101
|
Differential effects of d-amphetamine on impulsive choice in spontaneously hypertensive and Wistar–Kyoto rats. Behav Pharmacol 2009; 20:549-53. [DOI: 10.1097/fbp.0b013e3283305ee1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
102
|
Sagvolden T, Johansen EB, Wøien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, Jensen V, Aase H, Russell VA, Killeen PR, Dasbanerjee T, Middleton FA, Faraone SV. The spontaneously hypertensive rat model of ADHD--the importance of selecting the appropriate reference strain. Neuropharmacology 2009; 57:619-26. [PMID: 19698722 DOI: 10.1016/j.neuropharm.2009.08.004] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 01/02/2023]
Abstract
Although several molecular and genetic manipulations may produce hyperactive animals, hyperactivity alone is insufficient for the animal to qualify as a model of ADHD. Based on a wider range of criteria - behavioral, genetic and neurobiological - the spontaneously hypertensive rat (SHR) obtained from Charles River, Germany (SHR/NCrl) at present constitutes the best validated animal model of ADHD combined subtype (ADHD-C), and the Wistar Kyoto substrain obtained from Harlan, UK (WKY/NHsd) is its most appropriate control. Although other rat strains may behave like WKY/NHsd rats, genetic results indicate significant differences when compared to the WKY/NHsd substrain, making them less suitable controls for the SHR/NCrl. The use of WKY/NCrl, outbred Wistar, Sprague Dawley or other rat strains as controls for SHRs may produce spurious neurobiological differences. Consequently, data may be misinterpreted if insufficient care is taken in the selection of the control group. It appears likely that the use of different control strains may underlie some of the discrepancies in results and interpretations in studies involving the SHR and WKY. Finally, we argue that WKY rats obtained from Charles River, Germany (WKY/NCrl) provide a promising model for the predominantly inattentive subtype of ADHD (ADHD-PI); in this case also the WKY/NHsd substrain should be used as control.
Collapse
Affiliation(s)
- Terje Sagvolden
- Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Calzavara MB, Medrano WA, Levin R, Kameda SR, Andersen ML, Tufik S, Silva RH, Frussa-Filho R, Abílio VC. Neuroleptic drugs revert the contextual fear conditioning deficit presented by spontaneously hypertensive rats: a potential animal model of emotional context processing in schizophrenia? Schizophr Bull 2009; 35:748-59. [PMID: 18281713 PMCID: PMC2696367 DOI: 10.1093/schbul/sbn006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD) present abnormalities in emotion processing. A previous study showed that the spontaneously hypertensive rats (SHR), a putative animal model of ADHD, present reduced contextual fear conditioning (CFC). The aim of the present study was to characterize the deficit in CFC presented by SHR. Adult male normotensive Wistar rats and SHR were submitted to the CFC task. Sensitivity of the animals to the shock and the CFC performance after repeated exposure to the task were investigated. Pharmacological characterization consisted in the evaluation of the effects of the following drugs administered previously to the acquisition of the CFC: pentylenetetrazole (anxiogenic) and chlordiazepoxide (anxiolytic); methylphenidate and amphetamine (used for ADHD); lamotrigine, carbamazepine, and valproic acid (mood stabilizers); haloperidol, ziprasidone, risperidone, amisulpride, and clozapine (neuroleptic drugs); metoclopramide and SCH 23390 (dopamine antagonists without antipsychotic properties); and ketamine (a psychotomimmetic). The effects of paradoxical sleep deprivation (that worsens psychotic symptoms) and the performance in a latent inhibition protocol (an animal model of schizophrenia) were also verified. No differences in the sensitivity to the shock were observed. The repeated exposure to the CFC task did not modify the deficit in CFC presented by SHR. Considering pharmacological treatments, only the neuroleptic drugs reversed this deficit. This deficit was potentiated by proschizophrenia manipulations. Finally, a deficit in latent inhibition was also presented by SHR. These findings suggest that the deficit in CFC presented by SHR could be a useful animal model to study abnormalities in emotional context processing related to schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Monica Levy Andersen
- Departament of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Tufik
- Departament of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Regina Helena Silva
- Department of Physiology, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Vanessa Costhek Abílio
- Department of Pharmacology,To whom correspondence should be addressed; Departamento de Farmacologia, Universidade Federal de São Paulo, Rua Botucatu, 862 Ed. Leal Prado, CEP 04023-062, São Paulo, Brazil; tel/fax: +55-11-5576-4502, e-mail:
| |
Collapse
|
104
|
Howells FM, Bindewald L, Russell VA. Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behav Brain Funct 2009; 5:24. [PMID: 19549323 PMCID: PMC2711096 DOI: 10.1186/1744-9081-5-24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 06/23/2009] [Indexed: 12/29/2022] Open
Abstract
