101
|
Abstract
Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Vijay K Yadav
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Sanger Mouse Genetics Project, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
102
|
Painsipp E, Köfer MJ, Farzi A, Dischinger US, Sinner F, Herzog H, Holzer P. Neuropeptide Y and peptide YY protect from weight loss caused by Bacille Calmette-Guérin in mice. Br J Pharmacol 2014; 170:1014-26. [PMID: 23992467 PMCID: PMC3949650 DOI: 10.1111/bph.12354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/05/2013] [Accepted: 07/23/2013] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose Immune challenge of mice with Bacille Calmette–Guérin (BCG) has been reported to cause transient weight loss and a behavioural sickness response. Although BCG-induced depression involves the kynurenine pathway, weight loss occurs independently of this factor. Because neuropeptide Y (NPY) and peptide YY (PYY) are involved in the regulation of food intake, we hypothesized that they play a role in the BCG-induced weight loss. Experimental Approach Male wild-type, PYY knockout (PYY−/−), NPY knockout (NPY−/−) and NPY−/−;PYY−/− double knockout mice were injected with vehicle or BCG (approximately 108 colony-forming units per mouse), and their weight, locomotion, exploration and ingestion were recorded for 2 weeks post-treatment. Key Results Deletion of PYY and NPY aggravated the BCG-induced loss of body weight, which was most pronounced in NPY−/−;PYY−/− mice (maximum loss: 15%). The weight loss in NPY−/−;PYY−/− mice did not normalize during the 2 week observation period. BCG suppressed the circadian pattern of locomotion, exploration and food intake. However, these changes took a different time course than the prolonged weight loss caused by BCG in NPY−/−;PYY−/− mice. The effect of BCG to increase circulating IL-6 (measured 16 days post-treatment) remained unaltered by knockout of PYY, NPY or NPY plus PYY. Conclusions and Implications These data show that NPY and PYY are both required to protect from the action of BCG-evoked immune challenge to cause prolonged weight loss and disturb energy balance. The findings attest to an important role of NPY and PYY in orchestrating homeostatic reactions to infection and immune stimulation.
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
103
|
Gimenez LE, Babilon S, Wanka L, Beck-Sickinger AG, Gurevich VV. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cell Signal 2014; 26:1523-31. [PMID: 24686081 PMCID: PMC4033671 DOI: 10.1016/j.cellsig.2014.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/16/2014] [Indexed: 12/21/2022]
Abstract
Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Stefanie Babilon
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Lizzy Wanka
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
104
|
Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells. Mol Cell Biochem 2014; 394:43-52. [PMID: 24903829 DOI: 10.1007/s11010-014-2079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Endothelial cells (EC) are the first elements exposed to mediators circulating in the bloodstream, and react to stimulation with finely tuned responses mediated by different signal transduction pathways, leading the endothelium to adapt. Neuropeptide Y (NPY), the most abundant peptide in heart and brain, is mainly involved in the neuroendocrine regulation of the stress response. The regulatory roles of NPY depend on many factors, including its enzymatic processing, receptor subtypes and related signal transduction systems, including the phosphoinositide (PI) pathway and related phospholipase C (PI-PLC) family of enzymes. The panel of expression of PI-PLC enzymes differs comparing quiescent versus differently stimulated human EC. Growing evidences indicate that the regulation of the expression of PLC genes, which codify for PI-PLC enzymes, might act as an additional mechanism of control of the PI signal transduction pathway. NPY was described to potentiate the activation of PI-PLC enzymes in different cell types, including EC. In the present experiments, we stimulated human umbilical vein EC using different doses of NPY in order to investigate a possible role upon the expression PLC genes. NPY reduced the overall transcription of PLC genes, excepting for PLCE. The most significant effects were observed for PLCB2 and PLCD1, both isoforms recruited by means of G-proteins and G-protein-coupled receptors. NPY behavior was comparable with other PI-PLC interacting molecules that, beside the stimulation of phospholipase activity, also affect the upcoming enzymes' production acting upon gene expression. That might represent a mode to regulate the activity of PI-PLC enzymes after activation.
Collapse
Affiliation(s)
- V R Lo Vasco
- Department Organi di Senso, Policlinico Umberto I, Faculty of Medicina e Odontoiatria, Sapienza University of Rome, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | | | | | |
Collapse
|
105
|
Ouellet L, de Villers-Sidani E. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front Neuroanat 2014; 8:40. [PMID: 24917792 PMCID: PMC4040493 DOI: 10.3389/fnana.2014.00040] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
In both humans and rodents, decline in cognitive function is a hallmark of the aging process; the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modeling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1) as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA), parvalbumin (PV), somatostatin (SOM), calretinin (CR), vasoactive intestinal peptide (VIP), choline acetyltransferase (ChAT), neuropeptide Y (NPY), and cholecystokinin (CCK) to document the changes observed in interneuron populations across the rat's lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV) and somatostatin (SOM) expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signaling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes.
Collapse
Affiliation(s)
- Lydia Ouellet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute Montreal, QC, Canada
| | | |
Collapse
|
106
|
Roemmler-Zehrer J, Geigenberger V, Störmann S, Losa M, Crippa V, Otto B, Bidlingmaier M, Dimopoulou C, Stalla GK, Schopohl J. Food intake regulating hormones in adult craniopharyngioma patients. Eur J Endocrinol 2014; 170:627-35. [PMID: 24474740 DOI: 10.1530/eje-13-0832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Patients with craniopharyngioma (CP) have disturbances of the hypothalamic-pituitary axis and serious comorbidities such as obesity. We hypothesized that the secretion of hormones regulating the nutritional status is altered in adult patients with CP compared with patients with non-functioning pituitary adenoma (NFPA). METHODS WE INCLUDED 40 CP (50% MALES, MEAN AGE: 49.6±14.3 years) and 40 NFPA (72.5% males, mean age: 63.4±9.8 years) patients. We measured glucose, insulin, leptin, total ghrelin, peptide-YY (PYY) and cholecystokinin (CCK) during oral glucose tolerance test (OGTT). Fat mass (FM) was determined by dual X-ray absorptiometry. RESULTS Gender distribution was not significantly different, but CP patients were significantly younger (P<0.001). CP patients had significantly higher BMI and FM than NFPA patients (BMI 32±8 vs 28±4 kg/m(2), P=0.009 and FM 37±9 vs 33±9%, P=0.02). Fasting glucose level (84±12 vs 78±11 mg/dl, P=0.03), leptin (27.9±34.2 vs 11.9±11.6 μg/l, P=0.008) and leptin levels corrected for percentage FM (0.66±0.67 vs 0.32±0.25 μg/l%, P=0.005) were significantly higher in CP than in NFPA patients, whereas ghrelin was significantly lower (131±129 vs 191±119 ng/l, P=0.035). Insulin, PYY and CCK did not differ significantly between groups. After glucose load, leptin decreased significantly in CP patients (P=0.019). In both groups, ghrelin decreased significantly during OGTT (both P<0.001). The percentage decline was significantly smaller for CP. PYY and CCK increased equally after glucose in both groups. CONCLUSION Our patients with CP have more metabolic complications than our patients with NFPA. The levels of leptin and ghrelin at fasting status and after glucose seem to be altered in CP, whereas changes in insulin, PYY and CCK do not seem to be responsible for the metabolic changes in these patients.
