101
|
Masetto Antunes M, Godoy G, Masi LN, Curi R, Barbosa Bazotte R. Prefrontal Cortex and Hippocampus Inflammation in Mice Fed High-Carbohydrate or High-Fat Diets. J Med Food 2021; 25:110-113. [PMID: 34495750 DOI: 10.1089/jmf.2021.0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that a high-carbohydrate diet (HCD) induced systemic inflammation and higher gene expression of proinflammatory mediators in the liver, skeletal muscle, and brain than a high-fat diet (HFD). However, the differences between the groups were less pronounced in the brain. In this study, we extended the evaluation of inflammation to specific areas of the brain. In this study, we evaluated the gene expression of caspase 2, caspase 3, caspase 9, cyclooxygenase-2 (Cox 2), inducible nitric oxide synthase (iNOS), interleukin (IL), IL-6, IL-1β, IL-10, IL-4, tumor necrosis factor-alpha (TNF-α), integrin subunit alpha m (Itgam), S100 protein (S100), allograft inflammatory factor 1 (Aif1), and glial fibrillary acidic protein (Gfap) in the prefrontal cortex and hippocampus of male Swiss mice that were fed with HCD or HFD for 8 weeks. The HCD group exhibited higher IL-1β expression, whereas the HFD group showed higher TNF-α expression in the prefrontal cortex. In the hippocampus, TNF-α expression was higher in the HFD group. IL-1β and TNF-α are proinflammatory cytokines that have been associated with impaired brain function and numerous brain disorders. Our results indicate that both HCD and HFD promote prefrontal cortex inflammation; however, the hippocampus seems more sensitive to a HFD than HCD.
Collapse
Affiliation(s)
- Marina Masetto Antunes
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Guilherme Godoy
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil and Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil and Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Roberto Barbosa Bazotte
- Post-Graduation Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil.,Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| |
Collapse
|
102
|
Transthyretin as a Biomarker to Predict and Monitor Major Depressive Disorder Identified by Whole-Genome Transcriptomic Analysis in Mouse Models. Biomedicines 2021; 9:biomedicines9091124. [PMID: 34572310 PMCID: PMC8469805 DOI: 10.3390/biomedicines9091124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Accumulations of stressful life events result in the onset of major depressive disorder (MDD). Comprehensive genomic analysis is required to elucidate pathophysiological changes and identify applicable biomarkers. Methods: Transcriptomic analysis was performed on different brain parts of a chronic mild stress (CMS)-induced MDD mouse model followed by systemic analysis. QPCR and ELISA were utilized for validation in mice and patients. Results: The highest numbers of genes with significant changes induced by CMS were 505 in the amygdala followed by 272 in the hippocampus (twofold changes; FDR, p < 0.05). Enrichment analysis indicated that the core-enriched genes in CMS-treated mice were positively enriched for IFN-γ response genes in the amygdala, and hedgehog signaling in the hippocampus. Transthyretin (TTR) was severely reduced in CMS-treated mice. In patients with diagnosed MDD, serum concentrations of TTR were reduced by 48.7% compared to controls (p = 0.0102). Paired samples from patients with MDD demonstrated a further 66.3% increase in TTR at remission compared to the acute phase (p = 0.0339). Conclusions: This study provides comprehensive information on molecular networks related to MDD as a basis for further investigation and identifies TTR for MDD monitoring and management. A clinical trial with bigger patient cohort should be conducted to validate this translational study.
