101
|
Cheng B, Du M, He S, Yang L, Wang X, Gao H, Chang H, Gao W, Li Y, Wang Q, Li Y. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol Med 2022; 28:137. [PMID: 36401163 PMCID: PMC9673322 DOI: 10.1186/s10020-022-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6877002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1β while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
102
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
103
|
Cui X, Xuan T, Chen S, Guo X. Causal associations between CD40/CD40L and aortic diseases: A mendelian randomization study. Front Genet 2022; 13:998525. [PMID: 36437950 PMCID: PMC9681816 DOI: 10.3389/fgene.2022.998525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2024] Open
Abstract
Background: CD40 and CD40L have been reported as associated with aortic dissection (AD) and aortic aneurysm (AA), but the causality of the associations has not been established yet. Methods: We conducted a two-sample Mendelian randomization (MR) study to assess the causal inference between CD40/CD40L and aortic diseases including AD and AA. The instrumental variables (IVs) for CD40 and CD40L were selected from a high-quality protein quantitative trait loci dataset released by a genomic study involving 30,931 individuals of European ancestry. The genome-wide association studies summary statistics for AD and AA were from the FinnGen Release 7, with 288638 controls for all outcomes of interests, 680 cases for AD and 6,092 cases for AA, also from European ancestry. For AA subtypes, there were 5,881 cases of thoracic AA (TAA) and 2,434 cases of abdominal AA (AAA) respectively. Inverse-variance weighted and Wald ratio were applied for calculating causal estimates. Horizontal pleiotropy and heterogeneity were assessed using MR-Egger regression analysis and Cochran Q test, respectively. Leave-one-out analyses were further performed. Results: Three single-nucleotide polymorphisms (SNPs) for CD40 and one SNP for CD40L were selected as IVs. We found genetic proxied CD40 levels inversely associated with the risk of AD (odds ratio [OR]: 0.777, 95% confidence interval [CI]: 0.618-0.978, p = 0.031) and AA (OR: 0.905, 95% CI: 0.837-0.978, p = 0.012), consistent across TAA (both p < 0.050). There were trends of increased risks of AD and AA in the presence of CD40L while not reaching statistical significance. No significant horizontal pleiotropy or heterogeneity was observed. Conclusion: Our MR study provides evidence supporting the causal association between CD40 and the reduced risks of both AD and AA.
Collapse
Affiliation(s)
- Xiao Cui
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianming Xuan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyuan Chen
- Graduate School, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
104
|
Cheng B, Du M, He S, Yang L, Wang X, Gao H, Chang H, Gao W, Li Y, Wang Q, Li Y. Inhibition of platelet activation suppresses reactive enteric glia and mitigates intestinal barrier dysfunction during sepsis. Mol Med 2022; 28:127. [PMID: 36303116 PMCID: PMC9615156 DOI: 10.1186/s10020-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6,877,002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1β while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Mengyu Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Shuxuan He
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Hui Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
105
|
Xu C, Li F, Liu Z, Yan C, Xiao J. A novel cell senescence-related IncRNA survival model associated with the tumor immune environment in colorectal cancer. Front Immunol 2022; 13:1019764. [PMID: 36275644 PMCID: PMC9583265 DOI: 10.3389/fimmu.2022.1019764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs have a major role in tumorigenesis, development, and metastasis in colorectal cancer (CRC), participate in the regulation of cell senescence and are related to the prognosis of CRC. Therefore, it is important to validate cell senescence-related lncRNAs that correlate with prognosis in CRC.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fanghan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zilin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chuanjing Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| | - Jiangwei Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| |
Collapse
|
106
|
Ghita I, Piperi E, Atamas SP, Bentzen SM, Ord RA, Dyalram D, Lubek JE, Younis RH. Cytokine profiling in plasma distinguishes the histological inflammatory subtype of head and neck squamous cell carcinoma and a novel regulatory role of osteopontin. FRONTIERS IN ORAL HEALTH 2022; 3:993638. [PMID: 36338570 PMCID: PMC9632968 DOI: 10.3389/froh.2022.993638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be classified according to the histological inflammatory subtype (HIS) into inflamed (HIS-INF) or immune excluded (HIS-IE). HIS-IE was previously associated with higher levels of soluble Semaphorin 4D (HsS4D) in plasma, and higher transcriptional levels of osteopontin (OPN) in the tumor tissue, compared to HIS-INF. The goal of the current study is to investigate whether the HIS inflammatory subtype can be distinguished by a differential cytokine panel in peripheral blood. Retrospectively collected five HIS-INF and five HIS-IE tumor tissue with paired plasma were included in the study. Five healthy donors (HD) and five autoimmune/chronic inflammatory conditions (AI/CI) were controls. The ELISA-Luminex™ system was used to detect 40 traditional cytokines in plasma. Human cytokine array (104 cytokines) was used for the conditioned medium (CM) of the HNSCC HN6 cell line. Semaphorin 4D (Sema4D) siRNA and recombinant human osteopontin (rh-OPN) were used to investigate the effect of OPN on Sema4D expression. The HIS-IE cytokine profile was higher than HIS-INF but comparable to AI/CI. HIS-INF had the lowest cytokine levels. HIS-IE was differentially higher in IP-10 and IL8 compared to HD, while HIS-INF was higher in IL-10. Sema4D inhibition in HN6 resulted in a decrease of OPN in the CM of HN6, and treatment with rh-OPN rescued Sema4D in HN6 cell lysate and associated CM. In conclusion, the current work demonstrates a novel association between the HIS subtypes and a differential pattern of cytokine expression in plasma. These findings can open new avenues for HNSCC patient stratification and hence provide better personalized treatment.
Collapse
Affiliation(s)
- Ioana Ghita
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Evangelia Piperi
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
- Department of Oral Medicine / Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Sergei P. Atamas
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine. Baltimore, MD, United States
| | - Soren M. Bentzen
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine. Baltimore, MD, United States
- Biostatistics Core, Institute of Clinical and Translational Research, University of Maryland, Baltimore, MD, United States
- Biostatistics Division, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Robert A. Ord
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Donita Dyalram
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Joshua E. Lubek
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rania H. Younis
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
- Division of Tumor immunology and Immunotherapy, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
107
|
Li D, Jiao Y, Gao W, Hu S, Li D, Zhao W, Chen P, Jin L, Zhao Y, Ma Z, Wu X, Yan Y, Sun W, Du X, Dong G. Comprehensive analysis of the prognostic and immunotherapeutic implications of STAT family members in human colorectal cancer. Front Genet 2022; 13:951252. [PMID: 36061181 PMCID: PMC9437353 DOI: 10.3389/fgene.2022.951252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is the third most prevalent cancer worldwide and the second leading cause of cancer mortality. Signal transducer and activator of transcription (STAT) proteins are a group of transcription factors implicated in cell signal transduction and gene transcription in several cancer types. However, the level of expression, genetic alterations, and biological function of different STATs, as well as their prognostic and immunotherapeutic value in CRC remain unclear.Methods: The mRNA and protein expression levels, genetic alterations, prognostic value, gene–gene and protein–protein interaction networks, and biological function of STATs in CRC were studied using the GEPIA, HPA, cBioPortal, PrognoScan, Kaplan–Meier plotter, GeneMANIA, STRING, and Metascape databases. The expression of STATs in CRC was confirmed using immunohistochemistry (IHC). Finally, the relationship between STAT expression and immune infiltration as well as immunotherapy-associated indicators was also investigated.Results: The expression levels of STAT2/5A/5B are downregulated in CRC, and the STAT1/3/4/5B expressions were significantly associated with the tumor stage of patients with CRC. The abnormal expression of STAT2/4/5B in patients with CRC is related to the prognosis of patients with CRC. The STATs and their neighboring proteins are primarily associated with lymphocyte activation, cytokine-mediated signaling pathways, positive regulation of immune response, regulation of cytokine production, and growth hormone receptor signaling pathways in cancer. The expression of STATs was significantly associated with immune infiltration and immunotherapy response-associated indicators.Conclusion: This study may help further understand the molecular mechanism of CRC and provide new prognostic biomarkers and immunotherapy targets in patients with CRC.