Background Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable developmental disorder resulting from complex gene-gene and gene-environment interactions. The most widely used animal model, the spontaneously hypertensive rat (SHR), displays the major symptoms of ADHD (deficits in attention, impulsivity and hyperactivity) and has a disturbance in the noradrenergic system when compared to control Wistar-Kyoto rats (WKY). The aim of the present study was to determine whether the ADHD-like characteristics of SHR were purely genetically determined or dependent on the gene-environment interaction provided by the SHR dam. Methods SHR/NCrl (Charles River, USA), WKY/NCrl (Charles River, USA) and Sprague Dawley rats (SD/Hsd, Harlan, UK) were bred at the University of Cape Town. Rat pups were cross-fostered on postnatal day 2 (PND 2). Control rats remained with their birth mothers to serve as a reference for their particular strain phenotype. Behavior in the open-field and the elevated-plus maze was assessed between PND 29 and 33. Two days later, rats were decapitated and glutamate-stimulated release of [3H]norepinephrine was determined in prefrontal cortex and hippocampal slices. Results There was no significant effect of "strain of dam" but there was a significant effect of "pup strain" on all parameters investigated. SHR pups travelled a greater distance in the open field, spent a longer period of time in the inner zone and entered the inner zone of the open-field more frequently than SD or WKY. SD were more active than WKY in the open-field. WKY took longer to enter the inner zone than SHR or SD. In the elevated-plus maze, SHR spent less time in the closed arms, more time in the open arms and entered the open arms more frequently than SD or WKY. There was no difference between WKY and SD behavior in the elevated-plus maze. SHR released significantly more [3H]norepinephrine in response to glutamate than SD or WKY in both hippocampus and prefrontal cortex while SD prefrontal cortex released more [3H]norepinephrine than WKY. SHR were resilient, cross-fostering did not reduce their ADHD-like behavior or change their neurochemistry. Cross-fostering of SD pups onto SHR or WKY dams increased their exploratory behavior without altering their anxiety-like behavior. Conclusion The ADHD-like behavior of SHR and their neurochemistry is genetically determined and not dependent on nurturing by SHR dams. The similarity between WKY and SD supports the continued use of WKY as a control for SHR and suggests that SD may be a useful additional reference strain for SHR. The fact that SD behaved similarly to WKY in the elevated-plus maze argues against the use of WKY as a model for anxiety-like disorders.
Collapse
Affiliation(s)
- Fleur M Howells
- Neuroscience Laboratory, Division of Physiology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa.
| | | | | |
Collapse
|
105
|
Fox AT, Hand DJ, Reilly MP. Evaluating timing in spontaneously hypertensive and Wistar–Kyoto rats using the peak procedure. Behav Processes 2009; 81:293-7. [DOI: 10.1016/j.beproc.2009.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|
106
|
Fowler SC, Pinkston J, Vorontsova E. Timing and space usage are disrupted by amphetamine in rats maintained on DRL 24-s and DRL 72-s schedules of reinforcement. Psychopharmacology (Berl) 2009; 204:213-25. [PMID: 19142629 PMCID: PMC3708684 DOI: 10.1007/s00213-008-1451-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 12/20/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE A differential-reinforcement-of-low-rate schedule (DRL) delivers reinforcement only when the interresponse time (IRT) exceeds a fixed time interval, thereby shaping rats to discriminate the timing of their responses. However, little is known about the motor behavior and location of the rats in the chamber during the IRTs that lead to reinforcement. Although amphetamine is known to disrupt DRL timing behavior, the effects of this drug on non-operant motor behavior during DRL performance has not yet been quantified. OBJECTIVE The purpose of this research was to measure the motor behavior (movement trajectories in the horizontal plane and spatial location in the plane) during longer IRTs after either vehicle or amphetamine treatment. MATERIALS AND METHODS Experimental chambers were constructed with a force-plate actometer as the floor, and while performing the operant task, the rats' motor behaviors were measured continuously with high temporal and spatial resolution. Separate groups of eight male Sprague-Dawley rats were maintained on either DRL 24-s or DRL 72-s schedules of water reinforcement in 4-h recording sessions. RESULTS Analyses of IRT distributions showed that the rats' timing behavior conformed to their respective DRL requirements. In the absence of drug, analysis of motor behavior in pre-reinforcement intervals showed that rats located themselves away from the operandum and exhibited very low levels of movement. Rats exhibited a significant temporal diminution of horizontal movement that reached a minimum 4-8 s before the rats moved to the operandum to execute operant responses. Amphetamine treatment increased locomotion, abolished the temporal movement gradient, and brought the rats closer to the operandum compared to vehicle treatment. Movement changes induced by amphetamine were accompanied by degraded timing behavior. CONCLUSIONS Taken together, the data show that DRL training induced rats to locate themselves away from the operandum and to remain nearly motionless during longer IRTs and that amphetamine treatment interfered with this complex of behavioral features.