Collapse
Affiliation(s)
- J Roemmler-Zehrer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, 80336 München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Loktev AV, Jackson PK. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep 2013; 5:1316-29. [PMID: 24316073 DOI: 10.1016/j.celrep.2013.11.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/21/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022] Open
Abstract
Human monogenic obesity syndromes, including Bardet-Biedl syndrome (BBS), implicate neuronal primary cilia in regulation of energy homeostasis. Cilia in hypothalamic neurons have been hypothesized to sense and regulate systemic energy status, but the molecular mechanism of this signaling remains unknown. Here, we report a comprehensive localization screen of 42 G-protein-coupled receptors (GPCR) revealing seven ciliary GPCRs, including the neuropeptide Y (NPY) receptors NPY2R and NPY5R. We show that mice modeling BBS disease or obese tubby mice fail to localize NPY2R to cilia in the hypothalamus and that BBS mutant mice fail to activate c-fos or decrease food intake in response to the NPY2R ligand PYY3-36. We find that cells with ciliary NPY2R show augmented PYY3-36-dependent cAMP signaling. Our data demonstrate that ciliary targeting of NPY receptors is important for controlling energy balance in mammals, revealing a physiologically defined ligand-receptor pathway signaling within neuronal cilia.
Collapse
Affiliation(s)
- Alexander V Loktev
- Research Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Peter K Jackson
- Research Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
108
|
Shi YC, Lin Z, Lau J, Zhang H, Yagi M, Kanzler I, Sainsbury A, Herzog H, Lin S. PYY3-36 and pancreatic polypeptide reduce food intake in an additive manner via distinct hypothalamic dependent pathways in mice. Obesity (Silver Spring) 2013; 21:E669-78. [PMID: 23804428 DOI: 10.1002/oby.20534] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/18/2013] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Peptide YY (PYY3-36) and pancreatic polypeptide (PP) potently inhibit food intake in rodents and humans, however, it is unclear whether they have any synergistic/additive interaction in decreasing food intake. DESIGN AND METHODS Fasted WT, Y2(-) (/) (-) , Y4(-) (/) (-) , or Y2Y4(-) (/) (-) mice were i.p. administrated with saline, PYY3-36, and/or PP. RESULTS Combined injection of PYY3-36 and PP reduces food intake in an additive manner was demonstrated in this study. This effect is mediated via Y2 and Y4 receptors, respectively. It was demonstrated that PYY3-36 and PP activate distinct neuronal pathways in the hypothalamus, as demonstrated by immunostaining for c-fos, which shows distinct patterns in response to either hormone. After PYY3-36 injection, neurons in the dorsal aspect of the arcuate nucleus (Arc), paraventricular nucleus, and dorso-medial nucleus of the hypothalamus (DMH) are activated with minimal responses seen in the ventro-medial nucleus of the hypothalamus (VMH) and lateral hypothalamic area (LHA) of WT mice. These effects are absent in Y2(-) (/) (-) mice. PP activates preferably the lateral aspect of the Arc, the DMH, VMH, and LHA in a Y4 receptor-dependent manner. Importantly, the expression pattern of c-fos immunoreactive neurons induced by combined treatment appears to be the sum of the effects of single treatments rather than a result of synergistic interaction. CONCLUSIONS These findings demonstrate that PYY3-36 and PP activate distinct pathways in the hypothalamus to reduce food intake in an additive manner.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Borbély E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013; 47:439-50. [PMID: 24210137 DOI: 10.1016/j.npep.2013.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations.
Collapse
Affiliation(s)
- Eva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
110
|
Abstract
Hepatocellular accumulation of free fatty acids (FFAs) in the form of triglycerides constitutes the metabolic basis for the development of nonalcoholic fatty liver disease (NAFLD). Recent data demonstrate that excess FFA hepatocyte storage is likely to lead to lipotoxicity and hepatocyte apoptosis. Hence, FFA-mediated hepatocyte injury is a key contributor to the pathogenesis of nonalcoholic steatohepatitis (NASH). Nonalcoholic steatohepatitis, obesity, type 2 diabetes, essential hypertension, and other common medical problems together comprise metabolic syndrome. Evidence suggests that peptide hormones from the L cells of the distal small intestine, which comprise the core of the enteroendocrine system (EES), play two key roles, serving either as incretins, or as mediators of appetite and satiety in the central nervous system. Recent data related to glucagon-like peptide-1 (GLP-1) and other known L-cell hormones have accumulated due to the increasing frequency of bariatric surgery, which increase delivery of bile salts to the hindgut. Bile acids are a key stimulus for the TGR5 receptor of the L cells. Enhanced bile-salt flow and subsequent EES stimulation may be central to elimination of hepatic steatosis following bariatric surgery. Although GLP-1 is a clinically relevant pharmacological analogue that drives pancreatic β-cell insulin output, GLP-1 analogues also have independent benefits via their effects on hepatocellular FFA metabolism. The authors also discuss recent data regarding the role of the major peptides released by the EES, which promote satiety and modulate energy homeostasis and utilization, as well as those that control fat absorption and intestinal permeability. Taken together, elucidating novel functions for EES-related peptides and pharmacologic development of peptide analogues offer potential far-ranging treatment for obesity-related human disease.
Collapse
Affiliation(s)
- Jamie Eugene Mells
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Frank A. Anania
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
111
|
Berlicki L, Kaske M, Gutiérrez-Abad R, Bernhardt G, Illa O, Ortuño RM, Cabrele C, Buschauer A, Reiser O. Replacement of Thr32 and Gln34 in the C-terminal neuropeptide Y fragment 25-36 by cis-cyclobutane and cis-cyclopentane β-amino acids shifts selectivity toward the Y(4) receptor. J Med Chem 2013; 56:8422-31. [PMID: 24090364 DOI: 10.1021/jm4008505] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuropeptide Y (NPY) and pancreatic polypeptide (PP) control central and peripheral processes by activating the G protein coupled receptors YxR (x = 1, 2, 4, 5). We present analogs of the C-terminal fragments 25-36 and 32-36 of NPY and PP containing (1R,2S)-cyclobutane (βCbu) or (1R,2S)-cyclopentane (βCpe) β-amino acids, which display exclusively Y4R affinity. In particular, [βCpe(34)]-NPY-(25-36) is a Y4R selective partial agonist (EC50 41 ± 6 nM, Emax 71%) that binds Y4R with a Ki of 10 ± 2 nM and a selectivity >100-fold relative to Y1R and Y2R and >50-fold relative to Y5R. Comparably, [Y(32), βCpe(34)]-NPY(PP)-(32-36) selectively binds and activates Y4R (EC50 94 ± 21 nM, Emax 73%). The NMR structure of [βCpe(34)]-NPY-(25-36) in dodecylphosphatidylcholine micelles shows a short helix at residues 27-32, while the C-terminal segment R(33)βCpe(34)R(35)Y(36) is extended. The biological properties of the βCbu- or βCpe-containing NPY and PP C-terminal fragments encourage the future application of these β-amino acids in the synthesis of selective Y4R ligands.
