101
|
Kunkler PE, Ballard CJ, Pellman JJ, Zhang L, Oxford GS, Hurley JH. Intraganglionic signaling as a novel nasal-meningeal pathway for TRPA1-dependent trigeminovascular activation by inhaled environmental irritants. PLoS One 2014; 9:e103086. [PMID: 25077949 PMCID: PMC4117521 DOI: 10.1371/journal.pone.0103086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Headache is the most common symptom associated with air pollution, but little is understood about the underlying mechanism. Nasal administration of environmental irritants activates the trigeminovascular system by a TRPA1-dependent process. This report addresses questions about the anatomical pathway involved and the function of TRP channels in this pathway. TRPV1 and TRPA1 are frequently co-localized and interact to modulate function in sensory neurons. We demonstrate here that resiniferatoxin ablation of TRPV1 expressing neurons significantly reduces meningeal blood flow responses to nasal administration of both TRPV1 and TRPA1 agonists. Accordingly resiniferatoxin also significantly reduces TRPV1 and CGRP immunostaining and TRPV1 and TRPA1 message levels in trigeminal ganglia. Sensory neurons of the trigeminal ganglia innervate the nasal epithelium and the meninges, but the mechanism and anatomical route by which nasal administration evokes meningeal vasodilatation is unclear. Double retrograde labeling from the nose and meninges reveals no co-localization of fluorescent label, however nasal and meningeal labeled cells are located in close proximity to each other within the trigeminal ganglion. Our data demonstrate that TRPV1 expressing neurons are important for TRPA1 responses in the nasal-meningeal pathway. Our data also suggest that the nasal-meningeal pathway is not primarily by axon reflex, but may instead result from intraganglionic transmission.
Collapse
Affiliation(s)
- Phillip Edward Kunkler
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Carrie Jo Ballard
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jessica Joan Pellman
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - LuJuan Zhang
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gerry Stephen Oxford
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joyce Harts Hurley
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
102
|
Capuano A, Greco MC, Navarra P, Tringali G. Correlation between algogenic effects of calcitonin-gene-related peptide (CGRP) and activation of trigeminal vascular system, in an in vivo experimental model of nitroglycerin-induced sensitization. Eur J Pharmacol 2014; 740:97-102. [PMID: 24998872 DOI: 10.1016/j.ejphar.2014.06.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/03/2023]
Abstract
The neural mechanism(s) underlying migraine remain poorly defined at present; preclinical and clinical studies show an involvement of CGRP in this disorder. However current evidence pointed out that CGRP does not exert an algogenic action per se, but it is able to mediate migraine pain only if the trigeminal-vascular system is sensitized. The present study was addressed to investigate CGRP-evoked behavior in nitric oxide (NO) sensitized rats, using an experimental model of nitroglycerin induced sensitization of trigeminal system, looking at neuropeptide release from different cerebral areas after the intra-peritoneal (i.p.) administration of NO-donors. CGRP injected into the rat whisker pad did not induce significant changes in face rubbing behavior compared to controls. On the contrary, CGRP injected in animals pre-treated with 10mg/kg nitroglycerin significantly increased the time spent in face rubbing. Nitroglycerin pre-treated animals did not show any rubbing behavior after locally injected saline. Furthermore, the i.p. treatment with nitroglycerin produced an increase of CGRP levels in brainstem and trigeminal ganglia, but not in the hypothalamus and hippocampus. The absolute amounts of CGRP produced in the brainstem were lower compared to those in the trigeminal ganglion; however, after nitroglycerin stimulation the percentage increase was higher in the brainstem. In conclusion, findings presented in this study suggest that CGRP induces a painful behavior in rats only after sensitization of trigeminal system; thus supporting the concept that a genetic as well as acquired predisposition to trigemino- vascular activation represents the neurobiological basis of CGRP nociceptive effects in migraineurs.
Collapse
Affiliation(s)
- Alessandro Capuano
- Division of Neurology, Bambino Gesù Children׳s Hospital, IRCCS, Rome, Italy.
| | | | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| |
Collapse
|
103
|
Erdener SE, Dalkara T. Modelling headache and migraine and its pharmacological manipulation. Br J Pharmacol 2014; 171:4575-94. [PMID: 24611635 DOI: 10.1111/bph.12651] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/13/2014] [Accepted: 02/14/2014] [Indexed: 12/22/2022] Open
Abstract
Similarities between laboratory animals and humans in anatomy and physiology of the cephalic nociceptive pathways have allowed scientists to create successful models that have significantly contributed to our understanding of headache. They have also been instrumental in the development of novel anti-migraine drugs different from classical pain killers. Nevertheless, modelling the mechanisms underlying primary headache disorders like migraine has been challenging due to limitations in testing the postulated hypotheses in humans. Recent developments in imaging techniques have begun to fill this translational gap. The unambiguous demonstration of cortical spreading depolarization (CSD) during migraine aura in patients has reawakened interest in studying CSD in animals as a noxious brain event that can activate the trigeminovascular system. CSD-based models, including transgenics and optogenetics, may more realistically simulate pain generation in migraine, which is thought to originate within the brain. The realization that behavioural correlates of headache and migrainous symptoms like photophobia can be assessed quantitatively in laboratory animals, has created an opportunity to directly study the headache in intact animals without the confounding effects of anaesthetics. Headache and migraine-like episodes induced by administration of glyceryltrinitrate and CGRP to humans and parallel behavioural and biological changes observed in rodents create interesting possibilities for translational research. Not unexpectedly, species differences and model-specific observations have also led to controversies as well as disappointments in clinical trials, which, in return, has helped us improve the models and advance our understanding of headache. Here, we review commonly used headache and migraine models with an emphasis on recent developments.
Collapse
Affiliation(s)
- S E Erdener
- Department of Neurology, Faculty of Medicine, Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
104
|
Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 2014; 66:676-814. [PMID: 24951385 DOI: 10.1124/pr.113.008268] [Citation(s) in RCA: 382] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The large Trp gene family encodes transient receptor potential (TRP) proteins that form novel cation-selective ion channels. In mammals, 28 Trp channel genes have been identified. TRP proteins exhibit diverse permeation and gating properties and are involved in a plethora of physiologic functions with a strong impact on cellular sensing and signaling pathways. Indeed, mutations in human genes encoding TRP channels, the so-called "TRP channelopathies," are responsible for a number of hereditary diseases that affect the musculoskeletal, cardiovascular, genitourinary, and nervous systems. This review gives an overview of the functional properties of mammalian TRP channels, describes their roles in acquired and hereditary diseases, and discusses their potential as drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| | - Arpad Szallasi
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.)
