101
|
Kron NS, Schmale MC, Fieber LA. Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons. Front Aging Neurosci 2020; 12:573764. [PMID: 33101008 PMCID: PMC7522570 DOI: 10.3389/fnagi.2020.573764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is associated with cognitive declines that originate in impairments of function in the neurons that make up the nervous system. The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. This study describes the molecular processes associated with aging in two populations of sensory neurons in Aplysia by applying RNA sequencing technology across the aging process (age 6-12 months). Differentially expressed genes clustered into four to five coherent expression patterns across the aging time series in the two neuron populations. Enrichment analysis of functional annotations in these neuron clusters revealed decreased expression of pathways involved in energy metabolism and neuronal signaling, suggesting that metabolic and signaling pathways are intertwined. Furthermore, increased expression of pathways involved in protein processing and translation suggests that proteostatic stress also occurs in aging. Temporal overlap of enrichment for energy metabolism, proteostasis, and neuronal function suggests that cognitive impairments observed in advanced age result from the ramifications of broad declines in energy metabolism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| |
Collapse
|
102
|
Njabon EN, Patouossa I, Carlson KL, Lowe SL, Forlemu NY, Thomasson KA. Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-Actin. Part I: Muscle and heart homo-isoforms. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
103
|
Zhang Y, Fernie AR. On the Detection and Functional Significance of the Protein-Protein Interactions of Mitochondrial Transport Proteins. Biomolecules 2020; 10:E1107. [PMID: 32722450 PMCID: PMC7464641 DOI: 10.3390/biom10081107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-protein assemblies are highly prevalent in all living cells. Considerable evidence has recently accumulated suggesting that particularly transient association/dissociation of proteins represent an important means of regulation of metabolism. This is true not only in the cytosol and organelle matrices, but also at membrane surfaces where, for example, receptor complexes, as well as those of key metabolic pathways, are common. Transporters also frequently come up in lists of interacting proteins, for example, binding proteins that catalyze the production of their substrates or that act as relays within signal transduction cascades. In this review, we provide an update of technologies that are used in the study of such interactions with mitochondrial transport proteins, highlighting the difficulties that arise in their use for membrane proteins and discussing our current understanding of the biological function of such interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
104
|
Pleiotropic Mitochondria: The Influence of Mitochondria on Neuronal Development and Disease. J Neurosci 2020; 39:8200-8208. [PMID: 31619488 DOI: 10.1523/jneurosci.1157-19.2019] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/08/2023] Open
Abstract
Mitochondria play many important biological roles, including ATP production, lipid biogenesis, ROS regulation, and calcium clearance. In neurons, the mitochondrion is an essential organelle for metabolism and calcium homeostasis. Moreover, mitochondria are extremely dynamic and able to divide, fuse, and move along microtubule tracks to ensure their distribution to the neuronal periphery. Mitochondrial dysfunction and altered mitochondrial dynamics are observed in a wide range of conditions, from impaired neuronal development to various neurodegenerative diseases. Novel imaging techniques and genetic tools provide unprecedented access to the physiological roles of mitochondria by visualizing mitochondrial trafficking, morphological dynamics, ATP generation, and ultrastructure. Recent studies using these new techniques have unveiled the influence of mitochondria on axon branching, synaptic function, calcium regulation with the ER, glial cell function, neurogenesis, and neuronal repair. This review provides an overview of the crucial roles played by mitochondria in the CNS in physiological and pathophysiological conditions.
Collapse
|
105
|
Ho JJD, Balukoff NC, Theodoridis PR, Wang M, Krieger JR, Schatz JH, Lee S. A network of RNA-binding proteins controls translation efficiency to activate anaerobic metabolism. Nat Commun 2020; 11:2677. [PMID: 32472050 PMCID: PMC7260222 DOI: 10.1038/s41467-020-16504-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/30/2020] [Indexed: 01/30/2023] Open
Abstract
Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance. mRNA translation efficiency is regulated in response to stimuli. Here the authors employ mass spectrometry analysis of ribosome fractions and show that under hypoxia, oxygen-sensitive RNA binding proteins enhance the translation efficiency of glycolysis pathway transcripts.
Collapse
Affiliation(s)
- J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nathan C Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Phaedra R Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan R Krieger
- The SickKids Proteomics, Analytics, Robotics & Chemical Biology Centre (SPARC Biocentre), The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Bioinformatics Solutions Inc., Waterloo, ON, N2L 6J2, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Department of Urology, Miller School of Medicine, University of Miami, Miami, 33136, USA.
| |
Collapse
|
106
|
Lynch EM, Kollman JM, Webb BA. Filament formation by metabolic enzymes-A new twist on regulation. Curr Opin Cell Biol 2020; 66:28-33. [PMID: 32417394 DOI: 10.1016/j.ceb.2020.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023]
Abstract
Compartmentalization of metabolic enzymes through protein-protein interactions is an emerging mechanism for localizing and regulating metabolic activity. Self-assembly into linear filaments is a common strategy for cellular compartmentalization of enzymes. Polymerization is often driven by changes in the metabolic state of the cell, suggesting that it is a strategy for shifting metabolic flux in response to cellular demand. Although polymerization of metabolic enzymes is widespread, observed from bacteria to humans, we are just beginning to appreciate their role in regulating cellular metabolism. In most cases, one functional role of metabolic enzyme filaments is allosteric control of enzyme activity. Here, we highlight recent findings, providing insight into the structural and functional significance of filamentation of metabolic enzymes in cells.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, USA
| | | | - Bradley A Webb
- Department of Biochemistry, West Virginia University, USA.
| |
Collapse
|
107
|
Roy S. Finding order in slow axonal transport. Curr Opin Neurobiol 2020; 63:87-94. [PMID: 32361600 DOI: 10.1016/j.conb.2020.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/18/2022]
Abstract
Slow axonal transport conveys cytosolic and cytoskeletal proteins into axons and synapses at overall velocities that are several orders of magnitude slower than the fast transport of membranous organelles such as vesicles and mitochondria. The phenomenon of slow transport was characterized by in vivo pulse-chase radiolabeling studies done decades ago, and proposed models emphasized an orderly cargo-movement, with apparent cohesive transport of multiple proteins and subcellular structures along axons over weeks to months. However, visualization of cytosolic and cytoskeletal cargoes in cultured neurons at much higher temporal and spatial resolution has revealed an unexpected diversity in movement - ranging from a diffusion-like biased motion, to intermittent cargo dynamics and unusual polymerization-based transport paradigms. This review provides an updated view of slow axonal transport and explores emergent mechanistic themes in this enigmatic rate-class.