Collapse
|
103
|
Han SK, Kim JK, Park HS, Shin YJ, Kim DH. Chaihu-Shugan-San (Shihosogansan) alleviates restraint stress-generated anxiety and depression in mice by regulating NF-κB-mediated BDNF expression through the modulation of gut microbiota. Chin Med 2021; 16:77. [PMID: 34391441 PMCID: PMC8364688 DOI: 10.1186/s13020-021-00492-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chaihu-Shugan-San (CSS, named Shihosogansan in Korean), a Chinese traditional medicine, is frequently used to treat anxiety and depression. Psychiatric disorders including depression are associated with gut dysbiosis. Therefore, to comprehend gut microbiota-involved anti-depressive effect of CSS, we examined its effect on restraint stress (RS)-induced depression and gut dysbiosis in mice METHODS: CSS was extracted with water in boiling water bath and freeze-dried. Anxiety and depression was induced in C57BL/6 mice by exposure to RS. Anxiety- and depression-like behaviors were measured in the light/dark transition and elevated plus maze tasks, forced swimming test, and tail suspension test. Biomarkers were assayed by using the enzyme-linked immunosorbent assay and immunoblotting. The gut microbiota composition was analyzed by Illumina iSeq sequencer. RESULTS CSS significantly reduced the RS-induced anxiety- and depression-like behaviors in mice. CSS suppressed the RS-induced activation of NF-κB and expression of interleukin (IL)-6 and increased the RS-suppressed expression of brain-derived neurotrophic factor (BDNF). Furthermore, CSS suppressed the RS-induced IL-6 and corticosterone level in the blood and IL-6 expression and myeloperoxidase activity in the colon. CSS decreased the RS-induced γ-Proteobacteria population in gut microbiota, while the RS-suppressed Lactobacillaceae, Prevotellaceae, and AC160630_f populations increased. Fecal transplantation of vehicle-treated control or RS/CSS-treated mice into RS-exposed mice significantly mitigated RS-induced anxity- and depression-like behaviors, suppressed the NF-κB activation in the hippocampus and colon, and reduced the IL-6 and corticosterone levels in the blood. These fecal microbiota transplantations suppressed RS-induced Desulfovibrionaceae and γ-Proteobacteria populations and increased RS-suppressed Lactobacillaceae and Prevotellaceae poulation in the gut microbiota. CONCLUSIONS CSS alleviated anxiety and depression by inducing NF-κB-involved BDNF expression through the regulation of gut inflammation and microbiota.
Collapse
Affiliation(s)
- Sang-Kap Han
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Hee-Seo Park
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Yeun-Jeong Shin
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
104
|
Budni J, Moretti M, Freitas AE, Neis VB, Ribeiro CM, de Oliveira Balen G, Rieger DK, Leal RB, Rodrigues ALS. Behavioral and neurochemical effects of folic acid in a mouse model of depression induced by TNF-α. Behav Brain Res 2021; 414:113512. [PMID: 34358572 DOI: 10.1016/j.bbr.2021.113512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 02/03/2023]
Abstract
Folic acid has been reported to exert antidepressant effects, but its ability to abrogate the depressive-like behavior and signaling pathways alterations elicited by an inflammatory model of depression remains to be established. This study examined: a) the efficacy of folic acid in a mouse model of depression induced by tumor necrosis factor (TNF-α); b) whether the administration of subthreshold doses of folic acid and antidepressants (fluoxetine, imipramine, and bupropion), MK-801, or 7-nitroindazole cause antidepressant-like effects; c) the effects of TNF-α and/or folic acid on hippocampal p38MAPK, Akt, ERK, and JNK phosphorylation. Folic acid reduced the immobility time in the tail suspension test (TST) in control mice (10-50 mg/kg, p.o) and abolished the depressive-like behavior elicited by TNF-α (0.001 fg/site, i.c.v.) in this test (1-50 mg/kg, p.o). Coadministration of subthreshold doses of folic acid (1 mg/kg, p.o.) and fluoxetine, imipramine, bupropion, MK-801, or 7-nitroindazole produced an antidepressant-like effect in mice exposed or not to TNF-α. TNF-α-treated mice presented increased p38MAPK phosphorylation and decreased Akt phosphorylation, and the later effect was prevented by folic acid (10 mg/kg, p.o.). Additionally, ERK1 phosphorylation was increased in mice treated with TNF-α + folic acid (1 mg/kg), but no effects on ERK2 or JNK1/2/3 phosphorylation were found in any group. The results indicate the efficacy of folic acid to counteract the depressive-like behavior induced by a pro-inflammatory cytokine, an effect that might be associated with the activation of monoaminergic systems, inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) synthesis, as well as Akt modulation.
