101
|
Zhang L, Zhang L, Li Y, Li L, Melchiorsen JU, Rosenkilde M, Hölscher C. The Novel Dual GLP-1/GIP Receptor Agonist DA-CH5 Is Superior to Single GLP-1 Receptor Agonists in the MPTP Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:523-542. [PMID: 31958096 DOI: 10.3233/jpd-191768] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disease for which there is no cure. In a clinical trial, the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has shown good protective effects in PD patients. The hormone glucose-dependent insulinotropic polypeptide (GIP) has also shown protective effects in animal models of PD. OBJECTIVE We tested DA-CH5, a novel dual GLP-1/GIP receptor agonist. METHODS DA-CH5 activity was tested on cells expressing GLP-1, GLP-2, GIP or glucagon receptors. The ability to cross the blood-brain barrier (BBB) of DA-CH5, exendin-4, liraglutide or other dual receptor agonists was tested with fluorescein-labelled peptides. DA-CH5, exendin-4 and liraglutide were tested in the MPTP mouse model of PD. RESULTS Analysing the receptor activating properties showed a balanced activation of GLP-1 and GIP receptors while not activating GLP-2 or glucagon receptors. DA-CH5 crossed the BBB better than other single or other dual receptor agonists. In a dose-response comparison, DA-CH5 was more effective than the GLP-1 receptor agonist exendin-4. When comparing the neuroprotective effect of DA-CH5 with Liraglutide, a GLP-1 analogue, both DA-CH5 and Liraglutide improved MPTP-induced motor impairments. In addition, the drugs reversed the decrease of the number of neurons expressing tyrosine hydroxylase (TH) in the SN, alleviated chronic inflammation, reduced lipid peroxidation, inhibited the apoptosis pathway (TUNEL assay) and increased autophagy -related proteins expression in the substantia nigra (SN) and striatum. Importantly, we found DA-CH5 was superior to Liraglutide in reducing microglia and astrocyte activation, improving mitochondrial activity by reducing the Bax/Bcl-2 ratio and normalising autophagy as found in abnormal expression of LC3 and p62. CONCLUSION The results demonstrate that the DA-CH5 is superior to liraglutide and could be a therapeutic treatment for PD.
Collapse
Affiliation(s)
- Lingyu Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Liping Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yanwei Li
- Department of Human Anatomy, Shaoyang Medical College, Shaoyang, Hunan, PR China
| | - Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | | | - Mette Rosenkilde
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Hölscher
- Department of Second Hospital Neurology, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan province, PR China
| |
Collapse
|
102
|
Park SH, Nam GE, Han K, Huh Y, Kim W, Lee MK, Koh ES, Kim ES, Kim MK, Kwon HS, Kim SM, Cho KH, Park YG. Association of Dynamic Changes in Metabolic Syndrome Status with the Risk of Parkinson's Disease: A Nationwide Cohort Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1751-1759. [PMID: 34120914 DOI: 10.3233/jpd-212589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The longitudinal association between dynamic changes in the metabolic syndrome (MS) status and Parkinson's disease (PD) has been poorly studied. OBJECTIVE We examined whether dynamic changes in MS status are associated with altered risk for PD. METHODS This study was a nationwide retrospective cohort study. We enrolled 5,522,813 individuals aged≥40 years who had undergone health examinations under the National Health Insurance Service between 2009 and 2010 (two health examinations with a 2-year interval). Participants were followed up until the end of 2017. The participants were categorized into four groups according to MS status changes over 2 years: non-MS, improved MS, incident MS, and persistent MS groups. Multivariable Cox hazard regression was performed. RESULTS During the 7-year median follow-up, there were 20,524 cases of newly developed PD. Compared with non-MS group, improved, incident, and persistent MS groups for 2 years were significantly associated with higher risks of PD (model 3; hazard ratio: 1.12, 95%confidence interval: 1.06-1.19 [improved MS]; 1.15, 1.09-1.22 [incident MS]; and 1.25, 1.20-1.30 [persistent MS]). Individuals with incident and persistent abdominal obesity, low levels of high-density lipoprotein cholesterol, hypertriglyceridemia, and hyperglycemia had a significantly increased risks of PD compared with those without either condition over 2 years. CONCLUSION Persistent and incident MS and its components may be risk factors for incident PD. Ever exposure to MS may also be associated with PD risk. Appropriate intervention for preventing and improving MS may be crucial in decreasing the PD incidence.
Collapse
Affiliation(s)
- Sang Hyun Park
- Department of Biomedicine & Health Science, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Eun Nam
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Youn Huh
- Department of Family Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wonsock Kim
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Eun-Sil Koh
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Mee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon Mee Kim
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hwan Cho
- Department of Family Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yong Gyu Park
- Department of Medical Lifescience, College of Medicine, The catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
103
|
Sánchez-Gómez A, Díaz Y, Duarte-Salles T, Compta Y, Martí MJ. Prediabetes, type 2 diabetes mellitus and risk of Parkinson's disease: A population-based cohort study. Parkinsonism Relat Disord 2021; 89:22-27. [PMID: 34216937 DOI: 10.1016/j.parkreldis.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Association of type 2 diabetes mellitus (T2D) with subsequent Parkinson's disease (PD) has supported the link between glucose metabolism and PD. We assessed the risk of PD not only in T2D but also in prediabetes. METHODS We conducted a retrospective cohort study of the population attended in primary care centres of the Catalan Health Institute in Catalonia between 2006 and 2018. The data were obtained from the Information System for Research in Primary Care (SIDIAP). We created a cohort of T2D and prediabetes patients (HbA1c ≥ 5.7-6.4% without antidiabetic drugs or previous T2D diagnosis) and compared to a reference cohort. The outcome was PD diagnosis and we excluded PD before or during the first year of follow-up. We used multivariate Cox regression models to calculate hazard ratios (HR) and 95% confidence intervals (95%CI). We excluded subjects with atypical and secondary parkinsonisms. RESULTS The exposed cohorts comprised of 281.153 patients with T2D and 266.379 with prediabetes and a reference cohort of 2.556.928 subjects. T2D and prediabetes were associated with higher risk of PD (HRadjusted 1.19, 95%CI 1.13-1.25, and 1.07, 1.00-1.14; respectively). In analyses stratified by sex, prediabetes was only associated with PD risk in women (1.12, 1.03-1.22 vs. 1.01, 0.99-1.10 in men). When analysis was stratified by age, T2D and prediabetes were associated with a greater PD risk both in women (2.36, 1.96-2.84 and 2.10, 1.70-2.59 respectively) and men (1.74, 1.52-2.00 and 1.90, 1.57-2.30 respectively) below 65 years-old. CONCLUSIONS We report for the first time that prediabetes increases the odds of subsequent PD and replicate the association with established T2D. Both associations predominate in women and young individuals.
Collapse
Affiliation(s)
- Almudena Sánchez-Gómez
- Parkinson's Disease and Movement Disorders Unit, Department of Neurology, Hospital Clinic of Barcelona, Spain; Institut de Neurociències, Maeztu Center, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0018-ISCIII), Barcelona, Spain
| | - Yesika Díaz
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Department of Neurology, Hospital Clinic of Barcelona, Spain; Institut de Neurociències, Maeztu Center, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0018-ISCIII), Barcelona, Spain.
| | - Maria José Martí
- Parkinson's Disease and Movement Disorders Unit, Department of Neurology, Hospital Clinic of Barcelona, Spain; Institut de Neurociències, Maeztu Center, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0018-ISCIII), Barcelona, Spain.
| |
Collapse
|
104
|
de Pablo-Fernández E, Courtney R, Rockliffe A, Gentleman S, Holton JL, Warner TT. Faster disease progression in Parkinson's disease with type 2 diabetes is not associated with increased α-synuclein, tau, amyloid-β or vascular pathology. Neuropathol Appl Neurobiol 2021; 47:1080-1091. [PMID: 33969516 DOI: 10.1111/nan.12728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 01/05/2023]
Abstract
AIMS Growing evidence suggests a shared pathogenesis between Parkinson's disease and diabetes although the underlying mechanisms remain unknown. The aim of this study was to evaluate the effect of type 2 diabetes on Parkinson's disease progression and to correlate neuropathological findings to elucidate pathogenic mechanisms. METHODS In this cohort study, medical records were retrospectively reviewed of cases with pathologically confirmed Parkinson's disease with and without pre-existing type 2 diabetes. Time to disability milestones (recurrent falls, wheelchair dependence, dementia and care home placement) and survival were compared to assess disease progression and their risk estimated using Cox hazard regression models. Correlation with pathological data was performed, including quantification of α-synuclein in key brain regions and staging of vascular, Lewy and Alzheimer's pathologies. RESULTS Patients with PD and diabetes (male 76%; age at death 78.6 ± 6.2 years) developed earlier falls (p < 0.001), wheelchair dependence (p = 0.004), dementia (p < 0.001), care home admission (p < 0.001) and had reduced survival (p < 0.001). Predating diabetes was independently associated with a two to three-fold increase in the risk of disability and death. Neuropathological assessment did not show any differences in global or regional vascular pathology, α-synuclein load in key brain areas, staging of Lewy pathology or Alzheimer's disease pathology. CONCLUSIONS Pre-existing type 2 diabetes contributes to faster disease progression and reduced survival in Parkinson's disease which is not driven by increased vascular, Lewy or Alzheimer's pathologies. Additional non-specific neurodegeneration related to chronic brain insulin resistance may be involved.