Collapse
Affiliation(s)
- Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States; Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
108
|
Fuller GG, Han T, Freeberg MA, Moresco JJ, Ghanbari Niaki A, Roach NP, Yates JR, Myong S, Kim JK. RNA promotes phase separation of glycolysis enzymes into yeast G bodies in hypoxia. eLife 2020; 9:e48480. [PMID: 32298230 PMCID: PMC7162659 DOI: 10.7554/elife.48480] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
In hypoxic stress conditions, glycolysis enzymes assemble into singular cytoplasmic granules called glycolytic (G) bodies. G body formation in yeast correlates with increased glucose consumption and cell survival. However, the physical properties and organizing principles that define G body formation are unclear. We demonstrate that glycolysis enzymes are non-canonical RNA binding proteins, sharing many common mRNA substrates that are also integral constituents of G bodies. Targeting nonspecific endoribonucleases to G bodies reveals that RNA nucleates G body formation and maintains its structural integrity. Consistent with a phase separation mechanism of biogenesis, recruitment of glycolysis enzymes to G bodies relies on multivalent homotypic and heterotypic interactions. Furthermore, G bodies fuse in vivo and are largely insensitive to 1,6-hexanediol, consistent with a hydrogel-like composition. Taken together, our results elucidate the biophysical nature of G bodies and demonstrate that RNA nucleates phase separation of the glycolysis machinery in response to hypoxic stress.
Collapse
Affiliation(s)
- Gregory G Fuller
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Ting Han
- National Institute of Biological SciencesBeijingChina
| | | | - James J Moresco
- Department of Chemical Physiology, The Scripps Research InstituteLa JollaUnited States
| | | | - Nathan P Roach
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research InstituteLa JollaUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - John K Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
109
|
Hagenston AM, Bading H, Bas-Orth C. Functional Consequences of Calcium-Dependent Synapse-to-Nucleus Communication: Focus on Transcription-Dependent Metabolic Plasticity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035287. [PMID: 31570333 DOI: 10.1101/cshperspect.a035287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the nervous system, calcium signals play a major role in the conversion of synaptic stimuli into transcriptional responses. Signal-regulated gene transcription is fundamental for a range of long-lasting adaptive brain functions that include learning and memory, structural plasticity of neurites and synapses, acquired neuroprotection, chronic pain, and addiction. In this review, we summarize the diverse mechanisms governing calcium-dependent transcriptional regulation associated with central nervous system plasticity. We focus on recent advances in the field of synapse-to-nucleus communication that include studies of the signal-regulated transcriptome in human neurons, identification of novel regulatory mechanisms such as activity-induced DNA double-strand breaks, and the identification of novel forms of activity- and transcription-dependent adaptations, in particular, metabolic plasticity. We summarize the reciprocal interactions between different kinds of neuroadaptations and highlight the emerging role of activity-regulated epigenetic modifiers in gating the inducibility of signal-regulated genes.
Collapse
Affiliation(s)
- Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
110
|
Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate. Neurochem Res 2020; 45:1328-1334. [DOI: 10.1007/s11064-020-03005-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
|
111
|
Glucose signaling in the brain and periphery to memory. Neurosci Biobehav Rev 2020; 110:100-113. [DOI: 10.1016/j.neubiorev.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 01/30/2019] [Accepted: 03/24/2019] [Indexed: 02/08/2023]
|
112
|
Palikaras K, Tavernarakis N. Regulation and roles of mitophagy at synapses. Mech Ageing Dev 2020; 187:111216. [PMID: 32084458 DOI: 10.1016/j.mad.2020.111216] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Maintenance of synaptic homeostasis is a challenging task, due to the intricate spatial organization and intense activity of synapses. Typically, synapses are located far away from the neuronal cell body, where they orchestrate neuronal signalling and communication, through neurotransmitter release. Stationary mitochondria provide energy required for synaptic vesicle cycling, and preserve ionic balance by buffering intercellular calcium at synapses. Thus, synaptic homeostasis is critically dependent on proper mitochondrial function. Indeed, defective mitochondrial metabolism is a common feature of several neurodegenerative and psychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), bipolar disorders and schizophrenia among others, which are also accompanied by excessive synaptic abnormalities. Specialized and compartmentalized quality control mechanisms have evolved to restore and maintain synaptic energy metabolism. Here, we survey recent advances towards the elucidation of the pivotal role of mitochondria in neurotransmission and implicating mitophagy in the maintenance of synaptic homeostasis during ageing.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 70013, Crete, Greece.
| |
Collapse
|
113
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
114
|
Trevisan T, Pendin D, Montagna A, Bova S, Ghelli AM, Daga A. Manipulation of Mitochondria Dynamics Reveals Separate Roles for Form and Function in Mitochondria Distribution. Cell Rep 2019; 23:1742-1753. [PMID: 29742430 DOI: 10.1016/j.celrep.2018.04.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria shape is controlled by membrane fusion and fission mediated by mitofusins, Opa1, and Drp1, whereas mitochondrial motility relies on microtubule motors. These processes govern mitochondria subcellular distribution, whose defects are emphasized in neurons because of their polarized structure. We have studied how perturbation of the fusion/fission balance affects mitochondria distribution in Drosophila axons. Knockdown of Marf or Opa1 resulted in progressive loss of distal mitochondria and in a distinct oxidative phosphorylation and membrane potential deficit. Downregulation of Drp1 rescued the lethality and bioenergetic defect caused by neuronal Marf RNAi, but induced only a modest restoration of axonal mitochondria distribution. Surprisingly, Drp1 knockdown rescued fragmentation and fully restored aberrant distribution of axonal mitochondria produced by Opa1 RNAi; however, Drp1 knockdown did not improve viability or mitochondria function. Our data show that proper morphology is critical for proper axonal mitochondria distribution independent of bioenergetic efficiency. The health of neurons largely depends on mitochondria function, but does not depend on shape or distribution.
Collapse
Affiliation(s)
- Tatiana Trevisan
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Diana Pendin
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Aldo Montagna
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
115
|
Spannl S, Tereshchenko M, Mastromarco GJ, Ihn SJ, Lee HO. Biomolecular condensates in neurodegeneration and cancer. Traffic 2019; 20:890-911. [PMID: 31606941 DOI: 10.1111/tra.12704] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
The intracellular environment is partitioned into functionally distinct compartments containing specific sets of molecules and reactions. Biomolecular condensates, also referred to as membrane-less organelles, are diverse and abundant cellular compartments that lack membranous enclosures. Molecules assemble into condensates by phase separation; multivalent weak interactions drive molecules to separate from their surroundings and concentrate in discrete locations. Biomolecular condensates exist in all eukaryotes and in some prokaryotes, and participate in various essential house-keeping, stress-response and cell type-specific processes. An increasing number of recent studies link abnormal condensate formation, composition and material properties to a number of disease states. In this review, we discuss current knowledge and models describing the regulation of condensates and how they become dysregulated in neurodegeneration and cancer. Further research on the regulation of biomolecular phase separation will help us to better understand their role in cell physiology and disease.