| |
Collapse
|
105
|
The selective PAC1 receptor agonist maxadilan inhibits neurogenic vasodilation and edema formation in the mouse skin. Neuropharmacology 2014; 85:538-47. [PMID: 24973707 DOI: 10.1016/j.neuropharm.2014.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
Abstract
We have earlier shown that PACAP-38 decreases neurogenic inflammation. However, there were no data on its receptorial mechanism and the involvement of its PAC1 and VPAC1/2 receptors (PAC1R, VPAC1/2R) in this inhibitory effect. Neurogenic inflammation in the mouse ear was induced by topical application of the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor activator mustard oil (MO). Consequent neurogenic edema, vasodilation and plasma leakage were assessed by measuring ear thickness with engineer's micrometer, detecting tissue perfusion by laser Doppler scanning and Evans blue or indocyanine green extravasation by intravital videomicroscopy or fluorescence imaging, respectively. Myeloperoxidase activity, an indicator of neutrophil infiltration, was measured from the ear homogenates with spectrophotometry. The selective PAC1R agonist maxadilan, the VPAC1/2R agonist vasoactive intestinal polypeptide (VIP) or the vehicle were administered i.p. 15 min before MO. Substance P (SP) concentration of the ear was assessed by radioimmunoassay. Maxadilan significantly diminished MO-induced neurogenic edema, increase of vascular permeability and vasodilation. These inhibitory effects of maxadilan may be partially due to the decreased substance P (SP) levels. In contrast, inhibitory effect of VIP on ear swelling was moderate, without any effect on MO-induced plasma leakage or SP release, however, activation of VPAC1/2R inhibited the increased microcirculation caused by the early arteriolar vasodilation. Neither the PAC1R, nor the VPAC1/2R agonist influenced the MO-evoked increase in tissue myeloperoxidase activity. These results clearly show that PAC1R activation inhibits acute neurogenic arterial vasodilation and plasma protein leakage from the venules, while VPAC1/2R stimulation is only involved in the attenuation of vasodilation.
Collapse
|
106
|
Bodkin JV, Thakore P, Aubdool AA, Liang L, Fernandes ES, Nandi M, Spina D, Clark JE, Aaronson PI, Shattock MJ, Brain SD. Investigating the potential role of TRPA1 in locomotion and cardiovascular control during hypertension. Pharmacol Res Perspect 2014; 2:e00052. [PMID: 25505598 PMCID: PMC4186440 DOI: 10.1002/prp2.52] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/23/2022] Open
Abstract
Radiotelemetry was used to investigate the in vivo cardiovascular and activity phenotype of both TRPA1 (transient receptor potential ankyrin 1) wild-type (WT) and TRPA1 knockout (KO) mice. After baseline recording, experimental hypertension was induced using angiotensin II infusion (1.1 mg(-1) kg(-1) a day, for 14 days). TRPA1 WT and KO mice showed similar morphological and functional cardiovascular parameters, including similar basal blood pressure (BP), heart rate, size, and function. Similar hypertension was also displayed in response to angiotensin II (156 ± 7 and 165 ± 11 mmHg, systolic BP ± SEM, n = 5-6). TRPA1 KO mice showed increased hypertensive hypertrophy (heart weight:tibia length: 7.3 ± 1.6 mg mm(-1) vs. 8.8 ± 1.7 mg mm(-1)) and presented with blunted interleukin 6 (IL-6) production compared with hypertensive WT mice (151 ± 24 vs. 89 ± 16 pg mL(-1)). TRPA1 expression in dorsal root ganglion (DRG) neurones was upregulated during hypertension (163% of baseline expression). Investigations utilizing the TRPA1 agonist cinnamaldehyde (CA) on mesenteric arterioles isolated from näive mice suggested a lack of TRPA1-dependent vasoreactivity in this vascular bed; a site with notable ability to alter total peripheral resistance. However, mesenteric arterioles isolated from TRPA1 KO hypertensive mice displayed significantly reduced ability to relax in response to nitric oxide (NO) (P < 0.05). Unexpectedly, naïve TRPA1 KO mice also displayed physical hyperactivity traits at baseline, which was exacerbated during hypertension. In conclusion, our study provides a novel cardiovascular characterization of TRPA1 KO mice in a model of hypertension. Results suggest that TRPA1 has a limited role in global cardiovascular control, but we demonstrate an unexpected capacity for TRPA1 to regulate physical activity.
Collapse
Affiliation(s)
- Jennifer V Bodkin
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Pratish Thakore
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K ; Pharmaceutical Sciences Division, School of Biomedical Sciences, King's College London London, SE1 9NH, U.K
| | - Aisah A Aubdool
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Lihuan Liang
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Elizabeth S Fernandes
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K ; Programa de Pós-Graduação em Biologia Parasitária, Universidade Ceuma São Luís, Brazil
| | - Manasi Nandi
- Pharmaceutical Sciences Division, School of Biomedical Sciences, King's College London London, SE1 9NH, U.K
| | - Domenico Spina
- Pharmaceutical Sciences Division, School of Biomedical Sciences, King's College London London, SE1 9NH, U.K
| | - James E Clark
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Philip I Aaronson
- Asthma, Allergy and Lung Biology Division, School of Medicine, King's College London London, SE1 1UL, U.K
| | - Michael J Shattock
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| | - Susan D Brain
- Cardiovascular Division, BHF Centre of Excellence and Centre of Integrative Biomedicine, School of Medicine, King's College London London, SE1 9NH, U.K
| |
Collapse
|
107
|
Rooney L, Vidal A, D’Souza AM, Devereux N, Masick B, Boissel V, West R, Head V, Stringer R, Lao J, Petrus MJ, Patapoutian A, Nash M, Stoakley N, Panesar M, Verkuyl JM, Schumacher AM, Petrassi HM, Tully DC. Discovery, Optimization, and Biological Evaluation of 5-(2-(Trifluoromethyl)phenyl)indazoles as a Novel Class of Transient Receptor Potential A1 (TRPA1) Antagonists. J Med Chem 2014; 57:5129-40. [DOI: 10.1021/jm401986p] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lisa Rooney
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Agnès Vidal
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Anne-Marie D’Souza
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Nick Devereux
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Brian Masick
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Valerie Boissel
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Ryan West
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Victoria Head
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Rowan Stringer
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Jianmin Lao
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Matt J. Petrus
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Ardem Patapoutian
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Mark Nash
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Natalie Stoakley
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Moh Panesar
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham RH12 5AB, United Kingdom
| | - Andrew M. Schumacher
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - H. Michael Petrassi
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - David C. Tully
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
108
|
Marics I, Malapert P, Reynders A, Gaillard S, Moqrich A. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels. PLoS One 2014; 9:e99828. [PMID: 24925072 PMCID: PMC4055713 DOI: 10.1371/journal.pone.0099828] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/19/2014] [Indexed: 01/22/2023] Open
Abstract
The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation.
Collapse
Affiliation(s)
- Irène Marics
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Stéphane Gaillard
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
- * E-mail:
| |
Collapse
|
109
|
Benemei S, Fusi C, Trevisan G, Geppetti P. The TRPA1 channel in migraine mechanism and treatment. Br J Pharmacol 2014; 171:2552-67. [PMID: 24206166 PMCID: PMC4008999 DOI: 10.1111/bph.12512] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023] Open
Abstract
Migraine remains an elusive and poorly understood disease. The uncertainty is reflected by the currently unsatisfactory acute and prophylactic treatments for this disease. Genetic and pharmacological information points to the involvement of some transient receptor potential (TRP) channels in pain mechanisms. In particular, the TRP vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) channels seem to play a major role in different models of pain diseases. Recent findings have underscored the possibility that TRP channels expressed in the nerve terminals of peptidergic nociceptors contribute to the migraine mechanism. Among this channel subset, TRPA1, a sensor of oxidative, nitrative and electrophilic stress, is activated by an unprecedented series of irritant and pain-provoking exogenous and endogenous agents, which release the pro-migraine peptide, calcitonin gene-related peptide, through this neuronal pathway. Some of the recently identified TRPA1 activators have long been known as migraine triggers. Furthermore, specific analgesic and antimigraine medicines have been shown to inhibit or desensitize TRPA1 channels. Thus, TRPA1 is emerging as a major contributing pathway in migraine and as a novel target for the development of drugs for pain and migraine treatment.
