnint.2022.862437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Complex social behaviors are emergent properties of the brain's interconnected and overlapping neural networks. Questions aimed at understanding how brain circuits produce specific and appropriate behaviors have changed over the past half century, shifting from studies of gross anatomical and behavioral associations, to manipulating and monitoring precisely targeted cell types. This technical progression has enabled increasingly deep insights into the regulation of perception and behavior with remarkable precision. The capacity of reductionist approaches to identify the function of isolated circuits is undeniable but many behaviors require rapid integration of diverse inputs. This review examines progress toward understanding integrative social circuits and focuses on specific nodes of the social behavior network including the medial amygdala, ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus (MPOA) as examples of broad integration between multiple interwoven brain circuits. Our understanding of mechanisms for producing social behavior has deepened in conjunction with advances in technologies for visualizing and manipulating specific neurons and, here, we consider emerging strategies to address brain circuit function in the context of integrative anatomy.
Collapse
Affiliation(s)
- Sarah Y. Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Diane A. Kelly
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Stephanie L. Padilla
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joseph F. Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
142
|
Städele C, Stein W. Neuromodulation Enables Temperature Robustness and Coupling Between Fast and Slow Oscillator Circuits. Front Cell Neurosci 2022; 16:849160. [PMID: 35418838 PMCID: PMC8996074 DOI: 10.3389/fncel.2022.849160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Acute temperature changes can disrupt neuronal activity and coordination with severe consequences for animal behavior and survival. Nonetheless, two rhythmic neuronal circuits in the crustacean stomatogastric ganglion (STG) and their coordination are maintained across a broad temperature range. However, it remains unclear how this temperature robustness is achieved. Here, we dissociate temperature effects on the rhythm generating circuits from those on upstream ganglia. We demonstrate that heat-activated factors extrinsic to the rhythm generators are essential to the slow gastric mill rhythm’s temperature robustness and contribute to the temperature response of the fast pyloric rhythm. The gastric mill rhythm crashed when its rhythm generator in the STG was heated. It was restored when upstream ganglia were heated and temperature-matched to the STG. This also increased the activity of the peptidergic modulatory projection neuron (MCN1), which innervates the gastric mill circuit. Correspondingly, MCN1’s neuropeptide transmitter stabilized the rhythm and maintained it over a broad temperature range. Extrinsic neuromodulation is thus essential for the oscillatory circuits in the STG and enables neural circuits to maintain function in temperature-compromised conditions. In contrast, integer coupling between pyloric and gastric mill rhythms was independent of whether extrinsic inputs and STG pattern generators were temperature-matched or not, demonstrating that the temperature robustness of the coupling is enabled by properties intrinsic to the rhythm generators. However, at near-crash temperature, integer coupling was maintained only in some animals while it was absent in others. This was true despite regular rhythmic activity in all animals, supporting that degenerate circuit properties result in idiosyncratic responses to environmental challenges.
Collapse
|
143
|
Gorur-Shandilya S, Cronin EM, Schneider AC, Haddad SA, Rosenbaum P, Bucher D, Nadim F, Marder E. Mapping circuit dynamics during function and dysfunction. eLife 2022; 11:e76579. [PMID: 35302489 PMCID: PMC9000962 DOI: 10.7554/elife.76579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.