Collapse
Affiliation(s)
- Stephen C Fowler
- Department of Pharmacology and Toxicology, University of Kansas, 5064 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045-2505, USA.
| | | | | |
Collapse
|
107
|
Williams J, Sagvolden G, Taylor E, Sagvolden T. Dynamic behavioural changes in the Spontaneously Hyperactive Rat. Behav Brain Res 2009; 198:273-82. [DOI: 10.1016/j.bbr.2008.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 08/14/2008] [Accepted: 08/16/2008] [Indexed: 10/21/2022]
|
108
|
Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav Pharmacol 2009; 20:134-45. [DOI: 10.1097/fbp.0b013e32832a80bf] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
109
|
Orduña V, Valencia-Torres L, Bouzas A. DRL performance of spontaneously hypertensive rats: dissociation of timing and inhibition of responses. Behav Brain Res 2009; 201:158-65. [PMID: 19428629 DOI: 10.1016/j.bbr.2009.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/14/2008] [Accepted: 02/06/2009] [Indexed: 11/16/2022]
Abstract
In this experiment, we used a differential reinforcement of low rates (DRL) schedule to evaluate the performance of spontaneously hypertensive rats (SHR), Wistar Kyoto (WKY) and Wistar (WIS) rats, with the goal of dissociating the processes of timing and inhibition of responses through the use of two quantitative models: the peak deviation analysis and the temporal regulation model. The subjects were divided in two groups; the first group was exposed to 70 sessions under a DRL 10s schedule. SHR rats showed an apparent temporary deficit in the inhibition of responses process; however, no differences among strains were observed in terms of the timing process. The second group of rats was exposed to 30 sessions in DRL 10s schedule, before receiving three doses (2 mg/kg, 4 mg/kg and 8 mg/kg) of methylphenidate. The results obtained through both models were consistent and indicated that at higher drug doses, the performance of all three strains of rats deteriorated. The impulsivity exhibited by SHR during acquisition supports the idea of these rats as an adequate animal model of ADHD. In contrast, evidence against this relies on the normal temporal processing found and in the worsening effect that methylphenidate produced in the process of inhibition of responses. These mixed results suggest the necessity of exploring timing behavior of other animal models in order to find a reliable animal model of ADHD.
Collapse
Affiliation(s)
- Vladimir Orduña
- Facultad de Psicologia, Universidad Nacional Autónoma de México, México, DF, Mexico.