Collapse
Affiliation(s)
- S Benemei
- Clinical Pharmacology Unit, Department of Health Sciences, University of FlorenceFlorence, Italy
- Headache Centre, Department of Health Sciences, University of FlorenceFlorence, Italy
| | - C Fusi
- Clinical Pharmacology Unit, Department of Health Sciences, University of FlorenceFlorence, Italy
| | - Gabriela Trevisan
- Clinical Pharmacology Unit, Department of Health Sciences, University of FlorenceFlorence, Italy
| | - Pierangelo Geppetti
- Headache Centre, Department of Health Sciences, University of FlorenceFlorence, Italy
| |
Collapse
|
110
|
Pittman SK, Gracias NG, Vasko MR, Fehrenbacher JC. Paclitaxel alters the evoked release of calcitonin gene-related peptide from rat sensory neurons in culture. Exp Neurol 2014; 253:146-53. [PMID: 24374060 PMCID: PMC5954981 DOI: 10.1016/j.expneurol.2013.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/03/2023]
Abstract
Peripheral neuropathy (PN) is a debilitating and dose-limiting side effect of treatment with the chemotherapeutic agent, paclitaxel. Understanding the effects of paclitaxel on sensory neuronal function and the signaling pathways which mediate these paclitaxel-induced changes in function are critical for the development of therapies to prevent or alleviate the PN. The effects of long-term administration of paclitaxel on the function of sensory neurons grown in culture, using the release of the neuropeptide calcitonin gene-related peptide (CGRP) as an endpoint of sensory neuronal function, were examined. Dorsal root ganglion cultures were treated with low (10 nM) and high (300 nM) concentrations of paclitaxel for 1, 3, or 5 days. Following paclitaxel treatment, the release of CGRP was determined using capsaicin, a TRPV1 agonist; allyl isothiocyanate (AITC), a TRPA1 agonist; or high extracellular potassium. The effects of paclitaxel on the release of CGRP were stimulant-, concentration-, and time-dependent. When neurons were stimulated with capsaicin or AITC, a low concentration of paclitaxel (10nM) augmented transmitter release, whereas a high concentration (300 nM) reduced transmitter release in a time-dependent manner; however, when high extracellular potassium was used as the evoking stimulus, all concentrations of paclitaxel augmented CGRP release from sensory neurons. These results suggest that paclitaxel alters the function of sensory neurons in vitro, and suggest that the mechanisms by which paclitaxel alters neuronal function may include functional changes in TRP channel activity. The described in vitro model will facilitate future studies to identify the signaling pathways by which paclitaxel alters neuronal sensitivity.
Collapse
Affiliation(s)
- Sherry K Pittman
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA.
| | - Neilia G Gracias
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Columbia University, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA.
| | - Michael R Vasko
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Indiana University School of Medicine, Department of Anesthesiology, USA.
| | - Jill C Fehrenbacher
- Indiana University School of Medicine, Department of Pharmacology and Toxicology, USA; Indiana University School of Medicine, Stark Neuroscience Research Institute, USA; Indiana University School of Medicine, Department of Anesthesiology, USA.
| |
Collapse
|
111
|
Alvarez-Collazo J, Alonso-Carbajo L, López-Medina AI, Alpizar YA, Tajada S, Nilius B, Voets T, López-López JR, Talavera K, Pérez-García MT, Alvarez JL. Cinnamaldehyde inhibits L-type calcium channels in mouse ventricular cardiomyocytes and vascular smooth muscle cells. Pflugers Arch 2014; 466:2089-99. [PMID: 24563220 DOI: 10.1007/s00424-014-1472-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 02/01/2023]
Abstract
Cinnamaldehyde (CA), a major component of cinnamon, is known to have important actions in the cardiovascular system, including vasorelaxation and decrease in blood pressure. Although CA-induced activation of the chemosensory cation channel TRPA1 seems to be involved in these phenomena, it has been shown that genetic ablation of Trpa1 is insufficient to abolish CA effects. Here, we confirm that CA relaxes rat aortic rings and report that it has negative inotropic and chronotropic effects on isolated mouse hearts. Considering the major role of L-type Ca(2+) channels in the control of the vascular tone and cardiac contraction, we used whole-cell patch-clamp to test whether CA affects L-type Ca(2+) currents in mouse ventricular cardiomyocytes (VCM, with Ca(2+) as charge carrier) and in mesenteric artery smooth muscle cells (VSMC, with Ba(2+) as charge carrier). We found that CA inhibited L-type currents in both cell types in a concentration-dependent manner, with little voltage-dependent effects. However, CA was more potent in VCM than in VSMC and caused opposite effects on the rate of inactivation. We found these divergences to be at least in part due to the use of different charge carriers. We conclude that CA inhibits L-type Ca(2+) channels and that this effect may contribute to its vasorelaxing action. Importantly, our results demonstrate that TRPA1 is not a specific target of CA and indicate that the inhibition of voltage-gated Ca(2+) channels should be taken into account when using CA to probe the pathophysiological roles of TRPA1.
Collapse
Affiliation(s)
- Julio Alvarez-Collazo
- Laboratorio de Electrofisiología, Instituto de Cardiología y Cirugía Cardiovascular, Habana, Cuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
The use of medicinal plants or other naturally derived products to relieve illness can be traced back over several millennia, and these natural products are still extensively used nowadays. Studies on natural products have, over the years, enormously contributed to the development of therapeutic drugs used in modern medicine. By means of the use of these substances as selective agonists, antagonists, enzyme inhibitors or activators, it has been possible to understand the complex function of many relevant targets. For instance, in an attempt to understand how pepper species evoke hot and painful actions, the pungent and active constituent capsaicin (from Capsicum sp.) was isolated in 1846 and the receptor for the biological actions of capsaicin was cloned in 1997, which is now known as TRPV1 (transient receptor potential vanilloid 1). Thus, TRPV1 agonists and antagonists have currently been tested in order to find new drug classes to treat different disorders. Indeed, the transient receptor potential (TRP) proteins are targets for several natural compounds, and antagonists of TRPs have been synthesised based on the knowledge of naturally derived products. In this context, this chapter focuses on naturally derived compounds (from plants and animals) that are reported to be able to modulate TRP channels. To clarify and make the understanding of the modulatory effects of natural compounds on TRPs easier, this chapter is divided into groups according to TRP subfamilies: TRPV (TRP vanilloid), TRPA (TRP ankyrin), TRPM (TRP melastatin), TRPC (TRP canonical) and TRPP (TRP polycystin). A general overview on the naturally derived compounds that modulate TRPs is depicted in Table 1.