Collapse
Affiliation(s)
- Lukasz Berlicki
- Institute of Organic Chemistry, University of Regensburg , Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Sousa DM, McDonald MM, Mikulec K, Peacock L, Herzog H, Lamghari M, Little DG, Baldock PA. Neuropeptide Y modulates fracture healing through Y1 receptor signaling. J Orthop Res 2013; 31:1570-8. [PMID: 23733357 DOI: 10.1002/jor.22400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/06/2013] [Indexed: 02/04/2023]
Abstract
Neuropeptide Y acting via it's Y1 receptor represents a powerful pathway in the control of bone mass. The global or osteoblast-specific Y1 receptor deletion induces pronounced bone anabolic effects in mice. However, the contribution of Y1 receptor deletion in bone repair/healing remained to be clarified. Therefore, in this study we characterized the role of Y1 receptor deletion in fracture healing. Closed tibial fractures were generated in germline (Y1 (-/-) ) and osteoblastic-specific Y1 receptor knockout mice. The progression of tibial repair monitored from 1- until 6-weeks post-fracture demonstrated that in Y1 (-/-) mice there is a delay in fracture repair, as seen by a decrease in bone callus volume and callus strength. Moreover, the histological features included elevated avascular and cartilage area and consequently delayed cartilage removal, and hence impaired union. Interestingly, this delay in bone repair was not related directly to Y1 receptors expressed by mature osteoblasts. These findings suggest that the global absence of the Y1 receptor delays fracture healing, through impairing the early phases of fracture repair to achieve bony union. The data acquired on the role of Y1 receptor signaling disruption in bone regeneration is critical for the design of future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela M Sousa
- Instituto de Engenharia Biomédica (INEB), NEWTherapies Group, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Naufahu J, Cunliffe AD, Murray JF. The roles of melanin-concentrating hormone in energy balance and reproductive function: Are they connected? Reproduction 2013; 146:R141-50. [PMID: 23884861 DOI: 10.1530/rep-12-0385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.
Collapse
Affiliation(s)
- Jane Naufahu
- Department of Human and Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK and
| | | | | |
Collapse
|
114
|
Kurebayashi N, Sato M, Fujisawa T, Fukushima K, Tamura M. Regulation of neuropeptide Y Y1 receptor expression by bone morphogenetic protein 2 in C2C12 myoblasts. Biochem Biophys Res Commun 2013; 439:506-10. [PMID: 24025680 DOI: 10.1016/j.bbrc.2013.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
Abstract
The neuropeptide Y (NPY) system is known as one of the major neural signaling pathways. NPY, produced by peripheral tissues including osteoblasts, is known to bind to the Y1 receptor. Recently, osteoblast-specific Y1 receptor knockout mice were developed and were found to have a high bone mass phenotype, indicating a role for the NPY-Y1 receptor axis as a regulator of bone homeostasis. However, regulation of Y1 receptor expression during osteoblastic differentiation remains unexplored. In the present study, we examined the role of bone morphogenetic protein (BMP) 2 signaling in regulating Y1 receptor expression. In C2C12 cells, expression of Y1 receptor mRNA was induced by BMP2. This induction was also observed after co-transfection with Smad1 and Smad4, the intracellular signaling molecules of the BMP2 signaling pathway. In a transfection assay, Smad1/4 up-regulated transcriptional activity through interaction with the Y1 receptor gene promoter. Following transfection of MC3T3-E1 cells with siRNA for the Y1 receptor, the expression of alkaline phosphatase, osteocalcin, Runx2 and osterix were increased. These results show that BMP2 signaling regulates Y1 receptor gene expression, and raises the possibility that NPY acts in osteoblasts via an autocrine mechanism.
Collapse
Affiliation(s)
- Naoko Kurebayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; Department of Dental Anesthesiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | | | | | | | | |
Collapse
|
115
|
Abstract
Obesity is a leading cause of morbidity and mortality worldwide. There is still a wide disparity between the necessity and availability of safe and effective antiobesity pharmacotherapies. Current drugs are associated with adverse effects and are limited in their efficacy. There is thus an urgent need for new antiobesity agents. Animal models are critical to the study of the biological mechanisms underpinning energy homeostasis and obesity and provide useful tools for the development of novel antiobesity agents. Our understanding of the complex neuronal and hormonal systems that regulate appetite and body weight has largely been based on studies in animals. This review describes the physiological basis of appetite, rodent models used in the development of antiobesity drugs, and potential future targets for novel antiobesity agents.
Collapse
Affiliation(s)
- A. Agahi
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - K. G. Murphy
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
116
|
Zhou JR, Zhang LD, Wei HF, Wang X, Ni HL, Yang F, Zhang T, Jiang CL. Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J Neuroimmunol 2013; 260:55-9. [PMID: 23623189 DOI: 10.1016/j.jneuroim.2013.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
Despite increasing evidence highlighting the role of NPY in the modulation of inflammatory reaction, surprisingly little is known about the direct effects of NPY on the release of proinflammatory mediators. In the present work, we have evaluated the effects of NPY on the release of TNF-α, IL-1β, IL-6 and HMGB1 mediators in peritoneal macrophages. Our results demonstrate for the first time that NPY can directly induce active HMGB1 release and cytoplasmic translocation, while the production of TNF-α, IL-1β and IL-6 is not affected. PKC and ERK pathway inhibitors can abolish the promotive effect of NPY on HMGB1 secretion. Thus, our results indicate that NPY might impact on the innate immune system by directly potentiating the HMGB1 release from the macrophage.
Collapse
Affiliation(s)
- Jiang-Rui Zhou
- Laboratory of Stress Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
117
|
The Gut's Little Brain in Control of Intestinal Immunity. ISRN GASTROENTEROLOGY 2013; 2013:630159. [PMID: 23691339 PMCID: PMC3649343 DOI: 10.1155/2013/630159] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/12/2013] [Indexed: 12/13/2022]
Abstract
The gut immune system shares many mediators and receptors with the autonomic nervous system. Good examples thereof are the parasympathetic (vagal) and sympathetic neurotransmitters, for which many immune cell types in a gut context express receptors or enzymes required for their synthesis. For some of these the relevance for immune regulation has been recently defined. Earlier and more recent studies in neuroscience and immunology have indicated the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. Sympathetic immune modulation is well described earlier, and in the last decade the parasympathetic vagal nerve has been put forward as an integral part of an immune regulation network via its release of Ach, a system coined "the cholinergic anti-inflammatory reflex." A prototypical example is the inflammatory reflex, comprised of an afferent arm that senses inflammation and an efferent arm: the cholinergic anti-inflammatory pathway, that inhibits innate immune responses. In this paper, the current understanding of how innate mucosal immunity can be influenced by the neuronal system is summarized, and cell types and receptors involved in this interaction will be highlighted. Focus will be given on the direct neuronal regulatory mechanisms, as well as current advances regarding the role of microbes in modulating communication in the gut-brain axis.