Collapse
Affiliation(s)
- Eduardo de Pablo-Fernández
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Robert Courtney
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Alice Rockliffe
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Steve Gentleman
- Neuropathology Unit, Department of Brain Sciences, Imperial College London, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
105
|
Chung H, Lee J, Kim J, Roh E, Lee YB, Hong SH, Yu J, Kim N, Yoo H, Seo J, Kim S, Kim N, Baik S, Choi K. Fasting plasma glucose variability in midlife and risk of Parkinson's disease: A nationwide population-based study. DIABETES & METABOLISM 2021; 47:101195. [DOI: 10.1016/j.diabet.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
|
106
|
Al Hussein Al Awamlh S, Wareham LK, Risner ML, Calkins DJ. Insulin Signaling as a Therapeutic Target in Glaucomatous Neurodegeneration. Int J Mol Sci 2021; 22:4672. [PMID: 33925119 PMCID: PMC8124776 DOI: 10.3390/ijms22094672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/28/2023] Open
Abstract
Glaucoma is a multifactorial disease that is conventionally managed with treatments to lower intraocular pressure (IOP). Despite these efforts, many patients continue to lose their vision. The degeneration of retinal ganglion cells (RGCs) and their axons in the optic tract that characterizes glaucoma is similar to neurodegeneration in other age-related disorders of the central nervous system (CNS). Identifying the different molecular signaling pathways that contribute to early neuronal dysfunction can be utilized for neuroprotective strategies that prevent degeneration. The discovery of insulin and its receptor in the CNS and retina led to exploration of the role of insulin signaling in the CNS. Historically, insulin was considered a peripherally secreted hormone that regulated glucose homeostasis, with no obvious roles in the CNS. However, a growing number of pre-clinical and clinical studies have demonstrated the potential of modulating insulin signaling in the treatment of neurodegenerative diseases. This review will highlight the role that insulin signaling plays in RGC neurodegeneration. We will focus on how this pathway can be therapeutically targeted to promote RGC axon survival and preserve vision.
Collapse
Affiliation(s)
- Sara Al Hussein Al Awamlh
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Lauren K. Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - Michael L. Risner
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
| | - David J. Calkins
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.A.H.A.A.); (L.K.W.); (M.L.R.)
- Department of Ophthalmology & Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
107
|
Pérez-Lloret S, Cardinali DP. Melatonin as a Chronobiotic and Cytoprotective Agent in Parkinson's Disease. Front Pharmacol 2021; 12:650597. [PMID: 33935759 PMCID: PMC8082390 DOI: 10.3389/fphar.2021.650597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
This article discusses the role that melatonin may have in the prevention and treatment of Parkinson’s disease (PD). In parkinsonian patients circulating melatonin levels are consistently disrupted and the potential therapeutic value of melatonin on sleep disorders in PD was examined in a limited number of clinical studies using 2–5 mg/day melatonin at bedtime. The low levels of melatonin MT1 and MT2 receptor density in substantia nigra and amygdala found in PD patients supported the hypothesis that the altered sleep/wake cycle seen in PD could be due to a disrupted melatonergic system. Motor symptomatology is seen in PD patients when about 75% of the dopaminergic cells in the substantia nigra pars compacta region degenerate. Nevertheless, symptoms like rapid eye movement (REM) sleep behavior disorder (RBD), hyposmia or depression may precede the onset of motor symptoms in PD for years and are index of worse prognosis. Indeed, RBD patients may evolve to an α-synucleinopathy within 10 years of RBD onset. Daily bedtime administration of 3–12 mg of melatonin has been demonstrated effective in RDB treatment and may halt neurodegeneration to PD. In studies on animal models of PD melatonin was effective to curtail symptomatology in doses that allometrically projected to humans were in the 40–100 mg/day range, rarely employed clinically. Therefore, double-blind, placebo-controlled clinical studies are urgently needed in this respect.
Collapse
Affiliation(s)
- Santiago Pérez-Lloret
- Universidad Abierta Interamericana-Centro de Altos Estudios en Ciencias Humanas y de La Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, UAI-CAECIHS. CONICET, Buenos Aires, Argentina.,Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
108
|
Deischinger C, Dervic E, Kaleta M, Klimek P, Kautzky-Willer A. Diabetes Mellitus is Associated with a Higher Relative Risk for Parkinson’s Disease in Women than in Men. JOURNAL OF PARKINSONS DISEASE 2021; 11:793-800. [DOI: 10.3233/jpd-202486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: In general, the risk to develop Parkinson’s disease (PD) is higher in men compared to women. Besides male sex and genetics, research suggests diabetes mellitus (DM) is a risk factor for PD as well. Objective: In this population-level study, we aimed at investigating the sex-specific impact of DM on the risk of developing PD. Methods: Medical claims data were analyzed in a cross-sectional study in the Austrian population between 1997 and 2014. In the age group of 40–79 and 80+, 235,268 patients (46.6%females, 53.4%males) with DM were extracted and compared to 1,938,173 non-diabetic controls (51.9%females, 48.1%males) in terms of risk of developing PD. Results: Men with DM had a 1.46 times increased odds ratio (OR) to be diagnosed with PD compared to non-diabetic men (95%CI 1.38–1.54, p < 0.001). The association of DM with newly diagnosed PD was significantly greater in women (OR = 1.71, 95%CI 1.60–1.82, p < 0.001) resulting in a relative risk increase of 1.17 (95%CI 1.11–1.30) in the age group 40 to 79 years. In 80+-year-olds the relative risk increase is 1.09 (95%CI 1.01–1.18). Conclusion: Although men are more prone to develop PD, women see a higher risk increase in PD than men amongst DM patients.
Collapse
Affiliation(s)
- Carola Deischinger
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Gender Medicine Unit, Medical University of Vienna, Vienna, Austria
| | - Elma Dervic
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Michaela Kaleta
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Gender Medicine Unit, Medical University of Vienna, Vienna, Austria
- Gender Institute, Gars am Kamp, Austria
| |
Collapse
|
109
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
110
|
Bu LL, Liu YQ, Shen Y, Fan Y, Yu WB, Jiang DL, Tang YL, Yang YJ, Wu P, Zuo CT, Koprich JB, Liu FT, Wu JJ, Wang J. Neuroprotection of Exendin-4 by Enhanced Autophagy in a Parkinsonian Rat Model of α-Synucleinopathy. Neurotherapeutics 2021; 18:962-978. [PMID: 33723752 PMCID: PMC8423983 DOI: 10.1007/s13311-021-01018-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor stimulation ameliorates parkinsonian motor and non-motor deficits in both experimental animals and patients; however, the disease-modifying mechanisms of GLP-1 receptor activation have remained unknown. The present study investigated whether exendin-4 (a GLP-1 analogue) can rescue motor deficits and exert disease-modifying effects in a parkinsonian rat model of α-synucleinopathy. This model was established by unilaterally injecting AAV-9-A53T-α-synuclein into the right substantia nigra pars compacta, followed by 4 or 8 weeks of twice-daily intraperitoneal injections of exendin-4 (5 μg/kg/day) starting at 2 weeks after AAV-9-A53T-α-synuclein injections. Positron emission tomography/computed tomography (PET/CT) scanning and immunostaining established that treatment with exendin-4 attenuated tyrosine-hydroxylase-positive neuronal loss and terminal denervation and mitigated the decrease in expression of vesicular monoamine transporter 2 within the nigrostriatal dopaminergic systems of rats injected with AAV-9-A53T-α-synuclein. It also mitigated the parkinsonian motor deficits assessed in behavioral tests. Furthermore, through both in vivo and in vitro models of Parkinson's disease, we showed that exendin-4 promoted autophagy and mediated degradation of pathological α-synuclein, the effects of which were counteracted by 3-methyladenine or chloroquine, the autophagic inhibitors. Additionally, exendin-4 attenuated dysregulation of the PI3K/Akt/mTOR pathway in rats injected with AAV-9-A53T-α-synuclein. Taken together, our results demonstrate that exendin-4 treatment relieved behavioral deficits, dopaminergic degeneration, and pathological α-synuclein aggregation in a parkinsonian rat model of α-synucleinopathy and that these effects were mediated by enhanced autophagy via inhibiting the PI3K/Akt/mTOR pathway. In light of the safety and tolerance of exendin-4 administration, our results suggest that exendin-4 may represent a promising disease-modifying treatment for Parkinson's disease.
Collapse
Affiliation(s)
- Lu-Lu Bu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yi-Qi Liu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yan Shen
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yun Fan
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Wen-Bo Yu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Dong-Lang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200235 China
| | - Yi-Lin Tang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yu-Jie Yang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200235 China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200235 China
| | - James B. Koprich
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8 Canada
| | - Feng-Tao Liu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Jian-Jun Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Jian Wang
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
111
|
Brain Insulin Resistance: Focus on Insulin Receptor-Mitochondria Interactions. Life (Basel) 2021; 11:life11030262. [PMID: 33810179 PMCID: PMC8005009 DOI: 10.3390/life11030262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the development of Alzheimer’s disease and other dementias, Parkinson’s disease, type 2 diabetes, obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node in the insulin signaling system that is critically involved in the development of insulin insensitivity during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of insulin resistance in the brain. This review aims to discuss causes behind the diminished activation of IR in neurons, with a focus on the functional relationship between mitochondria and IR during early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and glutamate excitotoxicity in the development of IR insensitivity to insulin.