Collapse
Affiliation(s)
- Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
113
|
Laursen WJ, Bagriantsev SN, Gracheva EO. TRPA1 channels: chemical and temperature sensitivity. CURRENT TOPICS IN MEMBRANES 2014; 74:89-112. [PMID: 25366234 DOI: 10.1016/b978-0-12-800181-3.00004-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflammation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
114
|
The calcitonin gene-related peptide receptor antagonist MK-8825 decreases spinal trigeminal activity during nitroglycerin infusion. J Headache Pain 2013; 14:93. [PMID: 24256609 PMCID: PMC3845525 DOI: 10.1186/1129-2377-14-93] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/16/2013] [Indexed: 01/04/2023] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) are regarded as key mediators in migraine and other primary headaches. Migraineurs respond to infusion of nitroglycerin with delayed headaches, and inhibition of CGRP receptors has been shown to be effective in migraine therapy. In animal experiments nitrovasodilators like nitroglycerin induced increases in spinal trigeminal activity, which were reversed after inhibition of CGRP receptors. In the present study we asked if CGRP receptor inhibition can also prevent spinal trigeminal activity induced by nitroglycerin. Methods In isoflurane anaesthetised rats extracellular recordings were made from neurons in the spinal trigeminal nucleus with meningeal afferent input. The non-peptide CGRP receptor inhibitor MK-8825 (5 mg/kg) dissolved in acidic saline (pH 3.3) was slowly infused into rats one hour prior to prolonged glyceryl trinitrate (nitroglycerin) infusion (250 μg/kg/h for two hours). Results After infusion of MK-8825 the activity of spinal trigeminal neurons with meningeal afferent input did not increase under continuous nitroglycerin infusion but decreased two hours later below baseline. In contrast, vehicle infusion followed by nitroglycerin was accompanied by a transient increase in activity. Conclusions CGRP receptors may be important in an early phase of nitroglycerin-induced central trigeminal activity. This finding may be relevant for nitroglycerin-induced headaches.
Collapse
|
115
|
Lübbert M, Kyereme J, Rothermel M, Wetzel CH, Hoffmann KP, Hatt H. In vivo monitoring of chemically evoked activity patterns in the rat trigeminal ganglion. Front Syst Neurosci 2013; 7:64. [PMID: 24115922 PMCID: PMC3792369 DOI: 10.3389/fnsys.2013.00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022] Open
Abstract
Albeit lacking a sense of smell, anosmic patients maintain a reduced ability to distinguish different volatile chemicals by relying exclusively on their trigeminal system (TS). To elucidate differences in the neuronal representation of these volatile substances in the TS, we performed voltage-sensitive dye imaging (VSDI) in the rat trigeminal ganglion (TG) in vivo. We demonstrated that stimulus-specific patterns of bioelectrical activity occur within the TG upon nasal administration of ten different volatile chemicals. With regard to spatial differences between the evoked trigeminal response patterns, these substances could be sorted into three groups. Signal intensity and onset latencies were also dependent on the administered stimulus and its concentration. We conclude that particular compounds detected by the TS are represented by (1) a specific spatial response pattern, (2) the signal intensity, and (3) onset latencies within the pattern. Jointly, these trigeminal representations may contribute to the surprisingly high discriminative skills of anosmic patients.
Collapse
Affiliation(s)
- Matthias Lübbert
- Department of Cell Physiology, Ruhr University Bochum Bochum, Germany
| | | | | | | | | | | |
Collapse
|
116
|
Benemei S, De Cesaris F, Fusi C, Rossi E, Lupi C, Geppetti P. TRPA1 and other TRP channels in migraine. J Headache Pain 2013; 14:71. [PMID: 23941062 PMCID: PMC3844362 DOI: 10.1186/1129-2377-14-71] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/10/2013] [Indexed: 12/26/2022] Open
Abstract
Ever since their identification, interest in the role of transient receptor potential (TRP) channels in health and disease has steadily increased. Robust evidence has underlined the role of TRP channels expressed in a subset of primary sensory neurons of the trigeminal ganglion to promote, by neuronal excitation, nociceptive responses, allodynia and hyperalgesia. In particular, the TRP vanilloid 1 (TRPV1) and the TRP ankyrin 1 (TRPA1) are expressed in nociceptive neurons, which also express the sensory neuropeptides, tachykinins, and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammatory responses. Of interest, CGRP released from the trigeminovascular network of neurons is currently recognized as a main contributing mechanism of migraine attack. The ability of TRPA1 to sense and to be activated by an unprecedented series of exogenous and endogenous reactive molecules has now been extensively documented. Several of the TRPA1 activators are also known as triggers of migraine attack. Thus, TRP channels, and particularly TRPA1, may be proposed as novel pathways in migraine pathophysiology and as possible new targets for its treatment.
Collapse
Affiliation(s)
- Silvia Benemei
- Headache Center and Clinical Pharmacology Unit, Department of Health Sciences, Careggi University Hospital, University of Florence, viale Pieraccini 6, Florence 50139, Italy.
| | | | | | | | | | | |
Collapse
|
117
|
Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel. Pain 2013; 154:2750-2758. [PMID: 23933184 DOI: 10.1016/j.pain.2013.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew's antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.
Collapse
|
118
|
Benemei S, Geppetti P. Migraine Relief by Chilis and Other Alternative Medications: Evidence Indicates a Central Role for TRP Channels. Headache 2013; 53:1162-3. [DOI: 10.1111/head.12132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvia Benemei
- Health Sciences Department; University of Florence - Headache Centre; Careggi Hospital; Florence; Italy
| | - Pierangelo Geppetti
- Health Sciences Department; University of Florence - Headache Centre; Careggi Hospital; Florence; Italy
| |
Collapse
|
119
|
Hoffmann T, Kistner K, Miermeister F, Winkelmann R, Wittmann J, Fischer MJM, Weidner C, Reeh PW. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur J Pain 2013; 17:1472-82. [PMID: 23720338 DOI: 10.1002/j.1532-2149.2013.00331.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Two transient receptor potential (TRP) channels, TRPV1 and TRPA1, have been physiologically studied with regard to noxious heat transduction. Evidence argues against these channels as sole transducers of noxious heat or cold, respectively. Moreover, in submammalian species the TRPA1 orthologue shows heat sensitivity. METHODS In vitro, single-fibre and compound action potential recordings from C-fibres as well as measurements of stimulated cutaneous CGRP release are combined with behavioural experiments to assess heat responsiveness in wild type mice, TRPA1 and TRPV1 as well as double-null mutants. RESULTS Heat thresholds of cutaneous C-mechano-heat sensitive fibres were significantly higher in TRPA1-/- (43 °C) than +/+ (40 °C) mice, and averaged heat responses were clearly weaker, whereas TRPV1-/- showed normal heat thresholds and responses (up to 46 °C). Compound action potential recordings revealed much less activity-dependent slowing of conduction velocity upon noxious heat stimulation in TRPA1-/- and a delayed deficit in TRPV1-/- in comparison to controls. Heat-induced calcitonin gene-related peptide release was reduced in TRPV1-/- but not TRPA1-/- animals. Paw withdrawal latencies to radiant heat were significantly elevated in TRPA1-/-, more so in TRPV1-/- animals. In general, double-null mutants were similar to TRPV1-/- except for the single-fibre heat responses which appeared as weak as in TRPA1-/-. CONCLUSIONS Our results indicate that in addition to TRPV1, TRPA1 plays a role in heat nociception, in particular in definition of the heat threshold, and might therefore serve as a therapeutic target in acute inflammatory pain.