Collapse
Affiliation(s)
- Stephanie Spannl
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Sean J Ihn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Canada Research Chairs Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
116
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
117
|
Deus CM, Yambire KF, Oliveira PJ, Raimundo N. Mitochondria-Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends Mol Med 2019; 26:71-88. [PMID: 31791731 DOI: 10.1016/j.molmed.2019.10.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
Cellular function requires coordination between different organelles and metabolic cues. Mitochondria and lysosomes are essential for cellular metabolism as major contributors of chemical energy and building blocks. It is therefore pivotal for cellular function to coordinate the metabolic roles of mitochondria and lysosomes. However, these organelles do more than metabolism, given their function as fundamental signaling platforms in the cell that regulate many key processes such as autophagy, proliferation, and cell death. Mechanisms of crosstalk between mitochondria and lysosomes are discussed, both under physiological conditions and in diseases that affect these organelles.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - King Faisal Yambire
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, 37073 Goettingen, Germany.
| |
Collapse
|
118
|
Rahmani S, Defferrari MS, Wakarchuk WW, Antonescu CN. Energetic adaptations: Metabolic control of endocytic membrane traffic. Traffic 2019; 20:912-931. [DOI: 10.1111/tra.12705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadia Rahmani
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
| | | | - Warren W. Wakarchuk
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Costin N. Antonescu
- Department of Chemistry and BiologyRyerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
119
|
Noree C, Begovich K, Samilo D, Broyer R, Monfort E, Wilhelm JE. A quantitative screen for metabolic enzyme structures reveals patterns of assembly across the yeast metabolic network. Mol Biol Cell 2019; 30:2721-2736. [PMID: 31483745 PMCID: PMC6761767 DOI: 10.1091/mbc.e19-04-0224] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite the proliferation of proteins that can form filaments or phase-separated condensates, it remains unclear how this behavior is distributed over biological networks. We have found that 60 of the 440 yeast metabolic enzymes robustly form structures, including 10 that assemble within mitochondria. Additionally, the ability to assemble is enriched at branch points on several metabolic pathways. The assembly of enzymes at the first branch point in de novo purine biosynthesis is coordinated, hierarchical, and based on their position within the pathway, while the enzymes at the second branch point are recruited to RNA stress granules. Consistent with distinct classes of structures being deployed at different control points in a pathway, we find that the first enzyme in the pathway, PRPP synthetase, forms evolutionarily conserved filaments that are sequestered in the nucleus in higher eukaryotes. These findings provide a roadmap for identifying additional conserved features of metabolic regulation by condensates/filaments.
Collapse
Affiliation(s)
- Chalongrat Noree
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Institute of Molecular Biosciences, Mahidol University, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Kyle Begovich
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Dane Samilo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Risa Broyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elena Monfort
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - James E Wilhelm
- Howard Hughes Medical Institute Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
120
|
Puertas-Frías G, Del Arco A, Pardo B, Satrústegui J, Contreras L. Mitochondrial movement in Aralar/Slc25a12/AGC1 deficient cortical neurons. Neurochem Int 2019; 131:104541. [PMID: 31472174 DOI: 10.1016/j.neuint.2019.104541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/25/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The elevated energy demands in the brain are fulfilled mainly by glucose catabolism. In highly polarized neurons, about 10-50% of mitochondria are transported along microtubules using mitochondrial-born ATP to locations with high energy requirements. In this report, we have investigated the impact of Aralar deficiency on mitochondrial transport in cultured cortical neurons. Aralar/slc25a12/AGC1 is the neuronal isoform of the aspartate-glutamate mitochondrial carrier, a component of the malate-aspartate shuttle (MAS) which plays an important role in redox balance, which is essential to maintain glycolytic pyruvate supply to neuronal mitochondria. Using live imaging microscopy we observed that the lack of Aralar does not affect the number of moving mitochondria nor the Ca2+-induced stop, the only difference being a 10% increase in mitochondrial velocity in Aralar deficient neurons. Therefore, we evaluated the possible fuels used in each case by studying the relative contribution of oxidative phosphorylation and glycolysis to mitochondrial movement using specific inhibitors. We found that the ATP synthase inhibitor oligomycin caused a smaller inhibition of mitochondrial movement in Aralar-KO than control neurons, whereas the glycolysis inhibitor iodoacetate had similar effects in neurons from both genotypes. In line with these findings, the decrease in cytosolic ATP/ADP ratio caused by oligomycin was more pronounced in control than in Aralar-KO neurons, but no differences were observed with iodoacetate. Oligomycin effect was reverted by aralar re-expression in knock out cultures. As mitochondrial movement is not reduced in Aralar-KO neurons, these results suggest that these neurons may use an additional pathway for mitochondria movement and ATP/ADP ratio maintenance.
Collapse
Affiliation(s)
- Guillermo Puertas-Frías
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Araceli Del Arco
- Facultad de Ciencias Ambientales y Bioquímica, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla La Mancha, 45071, Toledo, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IISFJD), 28049, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28049, Madrid, Spain.
| |
Collapse
|
121
|
Wilson DF, Matschinsky FM. Hyperbaric oxygen toxicity in brain: A case of hyperoxia induced hypoglycemic brain syndrome. Med Hypotheses 2019; 132:109375. [PMID: 31454640 DOI: 10.1016/j.mehy.2019.109375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022]
Abstract
Hyperbaric oxygen exposure is a recent hazzard for higher animals that originated as humans began underwater construction, exploration, and sports. Exposure can lead to abnormal brain EEG, convulsions, and death, the time to onset of each stage of pathology decreasing with increase in oxygen pressure. We provide evidence that hyperoxia, through oxidative phosphorylation, increases the energy state ([ATP]/[ADP][Pi]) of cells critical to providing glucose to cells behind the blood brain barrier (BBB). Brain cells without an absolute dependence on glucose metabolism; i.e. those having sufficient ATP synthesis using lactate and glutamate as oxidizable substrates, are not themselves very adversely affected by hyperoxia. The increased energy state and decrease in free [AMP], however, suppress glucose transport through the blood brain barrier (BBB) and into cells behind the BBB. Glucose has to pass in sequence through three steps of transport by facilitated diffusion and transporter activity for each step is regulated in part by AMP dependent protein kinase. The physiological role of this regulation is to increase glucose transport in response to hypoxia and/or systemic hypoglycemia. Hyperoxia, however, through unphysiological decrease in free [AMP] suppresses 1) glucose transport through the BBB (endothelial GLUT1 transporters) into cerebrospinal fluid (CSF); 2) glucose transport from CSF into cells behind the BBB (GLUT3 transporters) and (GLUT4 transporters). Cumulative suppression of glucose transport results in local regions of hypoglycemia and induces hypoglycemic failure. It is suggested that failure is initiated at axons and synapses with insufficient mitochondria to meet their energy requirements.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
122
|
Tourigny DS, Karim MKA, Echeveste R, Kotter MRN, O’Neill JS. Energetic substrate availability regulates synchronous activity in an excitatory neural network. PLoS One 2019; 14:e0220937. [PMID: 31408504 PMCID: PMC6692003 DOI: 10.1371/journal.pone.0220937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Neural networks are required to meet significant metabolic demands associated with performing sophisticated computational tasks in the brain. The necessity for efficient transmission of information imposes stringent constraints on the metabolic pathways that can be used for energy generation at the synapse, and thus low availability of energetic substrates can reduce the efficacy of synaptic function. Here we study the effects of energetic substrate availability on global neural network behavior and find that glucose alone can sustain excitatory neurotransmission required to generate high-frequency synchronous bursting that emerges in culture. In contrast, obligatory oxidative energetic substrates such as lactate and pyruvate are unable to substitute for glucose, indicating that processes involving glucose metabolism form the primary energy-generating pathways supporting coordinated network activity. Our experimental results are discussed in the context of the role that metabolism plays in supporting the performance of individual synapses, including the relative contributions from postsynaptic responses, astrocytes, and presynaptic vesicle cycling. We propose a simple computational model for our excitatory cultures that accurately captures the inability of metabolically compromised synapses to sustain synchronous bursting when extracellular glucose is depleted.