Collapse
Affiliation(s)
- Josiane Budni
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Camille M Ribeiro
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Grasiela de Oliveira Balen
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Débora K Rieger
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Rodrigo B Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
105
|
Kosuge A, Kunisawa K, Arai S, Sugawara Y, Shinohara K, Iida T, Wulaer B, Kawai T, Fujigaki H, Yamamoto Y, Saito K, Nabeshima T, Mouri A. Heat-sterilized Bifidobacterium breve prevents depression-like behavior and interleukin-1β expression in mice exposed to chronic social defeat stress. Brain Behav Immun 2021; 96:200-211. [PMID: 34062230 DOI: 10.1016/j.bbi.2021.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a common and serious psychiatric disease that involves brain inflammation. Bifidobacterium breve is commonly used as a probiotic and was shown to improve colitis and allergic diseases by suppressing the inflammatory response. Heat-sterilized B. breve has beneficial effects on inflammation. We hypothesize, therefore, that this probiotic might reduce depression symptoms. We tested this is a mouse model of social defeat stress. C57BL/6J mice exposed to chronic social defeat stress (CSDS) for five consecutive days developed a mild depression-like behavior characterized by a social interaction impairment. CSDS also altered the gut microbiota composition, such as increased abundance of Bacilli, Bacteroidia, Mollicutes, and Verrucomicrobiae classes and decreased Erysipelotrichi class. The prophylactic effect of heat-sterilized B. breve as a functional food ingredient was evaluated on the depression-like behavior in mice. The supplementation started two weeks before and lasted two weeks after the last exposure to CSDS. Two weeks after CSDS, the mice showed deficits in social interaction and increased levels of inflammatory cytokines, including interleukin-1β (IL-1β) in the prefrontal cortex (PFC) and hippocampus (HIP). Heat-sterilized B. breve supplementation significantly prevented social interaction impairment, suppressed IL-1β increase in the PFC and HIP, and modulated the alteration of the gut microbiota composition induced by CSDS. These findings suggest that heat-sterilized B. breve prevents depression-like behavior and IL-1β expression induced by CSDS through modulation of the gut microbiota composition in mice. Therefore, heat-sterilized B. breve used as an ingredient of functional food might prevent MDD.
Collapse
Affiliation(s)
- Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Satoshi Arai
- Morinaga Milk Industry Co., Ltd., R&D Division, Food Ingredients & Technology Institute, Kanagawa, Japan
| | - Yumika Sugawara
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Katsuki Shinohara
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Tsubasa Iida
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Bolati Wulaer
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Tomoki Kawai
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| |
Collapse
|
106
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 301] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
107
|
Plasma redox and inflammatory patterns during major depressive episodes: a cross-sectional investigation in elderly patients with mood disorders. CNS Spectr 2021; 26:416-426. [PMID: 32423495 DOI: 10.1017/s1092852920001443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND While both depression and aging have been associated with oxidative stress and impaired immune response, little is known about redox patterns in elderly depressed subjects. This study investigates the relationship between redox/inflammatory patterns and depression in a sample of elderly adults. METHODS The plasma levels of the advanced products of protein oxidation (AOPP), catalase (CAT), ferric reducing antioxidant power (FRAP), glutathione transferase (GST), interleukin 6 (IL-6), superoxide dismutase (SOD), total thiols (TT), and uric acid (UA) were evaluated in 30 patients with mood disorders with a current depressive episode (depressed patients, DP) as well as in 30 healthy controls (HC) aged 65 years and over. Subjects were assessed with the Hamilton Depression Rating Scale (HAM-D), the Hamilton Rating Scale for Anxiety (HAM-A), the Geriatric Depression Rating Scale (GDS), the Scale for Suicide Ideation (SSI), the Reason for Living Inventory (RFL), the Activities of Daily Living (ADL), and the Instrumental Activity of Daily Living (IADL). RESULTS DP showed higher levels than HC of AOPP and IL-6, while displaying lower levels of FRAP, TT, and CAT. In the DP group, specific correlations were found among biochemical parameters. SOD, FRAP, UA, and TT levels were also significantly related to psychometric scale scores. CONCLUSION Specific alterations of redox systems are detectable among elderly DP.