Collapse
Affiliation(s)
- T Hoffmann
- Institute for Physiology and Pathophysiology, Universitaetsstrasse 17, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Lewis SS, Hutchinson MR, Zhang Y, Hund DK, Maier SF, Rice KC, Watkins LR. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun 2013; 30:24-32. [PMID: 23348028 PMCID: PMC3641160 DOI: 10.1016/j.bbi.2013.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mark R. Hutchinson
- Discipline of Pharmacology and Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yingning Zhang
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Dana K. Hund
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
121
|
Abstract
OBJECTIVE To report a migraineur with osmophobia and trigger to garlic and onion aroma. BACKGROUND While odors serve as a trigger in 70% of migraineurs, alliaceous aromas have been described only rarely. Furthermore, nor has more than one type of alliaceous odor acted as a trigger in the same individual. Neither has migraine with aura been described as precipitated by such aromas. A patient experiencing migraines with aura, triggered almost exclusively by alliaceous aromas, is described. METHODS CASE STUDY 32-year-old woman; 5 years previously felt nasal pruritis upon eating a red onion dip. Shortly thereafter, the mere aroma of raw onions caused a sensation of her throat closing along with an associated panic attack. Over the intervening years, upon exposure to onions and garlic aroma she experienced a fortification spectra and visual entopia, followed by a bipareital, crushing level 10/10 headache, burning eyes and nose, lacrimation, perioral paresthesias, generalized pruritis, nausea, fatigue, sore throat, dysarthria, confusion, dyspnea, palpitations, presyncopal sensations, hand spasms, tongue soreness, neck pain, phonophobia, and photophobia. These would persist for 1 hour after leaving the aroma. She was unresponsive to medication and would wear a surgical mask when out. The patient also experienced chemosensory complaints: dysosmias every few months; phantosmias of food or cleaning products every month for a minute of level 5/10 intensity; pallinosmia of onion or garlic odor for 30 minutes after exposure; and metallic pallinugeusia after eating with metal utensils. RESULTS Neurological exam normal except for bilateral positive Hoffman reflexes. CHEMOSENSORY TESTING Quick Smell Identification Test 3/3 and Brief Smell Identification Test 12/12 were normal. Magnetic resonance imaging and computed tomography with and without contrast normal. Allergy skin test was positive for garlic and onion. Nose plug and counter stimulation with peppermint prevented the onset of headaches and associated symptoms. CONCLUSION This is the first report of migraines with aura triggered by more than one alliaceous compound in the same individual. Possible mechanisms include odor induced, emotional change, vasomotor instability, trigeminal-induced neurogenic inflammation, and allergic response. In alliaceous and odor-induced migraines, a trial of counter stimulation and nose plugs is warranted.
Collapse
|
122
|
Albrecht S, Denner AC, Eberhardt M, DeCol R, Messlinger KB. Role for TRPA1 receptor channels in trigeminal afferent activation and neuropeptide release from rat cranial dura mater. J Headache Pain 2013. [PMCID: PMC3620481 DOI: 10.1186/1129-2377-14-s1-p70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
123
|
Dux M, Eberhardt M, Filipovic MR, DeCol R, Messlinger K. Involvement of TRPA1 receptors in meningeal blood flow induced by formation of nitroxyl (NO-/HNO). J Headache Pain 2013. [PMCID: PMC3620411 DOI: 10.1186/1129-2377-14-s1-p88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
124
|
Nyman E, Franzén B, Nolting A, Klement G, Liu G, Nilsson M, Rosén A, Björk C, Weigelt D, Wollberg P, Karila P, Raboisson P. In vitro pharmacological characterization of a novel TRPA1 antagonist and proof of mechanism in a human dental pulp model. J Pain Res 2013; 6:59-70. [PMID: 23403691 PMCID: PMC3565573 DOI: 10.2147/jpr.s37567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AZ465 is a novel selective transient receptor potential cation channel, member A1 (TRPA1) antagonist identified during a focused drug discovery effort. In vitro, AZ465 fully inhibits activation by zinc, O-chlorobenzylidene malononitrile (CS), or cinnamaldehyde of the human TRPA1 channel heterologously expressed in human embryonic kidney cells. Our data using patch-clamp recordings and mouse/human TRPA1 chimeras suggest that AZ465 binds reversibly in the pore region of the human TRPA1 channel. Finally, in an ex vivo model measuring TRPA1 agonist-stimulated release of neuropeptides from human dental pulp biopsies, AZD465 was able to block 50%–60% of CS-induced calcitonin gene-related peptide release, confirming that AZ465 inhibits the native human TRPA1 channel in neuronal tissue.
Collapse
Affiliation(s)
- Eva Nyman
- Neuroscience, Innovative Medicines CNS/Pain, AstraZeneca R&D, Södertälje, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
This review is focused on the role of the ankyrin (A) transient receptor potential (TRP) channel TRPA1 in vascular regulation. TRPA1 is activated by environmental irritants, pungent compounds found in foods such as garlic, mustard and cinnamon, as well as metabolites produced during oxidative stress. The structure of the channel is distinguished by the ∼14-19 ankyrin repeat (AR) domains present in the intracellular amino terminus. TRPA1 has a large unitary conductance (98 pS) and slight selectivity for Ca(2+) versus Na(+) ions (P(Ca) /P(Na) ≈ 7.9). TRPA1 is involved in numerous important physiological processes, including nociception, mechanotransduction, and thermal and oxygen sensing. TRPA1 agonists cause arterial dilation through two distinctive pathways. TRPA1 channels present in perivascular nerves mediate vasodilatation of peripheral arteries in response to chemical agonists through a mechanism requiring release of calcitonin gene-related peptide. In the cerebral circulation, TRPA1 channels are present in the endothelium, concentrated within myoendothelial junction sites. Activation of TRPA1 channels in this vascular bed causes endothelium-dependent smooth muscle cell hyperpolarization and vasodilatation that requires the activity of small and intermediate conductance Ca(2+) -activated K(+) channels. Systemic administration of TRPA1 agonists causes transient depressor responses, followed by sustained increases in heart rate and blood pressure that may result from elevated sympathetic nervous activity. These findings indicate that TRPA1 activity influences vascular function, but the precise role and significance of the channel in the cardiovascular system remains to be determined.
Collapse
Affiliation(s)
- Scott Earley
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
126
|
Albrecht S, Denner AC, Eberhardt M, DeCol R, Messlinger KB. Role for TRPA1 receptor channels in trigeminal afferent activation and neuropeptide release from rat cranial dura mater. J Headache Pain 2013. [DOI: 10.1186/1129-2377-1-s1-p70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
127
|
Dux M, Eberhardt M, Filipovic MR, DeCol R, Messlinger K. Involvement of TRPA1 receptors in meningeal blood flow induced by formation of nitroxyl (NO-/HNO). J Headache Pain 2013. [DOI: 10.1186/1129-2377-1-s1-p88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
128
|
Abstract
Tissue damage evokes an inflammatory response that promotes the removal of harmful stimuli, tissue repair, and protective behaviors to prevent further damage and encourage healing. However, inflammation may outlive its usefulness and become chronic. Chronic inflammation can lead to a host of diseases, including asthma, itch, rheumatoid arthritis, and colitis. Primary afferent sensory neurons that innervate target organs release inflammatory neuropeptides in the local area of tissue damage to promote vascular leakage, the recruitment of immune cells, and hypersensitivity to mechanical and thermal stimuli. TRPA1 channels are required for neuronal excitation, the release of inflammatory neuropeptides, and subsequent pain hypersensitivity. TRPA1 is also activated by the release of inflammatory agents from nonneuronal cells in the area of tissue injury or disease. This dual function of TRPA1 as a detector and instigator of inflammatory agents makes TRPA1 a gatekeeper of chronic inflammatory disorders of the skin, airways, and gastrointestinal tract.
Collapse
Affiliation(s)
- Diana M Bautista
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
129
|
The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 2012; 464:425-58. [DOI: 10.1007/s00424-012-1158-z] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
|
130
|
Huang D, Li S, Dhaka A, Story GM, Cao YQ. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Mol Pain 2012; 8:66. [PMID: 22971321 PMCID: PMC3489865 DOI: 10.1186/1744-8069-8-66] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/18/2012] [Indexed: 11/13/2022] Open
Abstract
Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPA1 but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation of the headache circuit. These results provide an anatomical basis for understanding further the functional significance of TRP channels in headache pathophysiology.