Collapse
Affiliation(s)
- Dingchang Li
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yanan Jiao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shidong Hu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dingling Li
- Medical College of Qinghai University, Xining, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lujia Jin
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhaofu Ma
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiansheng Wu
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yang Yan
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wen Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaohui Du, ; Guanglong Dong,
| | - Guanglong Dong
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaohui Du, ; Guanglong Dong,
| |
Collapse
|
108
|
Gerasimova EV, Tabakov DV, Gerasimova DA, Popkova TV. Activation Markers on B and T Cells and Immune Checkpoints in Autoimmune Rheumatic Diseases. Int J Mol Sci 2022; 23:ijms23158656. [PMID: 35955790 PMCID: PMC9368764 DOI: 10.3390/ijms23158656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to identifying the major B- and T-cell subpopulations involved in autoimmune rheumatic diseases (ARDs), in recent years special attention has been paid to studying the expression of their activation markers and immune checkpoints (ICPs). The activation markers on B and T cells are a consequence of the immune response, and these molecules are considered as sensitive specific markers of ARD activity and as promising targets for immunotherapy. ICPs regulate the activation of the immune response by preventing the initiation of autoimmune processes, and they modulate it by reducing immune cell-induced organ and tissue damage. The article considers the possible correlation of ICPs with the activity of ARDs, the efficacy of specific ARD treatments, and the prospects for the use of activation molecules and activation/blocking ICPs for the treatment of ARDs.
Collapse
Affiliation(s)
- Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
- Correspondence: ; Tel.: +7-905-538-0399
| | - Dmitry V. Tabakov
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| | - Daria A. Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2, Trubetskaya St., 119526 Moscow, Russia
| | - Tatiana V. Popkova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| |
Collapse
|
109
|
Kim S, Lim E, Yoo K, Zhao Y, Kang J, Lim E, Shin I, Kang S, Lim HW, Lee S. Glioblastoma‐educated mesenchymal stem‐like cells promote glioblastoma infiltration via extracellular matrix remodelling in the tumour microenvironment. Clin Transl Med 2022; 12:e997. [PMID: 35908277 PMCID: PMC9339241 DOI: 10.1002/ctm2.997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background The biological function of mesenchymal stem‐like cells (MSLCs), a type of stromal cells, in the regulation of the tumour microenvironment is unclear. Here, we investigated the molecular mechanisms underlying extracellular matrix (ECM) remodelling and crosstalk between MSLCs and glioblastomas (GBMs) in tumour progression. Methods In vitro and in vivo co‐culture systems were used to analyze ECM remodelling and GBM infiltration. In addition, clinical databases, samples from patients with GBM and a xenografted mouse model of GBM were used. Results Previous studies have shown that the survival of patients with GBM from whom MSLCs could be isolated is substantially shorter than that of patients from whom MSLCs could not be isolated. Therefore, we determined the correlation between changes in ECM‐related gene expression in MSLC‐isolatable patients with that in MSLC non‐isolatable patients using gene set enrichment analysis (GSEA). We found that lysyl oxidase (LOX) and COL1A1 expressions increased in MSLCs via GBM‐derived clusters of differentiation 40 ligand (CD40L). Mechanistically, MSLCs are reprogrammed by the CD40L/CD40/NFκB2 signalling axis to build a tumour infiltrative microenvironment involving collagen crosslinking. Importantly, blocking of CD40L by a neutralizing antibody‐suppressed LOX expression and ECM remodelling, decreasing GBM infiltration in mouse xenograft models. Clinically, high expression of CD40L, clusters of differentiation 40 (CD40) and LOX correlated with poor survival in patients with glioma. This indicated that GBM‐educated MSLCs promote GBM infiltration via ECM remodelling in the tumour microenvironment. Conclusion Our findings provide mechanistic insights into the pro‐infiltrative tumour microenvironment produced by GBM‐educated MSLCs and highlight a potential therapeutic target that can be used for suppressing GBM infiltration.
Collapse
Affiliation(s)
- Seung‐Mo Kim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Eun‐Jung Lim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Memorial Sloan Kettering, Cancer Center New York New York USA
| | - Ki‐Chun Yoo
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Department of Lymphoma and Myeloma Division of Cancer Medicine Center for Cancer Immunology Research The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Yi Zhao
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Jae‐Hyeok Kang
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Eun‐Ji Lim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Incheol Shin
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Seok‐Gu Kang
- Department of Neurosurgery Brain Tumor Center, Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - Han Woong Lim
- Department of Ophthalmology Hanyang University Hospital Hanyang University College of Medicine Seoul Korea
| | - Su‐Jae Lee
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Fibrosis and Cancer Targeting Biotechnology FNCT Biotech Seoul Korea
| |
Collapse
|
110
|
Li X, Du H, Zhan S, Liu W, Wang Z, Lan J, PuYang L, Wan Y, Qu Q, Wang S, Yang Y, Wang Q, Xie F. The interaction between the soluble programmed death ligand-1 (sPD-L1) and PD-1+ regulator B cells mediates immunosuppression in triple-negative breast cancer. Front Immunol 2022; 13:830606. [PMID: 35935985 PMCID: PMC9354578 DOI: 10.3389/fimmu.2022.830606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence suggests that regulatory B cells (Bregs) play important roles in inhibiting the immune response in tumors. Programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) are important molecules that maintain the balance of the immune response and immune tolerance. This study aims to evaluate the soluble form of PD-L1 and its function in inducing the differentiation of B lymphocytes, investigate the relationship between soluble PD-L1 (sPD-L1) and B-cell subsets, and explore the antitumor activity of T lymphocytes after PD-L1 blockade in coculture systems. In an effort to explore the role of sPD-L1 in human breast cancer etiology, we examined the levels of sPD-L1 and interleukin-10 (IL-10) in the serum of breast tumor patients and the proportions of B cells, PD-1+ B cells, Bregs, and PD-1+ Bregs in the peripheral blood of patients with breast tumors and assessed their relationship among sPD-L1, IL-10, and B-cell subsets. The levels of sPD-L1 and IL-10 in serum were found to be significantly higher in invasive breast cancer (IBCa) patients than in breast fibroadenoma (FIBma) patients. Meanwhile, the proportions and absolute numbers of Bregs and PD-1+ Bregs in the peripheral blood of IBCa patients were significantly higher than those of FIBma patients. Notably, they were the highest in triple-negative breast cancer (TNBC) among other subtypes of IBCa. Positive correlations of sPD-L1 and IL-10, IL-10 and PD-1+ Bregs, and also sPD-L1 and PD-1+ Bregs were observed in IBCa. We further demonstrated that sPD-L1 could induce Breg differentiation, IL-10 secretion, and IL-10 mRNA expression in a dose-dependent manner in vitro. Finally, the induction of regulatory T cells (Tregs) by Bregs was further shown to suppress the antitumor response and that PD-L1 blockade therapies could promote the apoptosis of tumor cells. Together, these results indicated that sPD-L1 could mediate the differentiation of Bregs, expand CD4+ Tregs and weaken the antitumor activity of CD4+ T cells. PD-L1/PD-1 blockade therapies might be a powerful therapeutic strategy for IBCa patients, particularly for TNBC patients with high level of PD-1+ Bregs.