Collapse
|
118
|
Jääskeläinen AE, Seppälä S, Kakko T, Jaakkola U, Kallio J. Systemic treatment with neuropeptide Y receptor Y1-antagonist enhances atherosclerosis and stimulates IL-12 expression in ApoE deficient mice. Neuropeptides 2013; 47:67-73. [PMID: 23261359 DOI: 10.1016/j.npep.2012.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 01/23/2023]
Abstract
AIMS Neuropeptide Y (NPY) and Y1 receptors are involved in the mechanisms related to the development of atherosclerosis. We investigated the effects of systemically given NPY and its receptor Y1-antagonist on the development of atherosclerosis and associated inflammatory molecules in ApoE(-/-) mice during high-fat diet. METHODS Five weeks old ApoE(-/-) were fed atherogenic high cholesterol diet for 8weeks. The mice were injected with two doses of NPY (50 or 100μg/kg) or Y1 receptor antagonist BIBP3226 (100μg/kg) or vehicle intraperitoneally for 8weeks. Atherosclerosis lesion areas in aortic arch and descending aortas were determined, inflammatory molecules and NPY were determined in aortic wall, spleen, liver or in serum. RESULTS Neuropeptide Y1 receptor antagonist, BIBP3226 (100μg/kg) increased atherosclerotic lesion areas compared to vehicle in descending aortas in ApoE(-/-) mice (p=0.021). The expression levels of macrophage-derived cytokine, interleukin-12 (IL-12) in spleens and livers were 8-fold increased with BIBP3226 (p=0.006 and p=0.003, respectively) as determined by RT-qPCR. Cholesterol levels in serum correlated positively with VCAM-1 expression (p=0.003) and negatively with NPY expression (p=0.044) in aortic wall in mice treated with BIBP 3226. CONCLUSIONS The results indicate that systemic treatment with Y1-antagonist enhances atherosclerosis development in ApoE deficient mice by triggering an overwhelming IL-12 production. The findings are highly valuable for evaluation of the development potential of Y1 ligands for therapeutics to treat or prevent atherosclerosis.
Collapse
Affiliation(s)
- A E Jääskeläinen
- Centre for Biotechnology, Tykistökatu 6A, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
119
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
120
|
Acute central neuropeptide Y administration increases food intake but does not affect hepatic very low-density lipoprotein (VLDL) production in mice. PLoS One 2013; 8:e55217. [PMID: 23460782 PMCID: PMC3584102 DOI: 10.1371/journal.pone.0055217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Central neuropeptide Y (NPY) administration stimulates food intake in rodents. In addition, acute modulation of central NPY signaling increases hepatic production of very low-density lipoprotein (VLDL)-triglyceride (TG) in rats. As hypertriglyceridemia is an important risk factor for atherosclerosis, for which well-established mouse models are available, we set out to validate the effect of NPY on hepatic VLDL-TG production in mice, to ultimately investigate whether NPY, by increasing VLDL production, contributes to the development of atherosclerosis. RESEARCH DESIGN AND METHODS Male C57Bl/6J mice received an intracerebroventricular (i.c.v.) cannula into the lateral (LV) or third (3V) ventricle of the brain. One week later, after a 4 h fast, the animals received an intravenous (i.v.) injection of Tran(35)S (100 µCi) followed by tyloxapol (500 mg/kg body weight; BW), enabling the study of hepatic VLDL-apoB and VLDL-TG production, respectively. Immediately after the i.v. injection of tyloxapol, the animals received either an i.c.v. injection of NPY (0.2 mg/kg BW in artificial cerebrospinal fluid; aCSF), synthetic Y1 receptor antagonist GR231118 (0.5 mg/kg BW in aCSF) or vehicle (aCSF), or an i.v. injection of PYY3-36 (0.5 mg/kg BW in PBS) or vehicle (PBS). RESULTS Administration of NPY into both the LV and 3V increased food intake within one hour after injection (+164%, p<0.001 and +367%, p<0.001, respectively). NPY administration neither in the LV nor in the 3V affected hepatic VLDL-TG or VLDL-apoB production. Likewise, antagonizing central NPY signaling by either PYY3-36 or GR231118 administration did not affect hepatic VLDL production. CONCLUSION In mice, as opposed to rats, acute central administration of NPY increases food intake without affecting hepatic VLDL production. These results are of great significance when extrapolating findings on the central regulation of hepatic VLDL production between species.
Collapse
|
121
|
Shi YC, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, Heilbronn R, Mietzsch M, Weger S, Huang XF, Enriquez RF, Baldock PA, Zhang L, Sainsbury A, Herzog H, Lin S. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab 2013; 17:236-48. [PMID: 23395170 DOI: 10.1016/j.cmet.2013.01.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/03/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Neuropepetide Y (NPY) is best known for its powerful stimulation of food intake and its effects on reducing energy expenditure. However, the pathways involved and the regulatory mechanisms behind this are not well understood. Here we demonstrate that NPY derived from the arcuate nucleus (Arc) is critical for the control of sympathetic outflow and brown adipose tissue (BAT) function. Mechanistically, a key change induced by Arc NPY signaling is a marked Y1 receptor-mediated reduction in tyrosine hydroxylase (TH) expression in the hypothalamic paraventricular nucleus (PVN), which is also associated with a reduction in TH expression in the locus coeruleus (LC) and other regions in the brainstem. Consistent with this, Arc NPY signaling decreased sympathetically innervated BAT thermogenesis, involving the downregulation of uncoupling protein 1 (UCP1) expression in BAT. Taken together, these data reveal a powerful Arc-NPY-regulated neuronal circuit that controls BAT thermogenesis and sympathetic output via TH neurons.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Lutz TA. The interaction of amylin with other hormones in the control of eating. Diabetes Obes Metab 2013; 15:99-111. [PMID: 22862822 DOI: 10.1111/j.1463-1326.2012.01670.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/20/2012] [Accepted: 07/28/2012] [Indexed: 11/30/2022]
Abstract
Twenty years of research established amylin as an important control of energy homeostasis. Amylin controls nutrient and energy fluxes by reducing energy intake, by modulating nutrient utilization via an inhibition of postprandial glucagon secretion and by increasing energy disposal via a prevention of compensatory decreases of energy expenditure in weight reduced individuals. Like many other gastrointestinal hormones, amylin is secreted in response to meals and it reduces eating by promoting meal-ending satiation. Not surprisingly, amylin interacts with many of these hormones to control eating. These interactions seem to occur at different levels because amylin seems to mediate the eating inhibitory effect of some of these gastrointestinal hormones, and the combination of some of these hormones seems to lead to a stronger reduction in eating than single hormones alone. Amylin's effect on eating is thought to be mediated by a stimulation of specific amylin receptors in the area postrema. Secondary brain sites that were defined to mediate amylin action - and hence potential additional sites of interaction with other hormones - include the nucleus of the solitary tract, the lateral parabrachial nucleus, the lateral hypothalamic area and other hypothalamic nuclei. The focus of this review is to summarize the current knowledge of amylin interactions in the control of eating. In most cases, these interactions have only been studied at a descriptive rather than a mechanistic level and despite the clear knowledge on primary sites of amylin action, the interaction sites between amylin and other hormones are often unknown.
Collapse
Affiliation(s)
- T A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
123
|
Association of a functional polymorphism in neuropeptide Y with antipsychotic-induced weight gain in schizophrenia patients. J Clin Psychopharmacol 2013; 33:11-7. [PMID: 23277265 DOI: 10.1097/jcp.0b013e31827d145a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Significant body weight gain (BWG) is a serious adverse effect of a number of antipsychotic drugs. Previous studies have demonstrated an influence of clozapine, but not haloperidol, on neuropeptide Y (NPY) expression in the hypothalamus. Because NPY is a potent orexigenic peptide stimulating food intake, and genetic variation of the gene has been shown to influence development of obesity, we investigated the impact of NPY polymorphisms on antipsychotic-induced BWG.We analyzed 5 polymorphisms in the NPY gene (rs10551063, rs16147, rs5573, rs5574, and rs16475) in schizophrenia subjects (n = 226), treated mostly with clozapine and olanzapine for up to 14 weeks. Association was tested using analysis of covariance with change (%) from baseline weight as the dependent variable and duration of treatment and baseline body weight as covariates.In patients of European ancestry who received either clozapine or olanzapine, significant genotypic and allelic association of rs16147 with weight change was observed (P(corrected) = 0.012 and 0.018, respectively). Carriers of the C allele gained significantly more weight compared with individuals with TT genotype (CC + CT vs TT; 5.82% ± 5.6% vs 2.25% ± 4.8%; P= 0.001). Similarly, 2 other polymorphisms (rs5573 and rs5574) were also significantly associated with weight change (P(corrected) = 0.018 and 0.03). In addition, we observed a significant gene-gene interaction between the rs16147 in NPY and rs806378 in cannabinoid receptor 1 (P(corrected) = 0.011).Our observation of association of NPY polymorphisms gives further evidence for a genetic influence on antipsychotic-induced BWG and suggests a role of NPY gene in influencing this complex adverse effect.