Collapse
Affiliation(s)
- David S. Tourigny
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Columbia University Irving Medical Center, New York, New York, United States of America
- * E-mail: (DST); (MRNK); (JSO)
| | - Muhammad Kaiser Abdul Karim
- Department of Clinical Neurosciences and Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rodrigo Echeveste
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. N. Kotter
- Department of Clinical Neurosciences and Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail: (DST); (MRNK); (JSO)
| | - John S. O’Neill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
- * E-mail: (DST); (MRNK); (JSO)
| |
Collapse
|
123
|
Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res 2019; 97:897-913. [PMID: 30883896 PMCID: PMC6565461 DOI: 10.1002/jnr.24411] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
The unique polarization and high-energy demand of neurons necessitates specialized mechanisms to maintain energy homeostasis throughout the cell, particularly in the distal axon. Mitochondria play a key role in meeting axonal energy demand by generating adenosine triphosphate through oxidative phosphorylation. Recent evidence demonstrates how axonal mitochondrial trafficking and anchoring are coordinated to sense and respond to altered energy requirements. If and when these mechanisms are impacted in pathological conditions, such as injury and neurodegenerative disease, is an emerging research frontier. Recent evidence also suggests that axonal energy demand may be supplemented by local glial cells, including astrocytes and oligodendrocytes. In this review, we provide an updated discussion of how oxidative phosphorylation, aerobic glycolysis, and oligodendrocyte-derived metabolic support contribute to the maintenance of axonal energy homeostasis.
Collapse
Affiliation(s)
- Kelly Anne Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
124
|
Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019; 119:10691-10717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
125
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
126
|
Brill SE, Janz K, Singh A, Friauf E. Considerable differences between auditory medulla, auditory midbrain, and hippocampal synapses during sustained high-frequency stimulation: Exceptional vesicle replenishment restricted to sound localization circuit. Hear Res 2019; 381:107771. [PMID: 31394425 DOI: 10.1016/j.heares.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 11/25/2022]
Abstract
Reliable synaptic transmission is essential for interneuronal communication. Synaptic inputs to auditory brainstem neurons, particularly those involved in sound localization, are characterized by resilience during sustained activity and temporal precision in the sub-millisecond range. Both features are obtained by synchronous release of a high number of synaptic vesicles following a single action potential. Here, we compare transmission behavior of three heterogeneous types of inputs in the auditory midbrain and medulla. The first terminate in the central inferior colliculus (ICc) and are glutamatergic (activated from the lateral lemniscus, LL). The medullary inputs terminate in the lateral superior olive (LSO) and are glutamatergic (from the cochlear nuclear complex, CN) or glycinergic (from the medial nucleus of the trapezoid body, MNTB). LSO neurons are the first to integrate binaural information and compute interaural level differences, whereas ICc neurons receive information from almost all auditory brainstem nuclei and construct an initial auditory image used for reflexive behavior. We hypothesized that CN-LSO and MNTB-LSO inputs are more resilient to synaptic fatigue during sustained stimulation than LL-ICc inputs. To test the hypothesis, we performed whole-cell patch-clamp recordings in acute brainstem slices of juvenile mice. We investigated the synaptic performance during prolonged periods of high-frequency stimulation (60 s, up to 200 Hz) and assessed several features, e.g. depression, recovery, latency, temporal precision, quantal size and content, readily releasable pool size, release probability, and replenishment rate. Overall, LL-ICc inputs performed less robustly and temporally precisely than CN-LSO and MNTB-LSO inputs. When stimulated at ≥50 Hz, the former depressed completely within a few seconds. In contrast, CN-LSO and MNTB-LSO inputs transmitted faithfully up to 200 Hz, indicative of very efficient replenishment mechanisms. LSO inputs also displayed considerably lower latency jitter than LL-ICc inputs. The latter behaved similarly to two types of input in the hippocampus for which we performed a meta-analysis. Mechanistically, the high-fidelity behavior of LSO inputs, particularly MNTB-LSO synapses, is based on exceptional release properties not present at auditory midbrain or hippocampal inputs. We conclude that robustness and temporal precision are hallmarks of auditory synapses in the medullary brainstem. These key features are less eminent at higher stations, such as the ICc, and they are also absent outside the central auditory system, namely the hippocampal formation.