Collapse
Affiliation(s)
- Xuejiao Li
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of Pathology, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Huan Du
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shenghua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenting Liu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangyu Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| | - Jing Lan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Longxiang PuYang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Yuqiu Wan
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiuxia Qu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sining Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Yang Yang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Qin Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- *Correspondence: Fang Xie, ; Qin Wang,
| | - Fang Xie
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
- *Correspondence: Fang Xie, ; Qin Wang,
| |
Collapse
|
111
|
Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK, Mehta JL, Wang X. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc Drugs Ther 2022; 37:571-584. [PMID: 35796905 DOI: 10.1007/s10557-022-07362-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Atherosclerosis is the basis of major CVDs - myocardial ischemia, heart failure, and stroke. Among numerous functional molecules, the transcription factor nuclear factor κB (NF-κB) has been linked to downstream target genes involved in atherosclerosis. The activation of the NF-κB family and its downstream target genes in response to environmental and cellular stress, hypoxia, and ischemia initiate different pathological events such as innate and adaptive immunity, and cell survival, differentiation, and proliferation. Thus, NF-κB is a potential therapeutic target in the treatment of atherosclerosis and related CVDs. Several biologics and small molecules as well as peptide/proteins have been shown to regulate NF-κB dependent signaling pathways. In this review, we will focus on the function of NF-κB in CVDs and the role of NF-κB inhibitors in the treatment of CVDs.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Can Cui
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fang Shao
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, China
| | - Ashim K Bagchi
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China. .,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
112
|
Landscape of Alternative Splicing Events Related to Prognosis and Immune Infiltration in Glioma: A Data Analysis and Basic Verification. J Immunol Res 2022; 2022:2671891. [PMID: 35832652 PMCID: PMC9273398 DOI: 10.1155/2022/2671891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioma is a prevalent primary brain cancer with high invasiveness and typical local diffuse infiltration. Alternative splicing (AS), as a pervasive transcriptional regulatory mechanism, amplifies the coding capacity of the genome and promotes the progression of malignancies. This study was aimed at identifying AS events and novel biomarkers associated with survival for glioma. Methods RNA splicing patterns were collected from The Cancer Genome Atlas SpliceSeq database, followed by calculating the percentage of splicing index. Expression profiles and related clinical information of glioma were integrated based on the UCSC Xena database. The AS events in glioma were further analyzed, and glioma prognosis-related splicing factors were identified with the use of bioinformatics analysis and laboratory techniques. Further immune infiltration analysis was performed. Results Altogether, 9028 AS events were discovered. Upon univariate Cox analysis, 425 AS events were found to be related to the survival of patients with glioma, and 42 AS events were further screened to construct the final prognostic model (area under the curve = 0.974). Additionally, decreased expression of the splicing factors including Neuro-Oncological Ventral Antigen 1 (NOVA1), heterogeneous nuclear ribonucleoprotein C (HNRNPC), heterogeneous nuclear ribonucleoprotein L-like protein (HNRNPLL), and RNA-Binding Motif Protein 4 (RBM4) contributed to the poor survival in glioma. The immune infiltration analysis demonstrated that AS events were related to the proportion of immune cells infiltrating in glioma. Conclusions It is of great value for comprehensive consideration of AS events, splicing networks, and related molecular subtype clusters in revealing the underlying mechanism and immune microenvironment remodeling for glioma, which provides clues for the further verification of related therapeutic targets.
Collapse
|
113
|
Sun W, Wang X, Wang D, Lu L, Lin H, Zhang Z, Jia Y, Nie X, Liu T, Fu W. CD40×HER2 bispecific antibody overcomes the CCL2-induced trastuzumab resistance in HER2-positive gastric cancer. J Immunother Cancer 2022; 10:jitc-2022-005063. [PMID: 35851310 PMCID: PMC9295658 DOI: 10.1136/jitc-2022-005063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Background There was much hard work to study the trastuzumab resistance in HER2-positive gastric cancer (GC), but the information which would reveal this abstruse mechanism is little. In this study, we aimed to investigate the roles of tumor cell-derived CCL2 on trastuzumab resistance and overcome the resistance by treatment with the anti-CD40-scFv-linked anti-HER2 (CD40 ×HER2) bispecific antibody (bsAb). Methods We measured the levels of CCL2 expression in HER2-positive GC tissues, and revealed biological functions of tumor cell-derived CCL2 on tumor-associated macrophages (TAMs) and the trastuzumab resistance. Then, we developed CD40 ×HER2 bsAb, and examined the targeting roles on HER2 and CD40, to overcome the trastuzumab resistance without systemic toxicity. Results We found the level of CCL2 expression in HER2-postive GC was correlated with infiltration of TAMs, polarization status of infiltrated TAMs, trastuzumab resistance and survival outcomes of GC patients. On exposure to CCL2, TAMs decreased the M1-like phenotype, thereby eliciting the trastuzumab resistance. CCL2 activated the transcription of ZC3H12A, which increased K63-linked deubiquitination and K48-linked auto-ubiquitination of TRAF6/3 to inactivate NF-κB signaling in TAMs. CD40 ×HER2 bsAb, which targeted the CD40 to restore the ubiquitination level of TRAF6/3, increased the M1-like phenotypic transformation of TAMs, and overcame trastuzumab resistance without immune-related adversary effects (irAEs). Conclusions We revealed a novel mechanism of trastuzumab resistance in HER2-positive GC via the CCL2-ZC3H12A-TRAF6/3 signaling axis, and presented a CD40 ×HER2 bsAb which showed great antitumor efficacy with few irAEs.
Collapse
Affiliation(s)
- Weilin Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daohan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hai Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoxiong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yangpu Jia
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyang Nie
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
114
|
Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front Immunol 2022; 13:927153. [PMID: 35757715 PMCID: PMC9226391 DOI: 10.3389/fimmu.2022.927153] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy represents a major breakthrough in cancer treatment, and it has achieved unprecedented success in hematological malignancies, especially in relapsed/refractory (R/R) B cell malignancies. At present, CD19 and BCMA are the most common targets in CAR-T cell therapy, and numerous novel therapeutic targets are being explored. However, the adverse events related to CAR-T cell therapy might be serious or even life-threatening, such as cytokine release syndrome (CRS), CAR-T-cell-related encephalopathy syndrome (CRES), infections, cytopenia, and CRS-related coagulopathy. In addition, due to antigen escape, the limited CAR-T cell persistence, and immunosuppressive tumor microenvironment, a considerable proportion of patients relapse after CAR-T cell therapy. Thus, in this review, we focus on the progress and challenges of CAR-T cell therapy in hematological malignancies, such as attractive therapeutic targets, CAR-T related toxicities, and resistance to CAR-T cell therapy, and provide some practical recommendations.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- School of Medicine, Jishou University, Jishou, China
| | - Shanshan Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yang Xiao
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
115
|
Kovács SA, Győrffy B. Transcriptomic datasets of cancer patients treated with immune-checkpoint inhibitors: a systematic review. J Transl Med 2022; 20:249. [PMID: 35641998 PMCID: PMC9153191 DOI: 10.1186/s12967-022-03409-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
The availability of immune-checkpoint inhibitors (ICI) in the last decade has resulted in a paradigm shift in certain areas of oncology. Patients can be treated either by a monotherapy of anti-CTLA-4 (tremelimumab or ipilimumab), anti-PD-1 (nivolumab or pembrolizumab), or anti-PD-L1 (avelumab or atezolizumab or durvalumab) or as combination therapy of anti-CTLA-4 and anti-PD-1. To maximize the clinical treatment benefit of cancer immunotherapy, the prediction of the actual immune response by the identification and application of clinically useful biomarkers will be required. Whole transcriptomic datasets of patients with ICI treatment could provide the basis for large-scale discovery and ranking of such potential biomarker candidates. In this review, we summarize currently available transcriptomic data from different biological sources (whole blood, fresh-frozen tissue, FFPE) obtained by different methods (microarray, RNA-Seq, RT-qPCR). We directly include only results from clinical trials and other investigations where an ICI treatment was administered. The available datasets are grouped based on the administered treatment and we also summarize the most important results in the individual cohorts. We discuss the limitations and shortcomings of the available datasets. Finally, a subset of animal studies is reviewed to provide an overview of potential in vivo ICI investigations. Our review can provide a swift reference for researchers aiming to find the most suitable study for their investigation, thus saving a significant amount of time.