| | | | | |
Collapse
|
110
|
Pardey MC, Homewood J, Taylor A, Cornish JL. Re-evaluation of an animal model for ADHD using a free-operant choice task. J Neurosci Methods 2009; 176:166-71. [DOI: 10.1016/j.jneumeth.2008.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
|
111
|
Kim HJ, Park SH, Kim KM, Ryu JH, Cheong JH, Shin CY. Ever Increasing Number of the Animal Model Systems for Attention Deficit/Hyperactivity Disorder: Attention, Please. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.4.312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
112
|
Selective dopamine D4 receptor agonist (A-412997) improves cognitive performance and stimulates motor activity without influencing reward-related behaviour in rat. Behav Pharmacol 2008; 19:765-76. [DOI: 10.1097/fbp.0b013e32831c3b06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
113
|
Gonon F. The dopaminergic hypothesis of attention-deficit/hyperactivity disorder needs re-examining. Trends Neurosci 2008; 32:2-8. [PMID: 18986716 DOI: 10.1016/j.tins.2008.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/16/2022]
Abstract
Although psychostimulants alleviate the core symptoms of attention-deficit/hyperactivity disorder (ADHD), recent studies confirm that their impact on the long-term outcomes of ADHD children is null. Psychostimulants enhance extracellular dopamine. Numerous review articles assert that they correct an underlying dopaminergic deficit of genetic origin. This dopamine-deficit theory of ADHD is often based upon an overly simplistic dopaminergic theory of reward. Here, I question the relevance of this theory regarding ADHD. I underline the weaknesses of the neurochemical, genetic, neuropharmacological and imaging data put forward to support the dopamine-deficit hypothesis of ADHD. Therefore, this hypothesis should not be put forward to bias ADHD management towards psychostimulants.
Collapse
Affiliation(s)
- Francois Gonon
- University of Bordeaux, Centre National de la Recherche Scientifique UMR 5227, 146 rue Leo Saignat, Bordeaux, F-33076, France.
| |
Collapse
|
114
|
Orduña V, García A, Menez M, Hong E, Bouzas A. Performance of spontaneously hypertensive rats in a peak-interval procedure with gaps. Behav Brain Res 2008; 191:72-6. [DOI: 10.1016/j.bbr.2008.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/24/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
|
115
|
New perspectives from microdialysis studies in freely-moving, spontaneously hypertensive rats on the pharmacology of drugs for the treatment of ADHD. Pharmacol Biochem Behav 2008; 90:184-97. [PMID: 18456311 DOI: 10.1016/j.pbb.2008.03.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 11/23/2022]
|
116
|
Cheng RK, MacDonald CJ, Williams CL, Meck WH. Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learn Mem 2008; 15:153-62. [PMID: 18323570 DOI: 10.1101/lm.729408] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Choline availability in the maternal diet has a lasting effect on brain and behavior of the offspring. To further delineate the impact of early nutritional status, we examined effects of prenatal-choline supplementation on timing, emotion, and memory performance of adult male and female rats. Rats that were given sufficient choline (CON: 1.1 g/kg) or supplemental choline (SUP: 5.0 g/kg) during embryonic days (ED) 12-17 were trained with a differential reinforcement of low-rate (DRL) schedule that was gradually transitioned through 5-, 10-, 18-, 36-, and 72-sec criterion times. We observed that SUP-females emitted more reinforced responses than CON-females, which were more efficient than both groups of males. In addition, SUP-males and SUP-females exhibited a reduction in burst responding (response latencies <2 sec) compared with both groups of CON rats. Furthermore, despite a reduced level of burst responding, the SUP-males made more nonreinforced responses prior to the DRL criterion as a result of maintaining the previous DRL criterion following transition to a new criterion. In summary, long-lasting effects of prenatal-choline supplementation were exhibited by reduced frustrative DRL responding in conjunction with the persistence of temporal memory in SUP-males and enhanced temporal exploration and response efficiency in SUP-females.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Department of Psychology and Neuroscience, Duke University, Genome Sciences Research Building II, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|
117
|
Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/anxiety-like behaviours (Wistar–Kyoto rat). Brain Res 2008; 1200:107-15. [DOI: 10.1016/j.brainres.2008.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/22/2022]
|
118
|
Age-series characteristics of locomotor activities in spontaneously hypertensive rats: A comparison with the Wistar–Kyoto strain. Physiol Behav 2008; 93:777-82. [DOI: 10.1016/j.physbeh.2007.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/09/2007] [Accepted: 11/21/2007] [Indexed: 11/16/2022]
|
119
|
Alsop B. Reprint of "Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD)". J Neurosci Methods 2008; 166:XV-XXI. [PMID: 17980764 DOI: 10.1016/j.jneumeth.2006.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/29/2006] [Accepted: 12/13/2006] [Indexed: 11/19/2022]
Abstract
Spontaneously hypertensive rats (SHR) have been promoted as animal models of attention-deficit hyperactivity disorder (AD/HD). Free-operant experiments have compared the effects of simple schedules, extinction, delayed reinforcers, and non-contingent reinforcement on the behaviour of SHR and Wistar Kyoto (WKY) controls. Differences between SHR and WKY performance have been paralleled with the overactivity, impulsiveness, and inattention that characterize AD/HD. Re-examination of selected studies suggests that differences in these strains' overall response rates can exaggerate other differences between SHR and WKY performance. Removing this confounding factor can reduce differences between these two strains' behaviours.