Collapse
Affiliation(s)
- Dongyue Huang
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
131
|
Dux M, Sántha P, Jancsó G. The role of chemosensitive afferent nerves and TRP ion channels in the pathomechanism of headaches. Pflugers Arch 2012; 464:239-48. [PMID: 22875278 DOI: 10.1007/s00424-012-1142-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
The involvement of trigeminovascular afferent nerves in the pathomechanism of primary headaches is well established, but a pivotal role of a particular class of primary sensory neurons has not been advocated. This review focuses on the evidence that supports the critical involvement of transient receptor potential (TRP) channels in the pathophysiology of primary headaches, in particular, migraine. Transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 receptors sensitive to vanilloids and other irritants are localized on chemosensitive afferent nerves, and they are involved in meningeal nociceptive and vascular responses involving neurogenic dural vasodilatation and plasma extravasation. The concept of the trigeminal nocisensor complex is put forward which involves the trigeminal chemosensitive afferent fibers/neurons equipped with specific nocisensor molecules, the elements of the meningeal microcirculatory system, and the dural mast cells. It is suggested that the activation level of this complex may explain some of the specific features of migraine headache. Pharmacological modulation of TRP channel function may offer a novel approach to the management of head pain, in particular, migraine.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10., 6720, Szeged, Hungary.
| | | | | |
Collapse
|
132
|
Edelmayer RM, Le LN, Yan J, Wei X, Nassini R, Materazzi S, Preti D, Appendino G, Geppetti P, Dodick DW, Vanderah TW, Porreca F, Dussor G. Activation of TRPA1 on dural afferents: a potential mechanism of headache pain. Pain 2012; 153:1949-1958. [PMID: 22809691 DOI: 10.1016/j.pain.2012.06.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/30/2012] [Accepted: 06/12/2012] [Indexed: 01/07/2023]
Abstract
Activation of transient receptor potential ankyrin-1 (TRPA1) on meningeal nerve endings has been suggested to contribute to environmental irritant-induced headache, but this channel may also contribute to other forms of headache, such as migraine. The preclinical studies described here examined functional expression of TRPA1 on dural afferents and investigated whether activation of TRPA1 contributes to headache-like behaviors. Whole-cell patch-clamp recordings were performed in vitro with 2 TRPA1 agonists, mustard oil (MO), and the environmental irritant umbellulone (UMB) on dural-projecting trigeminal ganglion neurons. Application of MO and UMB to dural afferents produced TRPA1-like currents in approximately 42% and 38% of cells, respectively. By means of an established in vivo behavioral model of migraine-related allodynia, dural application of MO and UMB produced robust time-related tactile facial and hind paw allodynia that was attenuated by pretreatment with the TRPA1 antagonist HC-030031. Additionally, MO or UMB were applied to the dura, and exploratory activity was monitored for 30min with an automated open-field activity chamber. Dural MO and UMB decreased the number of vertical rearing episodes and the time spent rearing in comparison to vehicle-treated animals. This change in activity was prevented in rats pretreated with HC-030031 as well as sumatriptan, a clinically effective antimigraine agent. These data indicate that TRPA1 is expressed on a substantial fraction of dural afferents, and activation of meningeal TRPA1 produces behaviors consistent with those observed in patients during migraine attacks. Further, they suggest that activation of meningeal TRPA1 via endogenous or exogenous mechanisms can lead to afferent signaling and headache.
Collapse
Affiliation(s)
- Rebecca M Edelmayer
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA Department of Preclinical and Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy Department of Pharmaceutical Chemistry, University of Ferrara, Ferrara, Italy Department of Chemical, Alimentary, Pharmaceutical and Pharmacological Sciences, University of Eastern Piedmont, Novara, Italy Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Daller JR, Wong J, Brooks BD, McKee JS. An inexpensive system for evaluating the tussive and anti-tussive properties of chemicals in conscious, unrestrained guinea pigs. J Pharmacol Toxicol Methods 2012; 66:232-7. [PMID: 22796572 DOI: 10.1016/j.vascn.2012.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Commercial whole-body plethysmography systems used to evaluate the anti-tussive potential of drugs employ sophisticated technology, but these systems may be cost prohibitive for some laboratories. The present study describes an alternative, inexpensive system for evaluating the tussive and anti-tussive potential of drugs in conscious, unrestrained guinea pigs. METHODS The system is composed of a transparent small animal anesthesia induction box fitted with a microphone, a camera and a pneumotachometer to simultaneously capture audio, video, air flow and air pressure in real time. Data acquisition and analysis was performed using free software for audio and video, and a research pneumotach system for flow and pressure. System suitability testing was performed by exposing conscious, unrestrained guinea pigs to nebulized aqueous solutions of a selective agonist for TRPV1 (citric acid) or a selective agonist for TRPA1 (AITC), with or without pre-treatment with a selective antagonist for TRPV1 (BCTC) or a selective antagonist for TRPA1 (HC-030031). RESULTS The system easily discerned coughs from other respiratory events like sneezes. System suitability test results are as follows: AITC caused 10.7 (SEM=1.4592) coughs vs. 5.8 (SEM=1.6553) when pre-treated with HC-030031 (P<0.05). Citric acid caused 12.4 (SEM=1.4697) coughs vs. 3.2 (SEM=1.3928) when pre-treated with BCTC (P<0.002). DISCUSSION We have described in detail an inexpensive system for evaluating the tussive and anti-tussive potential of chemicals in conscious, unrestrained guinea pigs. Suitability testing indicates that the system is comparable to a commercial whole-body plethysmography system for detecting and differentiating between coughs and sneezes. This system may provide some investigators a cost-conscious alternative to more expensive commercial whole-body plethysmography systems.
Collapse
Affiliation(s)
- J R Daller
- Technology Resources, Baxter Healthcare Corporation, Round Lake, IL 60073, USA.
| | | | | | | |
Collapse
|
134
|
Messlinger K, Lennerz JK, Eberhardt M, Fischer MJ. CGRP and NO in the Trigeminal System: Mechanisms and Role in Headache Generation. Headache 2012; 52:1411-27. [DOI: 10.1111/j.1526-4610.2012.02212.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
135
|
The role of transient receptor potential ankyrin 1 (TRPA1) receptor activation in hydrogen-sulphide-induced CGRP-release and vasodilation. Eur J Pharmacol 2012; 689:56-64. [PMID: 22721614 DOI: 10.1016/j.ejphar.2012.05.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/22/2012] [Accepted: 05/29/2012] [Indexed: 11/20/2022]
Abstract
Activation of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels on capsaicin-sensitive sensory neurons causes release of inflammatory neuropeptides, including calcitonin gene-related peptide (CGRP). We investigated whether the hydrogen sulphide (H(2)S)-evoked CGRP release from sensory neurons of isolated rat tracheae and H(2)S-induced increases in the microcirculation of the mouse ear were mediated by TRPA1 receptor activation. Allylisothiocyanate (AITC) or the H(2)S donor sodium hydrogen sulphide (NaHS) were used as stimuli and CGRP release of the rat tracheae was measured by radioimmunoassay. AITC or NaHS were applied to the ears of Balb/c, C57BL/6, TRPA1 and TRPV1 receptor gene knockout mice and blood flow was detected by laser Doppler imaging. Both AITC and NaHS increased CGRP release from isolated rat tracheae, and both responses were inhibited by the TRPA1 antagonist, HC-030031, but was not affected by the TRPV1 receptor blocker, BCTC. Application of AITC or NaHS increased the cutaneous blood flow in the mouse ears. Similarly to the effect of AITC, the vasodilatory response to NaHS was reduced by HC-030031 or in TRPA1 deleted mice. In contrast, genetic deletion of TRPV1 did not affect the increase in the ear blood flow evoked by AITC or NaHS. We conclude that H(2)S activates TRPA1 receptors causing CGRP release from sensory nerves of rat tracheae, as well as inducing cutaneous vasodilatation in the mouse ear. TRPV1 receptors were not involved in these processes. Our results highlight that TRPA1 receptor activation should be considered as a potential mechanism of vasoactive effects of H(2)S.