Collapse
Affiliation(s)
- Sina E Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Katrin Janz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, DE, USA
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
127
|
Frere S, Slutsky I. Alzheimer's Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 2019; 97:32-58. [PMID: 29301104 DOI: 10.1016/j.neuron.2017.11.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) starts from pure cognitive impairments and gradually progresses into degeneration of specific brain circuits. Although numerous factors initiating AD have been extensively studied, the common principles underlying the transition from cognitive deficits to neuronal loss remain unknown. Here we describe an evolutionarily conserved, integrated homeostatic network (IHN) that enables functional stability of central neural circuits and safeguards from neurodegeneration. We identify the critical modules comprising the IHN and propose a central role of neural firing in controlling the complex homeostatic network at different spatial scales. We hypothesize that firing instability and impaired synaptic plasticity at early AD stages trigger a vicious cycle, leading to dysregulation of the whole IHN. According to this hypothesis, the IHN collapse represents the major driving force of the transition from early memory impairments to neurodegeneration. Understanding the core elements of homeostatic control machinery, the reciprocal connections between distinct IHN modules, and the role of firing homeostasis in this hierarchy has important implications for physiology and should offer novel conceptual approaches for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
128
|
Koenig JB, Cantu D, Low C, Sommer M, Noubary F, Croker D, Whalen M, Kong D, Dulla CG. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight 2019; 5:126506. [PMID: 31038473 DOI: 10.1172/jci.insight.126506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro application of 2-DG decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3 to 5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated the loss of parvalbumin-expressing inhibitory interneurons. In summary, 2-DG may have therapeutic potential to restore network function following TBI.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Neuroscience Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - David Cantu
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cho Low
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Cellular, Molecular, and Developmental Biology Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael Whalen
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
129
|
Fogle KJ, Smith AR, Satterfield SL, Gutierrez AC, Hertzler JI, McCardell CS, Shon JH, Barile ZJ, Novak MO, Palladino MJ. Ketogenic and anaplerotic dietary modifications ameliorate seizure activity in Drosophila models of mitochondrial encephalomyopathy and glycolytic enzymopathy. Mol Genet Metab 2019; 126:439-447. [PMID: 30683556 PMCID: PMC6536302 DOI: 10.1016/j.ymgme.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Seizures are a feature not only of the many forms of epilepsy, but also of global metabolic diseases such as mitochondrial encephalomyopathy (ME) and glycolytic enzymopathy (GE). Modern anti-epileptic drugs (AEDs) are successful in many cases, but some patients are refractory to existing AEDs, which has led to a surge in interest in clinically managed dietary therapy such as the ketogenic diet (KD). This high-fat, low-carbohydrate diet causes a cellular switch from glycolysis to fatty acid oxidation and ketone body generation, with a wide array of downstream effects at the genetic, protein, and metabolite level that may mediate seizure protection. We have recently shown that a Drosophila model of human ME (ATP61) responds robustly to the KD; here, we have investigated the mechanistic importance of the major metabolic consequences of the KD in the context of this bioenergetics disease: ketogenesis, reduction of glycolysis, and anaplerosis. We have found that reduction of glycolysis does not confer seizure protection, but that dietary supplementation with ketone bodies or the anaplerotic lipid triheptanoin, which directly replenishes the citric acid cycle, can mimic the success of the ketogenic diet even in the presence of standard carbohydrate levels. We have also shown that the proper functioning of the citric acid cycle is crucial to the success of the KD in the context of ME. Furthermore, our data reveal that multiple seizure models, in addition to ATP61, are treatable with the ketogenic diet. Importantly, one of these mutants is TPIsugarkill, which models human glycolytic enzymopathy, an incurable metabolic disorder with severe neurological consequences. Overall, these studies reveal widespread success of the KD in Drosophila, further cementing its status as an excellent model for studies of KD treatment and mechanism, and reveal key insights into the therapeutic potential of dietary therapy against neuronal hyperexcitability in epilepsy and metabolic disease.
Collapse
Affiliation(s)
- Keri J Fogle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Amber R Smith
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sidney L Satterfield
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alejandra C Gutierrez
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - J Ian Hertzler
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Caleb S McCardell
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Joy H Shon
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zackery J Barile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Molly O Novak
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
130
|
Rossi MJ, Pekkurnaz G. Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol 2019; 57:149-155. [PMID: 30875521 DOI: 10.1016/j.conb.2019.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells with extraordinary energy demands, which are mainly fulfilled by mitochondria. In response to altered neuronal energy state, mitochondria adapt to enable energy homeostasis and nervous system function. This adaptation, also called mitochondrial plasticity, can be observed as alterations in the form, function and position. The primary site of energy consumption in neurons is localized at the synapse, where mitochondria are critical for both pre- and postsynaptic functions. In this review, we will discuss molecular mechanisms regulating mitochondrial plasticity at the synapse and how they contribute to information processing within neurons.
Collapse
Affiliation(s)
- Meghan J Rossi
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Gulcin Pekkurnaz
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
131
|
Kim HM, Lee DK, Long NP, Kwon SW, Park JH. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:578-586. [PMID: 30597390 DOI: 10.1016/j.envpol.2018.12.043] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 05/06/2023]
Abstract
Nanoplastics are widely used in modern life, for example, in cosmetics and daily use products, and are attracting concern due to their potential toxic effects on environments. In this study, the uptake of nanopolystyrene particles by Caenorhabditis elegans (C. elegans) and their toxic effects were evaluated. Nanopolystyrene particles with sizes of 50 and 200 nm were prepared, and the L4 stage of C. elegans was exposed to these particles for 24 h. Their uptake was monitored by confocal microscopy, and various phenotypic alterations of the exposed nematode such as locomotion, reproduction and oxidative stress were measured. In addition, a metabolomics study was performed to determine the significantly affected metabolites in the exposed C. elegans group. Exposure to nanopolystyrene particles caused the perturbation of metabolites related to energy metabolism, such as TCA cycle intermediates, glucose and lactic acid. Nanopolystyrene also resulted in toxic effect including induction of oxidative stress and reduction of locomotion and reproduction. Collectively, these findings provide new insights into the toxic effects of nanopolystyrene particles.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Kyu Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen Phuoc Long
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
132
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
133
|
Koley S, Rozenbaum M, Fainzilber M, Terenzio M. Translating regeneration: Local protein synthesis in the neuronal injury response. Neurosci Res 2019; 139:26-36. [DOI: 10.1016/j.neures.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
|
134
|
Pan YZ, Sutula TP, Rutecki PA. 2-Deoxy-d-glucose reduces epileptiform activity by presynaptic mechanisms. J Neurophysiol 2019; 121:1092-1101. [PMID: 30673364 DOI: 10.1152/jn.00723.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Deoxy-d-glucose (2DG), a glucose analog that inhibits glycolysis, has acute and chronic antiepileptic effects. We evaluated 2DG's acute effects on synaptic and membrane properties of CA3 pyramidal neurons in vitro. 2DG (10 mM) had no effects on spontaneously occurring postsynaptic currents (PSCs) in 3.5 mM extracellular potassium concentration ([K+]o). In 7.5 mM [K+]o, 2DG significantly reduced the frequency of epileptiform bursting and the charge carried by postsynaptic currents (PSCs) with a greater effect on inward excitatory compared with outward inhibitory charge (71% vs. 40%). In 7.5 mM [K+]o and bicuculline, 2DG reduced significantly the excitatory charge by 67% and decreased the frequency but not amplitude of excitatory PSCs between bursts. In 7.5 mM [K+]o, 2DG reduced pharmacologically isolated inhibitory PSC frequency without a change in amplitude. The frequency but not amplitude of inward miniature PSCs was reduced when 2DG was applied in 7.5 mM [K+]o before bath application of TTX, but there was no effect when 2DG was applied after TTX, indicating a use-dependent uptake of 2DG was required for its actions at a presynaptic locus. 2DG did not alter membrane properties of CA3 neurons except for reducing the slow afterhyperpolarization in 3.5 but not 7.5 mM [K+]o. The reduction in frequency of spontaneous and inward miniature PSCs in elevated [K+]o indicates a presynaptic mechanism of action. 2DG effects required use-dependent uptake and suggest an important role for glycolysis in neuronal metabolism and energetics in states of high neural activity as occur during abnormal network synchronization and seizures. NEW & NOTEWORTHY 2-Deoxy-d-glucose (2DG) is a glycolytic inhibitor and suppresses epileptiform activity acutely and has chronic antiepileptic effects. The mechanisms of the acute effects are not well delineated. In this study, we show 2DG suppressed abnormal network epileptiform activity without effecting normal synaptic network activity or membrane properties. The effects appear to be use dependent and have a presynaptic locus of action. Inhibition of glycolysis is a novel presynaptic mechanism to limit abnormal neuronal network activity and seizures.