Collapse
|
112
|
The Future of Incretin-Based Approaches for Neurodegenerative Diseases in Older Adults: Which to Choose? A Review of their Potential Efficacy and Suitability. Drugs Aging 2021; 38:355-373. [PMID: 33738783 DOI: 10.1007/s40266-021-00853-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
The current treatment options for neurodegenerative diseases in older adults rely mainly on providing symptomatic relief. Yet, it remains imperative to identify agents that slow or halt disease progression to avoid the most disabling features often associated with advanced disease stages. A potential overlap between the pathological processes involved in diabetes and neurodegeneration has been established, raising the question of whether incretin-based therapies for diabetes may also be useful in treating neurodegenerative diseases in older adults. Here, we review the different agents that belong to this class of drugs (GLP-1 receptor agonists, dual/triple receptor agonists, DPP-4 inhibitors) and describe the data supporting their potential role in treating neurodegenerative conditions including Parkinson's disease and Alzheimer's disease. We further discuss whether there are any distinctive properties among them, particularly in the context of safety or tolerability and CNS penetration, that might facilitate their successful repurposing as disease-modifying drugs. Proof-of-efficacy data will obviously be of the greatest importance, and this is most likely to be demonstrable in agents that reach the central nervous system and impact on neuronal GLP-1 receptors. Additionally, however, the long-term safety and tolerability (including gastrointestinal side effects and unwanted weight loss) as well as the route of administration of this class of agents may also ultimately determine success and these aspects should be considered in prioritising which approaches to subject to formal clinical trial evaluations.
Collapse
|
113
|
Chohan H, Senkevich K, Patel RK, Bestwick JP, Jacobs BM, Bandres Ciga S, Gan-Or Z, Noyce AJ. Type 2 Diabetes as a Determinant of Parkinson's Disease Risk and Progression. Mov Disord 2021; 36:1420-1429. [PMID: 33682937 PMCID: PMC9017318 DOI: 10.1002/mds.28551] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Type 2 diabetes (T2DM) and Parkinson’s disease (PD) are prevalent diseases that affect an aging population. Previous systematic reviews and meta-analyses have explored the relationship between diabetes and the risk of PD, but the results have been conflicting. Objective: The objective was to investigate T2DM as a determinant of PD through a meta-analysis of observational and genetic summary data. Methods: A systematic review and meta-analysis of observational studies was undertaken by searching 6 databases. We selected the highest-quality studies investigating the association of T2DM with PD risk and progression. We then used Mendelian randomization (MR) to investigate the causal effects of genetic liability toward T2DM on PD risk and progression, using summary data derived from genome-wide association studies. Results: In the observational part of the study, pooled effect estimates showed that T2DM was associated with an increased risk of PD (odds ratio [OR] 1.21, 95% confidence interval [CI] 1.07–1.36), and there was some evidence that T2DM was associated with faster progression of motor symptoms (standardized mean difference [SMD] 0.55, 95% CI 0.39–0.72) and cognitive decline (SMD −0.92, 95% CI −1.50 to −0.34). Using MR, we found supportive evidence for a causal effect of diabetes on PD risk (inverse-variance weighted method [IVW] OR 1.08, 95% CI 1.02–1.14; P = 0.010) and some evidence of an effect on motor progression (IVW OR 1.10, 95% CI 1.01–1.20; P = 0.032) but not on cognitive progression. Conclusions: Using meta-analyses of traditional observational studies and genetic data, we observed convincing evidence for an effect of T2DM on PD risk and new evidence to support a role in PD progression.
Collapse
Affiliation(s)
- Harneek Chohan
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Konstantin Senkevich
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Radhika K Patel
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jonathan P Bestwick
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benjamin M Jacobs
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sara Bandres Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.,Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| |
Collapse
|
114
|
Sharma T, Kaur D, Grewal AK, Singh TG. Therapies modulating insulin resistance in Parkinson's disease: A cross talk. Neurosci Lett 2021; 749:135754. [PMID: 33610666 DOI: 10.1016/j.neulet.2021.135754] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder linked with aging and primarily involves dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc). The deregulation of genes associated with T2D has been demonstrated by proteomic research on Parkinson's symptoms patients. Various common pathways likely to link neurodegenerative mechanisms of PD include abnormal mitochondrial function, inflammation, apoptosis/autophagy and insulin signalling/glucose metabolism in T2DM. Several pathway components including phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt), glycogen synthase kinase-3 beta (GSK-3β) and nuclear factor kappa B (NF-κB) impairment is observed in PD. Numerous novel targets are being pursued in preclinical and clinical trials that target metabolic dysfunction in PD; that elevate insulin signaling pathways in dopaminergic neurons, and show improvement in motor and cognitive measures and produce significant neuroprotective effects in PD patients.
Collapse
Affiliation(s)
- Tanya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Darshpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
115
|
Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, Auld G, Whittlesea C, Wong I, Foltynie T. Diabetes medications and risk of Parkinson's disease: a cohort study of patients with diabetes. Brain 2021; 143:3067-3076. [PMID: 33011770 PMCID: PMC7794498 DOI: 10.1093/brain/awaa262] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 01/09/2023] Open
Abstract
The elevated risk of Parkinson’s disease in patients with diabetes might be mitigated depending on the type of drugs prescribed to treat diabetes. Population data for risk of Parkinson’s disease in users of the newer types of drugs used in diabetes are scarce. We compared the risk of Parkinson’s disease in patients with diabetes exposed to thiazolidinediones (glitazones), glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP4) inhibitors, with the risk of Parkinson’s disease of users of any other oral glucose lowering drugs. A population-based, longitudinal, cohort study was conducted using historic primary care data from The Health Improvement Network. Patients with a diagnosis of diabetes and a minimum of two prescriptions for diabetes medications between January 2006 and January 2019 were included in our study. The primary outcome was the first recording of a diagnosis of Parkinson’s disease after the index date, identified from clinical records. We compared the risk of Parkinson’s disease in individuals treated with glitazones or DPP4 inhibitors and/or GLP-1 receptor agonists to individuals treated with other antidiabetic agents using a Cox regression with inverse probability of treatment weighting based on propensity scores. Results were analysed separately for insulin users. Among 100 288 patients [mean age 62.8 years (standard deviation 12.6)], 329 (0.3%) were diagnosed with Parkinson’s disease during the median follow-up of 3.33 years. The incidence of Parkinson’s disease was 8 per 10 000 person-years in 21 175 patients using glitazones, 5 per 10 000 person-years in 36 897 patients using DPP4 inhibitors and 4 per 10 000 person-years in 10 684 using GLP-1 mimetics, 6861 of whom were prescribed GTZ and/or DPP4 inhibitors prior to using GLP-1 mimetics. Compared with the incidence of Parkinson’s disease in the comparison group (10 per 10 000 person-years), adjusted results showed no evidence of any association between the use of glitazones and Parkinson’s disease [incidence rate ratio (IRR) 1.17; 95% confidence interval (CI) 0.76–1.63; P = 0.467], but there was strong evidence of an inverse association between use of DPP4 inhibitors and GLP-1 mimetics and the onset of Parkinson’s disease (IRR 0.64; 95% CI 0.43–0.88; P < 0.01 and IRR 0.38; 95% CI 0.17–0.60; P < 0.01, respectively). Results for insulin users were in the same direction, but the overall size of this group was small. The incidence of Parkinson’s disease in patients diagnosed with diabetes varies substantially depending on the treatment for diabetes received. The use of DPP4 inhibitors and/or GLP-1 mimetics is associated with a lower rate of Parkinson’s disease compared to the use of other oral antidiabetic drugs.