Collapse
|
124
|
Roa J. Role of GnRH Neurons and Their Neuronal Afferents as Key Integrators between Food Intake Regulatory Signals and the Control of Reproduction. Int J Endocrinol 2013; 2013:518046. [PMID: 24101924 PMCID: PMC3786537 DOI: 10.1155/2013/518046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022] Open
Abstract
Reproductive function is regulated by a plethora of signals that integrate physiological and environmental information. Among others, metabolic factors are key components of this circuit since they inform about the propitious timing for reproduction depending on energy availability. This information is processed mainly at the hypothalamus that, in turn, modulates gonadotropin release from the pituitary and, thereby, gonadal activity. Metabolic hormones, such as leptin, insulin, and ghrelin, act as indicators of the energy status and convey this information to the reproductive axis regulating its activity. In this review, we will analyse the central mechanisms involved in the integration of this metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of GnRH, Kiss1, NPY, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction.
Collapse
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain
- *Juan Roa:
| |
Collapse
|
125
|
Roa J, Herbison AE. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 2012; 153:5587-99. [PMID: 22948210 DOI: 10.1210/en.2012-1470] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons act to sense and coordinate the brain's responses to metabolic cues. One neuronal network that is very sensitive to metabolic status is that controlling fertility. In this study, we investigated the impact of neuropeptides released by NPY and POMC neurons on the cellular excitability of GnRH neurons, the final output cells of the brain controlling fertility. The majority (∼70%) of GnRH neurons were activated by α-melanocyte-stimulating hormone, and this resulted from the direct postsynaptic activation of melanocortin receptor 3 and melanocortin receptor 4. A small population of GnRH neurons (∼15%) was excited by cocaine and amphetamine-regulated transcript or inhibited by β-endorphin. Agouti-related peptide, released by NPY neurons, was found to have variable inhibitory (∼10%) and stimulatory (∼25%) effects upon subpopulations of GnRH neurons. A variety of NPY and pancreatic polypeptide analogs was used to examine potential NPY interactions with GnRH neurons. Although porcine NPY (Y1/Y2/Y5 agonist) directly inhibited the firing of approximately 45% of GnRH neurons, [Leu(31),Pro(34)]-NPY (Y1/Y4/Y5 agonist) could excite (56%) or inhibit (19%). Experiments with further agonists indicated that Y1 receptors were responsible for suppressing GnRH neuron activity, whereas postsynaptic Y4 receptors were stimulatory. These results show that the activity of GnRH neurons is regulated in a complex manner by neuropeptides released by POMC and NPY neurons. This provides a direct route through which different metabolic cues can regulate fertility.
Collapse
Affiliation(s)
- Juan Roa
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | |
Collapse
|
126
|
Decressac M, Barker RA. Neuropeptide Y and its role in CNS disease and repair. Exp Neurol 2012; 238:265-72. [PMID: 23022456 DOI: 10.1016/j.expneurol.2012.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/09/2012] [Accepted: 09/20/2012] [Indexed: 01/04/2023]
Abstract
Neuropeptide Y (NPY) is widely expressed throughout the CNS and exerts a number of important physiological functions as well as playing a role in pathological conditions such as obesity, anxiety, epilepsy, chronic pain and neurodegenerative disorders. In this review, we highlight some of the recent advances in our understanding of NPY biology and how this may help explain not only its role in health and disease, but also its possible use therapeutically.
Collapse
Affiliation(s)
- M Decressac
- Wallenberg Neuroscience Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | | |
Collapse
|
127
|
Zhang K, Rao F, Miramontes-Gonzalez JP, Hightower CM, Vaught B, Chen Y, Greenwood TA, Schork AJ, Wang L, Mahata M, Stridsberg M, Khandrika S, Biswas N, Fung MM, Waalen J, Middelberg RP, Heath AC, Montgomery GW, Martin NG, Whitfield JB, Baker DG, Schork NJ, Nievergelt CM, O'Connor DT. Neuropeptide Y (NPY): genetic variation in the human promoter alters glucocorticoid signaling, yielding increased NPY secretion and stress responses. J Am Coll Cardiol 2012; 60:1678-89. [PMID: 23021333 DOI: 10.1016/j.jacc.2012.06.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study sought to understand whether genetic variation at the Neuropeptide Y (NPY) locus governs secretion and stress responses in vivo as well as NPY gene expression in sympathochromaffin cells. BACKGROUND The NPY is a potent pressor peptide co-released with catecholamines during stress by sympathetic axons. Genome-wide linkage on NPY secretion identified a LOD (logarithm of the odds ratio) peak spanning the NPY locus on chromosome 7p15. METHODS Our approach began with genomics (linkage and polymorphism determination), extended into NPY genetic control of heritable stress traits in twin pairs, established transcriptional mechanisms in transfected chromaffin cells, and concluded with observations on blood pressure (BP) in the population. RESULTS Systematic polymorphism tabulation at NPY (by re-sequencing across the locus: promoter, 4 exons, exon/intron borders, and untranslated regions; on 2n = 160 chromosomes of diverse biogeographic ancestries) identified 16 variants, of which 5 were common. We then studied healthy twin/sibling pairs (n = 399 individuals), typing 6 polymorphisms spanning the locus. Haplotype and single nucleotide polymorphism analyses indicated that proximal promoter variant ∇-880Δ (2-bp TG/-, Ins/Del, rs3037354) minor/Δ allele was associated with several heritable (h(2)) stress traits: higher NPY secretion (h(2) = 73 ± 4%) as well as greater BP response to environmental (cold) stress, and higher basal systemic vascular resistance. Association of ∇-880Δ and plasma NPY was replicated in an independent sample of 361 healthy young men, with consistent allelic effects; genetic variation at NPY also associated with plasma NPY in another independent series of 2,212 individuals derived from Australia twin pairs. Effects of allele -880Δ to increase NPY expression were directionally coordinate in vivo (on human traits) and in cells (transfected NPY promoter/luciferase reporter activity). Promoter -880Δ interrupts a novel glucocorticoid response element motif, an effect confirmed in chromaffin cells by site-directed mutagenesis on the transfected promoter, with differential glucocorticoid stimulation of the motif as well as alterations in electrophoretic mobility shifts. The same -880Δ allele also conferred risk for hypertension and accounted for approximately 4.5/approximately 2.1 mm Hg systolic BP/diastolic BP in a population sample from BP extremes. CONCLUSIONS We conclude that common genetic variation at the NPY locus, especially in proximal promoter ∇-880Δ, disrupts glucocorticoid signaling to influence NPY transcription and secretion, raising systemic vascular resistance and early heritable responses to environmental stress, eventuating in elevated resting BP in the population. The results point to new molecular strategies for probing autonomic control of the human circulation and ultimately susceptibility to and pathogenesis of cardiovascular and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Kuixing Zhang
- Department of Medicine and Institute for Genomic Medicine, University of California at San Diego, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:824305. [PMID: 22899902 PMCID: PMC3415214 DOI: 10.1155/2012/824305] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
129
|
Abstract
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity.