Collapse
Affiliation(s)
- Szonja Anna Kovács
- grid.11804.3c0000 0001 0942 9821Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094 Budapest, Hungary ,grid.429187.10000 0004 0635 9129Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary. .,Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
116
|
Sun S, Wang Y, Li M, Wu J. Identification of TRP-Related Subtypes, Development of a Prognostic Model, and Characterization of Tumor Microenvironment Infiltration in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:861380. [PMID: 35620481 PMCID: PMC9127446 DOI: 10.3389/fmolb.2022.861380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The TRP (transient receptor potential) superfamily, as cation channels, is a critical chemosensor for potentially harmful irritants. Their activation is closely related not only to tumor progression and prognosis but also to tumor therapy response. Nevertheless, the TRP-related immune gene (TRIG) expression of the tumor microenvironment (TME) and the associations with prognosis remain unclear. First, we represented the transcriptional and genetic variations in TRIGs in 535 lung adenocarcinoma (LUAD) samples as well as their expression patterns. LUAD samples were divided into two distinct subtypes based on the TRIG variations. Significant differences had been found in prognosis, clinical features, and TME cell-infiltration features between the two subtypes of patients. Second, we framed a TRIG score for predicting overall survival (OS) and validated the predictive capability of the TRIG score in LUAD patients. Accordingly, to enhance the clinical applicability of TRIG score, we developed a considerable nomogram. A low TRIG score, characterized by increased immunity activation, indicated favorable advantages of OS compared with a high TRIG score. Furthermore, the TRIG score was found to have a significant connection with the TME cell-infiltration and immune checkpoint expressions. Our analysis of TRIGs in LUAD showed their potential roles in prognosis, clinical features, and tumor-immune microenvironments. These results may advance our knowledge of TRP genes in LUAD and show a new light on prognosis estimation and the improvement of immunotherapy strategies.
Collapse
|
117
|
Mou L, Shi G, Cooper DK, Lu Y, Chen J, Zhu S, Deng J, Huang Y, Ni Y, Zhan Y, Cai Z, Pu Z. Current Topics of Relevance to the Xenotransplantation of Free Pig Islets. Front Immunol 2022; 13:854883. [PMID: 35432379 PMCID: PMC9010617 DOI: 10.3389/fimmu.2022.854883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pig islet xenotransplantation is a potential treatment for patients with type 1 diabetes. Current efforts are focused on identifying the optimal pig islet source and overcoming the immunological barrier. The optimal age of the pig donors remains controversial since both adult and neonatal pig islets have advantages. Isolation of adult islets using GMP grade collagenase has significantly improved the quantity and quality of adult islets, but neonatal islets can be isolated at a much lower cost. Certain culture media and coculture with mesenchymal stromal cells facilitate neonatal islet maturation and function. Genetic modification in pigs affords a promising strategy to prevent rejection. Deletion of expression of the three known carbohydrate xenoantigens (Gal, Neu5Gc, Sda) will certainly be beneficial in pig organ transplantation in humans, but this is not yet proven in islet transplantation, though the challenge of the '4th xenoantigen' may prove problematic in nonhuman primate models. Blockade of the CD40/CD154 costimulation pathway leads to long-term islet graft survival (of up to 965 days). Anti-CD40mAbs have already been applied in phase II clinical trials of islet allotransplantation. Fc region-modified anti-CD154mAbs successfully prevent the thrombotic complications reported previously. In this review, we discuss (I) the optimal age of the islet-source pig, (ii) progress in genetic modification of pigs, (iii) the immunosuppressive regimen for pig islet xenotransplantation, and (iv) the reduction in the instant blood-mediated inflammatory reaction.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guanghan Shi
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shufang Zhu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yuanyuan Huang
- Department of Life Science, Bellevue College, Bellevue, WA, United States
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
118
|
Maurya SK, Mishra R. Molecular docking studies of natural immunomodulators indicate their interactions with the CD40L of CD40/CD40L pathway and CSF1R kinase domain of microglia. J Mol Model 2022; 28:101. [PMID: 35325302 DOI: 10.1007/s00894-022-05084-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Natural products have proved beneficial in reducing neuroinflammation in neurological diseases. Their impacts have also been associated with the activities of microglia, responsible for brain-specific immunity. Recent studies have shown the involvement of the number of microglia-specific proteins in the regulation of brain-specific immunity. However, molecular targets of natural products and their mechanism of interaction with microglia-specific proteins are elusive. Since the genetic signature of microglia offers many potential targets for drug discovery, molecular docking followed by molecular dynamics (MD) simulations of cluster of differentiation 40 ligand (CD40L) and colony-stimulating factor 1 receptor (CSF1R) kinase domain protein with some known neuro-immunomodulators (Curcumin, Cannabidiol, Ginsenoside Rg1, Resveratrol, and Sulforaphane) has been evaluated. Curcumin and cannabidiol were observed likely to modulate CD40L and expression of cytokines and entry of inflammatory cells. Resveratrol and cannabidiol may affect the CSF1R kinase domain and activation of microglia. Our finding suggests that curcumin, cannabidiol, and resveratrol may serve specific drug ligands in regulating microglia-mediated brain immunity.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Department of Zoology, Ramjas College, University of Delhi, 110007, Delhi, India.,Department of Zoology, School of Sciences, Cluster University of Jammu, 180001, Jammu, India.,Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, 221005, Varanasi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
119
|
Liu W, Wang X, Feng X, Yu J, Liu X, Jia X, Zhang H, Wu H, Wang C, Wu J, Yu B, Yu X. Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models. Cancer Lett 2022; 535:215661. [PMID: 35325845 DOI: 10.1016/j.canlet.2022.215661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/28/2022]
Abstract
The immune status of the tumor microenvironment is a key indicator determining the antitumor effect of immunotherapy. Oncolytic viruses directly target tumor cells or indirectly modulate the tumor microenvironment (TME) especially when properly armed. It was previously demonstrated that conditionally replicating adenovirus serotype 5 (CRAd5) encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) had outstanding antitumor effects in different human cancer cells xenograft models; however, its antitumor immune mechanism has not been evaluated in immunocompetent preclinical mouse models. We first explored the antitumor activity of CRAd5-TRAIL in several murine tumor models and found that the expression of TRAIL induced increases or activation in tumor-infiltrating T cells. To further improve the antitumor effects, mouse CD40 ligand (mCD40L) as an immune activator expressed by recombinant Ad5 vector was firstly used in combination with CRAd5-TRAIL for tumor immunotherapy. Both in vitro and in vivo studies demonstrated that mCD40L effectively activated dendritic cells (DCs), B cells, and tumor-infiltrating T cells, and also promoted tumor cell apoptosis by increasing the expression of TRAIL receptors, thereby significantly enhancing the antitumor activity of oncolytic adenoviruses in CT26 and B16 tumor-bearing models. Although affected by the restriction of oncolytic adenovirus replication in mouse cells, the combination treatment failed to completely eliminate tumor cells, our research still provided a promising strategy for oncolytic adenovirus-mediated solid tumor immunotherapy.