Collapse
|
108
|
Abstract
Neuropsychiatric sequalae to coronavirus disease 2019 (COVID-19) infection are beginning to emerge, like previous Spanish influenza and severe acute respiratory syndrome episodes. Streptococcal infection in paediatric patients causing obsessive compulsive disorder (PANDAS) is another recent example of an infection-based psychiatric disorder. Inflammation associated with neuropsychiatric disorders has been previously reported but there is no standard clinical management approach established. Part of the reason is that it is unclear what factors determine the specific neuronal vulnerability and the efficacy of anti-inflammatory treatment in neuroinflammation. The emerging COVID-19 data suggested that in the acute stage, widespread neuronal damage appears to be the result of abnormal and overactive immune responses and cytokine storm is associated with poor prognosis. It is still too early to know if there are long-term-specific neuronal or brain regional damages associated with COVID-19, resulting in distinct neuropsychiatric disorders. In several major psychiatric disorders where neuroinflammation is present, patients with abnormal inflammatory markers may also experience less than favourable response or treatment resistance when standard treatment is used alone. Evidence regarding the benefits of co-administered anti-inflammatory agents such as COX-2 inhibitor is encouraging in selected patients though may not benefit others. Disease-modifying therapies are increasingly being applied to neuropsychiatric diseases characterised by abnormal or hyperreactive immune responses. Adjunct anti-inflammatory treatment may benefit selected patients and is definitely an important component of clinical management in the presence of neuroinflammation.
Collapse
|
109
|
Effects of Antidepressant Treatment on Neurotrophic Factors (BDNF and IGF-1) in Patients with Major Depressive Disorder (MDD). J Clin Med 2021; 10:jcm10153377. [PMID: 34362162 PMCID: PMC8346988 DOI: 10.3390/jcm10153377] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) remains the subject of ongoing research as a multifactorial disease and a serious public health problem. There is a growing body of literature focusing on the role of neurotrophic factors in pathophysiology of MDD. A neurotrophic hypothesis of depression proposes that abnormalities of neurotrophins serum levels lead to neuronal atrophy and decreased neurogenesis, resulting in mood disorders. Consequently, in accordance with recent findings, antidepressant treatment modifies the serum levels of neurotrophins and thus leads to a clinical improvement of MDD. The purpose of this review is to summarize the available data on the effects of various antidepressants on serum levels of neurotrophins such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1). In addition, the authors discuss their role as prognostic factors for treatment response in MDD. A literature search was performed using the PubMed database. Following the inclusion and exclusion criteria, nine original articles and three meta-analyses were selected. The vast majority of studies have confirmed the effect of antidepressants on BDNF levels. Research on IGF-1 is limited and insufficient to describe the correlation between different antidepressant drugs and factor serum levels; however, four studies indicated a decrease in IGF-1 after treatment. Preliminary data suggest BDNF as a promising predictor of treatment response in MDD patients. The role of IGF-1 needs further investigation.