Collapse
Affiliation(s)
| | - Elizabeth M Cronin
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Anna C Schneider
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Sara Ann Haddad
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Philipp Rosenbaum
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
144
|
The role of orphan receptor GPR139 in neuropsychiatric behavior. Neuropsychopharmacology 2022; 47:902-913. [PMID: 33479510 PMCID: PMC8882194 DOI: 10.1038/s41386-021-00962-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Orphan G protein Coupled Receptors (GPCRs) present attractive targets both for understanding neuropsychiatric diseases and for development of novel therapeutics. GPR139 is an orphan GPCR expressed in select brain circuits involved in controlling movement, motivation and reward. It has been linked to the opioid and dopamine neuromodulatory systems; however, its role in animal behavior and neuropsychiatric processes is poorly understood. Here we present a comprehensive behavioral characterization of a mouse model with a GPR139 null mutation. We show that loss of GPR139 in mice results in delayed onset hyperactivity and prominent neuropsychiatric manifestations including elevated stereotypy, increased anxiety-related traits, delayed acquisition of operant responsiveness, disruption of cued fear conditioning and social interaction deficits. Furthermore, mice lacking GPR139 exhibited complete loss of pre-pulse inhibition and developed spontaneous 'hallucinogenic' head-twitches, altogether suggesting schizophrenia-like symptomatology. Remarkably, a number of these behavioral deficits could be rescued by the administration of μ-opioid and D2 dopamine receptor (D2R) antagonists: naltrexone and haloperidol, respectively, suggesting that loss of neuropsychiatric manifestations in mice lacking GPR139 are driven by opioidergic and dopaminergic hyper-functionality. The inhibitory influence of GPR139 on D2R signaling was confirmed in cell-based functional assays. These observations define the role of GPR139 in controlling behavior and implicate in vivo actions of this receptor in the neuropsychiatric process with schizophrenia-like pathology.
Collapse
|
145
|
Privitera AJ, Tang AC. Functional Significance of Individual Differences in P3 Network Spatial Configuration. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. The amplitude and latency of the P3 component in the electroencephalogram (EEG) event-related potentials (ERPs) are among the most extensively used markers for individual differences in normal and abnormal brain functions. In contrast, individual variations in spatial topography of the temporally-defined P3 component are relatively under-explored. Development in EEG-based source imaging opened up the possibility that individual-specific spatial configuration of the neural network underlying the temporally-defined P3 component bear a novel source of information for marking an individual difference in behavioral and cognitive function. In testing this hypothesis, a hybrid method consisting of blind source separation (BSS), equivalent current dipole (ECD) modeling, and hits-vector-based analysis was applied to continuous un-epoched EEG data collected from 13 healthy human participants performing a visual color oddball task. By analyzing the spatial configuration of the network underlying the temporally-defined P3 component, hereafter referred to as the P3N, we discovered that the contribution of each constituent structure within the P3N is not uniform. Instead, frontal lobe structures have significantly more involvement than other constituent structures, as quantitatively characterized by cross-individual reliability and a within-individual contribution to the P3N. A factor analysis of the hits vector data revealed that although P3 latency and amplitude did not show significant correlations with measures of the behavioral outcomes, scores of two factors derived from the hits vectors selectively predict behavioral reaction time and response correctness. These results support the hypothesis that variations in P3 spatial configuration reflect not merely noise but individual-specific features with functional significance.
Collapse
Affiliation(s)
- Adam John Privitera
- College of Liberal Arts, Wenzhou-Kean University, Wenzhou, PR China
- Faculty of Education, The University of Hong Kong, Hong Kong, SAR, PR China
| | - Akaysha C. Tang
- Neural Dialogue Shenzhen Educational Technology, Shenzhen, PR China
- Neuroscience for Education Group, The University of Hong Kong, Hong Kong, SAR, PR China
| |
Collapse
|
146
|
Robson DN, Li JM. A dynamical systems view of neuroethology: Uncovering stateful computation in natural behaviors. Curr Opin Neurobiol 2022; 73:102517. [PMID: 35217311 DOI: 10.1016/j.conb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
Abstract
State-dependent computation is key to cognition in both biological and artificial systems. Alan Turing recognized the power of stateful computation when he created the Turing machine with theoretically infinite computational capacity in 1936. Independently, by 1950, ethologists such as Tinbergen and Lorenz also began to implicitly embed rudimentary forms of state-dependent computation to create qualitative models of internal drives and naturally occurring animal behaviors. Here, we reformulate core ethological concepts in explicitly dynamical systems terms for stateful computation. We examine, based on a wealth of recent neural data collected during complex innate behaviors across species, the neural dynamics that determine the temporal structure of internal states. We will also discuss the degree to which the brain can be hierarchically partitioned into nested dynamical systems and the need for a multi-dimensional state-space model of the neuromodulatory system that underlies motivational and affective states.