Collapse
Affiliation(s)
- Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xupu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiahao Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyuan Jia
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
120
|
Platelets, a Key Cell in Inflammation and Atherosclerosis Progression. Cells 2022; 11:cells11061014. [PMID: 35326465 PMCID: PMC8947573 DOI: 10.3390/cells11061014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022] Open
Abstract
Platelets play important roles in thrombosis-dependent obstructive cardiovascular diseases. In addition, it has now become evident that platelets also participate in the earliest stages of atherosclerosis, including the genesis of the atherosclerotic lesion. Moreover, while the link between platelet activity and hemostasis has been well established, the role of platelets as modulators of inflammation has only recently been recognized. Thus, through their secretory activities, platelets can chemically attract a diverse repertoire of cells to inflammatory foci. Although monocytes and lymphocytes act as key cells in the progression of an inflammatory event and play a central role in plaque formation and progression, there is also evidence that platelets can traverse the endothelium, and therefore be a direct mediator in the progression of atherosclerotic plaque. This review provides an overview of platelet interactions and regulation in atherosclerosis.
Collapse
|
121
|
Leveraging Blood-Based Diagnostics to Predict Tumor Biology and Extend the Application and Personalization of Radiotherapy in Liver Cancers. Int J Mol Sci 2022; 23:ijms23041926. [PMID: 35216045 PMCID: PMC8879105 DOI: 10.3390/ijms23041926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
While the incidence of primary liver cancers has been increasing worldwide over the last few decades, the mortality has remained consistently high. Most patients present with underlying liver disease and have limited treatment options. In recent years, radiotherapy has emerged as a promising approach for some patients; however, the risk of radiation induced liver disease (RILD) remains a limiting factor for some patients. Thus, the discovery and validation of biomarkers to measure treatment response and toxicity is critical to make progress in personalizing radiotherapy for liver cancers. While tissue biomarkers are optimal, hepatocellular carcinoma (HCC) is typically diagnosed radiographically, making tumor tissue not readily available. Alternatively, blood-based diagnostics may be a more practical option as blood draws are minimally invasive, widely availability and may be performed serially during treatment. Possible blood-based diagnostics include indocyanine green test, plasma or serum levels of HGF or cytokines, circulating blood cells and genomic biomarkers. The albumin–bilirubin (ALBI) score incorporates albumin and bilirubin to subdivide patients with well-compensated underlying liver dysfunction (Child–Pugh score A) into two distinct groups. This review provides an overview of the current knowledge on circulating biomarkers and blood-based scores in patients with malignant liver disease undergoing radiotherapy and outlines potential future directions.
Collapse
|
122
|
Ma X, Chen C, Fang L, Zhong X, Chang Y, Li R, Wang Y, Hu X, Qiu W, Shu Y. Dysregulated CD40 and CD40 ligand expression in anti-N-methyl-d-aspartate receptor encephalitis. J Neuroimmunol 2022; 362:577762. [PMID: 34839148 DOI: 10.1016/j.jneuroim.2021.577762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Anti-N-methyl-d-aspartate receptor encephalitis (anti-NMDARE) is a B cell- and antibody-mediated autoimmune disease which may be regulated by CD40/CD40L signaling pathway. we enrolled anti-NMDARE patients and measured the serum CD40 and CD40L concentrations. The serum concentration of CD40 was decreased, while CD40L was increased in anti-NMDARE patients compared with that of healthy controls. The concentrations of CD40 and CD40L were both elevated in the acute stage of anti-NMDARE and were reduced during remission. Serum CD40L levels were positively correlated with serum CD40 levels. These results revealed that the CD40/CD40L signaling pathway might contribute to the pathogenesis of anti-NMDARE.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ling Fang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China; Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaonan Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xueqiang Hu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
123
|
Yang B, Hou S, Zhao J, Li Y. 3-hydroxy butyrate dehydrogenase 2 deficiency aggravates systemic lupus erythematosus progression in a mouse model by promoting CD40 ligand demethylation. Bioengineered 2022; 13:2685-2695. [PMID: 35001849 PMCID: PMC8973909 DOI: 10.1080/21655979.2022.2025694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The implications of the CD40-CD40 ligand (CD40L) signaling pathway in systemic lupus erythematosus (SLE) were well documented, due to its important role among immune cells. Previous research found that 3-hydroxy butyrate dehydrogenase 2 (BDH2), a modulator of intracellular iron homeostasis and iron transportation promoted the pathogenic process of SLE by regulating the demethylation of cd70, cd11a, and cd40l genes among CD4 + T cells. The purpose of this study was to explore the role of BDH2 in oxidative damage-induced SLE. First, CD4 + T cells treated with H2O2 were injected into the tail vein of mice to establish a lupus model. CD40L knockdown significantly decreased CD40L expression on CD4 + T cells in the spleen of SLE mice. Compared with SLE model mice, the levels of serum anti-dsDNA antibody and urinary protein in the CD40L interference group were significantly decreased. CD40L knockdown alleviated the immune complex glomerulonephritis in syngeneic SLE mice. Moreover, the levels of IFN-γ and IL-2 were decreased. However, IL-4 and IL-10 levels were significantly upregulated in the serum of CD40L knockdown SLE mice, compared with SLE model mice. Accordingly, CD40L knockdown reduced Th1/Th2 percentage in SLE mice. Inhibiting the expression of BDH2 of CD4 + T cells promoted the demethylation of CD40L, while it inhibited cell proliferation, elevated oxidative stress through increased expression of CD40L, and thus, promoted the progress of SLE. Our results demonstrate that BDH2 aggravates the pathologic progression of SLE in mice, by increasing the demethylation level of CD40L among CD4 + T cells.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Shihao Hou
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Jingjing Zhao
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Yepeng Li
- Department of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| |
Collapse
|
124
|
The Implementation of TNFRSF Co-Stimulatory Domains in CAR-T Cells for Optimal Functional Activity. Cancers (Basel) 2022; 14:cancers14020299. [PMID: 35053463 PMCID: PMC8773791 DOI: 10.3390/cancers14020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/31/2023] Open
Abstract
The Tumor Necrosis Factor Receptor Superfamily (TNFRSF) is a large and important immunoregulatory family that provides crucial co-stimulatory signals to many if not all immune effector cells. Each co-stimulatory TNFRSF member has a distinct expression profile and a unique functional impact on various types of cells and at different stages of the immune response. Correspondingly, exploiting TNFRSF-mediated signaling for cancer immunotherapy has been a major field of interest, with various therapeutic TNFRSF-exploiting anti-cancer approaches such as 4-1BB and CD27 agonistic antibodies being evaluated (pre)clinically. A further application of TNFRSF signaling is the incorporation of the intracellular co-stimulatory domain of a TNFRSF into so-called Chimeric Antigen Receptor (CAR) constructs for CAR-T cell therapy, the most prominent example of which is the 4-1BB co-stimulatory domain included in the clinically approved product Kymriah. In fact, CAR-T cell function can be clearly influenced by the unique co-stimulatory features of members of the TNFRSF. Here, we review a select group of TNFRSF members (4-1BB, OX40, CD27, CD40, HVEM, and GITR) that have gained prominence as co-stimulatory domains in CAR-T cell therapy and illustrate the unique features that each confers to CAR-T cells.