Collapse
|
110
|
Pan X, Liu F, Song Y, Wang H, Wang L, Qiu H, Price M, Li J. Motor Stereotypic Behavior Was Associated With Immune Response in Macaques: Insight From Transcriptome and Gut Microbiota Analysis. Front Microbiol 2021; 12:644540. [PMID: 34394017 PMCID: PMC8360393 DOI: 10.3389/fmicb.2021.644540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 01/03/2023] Open
Abstract
Motor stereotypic behaviors (MSBs) are common in captive rhesus macaques (Macaca mulatta) and human with psychiatric diseases. However, large gaps remain in our understanding of the molecular mechanisms that mediate this behavior and whether there are similarities between human and non-human primates that exhibit this behavior, especially at gene expression and gut microbiota levels. The present study combined behavior, blood transcriptome, and gut microbiota data of two groups of captive macaques to explore this issue (i.e., MSB macaques with high MSB exhibition and those with low: control macaques). Observation data showed that MSB macaques spent the most time on MSB (33.95%), while the CONTROL macaques allocated more time to active (30.99%) and general behavior (30.0%), and only 0.97% of their time for MSB. Blood transcriptome analysis revealed 382 differentially expressed genes between the two groups, with 339 upregulated genes significantly enriched in inflammation/immune response-related pathway. We also identified upregulated pro-inflammatory genes TNFRSF1A, IL1R1, and IL6R. Protein–protein interaction network analysis screened nine hub genes that were all related to innate immune response, and our transcriptomic results were highly similar to findings in human psychiatric disorders. We found that there were significant differences in the beta-diversity of gut microbiota between MSB and CONTROL macaques. Of which Phascolarctobacterium, the producer of short chain fatty acids (SCFAs), was less abundant in MSB macaques. Meanwhile, PICRUSTs predicted that SCFAs intermediates biosynthesis and metabolic pathways were significantly downregulated in MSB macaques. Together, our study revealed that the behavioral, gene expression levels, and gut microbiota composition in MSB macaques was different to controls, and MSB was closely linked with inflammation and immune response. This work provides valuable information for future in-depth investigation of MSB and human psychiatric diseases.
Collapse
Affiliation(s)
- Xuan Pan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Fangyuan Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Song
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongrun Wang
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin, China
| | - Lingyun Wang
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin, China
| | - Hong Qiu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
111
|
Marazziti D, Buccianelli B, Palermo S, Parra E, Arone A, Beatino MF, Massa L, Carpita B, Barberi FM, Mucci F, Dell’Osso L. The Microbiota/Microbiome and the Gut-Brain Axis: How Much Do They Matter in Psychiatry? Life (Basel) 2021; 11:life11080760. [PMID: 34440503 PMCID: PMC8401073 DOI: 10.3390/life11080760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The functioning of the central nervous system (CNS) is the result of the constant integration of bidirectional messages between the brain and peripheral organs, together with their connections with the environment. Despite the anatomical separation, gut microbiota, i.e., the microorganisms colonising the gastrointestinal tract, is highly related to the CNS through the so-called "gut-brain axis". The aim of this paper was to review and comment on the current literature on the role of the intestinal microbiota and the gut-brain axis in some common neuropsychiatric conditions. The recent literature indicates that the gut microbiota may affect brain functions through endocrine and metabolic pathways, antibody production and the enteric network while supporting its possible role in the onset and maintenance of several neuropsychiatric disorders, neurodevelopment and neurodegenerative disorders. Alterations in the gut microbiota composition were observed in mood disorders and autism spectrum disorders and, apparently to a lesser extent, even in obsessive-compulsive disorder (OCD) and related conditions, as well as in schizophrenia. Therefore, gut microbiota might represent an interesting field of research for a better understanding of the pathophysiology of common neuropsychiatric disorders and possibly as a target for the development of innovative treatments that some authors have already labelled "psychobiotics".
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
- Correspondence:
| | - Beatrice Buccianelli
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Maria Francesca Beatino
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Lucia Massa
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Filippo M. Barberi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Federico Mucci
- Dipartimento di Biochimica e Biologia Molecolare, University of Siena, 53100 Siena, Italy;
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| |
Collapse
|
112
|
Komysheva NP, Shishkina GT. [Prospects for the use of drugs with anti-inflammatory properties for the treatment of depression]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:124-131. [PMID: 34283542 DOI: 10.17116/jnevro2021121061124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review briefly summarizes experimental and preclinical data of the role of pro-inflammatory cytokines in triggering pathophysiological changes associated with depression, primarily major depressive disorder (MDD), as well as the possibility of using anti-inflammatory drugs as antidepressants.