Collapse
Affiliation(s)
- Drew N Robson
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| | - Jennifer M Li
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| |
Collapse
|
147
|
Grossman CD, Bari BA, Cohen JY. Serotonin neurons modulate learning rate through uncertainty. Curr Biol 2022; 32:586-599.e7. [PMID: 34936883 PMCID: PMC8825708 DOI: 10.1016/j.cub.2021.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Regulating how fast to learn is critical for flexible behavior. Learning about the consequences of actions should be slow in stable environments, but accelerate when that environment changes. Recognizing stability and detecting change are difficult in environments with noisy relationships between actions and outcomes. Under these conditions, theories propose that uncertainty can be used to modulate learning rates ("meta-learning"). We show that mice behaving in a dynamic foraging task exhibit choice behavior that varied as a function of two forms of uncertainty estimated from a meta-learning model. The activity of dorsal raphe serotonin neurons tracked both types of uncertainty in the foraging task as well as in a dynamic Pavlovian task. Reversible inhibition of serotonin neurons in the foraging task reproduced changes in learning predicted by a simulated lesion of meta-learning in the model. We thus provide a quantitative link between serotonin neuron activity, learning, and decision making.
Collapse
Affiliation(s)
- Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Bilal A Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
148
|
Kedia S, Marder E. Blue light responses in Cancer borealis stomatogastric ganglion neurons. Curr Biol 2022; 32:1439-1445.e3. [PMID: 35148862 PMCID: PMC8967796 DOI: 10.1016/j.cub.2022.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
In many animals, the daily cycling of light is a key environmental cue, encoded in part by specialized light-sensitive neurons without visual functions. We serendipitously discovered innate light-responsiveness while imaging the extensively studied stomatogastric ganglion (STG) of the crab, Cancer borealis. The STG houses a motor circuit that controls the rhythmic contractions of the foregut, and the system has facilitated deep understanding of circuit function and neuromodulation. We illuminated the crab STG in vitro with different wavelengths and amplitudes of light and found a dose-dependent increase in neuronal activity upon exposure to blue light (λ460-500 nm). The response was elevated in the absence of neuromodulatory inputs to the STG. The pacemaker kernel that drives the network rhythm was responsive to light when synaptically isolated, and light shifted the threshold for slow wave and spike activity in the hyperpolarized direction, accounting for the increased activity patterns. Cryptochromes are evolutionarily conserved blue-light photoreceptors that are involved in circadian behaviors.1 Their activation by light can lead to enhanced neuronal activity.2 We identified cryptochrome sequences in the C. borealis transcriptome as potential mediators of this response and confirmed their expression in pyloric dilator (PD) neurons, which are part of the pacemaker kernel, by single-cell RNA-seq analysis.
Collapse
Affiliation(s)
- Sonal Kedia
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Eve Marder
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
149
|
Tang M, Zhang X, Yang A, Liu Y, Xie K, Zhou Y, Wang C, Liu J, Shi P, Lin X. Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105388. [PMID: 34894073 DOI: 10.1002/smll.202105388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Neurons can be modified to express light-sensitive proteins for enabling stimulation with a high spatial and temporal resolution, but such techniques require gene transfection and systematical implantation. Here, a black phosphorus nanosheet-based injectable strategy is described for wireless neural stimulation both in vitro and in vivo without cell modifications. These nanosheets, with minimal invasiveness, high biocompatibility, and biodegradability, are anchored on cell membranes as miniature near-infrared (NIR) light transducers to create local heating for neural activity excitation. Based on cultured multielectrode-array recording, in vivo electrophysiology analysis, and open field behavioral tests, it is demonstrated that remotely applied NIR illumination can reliably trigger spiking activity in cultured neurons and rat brains. Excitingly, reliable regulation of brain function to control animal behaviors is also described. Moreover, this approach has shown its potential for future clinical use by successful high-frequency stimulation in cells and animals in this proof-of-concept study. It is believed that this new method will offer a powerful alternative to other neural stimulation solutions and potentially be of independent value to the healthcare system.
Collapse
Affiliation(s)
- Minghui Tang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaoge Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Anqi Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuxin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Yajing Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chong Wang
- College of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong, 518057, China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
150
|
Balanced expression of G protein-coupled receptor subtypes in the mouse, macaque, and human cerebral cortex. Neuroscience 2022; 487:107-119. [DOI: 10.1016/j.neuroscience.2022.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
|