Collapse
Affiliation(s)
- Brent Alsop
- Department of Psychology, University of Otago, Box 51, Dunedin, New Zealand.
| |
Collapse
|
120
|
Sanabria F, Killeen PR. Evidence for impulsivity in the Spontaneously Hypertensive Rat drawn from complementary response-withholding tasks. Behav Brain Funct 2008; 4:7. [PMID: 18261220 PMCID: PMC2276225 DOI: 10.1186/1744-9081-4-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 02/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The inability to inhibit reinforced responses is a defining feature of ADHD associated with impulsivity. The Spontaneously Hypertensive Rat (SHR) has been extolled as an animal model of ADHD, but there is no clear experimental evidence of inhibition deficits in SHR. Attempts to demonstrate these deficits may have suffered from methodological and analytical limitations. METHODS We provide a rationale for using two complementary response-withholding tasks to doubly dissociate impulsivity from motivational and motor processes. In the lever-holding task (LHT), continual lever depression was required for a minimum interval. Under a differential reinforcement of low rates schedule (DRL), a minimum interval was required between lever presses. Both tasks were studied using SHR and two normotensive control strains, Wistar-Kyoto (WKY) and Long Evans (LE), over an overlapping range of intervals (1 - 5 s for LHT and 5 - 60 s for DRL). Lever-holding and DRL performance was characterized as the output of a mixture of two processes, timing and iterative random responding; we call this account of response inhibition the Temporal Regulation (TR) model. In the context of TR, impulsivity was defined as a bias toward premature termination of the timed intervals. RESULTS The TR model provided an accurate description of LHT and DRL performance. On the basis of TR parameter estimates, SHRs were more impulsive than LE rats across tasks and target times. WKY rats produced substantially shorter timed responses in the lever-holding task than in DRL, suggesting a motivational or motor deficit. The precision of timing by SHR, as measured by the variance of their timed intervals, was excellent, flouting expectations from ADHD research. CONCLUSION This research validates the TR model of response inhibition and supports SHR as an animal model of ADHD-related impulsivity. It indicates, however, that SHR's impulse-control deficit is not caused by imprecise timing. The use of ad hoc impulsivity metrics and of WKY as control strain for SHR impulsivity are called into question.
Collapse
Affiliation(s)
- Federico Sanabria
- Department of Psychology, Arizona State University, PO Box 871104 Tempe, AZ 85287-1104, USA.
| | | |
Collapse
|
121
|
Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behav Pharmacol 2008; 19:21-7. [DOI: 10.1097/fbp.0b013e3282f3cfbe] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
122
|
Impulsive choice in a rodent model of attention-deficit/hyperactivity disorder. Behav Brain Res 2008; 187:146-52. [DOI: 10.1016/j.bbr.2007.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 08/15/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
|
123
|
Effects of sex hormones on associative learning in spontaneously hypertensive rats. Physiol Behav 2007; 93:651-7. [PMID: 18054054 DOI: 10.1016/j.physbeh.2007.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/26/2007] [Accepted: 11/01/2007] [Indexed: 11/27/2022]
Abstract
Pavlovian conditioning of a visual stimulus paired with food was examined in spontaneously hypertensive rats (SHR), which are a commonly used model for Attention-Deficit/Hyperactivity Disorder (ADHD), and in Wistar rats (normoactive control). In gonadally intact rats of both strains, males spent more time in the food cup following onset of the light than did females, indicating a stronger association of the conditioned stimulus (CS) with reward. Gonadectomy carried out in adulthood affected conditioning differently in the two strains. In Wistar rats, gonadectomy had no effect on conditioned responding in females, but reduced conditioned responding in males, effectively eliminating the sex difference in behavior. This result suggests that circulating androgens in male Wistar rats normally aid conditioning in this task. In contrast, gonadectomy enhanced conditioning in both sexes in the SHR rats, indicating that androgens and/or estrogens impair conditioned associations in this strain. These data indicate that gonadal steroids can influence conditioning in rats and that the valence of steroid action on this behavior is strain-dependent. To the extent that SHR serves as a model of ADHD in humans, the influence of steroids on associative learning may play a role in the expression of ADHD-like behaviors.