Collapse
Affiliation(s)
- Ruth Brauer
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Li Wei
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Tiantian Ma
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London, UK
| | - Christine Girges
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London, UK
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London, UK
| | - Grace Auld
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London, UK
| | - Cate Whittlesea
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Ian Wong
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK.,Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tom Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
116
|
Pomytkin I, Pinelis V. Insulin Receptors and Intracellular Ca 2+ Form a Double-Negative Regulatory Feedback Loop Controlling Insulin Sensitivity. F1000Res 2021; 9:598. [PMID: 33552476 PMCID: PMC7845146 DOI: 10.12688/f1000research.24558.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Since the discovery of insulin and insulin receptors (IR) in the brain in 1978, numerous studies have revealed a fundamental role of IR in the central nervous system and its implication in regulating synaptic plasticity, long-term potentiation and depression, neuroprotection, learning and memory, and energy balance. Central insulin resistance has been found in diverse brain disorders including Alzheimer’s disease (AD). Impaired insulin signaling in AD is evident in the activation states of IR and downstream signaling molecules. This is mediated by Aβ oligomer-evoked Ca
2+ influx by activating N-methyl-D-aspartate receptors (NMDARs) with Aβ oligomers directly, or indirectly through Aβ-induced release of glutamate, an endogenous NMDAR ligand. In the present opinion article, we highlight evidence that IR activity and free intracellular Ca
2+ concentration [Ca
2+]
i form a double-negative regulatory feedback loop controlling insulin sensitivity, in which mitochondria play a key role, being involved in adenosine triphosphate (ATP) synthesis and IR activation. We found recently that the glutamate-evoked rise in [Ca
2+]
i inhibits activation of IR and, vice versa, insulin-induced activation of IR inhibits the glutamate-evoked rise in [Ca
2+]
i. In theory, such a double-negative regulatory feedback loop predicts that any condition leading to an increase of [Ca
2+]
i may trigger central insulin resistance and explains why central insulin resistance is implicated in the pathogenesis of AD, with which glutamate excitotoxicity is a comorbid condition. This model also predicts that any intervention aiming to maintain low [Ca
2+]
i may be useful for treating central insulin resistance.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell Technologies, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Moscow, 119991, Russian Federation
| | - Vsevolod Pinelis
- National Medical Research Center for Children's Health, Russian Ministry of Health, Moscow, 119991, Russian Federation
| |
Collapse
|
117
|
Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, Ahmadiani A. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson's disease. CNS Neurosci Ther 2021; 27:308-319. [PMID: 33497031 PMCID: PMC7871791 DOI: 10.1111/cns.13609] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Experimental and clinical evidences demonstrate that common dysregulated pathways are involved in Parkinson’s disease (PD) and type 2 diabetes. Recently, insulin treatment through intranasal (IN) approach has gained attention in PD, although the underlying mechanism of its potential therapeutic effects is still unclear. In this study, we investigated the effects of insulin treatment in a rat model of PD with emphasis on mitochondrial function indices in striatum. Methods Rats were treated with a daily low dose (4IU/day) of IN insulin, starting 72 h after 6‐OHDA‐induced lesion and continued for 14 days. Motor performance, dopaminergic cell survival, mitochondrial dehydrogenases activity, mitochondrial swelling, mitochondria permeability transition pore (mPTP), mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) formation, and glutathione (GSH) content in mitochondria, mitochondrial adenosine triphosphate (ATP), and the gene expression of PGC‐1α, TFAM, Drp‐1, GFAP, and Iba‐1 were assessed. Results Intranasal insulin significantly reduces 6‐OHDA‐induced motor dysfunction and dopaminergic cell death. In parallel, it improves mitochondrial function indices and modulates mitochondria biogenesis and fission as well as activation of astrocytes and microglia. Conclusion Considering the prominent role of mitochondrial dysfunction in PD pathology, IN insulin as a disease‐modifying therapy for PD should be considered for extensive research.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
118
|
Meléndez-Flores JD, Cavazos-Benítez AC, Estrada-Bellmann I. Microalbuminuria as a potential biomarker for Parkinson's disease severity: A hypothesis. Med Hypotheses 2021; 149:110510. [PMID: 33609950 DOI: 10.1016/j.mehy.2021.110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative condition characterized by motor and non-motor symptoms causing a great burden in patients' quality of life. PD has been associated with various metabolic factors such as diabetes, hypertension, and more recently chronic kidney disease where proteinuria has been associated with an increased risk. The presence of small amounts of albumin in urine, microalbuminuria, is a common biomarker for endothelial damage and a predictive factor for not only cardiovascular but also neurological dysfunction. Multiple studies have assessed potential biomarkers for PD progression with great heterogeneity, we hypothesize the use of microalbuminuria as a potential marker that correlates with PD severity and might represent a feasible and simple method of evaluating PD patients in clinical practice. Evidence supporting the present hypothesis comes from oxidative stress, insulin resistance, and endothelial dysfunction. Oxidative stress is a key element in PD pathogenesis; studies have shown lower antioxidant capacity as PD progresses. On the other side, insulin signaling plays an important role in neuronal growth and survival, with its resistance being associated with PD. Microalbuminuria has been associated with both processes; increased levels of oxidative stress markers and decreased insulin sensitivity, hence its screening in PD might reflect these common pathological mechanisms. Moreover, the low vitamin D levels observed in PD patients, which are correlated with endothelial dysfunction and disease severity, might contribute to microalbuminuria induction. More evidence on this vascular approach comes from white matter lesions (WML), observed in brain imaging, which have been significantly associated with motor and non-motor function in PD patients and are independently associated with microalbuminuria. In this manner, an oxidant and insulin resistant environment, along with low vitamin D levels in PD patients, which are associated with microalbuminuria, might contribute altogether to WML. As the latter are correlated with motor and non-motor function, microalbuminuria might thus give insight on PD status. Prospective cohort studies with an adequate sample size, follow-up, and a thorough battery of clinical tests for PD are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Jesús D Meléndez-Flores
- Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico; Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | - Ingrid Estrada-Bellmann
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico; Movement Disorders Clinic, Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
119
|
Repurposing GLP-1 Receptor Agonists for Parkinson's Disease: Current Evidence and Future Opportunities. Pharmaceut Med 2021; 35:11-19. [PMID: 33409802 DOI: 10.1007/s40290-020-00374-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
The global burden of chronic disorders such as Parkinson's disease (PD) has rapidly increased over recent decades. Despite an increasing understanding of PD pathophysiology, there are no effective therapies capable of stopping or slowing the progression of this neurological condition. It has been suggested that type 2 diabetes mellitus (T2DM) may be a risk factor for PD and comorbid T2DM may worsen PD symptoms, as well as accelerate neurodegeneration. In fact, the similar pathological mechanisms shared by PD and T2DM have inspired several studies on the therapeutic potential of T2DM drugs against PD, among which glucagon-like peptide-1 receptor (GLP-1R) agonists are promising candidates. Here, we highlight the mechanisms linking T2DM and PD, as well as the links between insulin resistance (IR) and PD patients' risk of developing cognitive deficits. We also briefly review the effects of GLP-1R agonists on PD and discuss how the successful use of these substances in preclinical models of PD has paved the way for PD clinical trials. We further discuss how recent evidence on the beneficial effects of dulaglutide on cognitive function of T2DM patients may have important implications for PD drug repurposing.
Collapse
|
120
|
Medinas DB, Hazari Y, Hetz C. Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:239-278. [PMID: 34050870 DOI: 10.1007/978-3-030-67696-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Younis Hazari
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
121
|
Zhang LY, Jin QQ, Hölscher C, Li L. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model. Neural Regen Res 2021; 16:1660-1670. [PMID: 33433498 PMCID: PMC8323666 DOI: 10.4103/1673-5374.303045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with Parkinson's disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular co-agonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine (6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1 (IRS-1)/alpha serine/threonine-protein kinase (Akt)/cAMP response element-binding protein (CREB) pathway. We also found that DA-CH5 (10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was up-regulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDA-unilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qian-Qian Jin
- Department of Forensic Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Christian Hölscher
- Department of Neurology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province; Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Lin Li
- Gerontology Institute, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
122
|
Zhang CL, Han QW, Chen NH, Yuan YH. Research on developing drugs for Parkinson's disease. Brain Res Bull 2020; 168:100-109. [PMID: 33387636 DOI: 10.1016/j.brainresbull.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022]
Abstract
Current treatments for Parkinson's disease (PD) are mainly dopaminergic drugs. However, dopaminergic drugs are only symptomatic treatments and limited by several side effects. Recent studies into drug development focused on emerging new molecular mechanisms, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear receptor-related 1 (Nurr1), adenosine receptor A2, nicotine receptor, metabotropic glutamate receptors (mGluRs), and glucocerebrosidase (GCase). Also, immunotherapy and common pathological mechanisms shared with Alzheimer's Disease (AD) and diabetes have attracted much attention. In this review, we summarized the development of preclinical and clinical studies of novel drugs and the improvement of dopaminergic drugs to provide a prospect for PD treatment.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qi-Wen Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
123
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
124
|
α-Synuclein promotes IAPP fibril formation in vitro and β-cell amyloid formation in vivo in mice. Sci Rep 2020; 10:20438. [PMID: 33235246 PMCID: PMC7686322 DOI: 10.1038/s41598-020-77409-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D), alike Parkinson’s disease (PD), belongs to the group of protein misfolding diseases (PMDs), which share aggregation of misfolded proteins as a hallmark. Although the major aggregating peptide in β-cells of T2D patients is Islet Amyloid Polypeptide (IAPP), alpha-synuclein (αSyn), the aggregating peptide in substantia nigra neurons of PD patients, is expressed also in β-cells. Here we show that αSyn, encoded by Snca, is a component of amyloid extracted from pancreas of transgenic mice overexpressing human IAPP (denoted hIAPPtg mice) and from islets of T2D individuals. Notably, αSyn dose-dependently promoted IAPP fibril formation in vitro and tail-vein injection of αSyn in hIAPPtg mice enhanced β-cell amyloid formation in vivo whereas β-cell amyloid formation was reduced in hIAPPtg mice on a Snca −/− background. Taken together, our findings provide evidence that αSyn and IAPP co-aggregate both in vitro and in vivo, suggesting a role for αSyn in β-cell amyloid formation.
Collapse
|
125
|
Liu Y, Bai H, Gen S, Zhang H, Wang S, Hua L, Yang X, Zhang S, Li J, Wang Y. Interaction between SNCA gene polymorphisms and T2DM with Parkinson's disease. Acta Neurol Scand 2020; 142:443-448. [PMID: 32484913 DOI: 10.1111/ane.13292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the association of several single nucleotide polymorphisms (SNPs) within alpha-synuclein (SNCA) gene and additional gene-environment interaction with Parkinson's disease (PD) risk. METHODS Hardy-Weinberg equilibrium (HWE) is tested for controls using SNPstats (http://bioinfo.iconcologia.net/SNPstats). Logistic regression is used to calculate the ORs (95% CI) for relations between the four SNPs and PD risk. The generalized multifactor dimensionality reduction (GMDR) model is used to evaluate the synergy between gene and environment. RESULTS A total of 1161 people were included in this study, including 386 cases of PD and 775 normal controls. In this study, the genotype frequency of the control group was consistent with HWE distribution. Rs356219-G allele frequency was 30.0% in patients and 19.8% in control group. The rs356221-T allele frequency was 29.7% in the patients and 20.8% in the control group. Rs356219-G and rs356221-T alleles were associated with increased PD risk, with adjusted ORs (95% CI) of 1.92 (1.28-2.52) and 1.52 (1.05-2.02), respectively. We also found no significant correlation between rs2301134 and rs2301135 and susceptibility to PD. The best gene-environment interaction models were determined by GMDR analysis, which shown a significant gene-T2DM interaction combinations, but the gene-alcohol drinking interaction combinations were all not significant. We also conducted stratified analysis for interaction effect using logistic regression. We found that T2DM patients with rs356221-AT/ TT genotype have the highest PD risk, compared to subjects with rs356219-AA genotype, OR (95%CI) = 2.67 (1.83-3.46). CONCLUSIONS The rs356219-G and rs356221-T, gene-environment interaction between rs356221 and T2DM were all associated with increased PD risk.