Collapse
Affiliation(s)
- Yu-Zhen Pan
- Department of Neurology, University of Wisconsin , Madison, Wisconsin
| | - Thomas P Sutula
- Department of Neurology, University of Wisconsin , Madison, Wisconsin
| | - Paul A Rutecki
- Department of Neurology, University of Wisconsin , Madison, Wisconsin.,William S. Middleton Memorial Veterans Hospital , Madison, Wisconsin
| |
Collapse
|
135
|
Donato A, Kagias K, Zhang Y, Hilliard MA. Neuronal sub-compartmentalization: a strategy to optimize neuronal function. Biol Rev Camb Philos Soc 2019; 94:1023-1037. [PMID: 30609235 PMCID: PMC6617802 DOI: 10.1111/brv.12487] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022]
Abstract
Neurons are highly polarized cells that consist of three main structural and functional domains: a cell body or soma, an axon, and dendrites. These domains contain smaller compartments with essential roles for proper neuronal function, such as the axonal presynaptic boutons and the dendritic postsynaptic spines. The structure and function of these compartments have now been characterized in great detail. Intriguingly, however, in the last decade additional levels of compartmentalization within the axon and the dendrites have been identified, revealing that these structures are much more complex than previously thought. Herein we examine several types of structural and functional sub-compartmentalization found in neurons of both vertebrates and invertebrates. For example, in mammalian neurons the axonal initial segment functions as a sub-compartment to initiate the action potential, to select molecules passing into the axon, and to maintain neuronal polarization. Moreover, work in Drosophila melanogaster has shown that two distinct axonal guidance receptors are precisely clustered in adjacent segments of the commissural axons both in vivo and in vitro, suggesting a cell-intrinsic mechanism underlying the compartmentalized receptor localization. In Caenorhabditis elegans, a subset of interneurons exhibits calcium dynamics that are localized to specific sections of the axon and control the gait of navigation, demonstrating a regulatory role of compartmentalized neuronal activity in behaviour. These findings have led to a number of new questions, which are important for our understanding of neuronal development and function. How are these sub-compartments established and maintained? What molecular machinery and cellular events are involved? What is their functional significance for the neuron? Here, we reflect on these and other key questions that remain to be addressed in this expanding field of biology.
Collapse
Affiliation(s)
- Alessandra Donato
- Clem Jones Centre for Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Konstantinos Kagias
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, U.S.A
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, U.S.A
| | - Massimo A Hilliard
- Clem Jones Centre for Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
136
|
Rangaraju V, Lauterbach M, Schuman EM. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell 2019; 176:73-84.e15. [PMID: 30612742 DOI: 10.1016/j.cell.2018.12.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
Local translation meets protein turnover and plasticity demands at synapses, however, the location of its energy supply is unknown. We found that local translation in neurons is powered by mitochondria and not by glycolysis. Super-resolution microscopy revealed that dendritic mitochondria exist as stable compartments of single or multiple filaments. To test if these mitochondrial compartments can serve as local energy supply for synaptic translation, we stimulated individual synapses to induce morphological plasticity and visualized newly synthesized proteins. Depletion of local mitochondrial compartments abolished both the plasticity and the stimulus-induced synaptic translation. These mitochondrial compartments serve as spatially confined energy reserves, as local depletion of a mitochondrial compartment did not affect synaptic translation at remote spines. The length and stability of dendritic mitochondrial compartments and the spatial functional domain were altered by cytoskeletal disruption. These results indicate that cytoskeletally tethered local energy compartments exist in dendrites to fuel local translation during synaptic plasticity.
Collapse
Affiliation(s)
- Vidhya Rangaraju
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany.
| |
Collapse
|
137
|
Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:209-267. [DOI: 10.1007/978-3-030-27480-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
138
|
Rothman DL, Dienel GA. Development of a Model to Test Whether Glycogenolysis Can Support Astrocytic Energy Demands of Na +, K +-ATPase and Glutamate-Glutamine Cycling, Sparing an Equivalent Amount of Glucose for Neurons. ADVANCES IN NEUROBIOLOGY 2019; 23:385-433. [PMID: 31667817 DOI: 10.1007/978-3-030-27480-1_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies of glycogen in brain have suggested a much more important role in brain energy metabolism and function than previously recognized, including findings of much higher than previously recognized concentrations, consumption at substantial rates compared with utilization of blood-borne glucose, and involvement in ion pumping and in neurotransmission and memory. However, it remains unclear how glycogenolysis is coupled to neuronal activity and provides support for neuronal as well as astroglial function. At present, quantitative aspects of glycogenolysis in brain functions are very difficult to assess due to its metabolic lability, heterogeneous distributions within and among cells, and extreme sensitivity to physiological stimuli. To begin to address this problem, the present study develops a model based on pathway fluxes, mass balance, and literature relevant to functions and turnover of pathways that intersect with glycogen mobilization. A series of equations is developed to describe the stoichiometric relationships between net glycogen consumption that is predominantly in astrocytes with the rate of the glutamate-glutamine cycle, rates of astrocytic and neuronal glycolytic and oxidative metabolism, and the energetics of sodium/potassium pumping in astrocytes and neurons during brain activation. Literature supporting the assumptions of the model is discussed in detail. The overall conclusion is that astrocyte glycogen metabolism is primarily coupled to neuronal function via fueling glycolytically pumping of Na+ and K+ and sparing glucose for neuronal oxidation, as opposed to previous proposals of coupling neurotransmission via glutamate transport, lactate shuttling, and neuronal oxidation of lactate.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Department of Radiology, Yale University, New Haven, CT, USA.