Collapse
|
124
|
Reprint of “Neurobiology of animal models of attention-deficit hyperactivity disorder”. J Neurosci Methods 2007; 166:I-XIV. [DOI: 10.1016/j.jneumeth.2006.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 12/04/2006] [Accepted: 12/14/2006] [Indexed: 11/22/2022]
|
125
|
Bizot JC, Chenault N, Houzé B, Herpin A, David S, Pothion S, Trovero F. Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl) 2007; 193:215-23. [PMID: 17406857 DOI: 10.1007/s00213-007-0781-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 03/21/2007] [Indexed: 11/25/2022]
Abstract
RATIONALE Impulsivity is a core symptom of attention deficit/hyperactivity disorder (ADHD). The spontaneously hypertensive rats (SHR) is a strain commonly used as an animal model of ADHD. However, there is no clear evidence that psychostimulants, which are used for treatment of ADHD, reduce impulsivity in SHR. Because ADHD mainly affects children, it may be relevant to study psychostimulants on juvenile animals. OBJECTIVES Using tolerance to delay of reward as index of impulsivity, the effects of methylphenidate were assessed in adult SHR, Wistar Kyoto (WKY) and Wistar rats and in juvenile Wistar rats. MATERIALS AND METHODS Animals were trained in a T-maze to choose between a small-but-immediate and a large-but-delayed reward. Adult SHR, WKY and Wistar rats were compared for their ability to tolerate a 15-s delay. The effect of methylphenidate on the tolerance to a 30-s delay was studied in adult rats of the three strains and in juvenile (4.5 to 6.5-week-old) Wistar rats. RESULTS In adult rats, the waiting ability was lower in SHR than in control strains. Waiting ability was improved by methylphenidate (3 and 5 mg/kg) in juveniles, but not by methylphenidate (3 mg/kg) in adults. CONCLUSIONS These data support the idea that SHR are more impulsive than control strains. However, at the dose studied, methylphenidate fails to improve tolerance to delay in adult rats whatever the strain used. The reduction of impulsivity induced by methylphenidate in juvenile Wistar rats indicates that juvenile animals may be suitable for testing the therapeutic potential of drugs intended to the treatment of ADHD in children.
Collapse
Affiliation(s)
- Jean-Charles Bizot
- Key-Obs SA, Parc Technologique de La Source, 3 allée du Titane, 45100, Orleans, France.
| | | | | | | | | | | | | |
Collapse
|
126
|
Berger A, Kofman O, Livneh U, Henik A. Multidisciplinary perspectives on attention and the development of self-regulation. Prog Neurobiol 2007; 82:256-86. [PMID: 17651888 DOI: 10.1016/j.pneurobio.2007.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 04/12/2007] [Accepted: 06/14/2007] [Indexed: 01/19/2023]
Abstract
During infancy and early childhood, children develop their ability to regulate their own emotions and behavior. This development of self-regulatory mechanisms has been considered to be the crucial link between genetic predisposition, early experience, and later adult functioning in society. This paper brings together the updated empirical findings related to the role of attention and the maturation of brain frontal areas in self-regulation. It reviews viewpoints and evidence of disciplines such as developmental psychology, cognitive neuroscience, social psychology, and neurobiology. It examines the causes of individual differences in self-regulation and the effects of those differences on the social and academic functioning of the individual. The consequences of failure in self-regulation are illustrated by focusing on the attention deficit/hyperactivity disorder (ADHD), including a detailed review of the animal models related to this disorder. Finally, some initial evidence suggesting the possibility of fostering self-regulation through training of attention is presented.