Collapse
Affiliation(s)
- Yajun Liu
- The 960th PLA hospital Zibo Shandong China
| | - Hongying Bai
- Department of Neurology The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Shuang Gen
- The 960th PLA hospital Zibo Shandong China
| | - Hui Zhang
- The 960th PLA hospital Zibo Shandong China
| | | | - Linlin Hua
- Department of Neurology The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Xiaopeng Yang
- Department of Neurology The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Simiao Zhang
- Department of Neurology The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jingna Li
- Department of Neurology The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yunliang Wang
- The 960th PLA hospital Zibo Shandong China
- Department of Neurology The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
- Department of Clinical Medicine Qilu Medical College Zibo Shandong China
| |
Collapse
|
126
|
Disrupted Mitochondrial and Metabolic Plasticity Underlie Comorbidity between Age-Related and Degenerative Disorders as Parkinson Disease and Type 2 Diabetes Mellitus. Antioxidants (Basel) 2020; 9:antiox9111063. [PMID: 33143119 PMCID: PMC7693963 DOI: 10.3390/antiox9111063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Idiopathic Parkinson’s disease (iPD) and type 2 diabetes mellitus (T2DM) are chronic, multisystemic, and degenerative diseases associated with aging, with eventual epidemiological co-morbidity and overlap in molecular basis. This study aims to explore if metabolic and mitochondrial alterations underlie the previously reported epidemiologic and clinical co-morbidity from a molecular level. To evaluate the adaptation of iPD to a simulated pre-diabetogenic state, we exposed primary cultured fibroblasts from iPD patients and controls to standard (5 mM) and high (25 mM) glucose concentrations to further characterize metabolic and mitochondrial resilience. iPD fibroblasts showed increased organic and amino acid levels related to mitochondrial metabolism with respect to controls, and these differences were enhanced in high glucose conditions (citric, suberic, and sebacic acids levels increased, as well as alanine, glutamate, aspartate, arginine, and ornithine amino acids; p-values between 0.001 and 0.05). The accumulation of metabolites in iPD fibroblasts was associated with (and probably due to) the concomitant mitochondrial dysfunction observed at enzymatic, oxidative, respiratory, and morphologic level. Metabolic and mitochondrial plasticity of controls was not observed in iPD fibroblasts, which were unable to adapt to different glucose conditions. Impaired metabolism and mitochondrial activity in iPD may limit energy supply for cell survival. Moreover, reduced capacity to adapt to disrupted glucose balance characteristic of T2DM may underlay the co-morbidity between both diseases. Conclusions: Fibroblasts from iPD patients showed mitochondrial impairment, resulting in the accumulation of organic and amino acids related to mitochondrial metabolism, especially when exposed to high glucose. Mitochondrial and metabolic defects down warding cell plasticity to adapt to changing glucose bioavailability may explain the comorbidity between iPD and T2DM.
Collapse
|
127
|
Salameh TS, Rhea EM, Talbot K, Banks WA. Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer's and Parkinson's disease therapeutics. Biochem Pharmacol 2020; 180:114187. [PMID: 32755557 PMCID: PMC7606641 DOI: 10.1016/j.bcp.2020.114187] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Among the more promising treatments proposed for Alzheimer's disease (AD) and Parkinson's disease (PD) are those reducing brain insulin resistance. The antidiabetics in the class of incretin receptor agonists (IRAs) reduce symptoms and brain pathology in animal models of AD and PD, as well as glucose utilization in AD cases and clinical symptoms in PD cases after their systemic administration. At least 9 different IRAs are showing promise as AD and PD therapeutics, but we still lack quantitative data on their relative ability to cross the blood-brain barrier (BBB) reaching the brain parenchyma. We consequently compared brain uptake pharmacokinetics of intravenous 125I-labeled IRAs in adult CD-1 mice over the course of 60 min. We tested single IRAs (exendin-4, liraglutide, lixisenatide, and semaglutide), which bind receptors for one incretin (glucagon-like peptide-1 [GLP-1]), and dual IRAs, which bind receptors for two incretins (GLP-1 and glucose-dependent insulinotropic polypeptide [GIP]), including unbranched, acylated, PEGylated, or C-terminally modified forms (Finan/Ma Peptides 17, 18, and 20 and Hölscher peptides DA3-CH and DA-JC4). The non-acylated and non-PEGylated IRAs (exendin-4, lixisenatide, Peptide 17, DA3-CH and DA-JC4) had significant rates of blood-to-brain influx (Ki), but the acylated IRAs (liraglutide, semaglutide, and Peptide 18) did not measurably cross the BBB. The brain influx of the non-acylated, non-PEGylated IRAs were not saturable up to 1 μg of these drugs and was most likely mediated by adsorptive transcytosis across brain endothelial cells, as observed for exendin-4. Of the non-acylated, non-PEGylated IRAs tested, exendin-4 and DA-JC4 were best able to cross the BBB based on their rate of brain influx, percentage reaching the brain that accumulated in brain parenchyma, and percentage of the systemic dose taken up per gram of brain tissue. Exendin-4 and DA-JC4 thus merit special attention as IRAs well-suited to enter the central nervous system (CNS), thus reaching areas pathologic in AD and PD.
Collapse
Affiliation(s)
- Therese S Salameh
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA
| | - Konrad Talbot
- Loma Linda University School of Medicine, Departments of Neurosurgery, Basic Sciences, and Pathology and Human Anatomy, Loma Linda, CA 92354, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA 98108, USA; University of Washington School of Medicine, Division of Gerontology and Geriatric Medicine, Department of Medicine, Seattle, WA 98498, USA.
| |
Collapse
|
128
|
Meléndez-Flores JD, Millán-Alanís JM, González-Martínez A, Álvarez-Villalobos NA, Estrada-Bellmann I. Does glitazone treatment have a role on the prevention of Parkinson's disease in adult diabetic population? A systematic review. Metab Brain Dis 2020; 35:1067-1075. [PMID: 32363472 DOI: 10.1007/s11011-020-00568-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
Lately, focus on the relation between Parkinson's disease (PD) and Diabetes has risen greatly, as neuroprotective properties have been attributed to insulin use. Several studies have assessed the effect of glitazones, an insulin-sensitizing agent, in diabetic population on PD future risk. However, reports on the effect of their use have been heterogeneous. We aimed to synthesize the available scientific evidence which assesses the effect of glitazone use in type 2 diabetes patients on PD incidence. A systematic review was performed on multiple electronic databases. Considered for inclusion were studies that assessed the incidence of PD in type 2 diabetes glitazone users. Two reviewers worked independently and in duplicate to assess all studies, extract information and assess the methodological quality in each included study. Four high quality retrospective cohorts fulfilled inclusion criteria. Comparison groups varied across studies. In each study, incidence of PD was lower in glitazone-exposed patients compared to their respective comparison group. Pooled analysis showed lesser risk of PD in ever versus never glitazone users (RR 0.75 [95% C.I. 0.67-0.85; p < .0001; I2 = 0]). Our pooled analysis showed lesser risk of PD in glitazone versus non glitazone users, however, we advise to take results with caution since results are non-adjusted to possible confounding variables, furthermore, different glitazone-exposure time, follow up and comparison groups are aspects that also need to be pointed out. More clinical research focused on glitazone use and its relation with PD is needed, as this could result in new potential treatment modalities.
Collapse
Affiliation(s)
- Jesús D Meléndez-Flores
- Faculty of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Juan Manuel Millán-Alanís
- Plataforma INVEST Medicina UANL-KER Unit Mayo Clinic (KER Unit México), Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Ingrid Estrada-Bellmann
- Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
- Movement Disorders Clinic, Neurology Division, Internal Medicine Department, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Mexico.
- Servicio de Neurología, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, 64700, Monterrey, NL, Mexico.
| |
Collapse
|
129
|
Sánchez-Gómez A, Alcarraz-Vizán G, Fernández M, Fernández-Santiago R, Ezquerra M, Cámara A, Serrano M, Novials A, Muñoz E, Valldeoriola F, Compta Y, Martí MJ. Peripheral insulin and amylin levels in Parkinson's disease. Parkinsonism Relat Disord 2020; 79:91-96. [DOI: 10.1016/j.parkreldis.2020.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023]
|
130
|
Hung AY, Schwarzschild MA. Approaches to Disease Modification for Parkinson's Disease: Clinical Trials and Lessons Learned. Neurotherapeutics 2020; 17:1393-1405. [PMID: 33205384 PMCID: PMC7851299 DOI: 10.1007/s13311-020-00964-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite many clinical trials over the last three decades, the goal of demonstrating that a treatment slows the progression of Parkinson's disease (PD) remains elusive. Research advances have shed new insight into cellular pathways contributing to PD pathogenesis and offer increasingly compelling therapeutic targets. Here we review recent and ongoing clinical trials employing novel strategies toward disease modification, including those targeting alpha-synuclein and those repurposing drugs approved for other indications. Active and passive immunotherapy approaches are being studied with the goal to modify the spread of alpha-synuclein pathology in the brain. Classes of currently available drugs that have been proposed to have potential disease-modifying effects for PD include calcium channel blockers, antioxidants, anti-inflammatory agents, iron-chelating agents, glucagon-like peptide 1 agonists, and cAbl tyrosine kinase inhibitors. The mechanistic diversity of these treatments offers hope, but to date, results from these trials have been disappointing. Nevertheless, they provide useful lessons in guiding future therapeutic development.