Collapse
|
136
|
Ripsch MS, Ballard CJ, Khanna M, Hurley JH, White FA, Khanna R. A PEPTIDE UNCOUPLING CRMP-2 FROM THE PRESYNAPTIC Ca(2+) CHANNEL COMPLEX DEMONSTRATES EFFICACY IN ANIMAL MODELS OF MIGRAINE AND AIDS THERAPY-INDUCED NEUROPATHY. Transl Neurosci 2012; 3:1-8. [PMID: 22662308 PMCID: PMC3365854 DOI: 10.2478/s13380-012-0002-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Biological, genetic, and clinical data provide compelling proof for N-type voltage-gated calcium channels (CaV2.2) as therapeutic targets for chronic pain. While decreasing channel function is ultimately anti-nociceptive, directly targeting the channel can lead to multiple adverse effects. Targeting regulators of channel activity may facilitate improved analgesic properties associated with channel block and afford a broader therapeutic window. Towards this end, we recently identified a short peptide, designated CBD3, derived from collapsin response mediator protein 2 (CRMP-2) that suppressed inflammatory and neuropathic hypersensitivity by inhibiting CRMP-2 binding to CaV2.2 [Brittain et al., Nature Medicine 17:822-829 (2011)]. Rodents administered CBD3 intraperitoneally, fused to the HIV TAT protein cell penetrating domain, exhibited antinociception lasting ~4 hours highlighting potential instability, limited oral bioavailability, and/or rapid elimination of peptide. This report focuses on improving upon the parental CBD3 peptide. Using SPOTScan analysis of synthetic versions of the parental CBD3 peptide, we identified peptides harboring single amino acid mutations that bound with greater affinity to CaV2.2. One such peptide, harboring a phenylalanine instead of glycine (G14F), was tested in rodent models of migraine and neuropathic pain. In vivo laser Doppler blood flowmetry measure of capsaicin-induced meningeal vascular responses related to headache pain was almost completely suppressed by dural application of the G14F peptide. The G14F mutant peptide, administered intraperitoneally, also exhibited greater antinociception in Stavudine (2'-3'-didehydro-2'-3'-dideoxythymidine (d4T)/Zerit®) model of AIDS therapy-induced peripheral neuropathy compared to the parent CBD3 peptide. These results demonstrate the patent translational value of small biologic drugs targeting CaV2.2 for management of clinical pain.
Collapse
Affiliation(s)
- Matthew S. Ripsch
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
| | - Carrie J. Ballard
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
| | - May Khanna
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
| | - Joyce H. Hurley
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
| | - Fletcher A. White
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
| | - Rajesh Khanna
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 351 West 10 Street, Indianapolis, Indiana 46202, USA
- Sophia Therapeutics LLC, 351 West 10 Street, Indianapolis, Indiana 46202, USA
| |
Collapse
|
137
|
Geppetti P, Rossi E, Chiarugi A, Benemei S. Antidromic vasodilatation and the migraine mechanism. J Headache Pain 2011; 13:103-11. [PMID: 22200764 PMCID: PMC3274576 DOI: 10.1007/s10194-011-0408-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/07/2011] [Indexed: 01/07/2023] Open
Abstract
Despite the fact that an unprecedented series of new discoveries in neurochemistry, neuroimaging, genetics and clinical pharmacology accumulated over the last 20 years has significantly increased our current knowledge, the underlying mechanism of the migraine headache remains elusive. The present review article addresses, from early evidence that emerged at the end of the nineteenth century, the role of ‘antidromic vasodilatation’ as part of the more general phenomenon, currently defined as neurogenic inflammation, in the unique type of pain reported by patients suffering from migraine headaches. The present paper describes distinctive orthodromic and antidromic properties of a subset of somatosensory neurons, the vascular- and neurobiology of peptides contained in these neurons, and the clinical–pharmacological data obtained in recent investigations using provocation tests in experimental animals and human beings. Altogether, previous and recent data underscore that antidromic vasodilatation, originating from the activation of peptidergic somatosensory neurons, cannot yet be discarded as a major contributing mechanism of the throbbing head pain and hyperalgesia of migraine.
Collapse
Affiliation(s)
- Pierangelo Geppetti
- Headache Centre, Careggi University Hospital, Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
138
|
|
139
|
Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andrè E, Preti D, Avonto C, Sadofsky L, Di Marzo V, De Petrocellis L, Dussor G, Porreca F, Taglialatela-Scafati O, Appendino G, Nilius B, Geppetti P. The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 2011; 135:376-90. [DOI: 10.1093/brain/awr272] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
140
|
Wilson SM, Brittain JM, Piekarz AD, Ballard CJ, Ripsch MS, Cummins TR, Hurley JH, Khanna M, Hammes NM, Samuels BC, White FA, Khanna R. Further insights into the antinociceptive potential of a peptide disrupting the N-type calcium channel-CRMP-2 signaling complex. Channels (Austin) 2011; 5:449-56. [PMID: 21829088 DOI: 10.4161/chan.5.5.17363] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The N-type voltage-gated calcium channel (Cav 2.2) has gained immense prominence in the treatment of chronic pain. While decreased channel function is ultimately anti-nociceptive, directly targeting the channel can lead to multiple adverse side effects. Targeting modulators of channel activity may facilitate improved analgesic properties associated with channel block and a broader therapeutic window. A novel interaction between Cav 2.2 and collapsin response mediator protein 2 (CRMP-2) positively regulates channel function by increasing surface trafficking. We recently identified a CRMP-2 peptide (TAT-CBD3), which effectively blocks this interaction, reduces or completely reverses pain behavior in a number of inflammatory and neuropathic models. Importantly, TAT-CBD3 did not produce many of the typical side effects often observed with Cav 2.2 inhibitors. Notably chronic pain mechanisms offer unique challenges as they often encompass a mix of both neuropathic and inflammatory elements, whereby inflammation likely causes damage to the neuron leading to neuropathic pain, and neuronal injury may produce inflammatory reactions. To this end, we sought to further disseminate the ability of TAT-CBD3 to alter behavioral outcomes in two additional rodent pain models. While we observed that TAT-CBD3 reversed mechanical hypersensitivity associated with a model of chronic inflammatory pain due to lysophosphotidylcholine-induced sciatic nerve focal demyelination (LPC), injury to the tibial nerve (TNI) failed to respond to drug treatment. Moreover, a single amino acid mutation within the CBD3 sequence demonstrated amplified Cav 2.2 binding and dramatically increased efficacy in an animal model of migraine. Taken together, TAT-CBD3 potentially represents a novel class of therapeutics targeting channel regulation as opposed to the channel itself.