Collapse
Affiliation(s)
- Andrea Berger
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
| | | | | | | |
Collapse
|
127
|
Ferguson SA, Paule MG, Cada A, Fogle CM, Gray EP, Berry KJ. Baseline behavior, but not sensitivity to stimulant drugs, differs among spontaneously hypertensive, Wistar-Kyoto, and Sprague-Dawley rat strains. Neurotoxicol Teratol 2007; 29:547-61. [PMID: 17689921 DOI: 10.1016/j.ntt.2007.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 11/18/2022]
Abstract
Deficits in temporal processing are implicated in Attention Deficit Hyperactivity Disorder (ADHD) for which the most common rodent model is the Spontaneously Hypertensive Rat (SHR). To assess strain differences in temporal processing, males and females of the SHR, Wistar-Kyoto (WKY), and Sprague-Dawley (SD) strains were compared on two timing tasks: one requiring maintenance of a lever press for 10-14 s (TRD, temporal response differentiation) and the other requiring withholding of a lever press for 10-14 s (DRL, differential reinforcement of low rates). Performance of the progressive ratio (PR) task more directly assessed food-motivated behavior. Strains did not differ in task acquisition; however, steady state TRD and DRL performance of the SHR and WKY strains was less accurate which was related to increased burst (non-timing related) responses in those strains relative to the SD. PR performance demonstrated that the SHR and WKY strains exhibited higher response rates and breakpoints than the SD. Subsequently, methylphenidate (1, 3.25, 4.50, 7.50, and 12.0 mg/kg) and d-amphetamine (0.1, 0.25, 0.65, 1.0, and 2.0 mg/kg) were administered intraperitoneally pre-testing. Both drugs disrupted TRD and DRL performances by increasing burst response frequency; however, the strains were not differentially sensitive to either drug. Strain differences were generally maintained throughout the drug and extinction portions of the study. These results indicate increased similarity between the SHR and WKY strains relative to the SD in performance of timing and motivation tasks. Further, the current results do not support continued use of the SHR as a model for ADHD.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Alsop B. Problems with spontaneously hypertensive rats (SHR) as a model of attention-deficit/hyperactivity disorder (AD/HD). J Neurosci Methods 2007; 162:42-8. [PMID: 17241669 DOI: 10.1016/j.jneumeth.2006.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/29/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
Spontaneously hypertensive rats (SHR) have been promoted as animal models of attention-deficit hyperactivity disorder (AD/HD). Free-operant experiments have compared the effects of simple schedules, extinction, delayed reinforcers, and non-contingent reinforcement on the behaviour of SHR and Wistar Kyoto (WKY) controls. Differences between SHR and WKY performance have been paralleled with the overactivity, impulsiveness, and inattention that characterize AD/HD. Re-examination of selected studies suggests that differences in these strains' overall response rates can exaggerate other differences between SHR and WKY performance. Removing this confounding factor can reduce differences between these two strains' behaviours.
Collapse
Affiliation(s)
- Brent Alsop
- Department of Psychology, University of Otago, Box 51, Dunedin, New Zealand.
| |
Collapse
|
129
|
Russell VA. Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods 2007; 161:185-98. [PMID: 17275916 DOI: 10.1016/j.jneumeth.2006.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Revised: 12/04/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous, highly heritable, disorder resulting from complex gene-gene and gene-environment interactions. The defining symptoms of hyperactivity, impulsivity and impaired sustained attention are not unique to ADHD. It is therefore not surprising that animals with distinctly different neural defects model the behavioural characteristics of the disorder. Consistent with ADHD being a developmental disorder, animal models are either genetic (spontaneously hypertensive rats (SHR), dopamine transporter (DAT) knock-out mice, SNAP-25 mutant mice, mice expressing a mutant thyroid receptor) or have suffered an insult to the central nervous system during the early stages of development (anoxia, 6-hydroxydopamine). It appears that neural transmission is impaired by either direct disruption of dopaminergic transmission or a more general impairment of neurotransmission that gives rise to compensatory changes in monoaminergic systems that are not sufficient to completely normalize neural function. In general, results obtained with animal studies suggest that dopamine neurons are functionally impaired. However, evidence obtained from some animal models suggests that the noradrenergic and serotonergic neurotransmitter systems may be the target of drugs that ameliorate ADHD symptoms.