Collapse
Affiliation(s)
- Albert Y Hung
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
| |
Collapse
|
131
|
Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020; 141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Despite fundamental differences in disease course and outcomes, neurodevelopmental (autism spectrum disorders - ASD) and neurodegenerative disorders (Alzheimer's disease - AD and Parkinson's disease - PD) present surprising, common traits in their molecular pathomechanisms. Uncontrolled oligomerization and aggregation of amyloid β (Aβ), microtubule-associated protein (MAP) tau, or α-synuclein (α-syn) contribute to synaptic impairment and the ensuing neuronal death in both AD and PD. Likewise, the pathogenesis of ASD may be attributed, at least in part, to synaptic dysfunction; attention has also been recently paid to irregularities in the metabolism and function of the Aβ precursor protein (APP), tau, or α-syn. Commonly affected elements include signaling pathways that regulate cellular metabolism and survival such as insulin/insulin-like growth factor (IGF) - PI3 kinase - Akt - mammalian target of rapamycin (mTOR), and a number of key synaptic proteins critically involved in neuronal communication. Understanding how these shared pathomechanism elements operate in different conditions may help identify common targets and therapeutic approaches.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Magdalena Cieślik
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Grażyna Gromadzka
- Cardinal Stefan Wyszynski University, Faculty of Medicine. Collegium Medicum, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Agata Adamczyk
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
132
|
Pérez‐Taboada I, Alberquilla S, Martín ED, Anand R, Vietti‐Michelina S, Tebeka NN, Cantley J, Cragg SJ, Moratalla R, Vallejo M. Diabetes Causes Dysfunctional Dopamine Neurotransmission Favoring Nigrostriatal Degeneration in Mice. Mov Disord 2020; 35:1636-1648. [PMID: 32666590 PMCID: PMC7818508 DOI: 10.1002/mds.28124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown. OBJECTIVES We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration. METHODS We used streptozotocin-treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast-scan cyclic voltammetry. 6-Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests. RESULTS Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin-2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6-hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra. CONCLUSIONS Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Iara Pérez‐Taboada
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMMadridSpain
| | - Samuel Alberquilla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Eduardo D. Martín
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Rishi Anand
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | | | - Nchimunya N. Tebeka
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Division of Systems MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| | - James Cantley
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Division of Systems MedicineUniversity of Dundee, Ninewells Hospital & Medical SchoolDundeeUnited Kingdom
| | - Stephanie J. Cragg
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUnited Kingdom
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEMMadridSpain
| |
Collapse
|
133
|
Smedinga M, Darweesh SKL, Bloem BR, Post B, Richard E. Towards early disease modification of Parkinson's disease: a review of lessons learned in the Alzheimer field. J Neurol 2020; 268:724-733. [PMID: 32809153 PMCID: PMC7880921 DOI: 10.1007/s00415-020-10162-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Parkinson’s disease (PD) research is beginning to focus on early disease modification and prevention. The therapeutic pipeline includes a growing range of pharmacological interventions that could theoretically intervene with the underlying disease process. It is hoped that applying such interventions in a very early stage of the disease pathology, before the onset of motor symptoms or during its early stages, may prevent or delay further disease progression. To identify people in this early disease stage, criteria for ‘prodromal PD’ have been proposed—describing people with one or more specific features that jointly constitute a variably increased risk of developing clinically manifest PD. Here, we aim to draw lessons from the field of Alzheimer’s research, which has followed a similar strategy over the last decade, including the expansion of the disease label to ‘prodromal’ stages. Importantly, none of the large and costly randomized-controlled trials aiming to slow down or prevent Alzheimer’s dementia by targeting the alleged disease pathology, i.e., amyloid-β aggregation, resulted in detectable clinical effects. Lack of sufficiently robust phase 2 trial results before moving to phase 3 studies, suboptimal participant selection, insensitive outcomes, a too narrow target focus, and trial design flaws contributed to this disappointing outcome. We discuss the various similarities between these Alzheimer’s and PD approaches, and review the design of prevention or early disease modification trials for both diseases including the potential for immunotherapy. Finally, we offer considerations to optimize the design of such trials in PD, benefiting from the lessons learned in Alzheimer’s prevention research.
Collapse
Affiliation(s)
- Marthe Smedinga
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands. .,Department of Medical Ethics, Philosophy and History of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Sirwan K L Darweesh
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Center of Expertise for Parkinson and Movement Disorders, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Center of Expertise for Parkinson and Movement Disorders, Nijmegen, The Netherlands
| | - Bart Post
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Center of Expertise for Parkinson and Movement Disorders, Nijmegen, The Netherlands
| | - Edo Richard
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Radboud University Medical Center Alzheimer Center, Nijmegen, The Netherlands
| |
Collapse
|
134
|
Cardoso S, Moreira PI. Antidiabetic drugs for Alzheimer's and Parkinson's diseases: Repurposing insulin, metformin, and thiazolidinediones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:37-64. [PMID: 32854858 DOI: 10.1016/bs.irn.2020.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Medical and scientific communities have been striving to disentangle the complexity of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD), in order to develop a cure or effective treatment for these diseases. Along this journey, it has become important to identify the early events occurring in the prodromal phases of these diseases and the disorders that increase the risk of neurodegeneration highlighting common pathological features. This strategy has led to a wealth of evidence identifying diabetes, mainly type 2 diabetes mellitus (T2DM) as a main risk factor for the onset and progression of AD and PD. Impaired glucose metabolism, insulin resistance, and mitochondrial dysfunction are features common to both type 2 diabetes mellitus (T2DM), and AD and PD, and they appear before clinical diagnosis of the two neurodegenerative diseases. These could represent the strategic nodes of therapeutic intervention. Following this line of thought, a conceivable approach is to repurpose antidiabetic drugs as valuable agents that may prevent or reduce the risk of cognitive decline and neurodegeneration. This review summarizes the past and current findings that link AD and PD with T2DM, emphasizing the common pathological mechanisms. The efficacy of antidiabetic drugs, namely intranasal insulin, metformin, and thiazolidinediones, in the prevention and/or treatment of AD and PD is also discussed.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Physiology-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
135
|
Pomytkin I, Pinelis V. Insulin Receptors and Intracellular Ca 2+ Form a Double-Negative Regulatory Feedback Loop Controlling Insulin Sensitivity. F1000Res 2020; 9:598. [PMID: 33552476 PMCID: PMC7845146 DOI: 10.12688/f1000research.24558.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 09/07/2023] Open
Abstract
Since the discovery of insulin and insulin receptors (IR) in the brain in 1978, numerous studies have revealed a fundamental role of IR in the central nervous system and its implication in regulating synaptic plasticity, long-term potentiation and depression, neuroprotection, learning and memory, and energy balance. Central insulin resistance has been found in diverse brain disorders including Alzheimer's disease (AD). Impaired insulin signaling in AD is evident in the activation states of IR and downstream signaling molecules. This is mediated by Aβ oligomer-evoked Ca 2+ influx by activating N-methyl-D-aspartate receptors (NMDARs) with Aβ oligomers directly, or indirectly through Aβ-induced release of glutamate, an endogenous NMDAR ligand. In the present opinion article, we highlight evidence that IR activity and free intracellular Ca 2+ concentration [Ca 2+] i form a double-negative regulatory feedback loop controlling insulin sensitivity, in which mitochondria play a key role, being involved in adenosine triphosphate (ATP) synthesis and IR activation. We found recently that the glutamate-evoked rise in [Ca 2+] i inhibits activation of IR and, vice versa, insulin-induced activation of IR inhibits the glutamate-evoked rise in [Ca 2+] i . In theory, such a double-negative regulatory feedback loop predicts that any condition leading to an increase of [Ca 2+] i may trigger central insulin resistance and explains why central insulin resistance is implicated in the pathogenesis of AD, with which glutamate excitotoxicity is a comorbid condition. This model also predicts that any intervention aiming to maintain low [Ca 2+] i may be useful for treating central insulin resistance.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell Technologies, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Moscow, 119991, Russian Federation
| | - Vsevolod Pinelis
- National Medical Research Center for Children’s Health, Russian Ministry of Health, Moscow, 119991, Russian Federation
| |
Collapse
|
136
|
Hussain S, Singh A, Baxi H, Taylor B, Burgess J, Antony B. Thiazolidinedione use is associated with reduced risk of Parkinson's disease in patients with diabetes: a meta-analysis of real-world evidence. Neurol Sci 2020; 41:3697-3703. [PMID: 32514858 DOI: 10.1007/s10072-020-04494-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The thiazolidinedione (TZD) class of oral antidiabetic agents are used to treat type 2 diabetes mellitus (DM). This meta-analysis aimed to understand the protective effect of TZD on Parkinson's disease (PD) in people with diabetes. METHOD A literature search was performed in PubMed, Embase, and Cochrane central from inception to until 30 September 2019. We included all real-world evidence studies assessing the use of TZD class of drugs and the risk of PD in people with diabetes. Quality of the studies was evaluated using the Newcastle-Ottawa scale. The primary outcome was the pooled hazard ratio (HR) of PD among type 2 DM TZD users as compared with TZD non-users in people with diabetes. The secondary outcome was the HR of PD among type 2 DM TZD users as compared with non-users (include both diabetic and nondiabetic population). Meta-analysis was performed using RevMan software. RESULTS Out of five studies selected for inclusion, four studies fulfilled the criteria for primary outcomes. The participants' mean age and follow-up duration were 66.23 ± 9.59 years and 5.25 years (2.97-7.9 years), respectively. There was a significant reduction in the risk of PD (pooled adjusted HR of 0.81 [95% CI 0.70-0.93, p = 0.004]) in TZD users compared with non-TZD users in people with diabetes. A significant protective effect of TZD was observed in Caucasian population (3 studies) (HR 0.78 (95% CI 0.66-0.92), p = 0.003). CONCLUSION This meta-analysis demonstrates a potential neuroprotective effect of TZD for PD risk in the population with DM.