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
139
|
Wang Y, Li G, Zhao L, Lv J. Long noncoding RNA HOTTIP alleviates oxygen-glucose deprivation-induced neuronal injury via modulating miR-143/hexokinase 2 pathway. J Cell Biochem 2018; 119:10107-10117. [PMID: 30129112 DOI: 10.1002/jcb.27348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
HOXA transcript at the distal tip (HOTTIP), which is a long noncoding RNA, plays an important role in multiple cancers and in coronary artery disease. Elevated microRNA-143 (miR-143) expression causes impaired glucose uptake that is responsible for the ischemic cerebral injury. However, the role and mechanism of HOTTIP in ischemic stroke are still unknown. The expression of HOTTIP and miR-143 was first detected in mouse models of transient middle cerebral artery occlusion and in primary neurons exposed to oxygen-glucose deprivation (OGD). We used gain-of function and loss-of function approaches in vitro to investigate the effect and mechanism of HOTTIP on ischemic stroke by evaluating cell viability, apoptosis, and glycolytic metabolism of neurons exposed to OGD. The HOTTIP expression was decreased, whereas miR-143 increased in experimental ischemic stroke models. Overexpression of HOTTIP by the pcDNA3.1-HOTTIP plasmid significantly increased cell viability, glucose uptake, and the expression of hexokinase 2 (HK-2) and pyruvate kinase M2 that were reduced by OGD insult. The HOTTIP overexpression also diminished OGD induced the apoptosis and the caspase-3 activity of neurons. The miR-143 mimic reversed these effects, and anti-miR-143 enhanced them. In addition, we found that HOTTIP could function as a competing endogenous RNA for miR-143 to modulate HK-2 expression. In conclusion, the HOTTIP expression was reduced in ischemic stroke. The HOTTIP overexpression attenuated OGD-induced neuronal injury and imbalanced glycolytic metabolism by sponging miR-143, resulting in the de-repression of its endogenous target HK-2. Taken together, these findings improve understanding of the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Guoce Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Li Zhao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - Jianping Lv
- Department of Neurology, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| |
Collapse
|
140
|
Zhang JF, Zhang YL, Wu YC. The Role of Sirt1 in Ischemic Stroke: Pathogenesis and Therapeutic Strategies. Front Neurosci 2018; 12:833. [PMID: 30519156 PMCID: PMC6258790 DOI: 10.3389/fnins.2018.00833] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
Silent mating type information regulation 2 homolog 1 (Sirt1), a nicotine adenine dinucleotide (NAD+)-dependent enzyme, is well-known in playing a part in longevity. Ischemic stroke is a major neurological disorder and is a leading cause of death and adult disability worldwide. Recently, many studies have focused on the role of Sirt1 in ischemic stroke. Numerous studies consider Sirt1 as a protective factor and investigate the signaling pathways involved in the process under ischemic stress. However, the answer to whether upregulation of Sirt1 improves the outcome of stroke is still a controversy. In this review, we discuss the role and mechanisms of Sirt1 in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Jun-Fang Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Lei Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
141
|
Fernie AR, Zhang Y, Sweetlove LJ. Passing the Baton: Substrate Channelling in Respiratory Metabolism. RESEARCH (WASHINGTON, D.C.) 2018; 2018:1539325. [PMID: 31549022 PMCID: PMC6750097 DOI: 10.1155/2018/1539325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Despite species-specific differences in the pathways of respiratory metabolism are remarkably conserved across the kingdoms of life with glycolysis, the tricarboxylic acid cycle, and mitochondrial electron transport chain representing the major components of the process in the vast majority of organisms. In addition to being of critical importance in fueling life itself these pathways serve as interesting case studies for substrate channelling with research on this theme having been carried out for over 40 years. Here we provide a cross-kingdom review of the ample evidence for protein-protein interaction and enzyme assemblies within the three component pathways as well as describing the scarcer available evidence for substrate channelling itself.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Lee J. Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
142
|
Bayés À. Setting the stage for a role of the postsynaptic proteome in inherited neurometabolic disorders. J Inherit Metab Dis 2018; 41:1093-1101. [PMID: 30132229 PMCID: PMC6326985 DOI: 10.1007/s10545-018-0240-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Neurotransmitter diseases are a well-defined group of metabolic conditions caused, in most instances, by genes specifically expressed in the presynaptic button. Better understanding of presynaptic molecular physiology, both in normal and pathological conditions, should help develop therapeutical strategies. The clinical relevance of the presynapse in inherited metabolic disorders is in glaring contrast with that of the postsynaptic component, which so far does not seem to play a relevant role in these disorders. This is somewhat surprising, as postsynaptic proteins are known to be involved in many nervous system diseases, particularly in neurodevelopmental and psychiatric disorders. The goal of this article is to explore if defects in the sophisticated postsynaptic machinery could also have a role in neurometabolic disorders.
Collapse
Affiliation(s)
- Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), C/Sant Antoni M. Claret, 167, 08025, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
143
|
Catanese A, Garrido D, Walther P, Roselli F, Boeckers TM. Nutrient limitation affects presynaptic structures through dissociable Bassoon autophagic degradation and impaired vesicle release. J Cereb Blood Flow Metab 2018; 38:1924-1939. [PMID: 29972341 PMCID: PMC6259322 DOI: 10.1177/0271678x18786356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute mismatch between metabolic requirements of neurons and nutrients/growth factors availability characterizes several neurological conditions such as traumatic brain injury, stroke and hypoglycemia. Although the effects of this mismatch have been investigated at cell biological level, the effects on synaptic structure and function are less clear. Since synaptic activity is the most energy-demanding neuronal function and it is directly linked to neuronal networks functionality, we have explored whether nutrient limitation (NL) affects the ultrastructure, function and composition of pre and postsynaptic terminals. We show that upon NL, presynaptic terminals show disorganized vesicle pools and reduced levels of the active zone protein Bassoon (but not of Piccolo). Moreover, NL triggers an impaired vesicle release, which is reversed by re-administration of glucose but not by the blockade of autophagic or proteasomal protein degradation. This reveals a dissociable correlation between presynaptic architecture and vesicle release, since restoring vesicle fusion does not necessarily depend from the rescue of Bassoon levels. Thus, our data show that the presynaptic compartment is highly sensitive to NL and the rescue of presynaptic function requires re-establishment of the metabolic supply rather than preventing local protein degradation.