Collapse
|
125
|
Sanz CR, Miró G, Sevane N, Reyes-Palomares A, Dunner S. Modulation of Host Immune Response during Leishmania infantum Natural Infection: A Whole-Transcriptome Analysis of the Popliteal Lymph Nodes in Dogs. Front Immunol 2022; 12:794627. [PMID: 35058931 PMCID: PMC8763708 DOI: 10.3389/fimmu.2021.794627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Leishmania infantum, the etiological agent of canine leishmaniosis (CanL) in Europe, was responsible of the largest outbreak of human leishmaniosis in Spain. The parasite infects and survives within myeloid lineage cells, causing a potentially fatal disease if left untreated. The only treatment option relies on chemotherapy, although immunotherapy strategies are being considered as novel approaches to prevent progression of the disease. To this aim, a deeper characterization of the molecular mechanisms behind the immunopathogenesis of leishmaniosis is necessary. Thus, we evaluated, for the first time, the host immune response during L. infantum infection through transcriptome sequencing of the popliteal lymph nodes aspirates of dogs with CanL. Differential expression and weighted gene co-expression network analyses were performed, resulting in the identification of 5,461 differentially expressed genes (DEGs) and four key modules in sick dogs, compared to controls. As expected, defense response was the highest enriched biological process in the DEGs, with six genes related to immune response against pathogens (CHI3L1, SLPI, ACOD1, CCL5, MPO, BPI) included among the ten most expressed genes; and two of the key co-expression modules were associated with regulation of immune response, which also positively correlated with clinical stage and blood monocyte concentration. In particular, sick dogs displayed significant changes in the expression of Th1, Th2, Th17 and Tr1 cytokines (e. g. TNF-α, IFN-γ, IL-21, IL-17, IL-15), markers of T cell and NK cell exhaustion (e. g. LAG3, CD244, Blimp-1, JUN), and B cell, monocyte and macrophage disrupted functionality (e. g. CD40LG, MAPK4, IL-1R, NLRP3, BCMA). In addition, we found an overexpression of XBP1 and some other genes involved in endoplasmic reticulum stress and the IRE1 branch of the unfolded protein response, as well as one co-expression module associated with these processes, which could be induced by L. infantum to prevent host cell apoptosis and modulate inflammation-induced lymphangiogenesis at lymph nodes. Moreover, 21 lncRNAs were differentially expressed in sick dogs, and one key co-expression module was associated with chromatin organization, suggesting that epigenetic mechanisms could also contribute to dampening host immune response during natural L. infantum infection in the lymph nodes of dogs suffering from clinical leishmaniosis.
Collapse
Affiliation(s)
- Carolina R Sanz
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Guadalupe Miró
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Susana Dunner
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
126
|
Zhao H, Kong H, Wang B, Wu S, Chen T, Cui Y. RNA-Binding Proteins and Alternative Splicing Genes Are Coregulated in Human Retinal Endothelial Cells Treated with High Glucose. J Diabetes Res 2022; 2022:7680513. [PMID: 35308095 PMCID: PMC8926481 DOI: 10.1155/2022/7680513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
To explore the relevant RNA-binding proteins (RBPs) and alternative splicing events (ASEs) in diabetic retinopathy (DR). We devised a comprehensive work to integrate analyses of the differentially expressed genes, including differential RBPs, and variable splicing characteristics related to DR in human retinal endothelial cells induced by low glucose and high glucose in dataset GSE117238. A total of 2320 differentially expressed genes (DEGs) were identified, including 1228 upregulated genes and 1092 downregulated genes. Further analysis screened out 232 RBP genes, and 42 AS genes overlapped DEGs. We selected high expression and consistency six RBP genes (FUS, HNRNPA2B1, CANX, EIF1, CALR, and POLR2A) for coexpression analysis. Through analysis, we found eight RASGs (MDM2, GOLGA2P7, NFE2L1, KDM4A, FAM111A, CIRBP, IDH1, and MCM7) that could be regulated by RBP. The coexpression network was conducted to further elucidate the regulatory and interaction relationship between RBPs and AS. Apoptotic progress, protein phosphorylation, and NF-kappaB cascade revealed by the functional enrichment analysis of RASGs regulated by RBPs were closely related to diabetic retinopathy. Furthermore, the expression of differentially expressed RBPs was validated by qRT-PCR in mouse retinal microvascular endothelial cells and retinas from the streptozotocin mouse model. The results showed that Fus, Hnrnpa2b1, Canx, Calr, and Polr2a were remarkedly difference in high-glucose-treated retinal microvascular endothelial cells and Fus, Hnrnpa2b1, Canx, and Calr were remarkedly difference in retinas from streptozotocin-induced diabetic mice compared to control. The regulatory network between identified RBPs and RASGs suggests the presence of several signaling pathways possibly involved in the pathogenesis of DR. The verified RBPs should be further addressed by future studies investigating associations between RBPs and the downstream of AS, as they could serve as potential biomarkers and targets for DR.