Collapse
Affiliation(s)
- Salman Hussain
- Department of Pharmaceutical Medicine (Division of Pharmacology), School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ambrish Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Department of Neurology, Royal Hobart Hospital, Hobart, Australia
| | - John Burgess
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Department of Endocrinology, Royal Hobart Hospital, Hobart, Australia
| | - Benny Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
137
|
Zou X, Feng X, Fu Y, Zheng Y, Ma M, Wang C, Zhang Y. Icariin Attenuates Amyloid-β (Aβ)-Induced Neuronal Insulin Resistance Through PTEN Downregulation. Front Pharmacol 2020; 11:880. [PMID: 32581820 PMCID: PMC7296100 DOI: 10.3389/fphar.2020.00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Neuronal insulin resistance is implicated in neurodegenerative diseases. Icariin has been reported to improve insulin resistance in skeletal muscle cells and to restore impaired hypothalamic insulin signaling in the rats with chronic unpredictable mild stress. In addition, icariin can exert the neuroprotective effects in the mouse models of neurodegenerative diseases. However, the molecular mechanisms by which icariin affects neuronal insulin resistance are poorly understood. In the present study, amyloid-β (Aβ) was used to induce insulin resistance in human neuroblastoma SK-N-MC cells. Insulin sensitivity was evaluated by measuring insulin-stimulated Akt T308 phosphorylation and glucose uptake. We found that the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mediated Aβ-induced insulin resistance. Icariin treatment markedly reduced Aβ-enhanced PTEN protein levels, leading to an improvement in Aβ-induced insulin resistance. Accordingly, PTEN overexpression obviously abolished the protective effects of icariin on Aβ-induced insulin resistance. Furthermore, icariin activated proteasome activity. The proteasome inhibitor MG132 attenuated the effects of icariin on PTEN protein levels. Taken together, these results suggest that icariin protects SK-N-MC cells against Aβ-induced insulin resistance by activating the proteasome-dependent degradation of PTEN. These findings provide an experimental background for the identification of novel molecular targets of icariin, which may help in the development of alternative therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaomei Zou
- Neurology Center, The Second People's Hospital of Jingzhou City, Jingzhou, China
| | - Xiyao Feng
- 2018 Clinical Medicine, Hubei University of Medicine, Shiyan, China
| | - Yalin Fu
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuyang Zheng
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Mingke Ma
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
138
|
Glotfelty EJ, Olson L, Karlsson TE, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson's disease. Expert Opin Investig Drugs 2020; 29:595-602. [PMID: 32412796 PMCID: PMC10477949 DOI: 10.1080/13543784.2020.1764534] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Accumulating evidence supports the evaluation of glucagon-like peptide-1 (GLP-1) receptor (R) agonists for the treatment of the underlying pathology causing Parkinson's Disease (PD). Not only are these effects evident in models of PD and other neurodegenerative disorders but recently in a randomized, double-blind, placebo-controlled clinical trial, a GLP-1R agonist has provided improved cognition motor functions in humans with moderate PD. AREAS COVERED In this mini-review, we describe the development of GLP-1R agonists and their potential therapeutic value in treating PD. Many GLP-1R agonists are FDA approved for the treatment of metabolic disorders, and hence can be rapidly repositioned for PD. Furthermore, we present preclinical data offering insights into the use of monomeric dual- and tri-agonist incretin-based mimetics for neurodegenerative disorders. These drugs combine active regions of GLP-1 with those of glucose-dependent insulinotropic peptide (GIP) and/or glucagon (Gcg). EXPERT OPINION GLP-1Ragonists offer a complementary and enhanced therapeutic value to other drugs used to treat PD. Moreover, the use of the dual- or tri-agonist GLP-1-based mimetics may provide combinatory effects that are even more powerful than GLP-1R agonism alone. We advocate for further investigations into the repurposing of GLP-1R agonists and the development of classes of multi-agonists for PD treatment.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
139
|
Metformin regulates astrocyte reactivity in Parkinson's disease and normal aging. Neuropharmacology 2020; 175:108173. [PMID: 32497590 DOI: 10.1016/j.neuropharm.2020.108173] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to motor symptoms. Despite the remarkable improvements in the management of PD in recent decades, many patients remain significantly disabled. Metformin is a primary medication for the management of type 2 diabetes. We previously showed that co-treatment with metformin and 3,4-dihydroxyphenyl-l-alanine (l-DOPA) prevented the development of l-DOPA-induced dyskinesia in a 6-hydroxydopamine (6-OHDA)-lesioned animal model of PD. However, effects of metformin on PD- and aging-induced genes in reactive astrocytes remain unknown. In this study, we assessed the effect of metformin on motor function, neuroprotection, and reactive astrocytes in the 6-OHDA-induced PD animal model. In addition, the effects of metformin on the genes expressed by specific types of astrocytes were analyzed in PD model and aged mice. Here, we showed that metformin treatment effectively improves the motor symptoms in the 6-OHDA-induced PD mouse model, whereas metformin had no effect on tyrosine hydroxylase-positive neurons. The activation of AMPK and BDNF signaling pathways was induced by metformin treatment on the 6-OHDA-lesioned side of the striatum. Metformin treatment caused astrocytes to alter reactive genes in a PD animal model. Moreover, aging-induced genes in reactive astrocytes were effectively regulated or suppressed by metformin treatment. Taken together, these results suggest that metformin should be evaluated for the treatment of Parkinson's disease and related neurologic disorders characterized by astrocyte activation.
Collapse
|
140
|
Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, Choudhury H. Interlink Between Insulin Resistance and Neurodegeneration with an Update on Current Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:174-183. [PMID: 32418534 DOI: 10.2174/1871527319666200518102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lee Yuen Shin
- School of Health Sciences, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | | | - Vikram Rao
- School of Postgraduate Studies, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
141
|
Caputo V, Termine A, Strafella C, Giardina E, Cascella R. Shared (epi)genomic background connecting neurodegenerative diseases and type 2 diabetes. World J Diabetes 2020; 11:155-164. [PMID: 32477452 PMCID: PMC7243483 DOI: 10.4239/wjd.v11.i5.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
The progressive aging of populations has resulted in an increased prevalence of chronic pathologies, especially of metabolic, neurodegenerative and movement disorders. In particular, type 2 diabetes (T2D), Alzheimer’s disease (AD) and Parkinson’s disease (PD) are among the most prevalent age-related, multifactorial pathologies that deserve particular attention, given their dramatic impact on patient quality of life, their economic and social burden as well the etiopathogenetic mechanisms, which may overlap in some cases. Indeed, the existence of common triggering factors reflects the contribution of mutual genetic, epigenetic and environmental features in the etiopathogenetic mechanisms underlying T2D and AD/PD. On this subject, this review will summarize the shared (epi)genomic features that characterize these complex pathologies. In particular, genetic variants and gene expression profiles associated with T2D and AD/PD will be discussed as possible contributors to determine the susceptibility and progression to these disorders. Moreover, potential shared epigenetic modifications and factors among T2D, AD and PD will also be illustrated. Overall, this review shows that findings from genomic studies still deserves further research to evaluate and identify genetic factors that directly contribute to the shared etiopathogenesis. Moreover, a common epigenetic background still needs to be investigated and characterized. The evidences discussed in this review underline the importance of integrating large-scale (epi)genomic data with additional molecular information and clinical and social background in order to finely dissect the complex etiopathogenic networks that build up the “disease interactome” characterizing T2D, AD and PD.
Collapse
Affiliation(s)
- Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
| | - Andrea Termine
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
- Experimental and Behavioral Neurophysiology Laboratory, Santa Lucia Foundation, Rome 00142, Italy
| | - Claudia Strafella
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Emiliano Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome 00142, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana 1000, Albania
| |
Collapse
|
142
|
Pallàs M, Vázquez S, Sanfeliu C, Galdeano C, Griñán-Ferré C. Soluble Epoxide Hydrolase Inhibition to Face Neuroinflammation in Parkinson's Disease: A New Therapeutic Strategy. Biomolecules 2020; 10:E703. [PMID: 32369955 PMCID: PMC7277900 DOI: 10.3390/biom10050703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is a crucial process associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Several pieces of evidence suggest an active role of lipid mediators, especially epoxy-fatty acids (EpFAs), in the genesis and control of neuroinflammation; 14,15-epoxyeicosatrienoic acid (14,15-EET) is one of the most commonly studied EpFAs, with anti-inflammatory properties. Soluble epoxide hydrolase (sEH) is implicated in the hydrolysis of 14,15-EET to its corresponding diol, which lacks anti-inflammatory properties. Preventing EET degradation thus increases its concentration in the brain through sEH inhibition, which represents a novel pharmacological approach to foster the reduction of neuroinflammation and by end neurodegeneration. Recently, it has been shown that sEH levels increase in brains of PD patients. Moreover, the pharmacological inhibition of the hydrolase domain of the enzyme or the use of sEH knockout mice reduced the deleterious effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. This paper overviews the knowledge of sEH and EETs in PD and the importance of blocking its hydrolytic activity, degrading EETs in PD physiopathology. We focus on imperative neuroinflammation participation in the neurodegenerative process in PD and the putative therapeutic role for sEH inhibitors. In this review, we also describe highlights in the general knowledge of the role of sEH in the central nervous system (CNS) and its participation in neurodegeneration. We conclude that sEH is one of the most promising therapeutic strategies for PD and other neurodegenerative diseases with chronic inflammation process, providing new insights into the crucial role of sEH in PD pathophysiology as well as a singular opportunity for drug development.