Collapse
|
130
|
Abstract
The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | | |
Collapse
|
131
|
Maron JL, Johnson KL, Dietz JA, Chen ML, Bianchi DW. Neuropeptide Y2 receptor (NPY2R) expression in saliva predicts feeding immaturity in the premature neonate. PLoS One 2012; 7:e37870. [PMID: 22629465 PMCID: PMC3357390 DOI: 10.1371/journal.pone.0037870] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 04/30/2012] [Indexed: 12/23/2022] Open
Abstract
Background The current practice in newborn medicine is to subjectively assess when a premature infant is ready to feed by mouth. When the assessment is inaccurate, the resulting feeding morbidities may be significant, resulting in long-term health consequences and millions of health care dollars annually. We hypothesized that the developmental maturation of hypothalamic regulation of feeding behavior is a predictor of successful oral feeding in the premature infant. To test this hypothesis, we analyzed the gene expression of neuropeptide Y2 receptor (NPY2R), a known hypothalamic regulator of feeding behavior, in neonatal saliva to determine its role as a biomarker in predicting oral feeding success in the neonate. Methodology/Principal Findings Salivary samples (n = 116), were prospectively collected from 63 preterm and 13 term neonates (post-conceptual age (PCA) 26 4/7 to 41 4/7 weeks) from five predefined feeding stages. Expression of NPY2R in neonatal saliva was determined by multiplex RT-qPCR amplification. Expression results were retrospectively correlated with feeding status at time of sample collection. Statistical analysis revealed that expression of NPY2R had a 95% positive predictive value for feeding immaturity. NPY2R expression statistically significantly decreased with advancing PCA (Wilcoxon test p value<0.01), and was associated with feeding status (chi square p value = 0.013). Conclusions/Significance Developmental maturation of hypothalamic regulation of feeding behavior is an essential component of oral feeding success in the newborn. NPY2R expression in neonatal saliva is predictive of an immature feeding pattern. It is a clinically relevant biomarker that may be monitored in saliva to improve clinical care and reduce significant feeding-associated morbidities that affect the premature neonate.
Collapse
Affiliation(s)
- Jill L Maron
- Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
132
|
Josyula S, Mehta BK, Karmon Y, Teter B, Batista S, Ostroff J, Weinstock-Guttman B. The nervous system's potential role in multiple sclerosis associated bone loss. J Neurol Sci 2012; 319:8-14. [PMID: 22579137 DOI: 10.1016/j.jns.2012.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 01/29/2023]
Abstract
Osteoporosis is a degenerative bone disease that causes significant morbidity and mortality in multiple sclerosis (MS) patients; the pathogenesis of this disease being poorly understood in the context of MS. Osteoporosis is seen more frequently in MS patients than in healthy controls matched for age and sex. Extensively studied factors, including impaired ambulation and the use of steroids, do not appear to completely account for the phenomenon. This review summarizes common risk factors, physiologic and genetic, that may contribute to the etiology and progression of osteoporosis in MS patients as well as providing insight into nervous system control of bone metabolism and homeostasis.
Collapse
Affiliation(s)
- Sowmya Josyula
- Dept. of Neurology, SUNY Buffalo, 100 High Street, Buffalo, NY 14203, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One 2012; 7:e33548. [PMID: 22438946 PMCID: PMC3306411 DOI: 10.1371/journal.pone.0033548] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/11/2012] [Indexed: 12/30/2022] Open
Abstract
Background/Aim Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapine-induced obesity. Methodology/Results Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [3H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (3×/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly by altering POMC transmission. Metabolic dysfunction can be modelled in the female rat using low, clinically-comparable olanzapine doses when administered in-line with the half-life of the drug.
Collapse
Affiliation(s)
- Katrina Weston-Green
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - Chao Deng
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
- * E-mail:
| |
Collapse
|
134
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
135
|
Reaux-Le Goazigo A, Bodineau L, De Mota N, Jeandel L, Chartrel N, Knauf C, Raad C, Valet P, Llorens-Cortes C. Apelin and the proopiomelanocortin system: a new regulatory pathway of hypothalamic α-MSH release. Am J Physiol Endocrinol Metab 2011; 301:E955-66. [PMID: 21846903 DOI: 10.1152/ajpendo.00090.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal networks originating in the hypothalamic arcuate nucleus (Arc) play a fundamental role in controlling energy balance. In the Arc, neuropeptide Y (NPY)-producing neurons stimulate food intake, whereas neurons releasing the proopiomelanocortin (POMC)-derived peptide α-melanocyte-stimulating hormone (α-MSH) strongly decrease food intake. There is growing evidence to suggest that apelin and its receptor may play a role in the central control of food intake, and both are concentrated in the Arc. We investigated the presence of apelin and its receptor in Arc NPY- and POMC-containing neurons and the effects of apelin on α-MSH release in the hypothalamus. We showed, by immunofluorescence and confocal microscopy, that apelin-immunoreactive (IR) neuronal cell bodies were distributed throughout the rostrocaudal extent of the Arc and that apelin was strongly colocalized with POMC, but weakly colocalized with NPY. However, there were numerous NPY-IR nerve fibers close to the apelin-IR neuronal cell bodies. By combining in situ hybridization with immunohistochemistry, we demonstrated the presence of apelin receptor mRNA in Arc POMC neurons. Moreover, using a perifusion technique for hypothalamic explants, we demonstrated that apelin-17 (K17F) increased α-MSH release, suggesting that apelin released somato-dendritically or axonally from POMC neurons may stimulate α-MSH release in an autocrine manner. Consistent with these data, hypothalamic apelin levels were found to be higher in obese db/db mice and fa/fa Zucker rats than in wild-type animals. These findings support the hypothesis that central apelin is involved in regulating body weight and feeding behavior through the direct stimulation of α-MSH release.