Collapse
Affiliation(s)
- Hongran Zhao
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hui Kong
- School of Medicine, Shandong University, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Bozhao Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Sihui Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tianran Chen
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
127
|
Ding JT, Yang KP, Lin KL, Cao YK, Zou F. Mechanisms and therapeutic strategies of immune checkpoint molecules and regulators in type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:1090842. [PMID: 36704045 PMCID: PMC9871554 DOI: 10.3389/fendo.2022.1090842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Considered a significant risk to health and survival, type 1 diabetes (T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia caused by an absolute deficiency of insulin, which is mainly due to the immune-mediated destruction of pancreatic beta cells. SCOPE OF REVIEW In recent years, the role of immune checkpoints in the treatment of cancer has been increasingly recognized, but unfortunately, little attention has been paid to the significant role they play both in the development of secondary diabetes with immune checkpoint inhibitors and the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4), programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin protein-3(TIM-3). Here, this review summarizes recent research on the role and mechanisms of diverse immune checkpoint molecules in mediating the development of T1D and their potential and theoretical basis for the prevention and treatment of diabetes. MAJOR CONCLUSIONS Immune checkpoint inhibitors related diabetes, similar to T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors. Interestingly, numerous treatment measures show excellent efficacy for T1D via regulating diverse immune checkpoint molecules, including co-inhibitory and co-stimulatory molecules. Thus, targeting immune checkpoint molecules may exhibit potential for T1D treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kong-Lan Lin
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yu-Ke Cao
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fang Zou,
| |
Collapse
|
128
|
Yang P, Wu Q, Sun L, Fang P, Liu L, Ji Y, Park JY, Qin X, Yang X, Wang H. Adaptive Immune Response Signaling Is Suppressed in Ly6C high Monocyte but Upregulated in Monocyte Subsets of ApoE-/- Mice - Functional Implication in Atherosclerosis. Front Immunol 2021; 12:809208. [PMID: 34987524 PMCID: PMC8721109 DOI: 10.3389/fimmu.2021.809208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022] Open
Abstract
Rationale Inflammatory monocyte (MC) subset differentiation is a major feature in tissue inflammatory and atherosclerosis. The underlying molecular mechanism remains unclear. Objective This study aims to explore molecule targets and signaling which determinate immunological features in MC subsets. Methods and Results Blood Ly6Chigh and Ly6Clow MC subsets from control and ApoE-/- mice were isolated by flow cytometry sorting and subjected for bulk high-throughput RNA-sequencing. Intensive bioinformatic studies were performed by analyzing transcriptome through four pairs of comparisons: A) Ly6Chigh vs Ly6Clow in control mice; B) Ly6Chigh vs Ly6Clow in ApoE-/- mice; C) ApoE-/- Ly6Chigh vs control Ly6Chigh MC; D) ApoE-/- Ly6Clow vs control Ly6Clow MC. A total of 80 canonical pathways and 16 enriched pathways were recognized by top-down analysis using IPA and GSEA software, and further used for overlapping analysis. Immunological features and signaling were assessed on four selected functional groups, including MHCII, immune checkpoint, cytokine, and transcription factor (TF). Among the total 14578 significantly differentially expressed (SDE) genes identified though above four comparison, 1051 TF and 348 immunological genes were discovered. SDE immunological genes were matched with corresponding upstream SDE TF by IPA upstream analysis. Fourteen potential transcriptional axes were recognized to modulate immunological features in the Ly6C MC subset. Based on an intensive literature search, we found that the identified SDE immune checkpoint genes in Ly6Chigh MC are associated with pro-inflammatory/atherogenic balance function. Immune checkpoint genes GITR, CTLA4, and CD96 were upregulated in Ly6Clow MC from all mice and presented anti-inflammatory/atherogenic features. Six cytokine genes, including Ccl2, Tnfsf14, Il1rn, Cxcl10, Ccl9, and Cxcl2, were upregulated in Ly6Chigh MC from all mice and associated with pro-inflammatory/atherogenic feature. Cytokine receptor gene Il12rb2, Il1r1, Il27ra, Il5ra, Ngfr, Ccr7, and Cxcr5 were upregulated in Ly6Clow MC from all mice and presented anti-inflammatory/atherogenic features. MHCII genes (H2-Oa, H2-DMb2, H2-Ob, H2-Eb2, H2-Eb1, H2-Aa, and Cd74) were elevated in Ly6Clow MC from all mice. ApoE-/- augmented pro-atherogenic/inflammatory and antigen-presenting cells (APC) feature in both subsets due to elevated expression of cytokine genes (Cxcl11, Cntf, Il24, Xcl, Ccr5, Mpl, and Acvr2a) and MHCII gene (H2-Aa and H2-Ea-ps). Finally, we modeled immunological gene expression changes and functional implications in MC differentiation and adaptive immune response for MC subsets from control and ApoE-/- mice. Conclusions Ly6Chigh MC presented pro-inflammatory/atherogenic features and lower APC potential. Ly6Clow MC displayed anti-inflammatory/atherogenic features and higher APC potential. ApoE-/- confers upon both subsets with augmented pro-atherogenic/inflammatory function and APC potential.
Collapse
Affiliation(s)
- Pingping Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lizhe Sun
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pu Fang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Department of Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Joon-Young Park
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xuebin Qin
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
129
|
CD40-CD154: A perspective from type 2 immunity. Semin Immunol 2021; 53:101528. [PMID: 34810089 DOI: 10.1016/j.smim.2021.101528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
The interaction between CD40 and CD154 (CD40 ligand) is central in immunology, participating in CD4+ T cell priming by dendritic cells (DC), CD4+ T cell help to B cells and classical macrophage activation by CD4+ T cells. However, its role in the Th2 side of immunology including helminth infection remains incompletely understood. Contrary to viral and bacterial stimuli, helminth products usually do not cause CD40 up-regulation in DC, and exogenous CD40 ligation drives Th2-biased systems towards Th1. On the other hand, CD40 and CD154 are necessary for induction of most Th2 responses. We attempt to reconcile these observations, mainly by proposing that (i) CD40 up-regulation in DC in Th2 systems is mostly induced by alarmins, (ii) the Th2 to Th1 shift induced by exogenous CD40 ligation is related to the capacity of such ligation to enhance IL-12 production by myeloid cells, and (iii) signals elicited by endogenous CD154 available in Th2 contexts and by exogenous CD40 ligation are probably different. We stress that CD40-CD154 is important beyond cognate cellular interactions. In such a context, we argue that the proliferation response of B-cells to IL-4 plus CD154 reflects a Th2-specific mechanism for polyclonal B-cell amplification and IgE production at infection sites. Finally, we argue that CD154 is a general immune activation signal across immune polarization including Th2, and propose that competition for CD154 at tissue sites may provide negative feedback on response induction at each site.
Collapse
|
130
|
Liu Z, Liu L, Guo C, Yu S, Meng L, Zhou X, Han X. Tumor suppressor gene mutations correlate with prognosis and immunotherapy benefit in hepatocellular carcinoma. Int Immunopharmacol 2021; 101:108340. [PMID: 34789428 DOI: 10.1016/j.intimp.2021.108340] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The tumor microenvironment (TME) has profound impacts on prognosis and immunotherapy. The TME can be altered by the genomic mutations on specific tumor-suppressor genes (TSG), thus, comprehending the association between TME and TSG in hepatocellular carcinoma (HCC) is imperative. METHODS With a total of 1699 HCC patients from 6 international multicenter cohorts, we delineated the mutational landscape of TSG and summarized the proportion of TSG mutated HCC in different countries. Using the genomic and transcriptomic data, we comprehensively explored the impacts of TSG mutations on TME and immunity in HCC. A dataset of 31 HCC patients from the cBioPortal database was utilized to evaluate the predictive value of TSG subtypes for immunotherapy response. RESULTS Interestingly, TSG non-mutated HCC will have more "immune-hot" tumors, and display the infiltration abundance of immune cells such as B cell, CD4+/CD8+T cell, and neutrophil. Moreover, TSG non-mutated HCC was characterized by the higher expression level of three immune checkpoints, including CD40, CD40LG, and TNFRSF4. In line with the TME characterization and immune checkpoint profiles, TSG non-mutated HCC displayed prolonged overall survival and relapse-free survival, notably, are more likely to respond to immune checkpoint inhibitors. CONCLUSIONS Our findings suggested the TSG subtypes could serve as a promising biomarker for guiding surveillance protocol and immunotherapeutic decisions for patients with HCC.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - ChunGuang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Sun Yu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lingfang Meng
- Department of Infection Management, The Second Affiliated Hospital of Zhengzhou University, China
| | - Xueliang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
131
|
Simultaneous Inhibition of PD-1 and Stimulation of CD40 Signaling Pathways by Anti-PD-L1/CD40L Bispecific Fusion Protein Synergistically Activate Target and Effector Cells. Int J Mol Sci 2021; 22:ijms222111302. [PMID: 34768776 PMCID: PMC8583728 DOI: 10.3390/ijms222111302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies (BsAbs) or fusion proteins (BsAbFPs) present a promising strategy for cancer immunotherapy. Numerous BsAbs targeting coinhibitory and costimulatory pathways have been developed for retargeting T cells and antigen presenting cells (APCs). It is challenging to assess the potency of BsAb that engages two different signaling pathways simultaneously in a single assay format, especially when the two antigen targets are expressed on different cells. To explore the potency of anti-PD-L1/CD40L BsAbFP, a fusion protein that binds to human CD40 and PD-L1, we engineered CHO cells as surrogate APCs that express T cell receptor activator and PD-L1, Jurkat cells with PD-1 and NFAT-luciferase reporter as effector T cells, and Raji cell with NFkB-luciferase that endogenously expresses CD40 as accessory B cells. A novel reporter gene bioassay was developed using these cell lines that allows anti-PD-L1/CD40L BsAbFP to engages both PD-1/PD-L1 and CD40/CD40L signaling pathways in one assay. As both reporters use firefly luciferase, the effects of activating both signaling pathways is observed as an increase in luminescence, either as a higher upper asymptote, a lower EC50, or both. This dual target reporter gene bioassay system reflects potential mechanism of action and demonstrated the ability of anti-PD-L1/CD40L BsAbFP to synergistically induce biological response compared to the combination of anti-PD-L1 monovalent monoclonal antibody and agonist CD40L fusion protein, or either treatment alone. The results also showed a strong correlation between the drug dose and biological response within the tested potency range with good linearity, accuracy, precision, specificity and stability indicating properties, suggesting that this “three-cell-in-one” dual target reporter gene bioassay is suitable for assessing potency, structure-function and critical quality attributes of anti-PD-L1/CD40L BsAbFP. This approach could be used for developing dual target bioassays for other BsAbs and antibodies used for combination therapy.