Collapse
Affiliation(s)
- Sarah M Wilson
- Paul and Carole Stark Neurosciences Research Institute, Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Deering-Rice CE, Romero EG, Shapiro D, Hughen RW, Light AR, Yost GS, Veranth JM, Reilly CA. Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP. Chem Res Toxicol 2011. [PMID: 21591660 DOI: 10.1021/tx200123z.electrophilic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Inhalation of environmental particulate matter (PM) is correlated with adverse health effects in humans, but gene products that couple detection with cellular responses, and the specific properties of PM that target different pathways, have not been fully elucidated. TRPA1 and V1 are two cation channels expressed by sensory neurons and non-neuronal cells of the respiratory tract that have been implicated as possible mediators of PM toxicity. The goals of this research were to determine if environmental PM preferentially activated TRPA1 and to elucidate the criteria responsible for selectivity. Quantification of TRPA1 activation by 4 model PM revealed that diesel exhaust PM (DEP) and coal fly ash PM (CFA1) were TRPA1 agonists at concentrations >0.077 mg/mL. DEP was more potent, and approximately 97% of the activity of DEP was recovered by serial extraction of the solid DEP with ethanol and hexane/n-butyl chloride. Modification of the electrophile/agonist binding sites on TRPA1 (C621, C641, C665, and K710) to non-nucleophilic residues reduced TRPA1 activation by DEP and abolished activation by DEP extracts as well as multiple individual electrophilic chemical components of DEP. However, responses to CFA1 and DEP solids were not affected by these mutations. Activity-guided fractionation of DEP and high resolution mass spectroscopy identified several new DEP-derived TRPA1 agonists, and activation of mouse dorsal root ganglion neurons demonstrated that TRPA1 is a primary target for DEP in a heterogeneous population of primary sensory nerves. It is concluded that TRPA1 is a specific target for electrophilic chemical components of DEP and proposed that activation of TRPA1 in the respiratory tract is likely to be an important mechanism for DEP pneumotoxicity.
Collapse
Affiliation(s)
- Cassandra E Deering-Rice
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Deering-Rice CE, Romero EG, Shapiro D, Hughen RW, Light AR, Yost GS, Veranth JM, Reilly CA. Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP. Chem Res Toxicol 2011; 24:950-9. [PMID: 21591660 PMCID: PMC3133601 DOI: 10.1021/tx200123z] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inhalation of environmental particulate matter (PM) is correlated with adverse health effects in humans, but gene products that couple detection with cellular responses, and the specific properties of PM that target different pathways, have not been fully elucidated. TRPA1 and V1 are two cation channels expressed by sensory neurons and non-neuronal cells of the respiratory tract that have been implicated as possible mediators of PM toxicity. The goals of this research were to determine if environmental PM preferentially activated TRPA1 and to elucidate the criteria responsible for selectivity. Quantification of TRPA1 activation by 4 model PM revealed that diesel exhaust PM (DEP) and coal fly ash PM (CFA1) were TRPA1 agonists at concentrations >0.077 mg/mL. DEP was more potent, and approximately 97% of the activity of DEP was recovered by serial extraction of the solid DEP with ethanol and hexane/n-butyl chloride. Modification of the electrophile/agonist binding sites on TRPA1 (C621, C641, C665, and K710) to non-nucleophilic residues reduced TRPA1 activation by DEP and abolished activation by DEP extracts as well as multiple individual electrophilic chemical components of DEP. However, responses to CFA1 and DEP solids were not affected by these mutations. Activity-guided fractionation of DEP and high resolution mass spectroscopy identified several new DEP-derived TRPA1 agonists, and activation of mouse dorsal root ganglion neurons demonstrated that TRPA1 is a primary target for DEP in a heterogeneous population of primary sensory nerves. It is concluded that TRPA1 is a specific target for electrophilic chemical components of DEP and proposed that activation of TRPA1 in the respiratory tract is likely to be an important mechanism for DEP pneumotoxicity.
Collapse
Affiliation(s)
- Cassandra E. Deering-Rice
- Department of Pharmacology & Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| | - Erin G. Romero
- Department of Pharmacology & Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| | - Darien Shapiro
- Department of Pharmacology & Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| | - Ronald W. Hughen
- Department of Anesthesiology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| | - Alan R. Light
- Department of Anesthesiology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
- Department of Neurobiology & Anatomy, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| | - Garold S. Yost
- Department of Pharmacology & Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| | - John M. Veranth
- Department of Pharmacology & Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| | - Christopher A. Reilly
- Department of Pharmacology & Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112
| |
Collapse
|
143
|
Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL, Liu N, Xiong W, Ripsch MS, Wang Y, Fehrenbacher JC, Fitz SD, Khanna M, Park CK, Schmutzler BS, Cheon BM, Due MR, Brustovetsky T, Ashpole NM, Hudmon A, Meroueh SO, Hingtgen CM, Brustovetsky N, Ji RR, Hurley JH, Jin X, Shekhar A, Xu XM, Oxford GS, Vasko MR, White FA, Khanna R. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca²⁺ channel complex. Nat Med 2011; 17:822-9. [PMID: 21642979 PMCID: PMC3219927 DOI: 10.1038/nm.2345] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/07/2011] [Indexed: 11/09/2022]
Abstract
The use of N-type voltage-gated calcium channel (CaV2.2) blockers to treat pain is limited by many physiological side effects. Here we report that inflammatory and neuropathic hypersensitivity can be suppressed by inhibiting the binding of collapsin response mediator protein 2 (CRMP-2) to CaV2.2 and thereby reducing channel function. A peptide of CRMP-2 fused to the HIV transactivator of transcription (TAT) protein (TAT-CBD3) decreased neuropeptide release from sensory neurons and excitatory synaptic transmission in dorsal horn neurons, reduced meningeal blood flow, reduced nocifensive behavior induced by formalin injection or corneal capsaicin application and reversed neuropathic hypersensitivity produced by an antiretroviral drug. TAT-CBD3 was mildly anxiolytic without affecting memory retrieval, sensorimotor function or depression. At doses tenfold higher than that required to reduce hypersensitivity in vivo, TAT-CBD3 caused a transient episode of tail kinking and body contortion. By preventing CRMP-2-mediated enhancement of CaV2.2 function, TAT-CBD3 alleviated inflammatory and neuropathic hypersensitivity, an approach that may prove useful in managing chronic pain.
Collapse
Affiliation(s)
- Joel M. Brittain
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Djane B. Duarte
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah M. Wilson
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weiguo Zhu
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carrie Ballard
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Phillip L. Johnson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Naikui Liu
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wenhui Xiong
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew S. Ripsch
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuying Wang
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jill C. Fehrenbacher
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie D. Fitz
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - May Khanna
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chul-Kyu Park
- Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian S. Schmutzler
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bo Myung Cheon
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael R. Due
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tatiana Brustovetsky
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nicole M. Ashpole
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Samy O. Meroueh
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cynthia M. Hingtgen
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikolay Brustovetsky
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ru-Rong Ji
- Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joyce H. Hurley
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoming Jin
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gerry S. Oxford
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael R. Vasko
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fletcher A. White
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
144
|
Affiliation(s)
- Sven-Eric Jordt
- Yale School of Medicine, Department of Pharmacology, 333 Cedar St., New Haven, CT 06520-8066, USA, Tel.: +1 203 785 2159, Fax: +1 203 737 2027
| |
Collapse
|