Collapse
Affiliation(s)
- Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Department de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, C/Roselló 161, 08036 Barcelona, Spain;
| | - Carles Galdeano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain;
| |
Collapse
|
143
|
Zhang L, Zheng Y, Xie J, Shi L. Potassium channels and their emerging role in parkinson's disease. Brain Res Bull 2020; 160:1-7. [PMID: 32305406 DOI: 10.1016/j.brainresbull.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is associated with a selective loss of dopaminergic neurons in the substantia nigra (SN) and a reduction of dopamine in the striatum. Recently, ion channel dysfunction has been considered a reason for the pathogenesis of PD. Potassium (K+) channels are widespread in the central nervous system, and play key roles in modulating cellular excitability, synaptic transmission, and neurotransmitter release. Based on recent studies and data, we propose that K+ channels may be new therapeutic targets for PD that slow the progressive loss of dopaminergic neurons and attenuate motor and non-motor symptoms. In this review, we mainly focus on: delayed rectifier, inwardly rectifying, and double-pore K+ channels. We summarize the expression and function of these channels in PD-related brain regions. We also discuss the effects of pharmacological blockade or activation of K+ channels in the progression and treatment of PD.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Yanan Zheng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
144
|
Poewe W, Seppi K, Marini K, Mahlknecht P. New hopes for disease modification in Parkinson's Disease. Neuropharmacology 2020; 171:108085. [PMID: 32298705 DOI: 10.1016/j.neuropharm.2020.108085] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
To date, despite numerous clinical trials, no intervention has been demonstrated to modify the progression of Parkinson's disease (PD). However, over the past decades encouraging progress has been made towards a better understanding of molecular pathways relevant for the neurodegenerative process in PD. This is also based on new insights into the genetic architecture of the disease, revealing multiple novel targets for potentially disease-modifying interventions. Important achievements have also been made in the field of risk markers and combinations thereof, in the form of risk algorithms, will hopefully soon provide the possibility to identify affected individuals at yet prediagnostic or prodromal stages of the illness. Such phases of the disease would provide an ideal window for neuroprotection trials. Taken together, these developments offer hope that a breakthrough towards modifying the course of PD might be reached. In this article we summarize various approaches currently pursued in this quest. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Werner Poewe
- Department of Neurology, Medical University Innsbruck, Austria.
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Austria
| | - Kathrin Marini
- Department of Neurology, Medical University Innsbruck, Austria
| | | |
Collapse
|
145
|
|
146
|
Athauda D, Gulyani S, Karnati HK, Li Y, Tweedie D, Mustapic M, Chawla S, Chowdhury K, Skene SS, Greig NH, Kapogiannis D, Foltynie T. Utility of Neuronal-Derived Exosomes to Examine Molecular Mechanisms That Affect Motor Function in Patients With Parkinson Disease: A Secondary Analysis of the Exenatide-PD Trial. JAMA Neurol 2020; 76:420-429. [PMID: 30640362 DOI: 10.1001/jamaneurol.2018.4304] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Exenatide, a glucagon-like peptide 1 agonist used in type 2 diabetes, was recently found to have beneficial effects on motor function in a randomized, placebo-controlled trial in Parkinson disease (PD). Accumulating evidence suggests that impaired brain insulin and protein kinase B (Akt) signaling play a role in PD pathogenesis; however, exploring the extent to which drugs engage with putative mechnisms in vivo remains a challenge. Objective To assess whether participants in the Exenatide-PD trial have augmented activity in brain insulin and Akt signaling pathways. Design, Setting, and Participants Serum samples were collected from 60 participants in the single-center Exenatide-PD trial (June 18, 2014, to June 16, 2016), which compared patients with moderate PD randomized to 2 mg of exenatide once weekly or placebo for 48 weeks followed by a 12-week washout period. Serum extracellular vesicles, including exosomes, were extracted, precipitated, and enriched for neuronal source by anti-L1 cell adhesion molecule antibody absorption, and proteins of interest were evaluated using electrochemiluminescence assays. Statistical analysis was performed from May 1, 2017, to August 31, 2017. Main Outcomes and Measures The main outcome was augmented brain insulin signaling that manifested as a change in tyrosine phosphorylated insulin receptor substrate 1 within neuronal extracellular vesicles at the end of 48 weeks of exenatide treatment. Additional outcome measures were changes in other insulin receptor substrate proteins and effects on protein expression in the Akt and mitogen-activated protein kinase pathways. Results Sixty patients (mean [SD] age, 59.9 [8.4] years; 43 [72%] male) participated in the study: 31 in the exenatide group and 29 in the placebo group (data from 1 patient in the exenatide group were excluded). Patients treated with exenatide had augmented tyrosine phosphorylation of insulin receptor substrate 1 at 48 weeks (0.27 absorbance units [AU]; 95% CI, 0.09-0.44 AU; P = .003) and 60 weeks (0.23 AU; 95% CI, 0.05-0.41 AU; P = .01) compared with patients receiving placebo. Exenatide-treated patients had elevated expression of downstream substrates, including total Akt (0.35 U/mL; 95% CI, 0.16-0.53 U/mL; P < .001) and phosphorylated mechanistic target of rapamycin (mTOR) (0.22 AU; 95% CI, 0.04-0.40 AU; P = .02). Improvements in Movement Disorders Society Unified Parkinson's Disease Rating Scale part 3 off-medication scores were associated with levels of total mTOR (F4,50 = 5.343, P = .001) and phosphorylated mTOR (F4,50 = 4.384, P = .04). Conclusions and Relevance The results of this study are consistent with target engagement of brain insulin, Akt, and mTOR signaling pathways by exenatide and provide a mechanistic context for the clinical findings of the Exenatide-PD trial. This study suggests the potential of using exosome-based biomarkers as objective measures of target engagement in clinical trials using drugs that target neuronal pathways.
Collapse
Affiliation(s)
- Dilan Athauda
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Seema Gulyani
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hanuma Kumar Karnati
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Sahil Chawla
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Kashfia Chowdhury
- University College London Comprehensive Clinical Trials Unit, London, United Kingdom
| | - Simon S Skene
- University College London Comprehensive Clinical Trials Unit, London, United Kingdom.,School of Biosciences and Medicine, University of Surrey, Kent, United Kingdom
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
147
|
Foltynie T, Athauda D. Diabetes, BMI, and Parkinson's. Mov Disord 2020; 35:201-203. [DOI: 10.1002/mds.27941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Tom Foltynie
- Department of Clinical & Movement Neurosciences UCL Institute of Neurology London United Kingdom
| | - Dilan Athauda
- Department of Clinical & Movement Neurosciences UCL Institute of Neurology London United Kingdom
| |
Collapse
|
148
|
The protective effect of Geniposide on diabetic cognitive impairment through BTK/TLR4/NF-κB pathway. Psychopharmacology (Berl) 2020; 237:465-477. [PMID: 31811349 DOI: 10.1007/s00213-019-05379-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
The purpose of the present study was to elucidate the pharmacological effects of Geniposide (GEN) on high diet fed and streptozotocin (STZ)-caused diabetic cognitive impairment. The mice were fed with high fat diet (HFD) for 4 weeks and intraperitoneally injected with 60 mg/kg STZ for three times within 72 h. The mice with glucose level over 15 mmol/l were regarded as diabetic and selected for further studies. The animals were intragastrically treated with metformin or GEN once daily for 4 weeks. Afterwards, the animals were applied for Y maze, novel object recognition (NOR) test, step-through passive avoidance test, and Morris water maze (MWM) test. The blood glucose and body weight were examined. The SH-SY5Y cells were treated with GEN in the presence or absence of ibrutinib and stimulated with high-glucose culture medium. The tumor necrosis factor-a (TNF-α) and interleukin (IL)-6 in serum, hippocampus, and supernatant were measured using ELISA method. The protein expressions of Bruton's tyrosine kinase (BTK), Toll-like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), nuclear factor kappa-B (NF-κB), p-NF-κB, brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB), p-CREB, and glucagon-like peptide-1 receptor (GLP-1R) were detected by western blot analyses. As a result, the GEN treatment notably attenuated the body weight, blood glucose, and cognitive decline. GEN also inhibited the generations of inflammatory cytokines. Furthermore, the administrations of GEN ameliorated the alterations of BTK, TLR4, MyD88, NF-κB, and BDNF in HFD + STZ-induced mice. With the application of ibrutinib, the selective inhibitor of BTK, it was also found that BTK/TLR4/NF-κB pathway was associated with the GEN treatment in high glucose-induced SH-SY5Y cells. In summary, the results suggested that GEN exerted the protective effect on STZ-induced cognitive impairment possibly through the modulation of BTK/TLR4/NF-κB signaling.
Collapse
|
149
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
150
|
Kapogiannis D, Avgerinos KI. Brain glucose and ketone utilization in brain aging and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:79-110. [PMID: 32739015 PMCID: PMC9989941 DOI: 10.1016/bs.irn.2020.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To meet its high energy demands, the brain mostly utilizes glucose. However, the brain has evolved to exploit additional fuels, such as ketones, especially during prolonged fasting. With aging and neurodegenerative diseases (NDDs), the brain becomes inefficient at utilizing glucose due to changes in glia and neurons that involve glucose transport, glycolytic and Krebs cycle enzyme activities, and insulin signaling. Positron emission tomography and magnetic resonance spectroscopy studies have identified glucose metabolism abnormalities in aging, Alzheimer's disease (AD) and other NDDs in vivo. Despite glucose hypometabolism, brain cells can utilize ketones efficiently, thereby providing a rationale for the development of therapeutic ketogenic interventions in AD and other NDDs. This review compares available ketogenic interventions and discusses the potential of the potent oral Ketone Ester for future therapeutic use in AD and other NDDs characterized by inefficient glucose utilization.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| | - Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|