Collapse
Affiliation(s)
- Alberto Catanese
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,2 International Graduate School in Molecular Medicine Ulm (IGradU), Ulm University, Ulm, Germany
| | - Débora Garrido
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,2 International Graduate School in Molecular Medicine Ulm (IGradU), Ulm University, Ulm, Germany
| | - Paul Walther
- 3 Electron Microscopy Institute, Ulm University, Ulm, Germany
| | - Francesco Roselli
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,4 Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias M Boeckers
- 1 Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| |
Collapse
|
144
|
Enzymatic complexes across scales. Essays Biochem 2018; 62:501-514. [PMID: 30315098 PMCID: PMC6204551 DOI: 10.1042/ebc20180008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
An unprecedented opportunity to integrate ~100 years of meticulous in vitro biomolecular research is currently provided in the light of recent advances in methods to visualize closer-to-native architectures of biomolecular machines, and metabolic enzymes in particular. Traditional views of enzymes, namely biomolecular machines, only partially explain their role, organization and kinetics in the cellular milieu. Enzymes self- or hetero-associate, form fibers, may bind to membranes or cytoskeletal elements, have regulatory roles, associate into higher order assemblies (metabolons) or even actively participate in phase-separated membraneless organelles, and all the above in a transient, temporal and spatial manner in response to environmental changes or structural/functional changes of their assemblies. Here, we focus on traditional and emerging concepts in cellular biochemistry and discuss new opportunities in bridging structural, molecular and cellular analyses for metabolic pathways, accumulated over the years, highlighting functional aspects of enzymatic complexes discussed across different levels of spatial resolution.
Collapse
|
145
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
146
|
Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11. Proc Natl Acad Sci U S A 2018; 115:E10177-E10186. [PMID: 30301801 PMCID: PMC6205440 DOI: 10.1073/pnas.1809189115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The maintenance of neurotransmission by synaptic vesicle (SV) recycling is critical to brain function. The dominant SV recycling mode during intense activity is activity-dependent bulk endocytosis (ADBE), suggesting it will perform a pivotal role in neurotransmission. However, the role of ADBE is still undetermined, due to the absence of identified molecules specific for this process. The determination of the bulk endosome proteome (a key ADBE organelle) revealed that it has a unique molecular signature and identified a role for Rab11 in presynaptic function. This work provides the molecular inventory of ADBE, a resource that will be of significant value to researchers wishing to modulate neurotransmission during intense neuronal activity in both health and disease. Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle endocytosis during high-frequency stimulation, suggesting it should play key roles in neurotransmission during periods of intense neuronal activity. However, efforts in elucidating the physiological role of ADBE have been hampered by the lack of identified molecules which are unique to this endocytosis mode. To address this, we performed proteomic analysis on purified bulk endosomes, which are a key organelle in ADBE. Bulk endosomes were enriched via two independent approaches, a classical subcellular fractionation method and isolation via magnetic nanoparticles. There was a 77% overlap in proteins identified via the two protocols, and these molecules formed the ADBE core proteome. Bioinformatic analysis revealed a strong enrichment in cell adhesion and cytoskeletal and signaling molecules, in addition to expected synaptic and trafficking proteins. Network analysis identified Rab GTPases as a central hub within the ADBE proteome. Subsequent investigation of a subset of these Rabs revealed that Rab11 both facilitated ADBE and accelerated clathrin-mediated endocytosis. These findings suggest that the ADBE proteome will provide a rich resource for the future study of presynaptic function, and identify Rab11 as a regulator of presynaptic function.
Collapse
|
147
|
Miyazawa H, Aulehla A. Revisiting the role of metabolism during development. Development 2018; 145:145/19/dev131110. [DOI: 10.1242/dev.131110] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
An emerging view emphasizes that metabolism is highly regulated in both time and space. In addition, it is increasingly being recognized that metabolic pathways are tightly connected to specific biological processes such as cell signaling, proliferation and differentiation. As we obtain a better view of this spatiotemporal regulation of metabolism, and of the molecular mechanisms that connect metabolism and signaling, we can now move from largely correlative to more functional studies. It is, therefore, a particularly promising time to revisit how metabolism can affect multiple aspects of animal development. In this Review, we discuss how metabolism is mechanistically linked to cellular and developmental programs through both its bioenergetic and metabolic signaling functions. We highlight how metabolism is regulated across various spatial and temporal scales, and discuss how this regulation can influence cellular processes such as cell signaling, gene expression, and epigenetic and post-translational modifications during embryonic development.
Collapse
Affiliation(s)
- Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| |
Collapse
|
148
|
Zhao T, Hao Y, Kaplan JM. Axonal Mitochondria Modulate Neuropeptide Secretion Through the Hypoxic Stress Response in Caenorhabditis elegans. Genetics 2018; 210:275-285. [PMID: 30049781 PMCID: PMC6116974 DOI: 10.1534/genetics.118.301014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Neurons are highly dependent on mitochondrial function, and mitochondrial damage has been implicated in many neurological and neurodegenerative diseases. Here we show that axonal mitochondria are necessary for neuropeptide secretion in Caenorhabditis elegans and that oxidative phosphorylation, but not mitochondrial calcium uptake, is required for secretion. Oxidative phosphorylation produces cellular ATP, reactive oxygen species, and consumes oxygen. Disrupting any of these functions could inhibit neuropeptide secretion. We show that blocking mitochondria transport into axons or decreasing mitochondrial function inhibits neuropeptide secretion through activation of the hypoxia inducible factor HIF-1 Our results suggest that axonal mitochondria modulate neuropeptide secretion by regulating transcriptional responses induced by metabolic stress.
Collapse
Affiliation(s)
- Tongtong Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yingsong Hao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
149
|
O-GlcNAc Signaling Orchestrates the Regenerative Response to Neuronal Injury in Caenorhabditis elegans. Cell Rep 2018; 24:1931-1938.e3. [DOI: 10.1016/j.celrep.2018.07.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/07/2018] [Accepted: 07/22/2018] [Indexed: 12/19/2022] Open
|
150
|
Cagnetta R, Frese CK, Shigeoka T, Krijgsveld J, Holt CE. Rapid Cue-Specific Remodeling of the Nascent Axonal Proteome. Neuron 2018; 99:29-46.e4. [PMID: 30008298 PMCID: PMC6048689 DOI: 10.1016/j.neuron.2018.06.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/24/2017] [Accepted: 05/31/2018] [Indexed: 01/13/2023]
Abstract
Axonal protein synthesis and degradation are rapidly regulated by extrinsic signals during neural wiring, but the full landscape of proteomic changes remains unknown due to limitations in axon sampling and sensitivity. By combining pulsed stable isotope labeling of amino acids in cell culture with single-pot solid-phase-enhanced sample preparation, we characterized the nascent proteome of isolated retinal axons on an unparalleled rapid timescale (5 min). Our analysis detects 350 basally translated axonal proteins on average, including several linked to neurological disease. Axons stimulated by different cues (Netrin-1, BDNF, Sema3A) show distinct signatures with more than 100 different nascent protein species up- or downregulated within the first 5 min followed by further dynamic remodeling. Switching repulsion to attraction triggers opposite regulation of a subset of common nascent proteins. Our findings thus reveal the rapid remodeling of the axonal proteomic landscape by extrinsic cues and uncover a logic underlying attraction versus repulsion.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christian K Frese
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Toshiaki Shigeoka
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany; Excellence Cluster CellNetworks, University of Heidelberg, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|