Collapse
Affiliation(s)
- Annabelle Reaux-Le Goazigo
- Institut National de Santé et de Recherche Médicale, Unité Mixte de Recherche S 691, Centre for Interdisciplinary Research in Biology, Collège de France, and Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
5-(2′-Pyridyl)-2-aminothiazoles: Alkyl amino sulfonamides and sulfamides as potent NPY5 antagonists. Bioorg Med Chem Lett 2011; 21:6500-4. [DOI: 10.1016/j.bmcl.2011.08.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022]
|
137
|
Shi YC, Lin S, Castillo L, Aljanova A, Enriquez RF, Nguyen AD, Baldock PA, Zhang L, Bijker MS, Macia L, Yulyaningsih E, Zhang H, Lau J, Sainsbury A, Herzog H. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity. Obesity (Silver Spring) 2011; 19:2137-48. [PMID: 21546930 DOI: 10.1038/oby.2011.99] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Suzuki K, Jayasena CN, Bloom SR. The gut hormones in appetite regulation. J Obes 2011; 2011:528401. [PMID: 21949903 PMCID: PMC3178198 DOI: 10.1155/2011/528401] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/25/2011] [Indexed: 12/12/2022] Open
Abstract
Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Stephen R. Bloom
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
139
|
Packiarajan M, Marzabadi MR, Desai M, Lu Y, Noble SA, Wong WC, Jubian V, Chandrasena G, Wolinsky TD, Zhong H, Walker MW, Wiborg O, Andersen K. Discovery of Lu AA33810: A highly selective and potent NPY5 antagonist with in vivo efficacy in a model of mood disorder. Bioorg Med Chem Lett 2011; 21:5436-41. [DOI: 10.1016/j.bmcl.2011.06.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
|
140
|
Role of central leptin signaling in the starvation-induced alteration of B-cell development. J Neurosci 2011; 31:8373-80. [PMID: 21653842 DOI: 10.1523/jneurosci.6562-10.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nutritional deprivation or malnutrition suppresses immune function in humans and animals, thereby conferring higher susceptibility to infectious diseases. Indeed, nutritional deprivation induces atrophy of lymphoid tissues such as thymus and spleen and decreases the number of circulating lymphocytes. Leptin, a major adipocytokine, is exclusively produced in the adipose tissue in response to the nutritional status and acts on the hypothalamus, thereby regulating energy homeostasis. Although leptin plays a critical role in the starvation-induced T-cell-mediated immunosuppression, little is known about its role in B-cell homeostasis under starvation conditions. Here we show the alteration of B-cell development in the bone marrow of fasted mice, characterized by decrease in pro-B, pre-B, and immature B cells and increase in mature B cells. Interestingly, intracerebroventricular leptin injection was sufficient to prevent the alteration of B-cell development of fasted mice. The alteration of B lineage cells in the bone marrow of fasted mice was markedly prevented by oral administration of glucocorticoid receptor antagonist RU486 (11β-[p-(dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one). It was also effectively prevented by intracerebroventricular injection of neuropeptide Y Y(1) receptor antagonist BIBP3226 [(2R)-5-(diaminomethylideneamino)-2-[(2,2-diphenylacetyl)amino]-N-[(4-hydroxyphenyl)methyl]pentanamide], along with suppression of the otherwise increased serum corticosterone concentrations. This study provides the first in vivo evidence for the role of central leptin signaling in the starvation-induced alteration of B-cell development. The data of this study suggest that the CNS, which is inherent to integrate information from throughout the organism, is able to control immune function.
Collapse
|
141
|
Kaczyńska K, Szereda-Przestaszewska M. Activation of neuropeptide Y(2) receptors exerts an excitatory action on cardio-respiratory variables in anaesthetized rats. Neuropeptides 2011; 45:281-6. [PMID: 21658765 DOI: 10.1016/j.npep.2011.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 12/26/2022]
Abstract
The respiratory effects of stimulation of NPYY(2) receptors were studied in spontaneously breathing rats that were either (i) neurally intact and subsequently bilaterally vagotomized in the neck, or (ii) neurally intact and subjected to supranodosal vagotomy or (iii) neurally intact treated with pharmacological blockade of NPY(1-2) receptors. Before neural interventions an intravenous (iv) bolus of the NPYY(2) receptor agonist NPY 13-36 (10 μg/kg) increased breathing rate, tidal volume and mean arterial blood pressure (MAP). Section of the midcervical vagi abrogated NPY 13-36-evoked increase in respiratory rate but had no effect on augmented tidal volume, minute ventilation and blood pressure. Supranodosal vagotomy prevented the increase in tidal volume and slightly reduced the pressor response. Blockade of NPYY(2) receptor with intravenous doses of BIIE 0246 eliminated cardio-respiratory effects of NPY 13-36 injection. BMS 193885 - an antagonist of NPYY(1) receptor-was not effective in abrogating cardio-respiratory response. The present study showed that (i) NPY 13-36 induced stimulation of breathing results from activation of NPYY(2) receptors associated with pulmonary vagal afferentation; (ii) the increase in the frequency of breathing is mediated by midcervical vagi and augmentation of tidal volume relies on the intact supranodosal trunks (iii) the pressor response results from the excitation of NPYY(2) receptors outside of the vagal pathway.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiratory Reflexes, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
142
|
Painsipp E, Herzog H, Sperk G, Holzer P. Sex-dependent control of murine emotional-affective behaviour in health and colitis by peptide YY and neuropeptide Y. Br J Pharmacol 2011; 163:1302-14. [PMID: 21410462 PMCID: PMC3144542 DOI: 10.1111/j.1476-5381.2011.01326.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 02/03/2011] [Accepted: 02/10/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) are involved in regulating gut and brain function. Because gastrointestinal inflammation is known to enhance anxiety, we explored whether experimental colitis interacts with genetic deletion (knockout) of PYY and NPY to alter emotional-affective behaviour. EXPERIMENTAL APPROACH Male and female wild-type, NPY (NPY(-/-) ), PYY (PYY(-/-) ) and NPY(-/-) ; PYY(-/-) double knockout mice were studied in the absence and presence of mild colitis induced by ingestion of dextran sulphate sodium (2%) in drinking water. Anxiety-like behaviour was tested on the elevated plus maze and open field, and depression-like behaviour assessed by the forced swim test. KEY RESULTS In the absence of colitis, anxiety-like behaviour was increased by deletion of NPY but not PYY in a test- and sex-dependent manner, while depression-like behaviour was enhanced in NPY(-/-) and PYY(-/-) mice of either sex. The severity of DSS-induced colitis, assessed by colonic myeloperoxidase content, was attenuated in NPY(-/-) but not PYY(-/-) mice. Colitis modified anxiety- and depression-related behaviour in a sex-, genotype- and test-related manner, and knockout experiments indicated that NPY and PYY were involved in some of these behavioural effects of colitis. CONCLUSIONS AND IMPLICATIONS These data demonstrate sex-dependent roles of NPY and PYY in regulation of anxiety- and depression-like behaviour in the absence and presence of colitis. Like NPY, the gut hormone PYY has the potential to attenuate depression-like behaviour but does not share the ability of NPY to reduce anxiety-like behaviour.
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of GrazGraz, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical ResearchSydney, Australia
| | - Günther Sperk
- Institute of Pharmacology, Medical University of InnsbruckInnsbruck, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of GrazGraz, Austria
| |
Collapse
|
143
|
Son MY, Kim MJ, Yu K, Koo DB, Cho YS. Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells. J Cell Mol Med 2011; 15:152-65. [PMID: 19874423 PMCID: PMC3822502 DOI: 10.1111/j.1582-4934.2009.00956.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self-renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long-term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder-free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY-mediated activation of AKT/protein kinase B and extracellular signal-regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY-induced activation of cAMP-response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self-renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno-free culture condition for the large-scale propagation of undifferentiated hESCs.