Collapse
|
132
|
Distinct roles of ICOS and CD40L in human T-B cell adhesion and antibody production. Cell Immunol 2021; 368:104420. [PMID: 34418679 DOI: 10.1016/j.cellimm.2021.104420] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022]
Abstract
CD40-CD40L and inducible co-stimulatory molecule (ICOS)-ICOSL ligations are demonstrated to play critical roles in CD4+T-B interaction for B cell activation and differentiation in mouse models. Herein, by using a micropipette adhesion assay and an in vitro CD4+T-B cell coculture system simultaneously, we intended to dissect their roles in human CD4+T-B adhesion and IgG/IgM production. With the upregulation of CD40L and ICOS expressions on CD4+ T cells upon TCR/CD28 stimulation in vitro, activated CD4+ T cells exhibited enhanced adhesion with autologous B cells at a single cell level when compared to the resting counterparts. Blockade of ICOS dramatically damped the adhesion between CD4+ T and B cells whereas less effect of CD40L blockade was observed. On the contrary, blockade of CD40L led to the dramatic decrease in IgG/IgM production when B cells were cocultured with activated CD4+ T cells together with the decrease in the induction of CD19hi B cells. However, ICOS blockade displayed less attenuation on IgG/IgM production. Distinct roles of CD40-CD40L and ICOS-ICOSL in cell adhesion and IgG/IgM production were also observed in CD4+T-B cell interaction in system lupus erythematosus patients. The blockade of CD40L, rather than ICOS, led to the dramatic decrease in the phosphorylation of Pyk2 in CD19hi B cells and total B cells. Our study thus provides the evidence that CD40L and ICOS on activated CD4+ T cells either upon in vitro activation or at the pathogenic state function diversely during CD4+T-B cell interactions. While ICOS-ICOSL ligation is more likely to be engaged in cell adhesion, CD40-CD40L provides indispensable signal for B cell differentiation and IgG/IgM production. Our results are thus indicative for the segregating costimulation of CD40-CD40L and ICOS-ICOSL on CD4+ T cells for B cell activation and differentiation, which might be helpful for the dissection of SLE pathogenesis.
Collapse
|
133
|
Raabe O, Birchler T, Rehrauer H, Eppler E. CD40 Agonist Monoclonal Antibody-Mediated Hepatitis in TNF-Receptor 1 Gene Knockout Mice. Biomedicines 2021; 9:biomedicines9080863. [PMID: 34440067 PMCID: PMC8389574 DOI: 10.3390/biomedicines9080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) plays an important role in liver inflammation. CD40-CD40 ligand (CD40-CD40L) is a key receptor–ligand signaling pair involved in the adaptive immune response and pathogenesis of autoimmune diseases. In mice, CD40 activation leads to sickness behavior syndrome (SBS) comprising weight loss, sleep disruption and depression, which can be blocked by administration of the TNF-inhibitor etanercept. In the present study, we assessed the extent of hepatic inflammation in mice devoid of the TNF-receptor 1 (TNFR1)-mediated signaling pathway. The TNFR1-depleted (TNFR1−/−) adult mice and their wild type littermates were given a single intra-peritoneal injection of CD40 agonist monoclonal antibody (mAb) or rat IgG2a isotope control. As described previously, TNFR1−/− mice were protected from SBS upon CD40 mAb treatment. Cd40, tnf and tnfr1 mRNA and Tnf-α peptide were increased in the liver of CD40 mAb-stimulated wild type mice. Serum alanine aminotransferase was elevated in both CD40-activated wild type and TNFR1−/− mice. TNFR1−/− mice showed much less intra-parenchymal infiltrates, hepatocellular necrosis, and perivascular clusters upon CD40 mAb activation than their wild type littermates. A gene expression microarray detected increased activity of metabolic and detoxification pathways and decreased activity of inflammatory pathways. We conclude that immune activation and development of liver inflammation in CD40L interactions depend on TNFR1-mediated signaling pathways and are counteracted by alterations in metabolic pathways.
Collapse
Affiliation(s)
- Oksana Raabe
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland;
| | - Thomas Birchler
- Institute of Experimental Immunology, University of Zurich, 8057 Zürich, Switzerland;
| | - Hubert Rehrauer
- Functional Genomics Center Zurich (FGCZ), ETH Zürich, University of Zurich, 8057 Zürich, Switzerland;
| | - Elisabeth Eppler
- Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-684-84-53
| |
Collapse
|
134
|
Camilli M, Iannaccone G, La Vecchia G, Cappannoli L, Scacciavillani R, Minotti G, Massetti M, Crea F, Aspromonte N. Platelets: the point of interconnection among cancer, inflammation and cardiovascular diseases. Expert Rev Hematol 2021; 14:537-546. [PMID: 34126832 DOI: 10.1080/17474086.2021.1943353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The association between thrombosis, cancer and inflammation is well-established. Platelets play a major role in atherosclerosis, inflammation and immune response. Furthermore, growing evidence suggests that they are also significantly involved in tumor development and progression so that anti-platelet agents may prevent cancer and improve outcomes in oncological patients. In this review, we aimed at analyzing the relationship between platelets, cardiovascular diseases and cancer. A comprehensive study in the main educational platforms was performed and high-quality original articles and reviews were included. AREAS COVERED This review will focus on the role of platelets in cardiovascular disease and in cancer genesis and progression, analyzing their function as immune cells that link inflammation to thrombosis. Finally, it will examine the recent controversies on the use of anti-platelet agents as cancer medications, in particular the already known anti-tumor properties of aspirin, as well as the new perspectives regarding P2Y12 inhibitors. EXPERT OPINION Platelet-cancer crosstalk generates a vicious feed-back loop involving tumor cells and secreting molecules that activate platelets, which in turn promote cancer-associated inflammation, proliferation, spreading and immune system evasion. Therefore, platelets inhibition may represent an innovative therapeutical strategy offered to cancer patients, in the perspective of personalized medicine.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giulia La Vecchia
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Luigi Cappannoli
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Roberto Scacciavillani
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giorgio Minotti
- Department of Medicine, Center for Integrated Research and Unit of Drug Sciences, University Campus Bio-Medico, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|