Collapse
Affiliation(s)
- Vivienne Ann Russell
- Department of Human Biology, University of Cape Town, Anzio Road, Observatory 7925, South Africa.
| |
Collapse
|
130
|
van der Kooij MA, Glennon JC. Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav Rev 2007; 31:597-618. [PMID: 17316796 DOI: 10.1016/j.neubiorev.2006.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 10/22/2006] [Accepted: 12/30/2006] [Indexed: 11/29/2022]
Abstract
Several models of attention-deficit hyperactivity disorder (ADHD) have been proposed, ranging from administration of neurotoxins to genetically manipulated models. These models are used to gain insight into ADHD as a disorder and assist in the discovery of new therapeutic strategies. However, the information gained from these models differs, depending to a large extent on the validity (or otherwise) of the model. Thus the insights gained from these models with respect to the pathophysiology and aetiology of ADHD remains inconclusive. No animal model resembles the clinical situation of ADHD perfectly but good animal models of ADHD should mimic its characteristics, confirm to an underlying theory of ADHD and ultimately make predictions of future therapies. While the involvement of dopamine (DA) in ADHD has been established, the evaluation of rodent models of ADHD particularly with respect to dopaminergic systems is attempted here. It is concluded that the neonatal 6-hydroxy-dopamine lesioned rat and DA transporter knockout/knockdown mice have the highest degree of validity for ADHD.
Collapse
Affiliation(s)
- Michael A van der Kooij
- Laboratory for Psychoneuroimmunology & Department of Neonatology, University Medical Center Utrecht, Lundlaan 6, 3584EA Utrecht, The Netherlands.
| | | |
Collapse
|
131
|
Orduña V, Hong E, Bouzas A. Interval bisection in spontaneously hypertensive rats. Behav Processes 2007; 74:107-11. [PMID: 17129679 DOI: 10.1016/j.beproc.2006.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/13/2006] [Accepted: 10/28/2006] [Indexed: 11/30/2022]
Abstract
An interval bisection procedure was used to study time discrimination in spontaneously hypertensive rats (SHR), which have been proposed as an animal model for the attention deficit hyperactivity disorder (ADHD); Wistar Kyoto and Wistar rats were used as comparison groups. In this procedure, after subjects learn to make one response (S) following a short duration stimulus, and another (L) following a long duration stimulus, stimuli of intermediate durations are presented, and the percentage of L is calculated for each duration. A logistic function is fitted to these data, and different parameters that describe the time discrimination process are obtained. Four conditions, with different short and long durations (1-4, 2-8, 3-12, 4-16s) were used. The results indicate that time discrimination is not altered in SHR, given that no difference in any of the parameters obtained were significant. Given that temporal processing has been proposed as a fundamental factor in the development of the main symptoms of ADHD, and that deficits in time discrimination have been found in individuals with that disorder, the present results suggest the necessity of exploring time perception in SHR with other procedures and sensory modalities, in order to assess its validity as an animal model of ADHD.
Collapse
Affiliation(s)
- Vladimir Orduña
- Departamento de Psicología, Universidad Iberoamericana, México DF, Mexico.
| | | | | |
Collapse
|
132
|
Van den Bergh F, Spronk M, Ferreira L, Bloemarts E, Groenink L, Olivier B, Oosting R. Relationship of delay aversion and response inhibition to extinction learning, aggression, and sexual behaviour. Behav Brain Res 2006; 175:75-81. [PMID: 16965826 DOI: 10.1016/j.bbr.2006.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/31/2006] [Accepted: 08/02/2006] [Indexed: 11/30/2022]
Abstract
Impulsivity is an important symptom of many psychiatric disorders, and can be divided into two subtypes: response inhibition deficits and delay aversion. In the present study, we investigated the relationship between delay aversion and response inhibition, both to each other and to locomotion, extinction of conditioned responses, sexual behaviour, and aggressive behaviour. To that end, we quantified the behaviour of 24 rats in several tests. To measure response inhibition, rats were trained in a stop-signal task. In this operant task, rats were rewarded food if they inhibited execution of a response after presentation of an audible stop-signal. Delay aversion was measured in an operant task in which rats made a choice between a small, immediately available reward and a large reward available after a delay. The results showed that delay aversion and response inhibition were independent. Responses during extinction and various measures of aggressive behaviour were positively correlated to delay aversion. The speed of go-trials in the stop-task was correlated to non-aggressive behaviour. We conclude that the role of response inhibition in various behaviours is small, but delay aversion in particular contributes to several other behaviours, such as aggressive behaviour and extinction.
Collapse
Affiliation(s)
- Filip Van den Bergh
- Section Psychopharmacology and Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University. Sorbonnelaan 16, 3584CA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|