Collapse
Affiliation(s)
- Mi-Young Son
- Development & Differentiation Research Center, KRIBB, Eoeundong, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
144
|
Y1 signalling has a critical role in allergic airway inflammation. Immunol Cell Biol 2011; 89:882-8. [PMID: 21383768 DOI: 10.1038/icb.2011.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma affects 300 million people worldwide, yet the mechanism behind this pathology has only been partially elucidated. The documented connection between psychological stress and airway inflammation strongly suggests the involvement of the nervous system and its secreted mediators, including neuropeptides, on allergic respiratory disease. In this study, we show that neuropeptide Y (NPY), a prominent neurotransmitter, which release is strongly upregulated during stress, exacerbates allergic airway inflammation (AAI) in mice, via its Y1 receptor. Our data indicate that the development of AAI was associated with elevated NPY expression in the lung and that lack of NPY-mediated signalling in NPYKO mice or its Y1 receptor in Y1KO mice significantly improved AAI. In vivo, eosinophilia in the bronchoalveolar fluid as well as circulating immunoglobulin E in response to AAI, were significantly reduced in NPY- and Y1-deficient compared with wild-type mice. These changes correlated with a blunting of the Th2 immune profile that is characteristic for AAI, as shown by the decreased release of interleukin-5 during ex vivo re-stimulation of T cells isolated from the thoracic draining lymph nodes of NPY- or Y1-deficient mice subjected to AAI. Taken together this study demonstrates that signalling through Y1-receptors emerges as a critical pathway for the development of airway inflammation and as such potentially opens novel avenues for therapeutic intervention in asthma.
Collapse
|
145
|
Allen CD, Waser B, Körner M, Reubi JC, Lee S, Rivier C. Neuropeptide Y acts within the rat testis to inhibit testosterone secretion. Neuropeptides 2011; 45:55-61. [PMID: 21112087 PMCID: PMC3053052 DOI: 10.1016/j.npep.2010.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/09/2010] [Accepted: 10/19/2010] [Indexed: 01/11/2023]
Abstract
The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.
Collapse
Affiliation(s)
- Camryn D Allen
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States
| | | | | | | | | | | |
Collapse
|
146
|
Nguyen AD, Herzog H, Sainsbury A. Neuropeptide Y and peptide YY: important regulators of energy metabolism. Curr Opin Endocrinol Diabetes Obes 2011; 18:56-60. [PMID: 21157324 DOI: 10.1097/med.0b013e3283422f0a] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW An overview of recent developments documenting the neuropeptide Y (NPY) family's role in energy metabolism. Specifically focusing on site-specific functions of NPY and increasing evidence of peptide YY (PYY) as a weight loss therapeutic. RECENT FINDINGS Studying the NPY family in hypothalamic nuclei, other than the arcuate and paraventricular nuclei, is a recent shift in metabolic research. NPY overexpression in the dorsomedial hypothalamus increases food intake whereas its ablation in this area reduces hyperphagia and obesity. Similarly, NPY exerts orexigenic effects in the ventromedial nucleus. However, specific arcuate Y2 receptor ablation leads to positive energy balance, suggesting the NPY family demonstrates location-specific functions. Peripherally, dual blockade of cannabinoid and NPY pathways has synergistic effects on weight loss, as does combined administration of PYY3-36 and oxyntomodulin in reducing food intake, perhaps due to the recently discovered role of PYY in mediating intestinal Gpr119 activity and controlling glucose tolerance. SUMMARY Conditional Y receptor knockout models have provided deeper insights on NPY's functions according to location. Further study of PYY appears vital, due to recent evidence of its role in intestinal motility, with exercise positively influencing PYY levels.
Collapse
Affiliation(s)
- Amy D Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
147
|
Katsiki N, Mikhailidis DP, Gotzamani-Psarrakou A, Yovos JG, Karamitsos D. Effect of various treatments on leptin, adiponectin, ghrelin and neuropeptide Y in patients with type 2 diabetes mellitus. Expert Opin Ther Targets 2011; 15:401-20. [DOI: 10.1517/14728222.2011.553609] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
148
|
Roth CL, Gebhardt U, Müller HL. Appetite-regulating hormone changes in patients with craniopharyngioma. Obesity (Silver Spring) 2011; 19:36-42. [PMID: 20379145 DOI: 10.1038/oby.2010.80] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patients with craniopharyngioma (CP), an embryological tumor located in the hypothalamic and/or pituitary region, often suffer from uncontrolled eating and severe obesity. We aimed to compare peripherally secreted hormones involved in controlling food intake in normal weight and obese children and adolescents with CP vs. controls. Plasma insulin, glucose, total ghrelin, and peptide-YY (PYY) levels were assessed under fasting conditions as well as 60 min after liquid mixed meal in four groups: Normal weight (n = 12) and obese (n = 15) CP patients, and 12 normal weight and 15 obese otherwise healthy BMI-, gender- and age-matched controls. Homeostasis model assessment of insulin resistance (HOMA(IR)), as well as quantitative insulin sensitivity check index (QUICKI) were calculated. Obese CP subjects had significantly higher HOMA(IR), higher baseline and postmeal insulin but lower ghrelin levels, weaker postmeal changes for PYY, and lower QUICKI compared to obese controls. QUICKI data from all CP patients correlated positively with ghrelin and PYY % postmeal changes (ghrelin: r = 0.38, P = 0.023; PYY r = 0.40, P = 0.017) and negatively with standard deviation score-BMI (SDS-BMI: r = -0.49, P = 0.002). Tumor growth of 87% obese and 58% of normal weight CP patients affected the hypothalamic area which was associated with higher SDS-BMI and weaker % postmeal ghrelin changes (P = 0.014) compared to CP patients without hypothalamic tumor involvement. Blunted postmeal ghrelin and PYY responses in obese CP subjects are likely due to their higher degree of insulin resistance and lower insulin sensitivity compared to matched obese controls. Thus, insulin resistance in CP patients seems to affect eating behavior by affecting meal responses of gut peptides.
Collapse
Affiliation(s)
- Christian L Roth
- Seattle Children's Hospital Research Institute, Seattle, Washington, USA.
| | | | | |
Collapse
|
149
|
Feeding and bone. Arch Biochem Biophys 2010; 503:11-9. [DOI: 10.1016/j.abb.2010.06.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/23/2022]
|
150
|
Painsipp E, Sperk G, Herzog H, Holzer P. Delayed stress-induced differences in locomotor and depression-related behaviour in female neuropeptide-Y Y1 receptor knockout mice. J Psychopharmacol 2010; 24:1541-9. [PMID: 19351805 PMCID: PMC4359898 DOI: 10.1177/0269881109104851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuropeptide-Y acting through Y1 receptors reduces anxiety and stress sensitivity in rodents. In Y1 receptor knockout (Y1⁻/⁻) mice, however, anxiety-related behaviour is altered only in a context-dependent manner. Here, we investigated whether stress causes a delayed change in the emotional-affective behaviour of female Y1⁻/⁻ mice. Locomotor and anxiety-related behaviour was assessed with the elevated plus-maze (EPM) test and depression-like behaviour with the forced swim test (FST). These behavioural tests were also used as experimental stress paradigms. Locomotion and anxiety-like behaviour did not differ between naïve control and Y1⁻/⁻ mice. One week after the FST, locomotion was reduced in control animals but unchanged in Y1⁻/⁻ mice, whereas anxiety-like behaviour remained unaltered in both genotypes. Depression-like behaviour (immobility) was identical in naïve control and Y1⁻/⁻ mice but, 1 week after the EPM test, was attenuated in Y1⁻/⁻ mice relative to control animals. Our data show that naïve female Y1⁻/⁻ mice do not grossly differ from female control animals in their locomotor and depression-like behaviour. Exposure to the stress associated with behavioural testing, however, leads to delayed genotype-dependent differences in locomotion and depression-like behaviour. These findings attest to a role of Y1 receptor signalling in the control of stress coping and/or adaptation.
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|