Collapse
Affiliation(s)
- N P Komysheva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G T Shishkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
113
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
114
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
115
|
Huang Z, Tan S. P2X7 Receptor as a Potential Target for Major Depressive Disorder. Curr Drug Targets 2021; 22:1108-1120. [PMID: 33494675 DOI: 10.2174/1389450122666210120141908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental disorder. Although the genetic, biochemical, and psychological factors have been related to the development of MDD, it is generally believed that a series of pathological changes in the brain caused by chronic stress is the main cause of MDD. However, the specific mechanisms underlying chronic stress-induced MDD are largely undermined. Recent investigations have found that increased pro-inflammatory cytokines and changes in the inflammatory pathway in the microglia cells in the brain are the potential pathophysiological mechanism of MDD. P2X7 receptor (P2X7R) and its mediated signaling pathway play a key role in microglia activation. The present review aimed to present and discuss the accumulating data on the role of P2X7R in MDD. Firstly, we summarized the research progress in the correlation between P2X7R and MDD. Subsequently, we presented the P2X7R mediated microglia activation in MDD and the role of P2X7R in increased blood-brain barrier (BBB) permeability caused by chronic stress. Lastly, we also discussed the potential mechanism underlying-P2X7R expression changes after chronic stress. In conclusion, P2X7R is a key molecule regulating the activation of microglia. Chronic stress activates microglia in the hippocampus by secreting interleukin- 1β (IL-1β) and other inflammatory cytokines, and increasing the BBB permeability, thus promoting the occurrence and development of MDD, which indicated that P2X7R might be a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 421001, Hunan, China
| |
Collapse
|
116
|
Oh DJ, Bae JB, Kim TH, Kwak KP, Kim BJ, Kim SG, Kim JL, Moon SW, Park JH, Ryu SH, Youn JC, Lee DY, Lee DW, Lee SB, Lee JJ, Jhoo JH, Han JW, Kim KW. Association between plasma monocyte trafficking-related molecules and future risk of depression in older adults. J Gerontol A Biol Sci Med Sci 2021; 77:1803-1809. [PMID: 34228804 DOI: 10.1093/gerona/glab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The recruitment of monocytes to the brain plays an important role in the development of depression. However, the association between plasma biomarkers of monocyte trafficking and depression is unclear. This study is aimed to examine the effects of plasma monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) on the risk of depression. METHODS Data were acquired from an ongoing prospective cohort study involving randomly sampled, community-dwelling Korean older adults, which has been followed every two years. We included 1,539 euthymic older adults (age = 68.2 [5.6] years; 51.7% were women) without a history of major psychiatric disorders, and dementia and neurological diseases. Geriatric psychiatrists diagnosed incident depression through a structured interview using the Korean version of the Mini International Neuropsychiatric Interview. RESULTS Depression had developed in 134 (8.7 %) participants during the follow-up period of 5.7 (0.8) years. The high plasma MCP-1 tertile group showed two-fold higher risk of depression than the low plasma MCP-1 tertile group (hazards ratio [HR] = 2.00, 95% confidence intervals [CI] = 1.27 - 3.13, p = 0.003). The association between high levels of plasma MCP-1 and future risk of depression was significant in the middle plasma ICAM-1 and VCAM-1 tertile groups; the high plasma MCP-1 tertile group showed about four-fold higher risk of depression than the low plasma MCP-1 tertile group. CONCLUSIONS Molecules involved in monocyte trafficking may be good candidates as diagnostic biomarkers and/or therapeutic targets for late life depression.
Collapse
Affiliation(s)
- Dae Jong Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.,Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, Korea
| | - Tae Hui Kim
- Department of Psychiatry, Yonsei University Wonju Severance Christian Hospital, Wonju, Korea
| | - Kyung Phil Kwak
- Department of Psychiatry, Dongguk University Gyeongju Hospital, Gyeongju, Korea
| | - Bong Jo Kim
- Department of Psychiatry, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Shin Gyeom Kim
- Department of Neuropsychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jeong Lan Kim
- Department of Psychiatry, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Seok Woo Moon
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Chungju Hospital, Chungju, Korea
| | - Joon Hyuk Park
- Department of Neuropsychiatry, Jeju National University Hospital, Jeju, Korea
| | - Seung-Ho Ryu
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Medical Center, Seoul, Korea
| | - Jong Chul Youn
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Korea
| | - Dong Woo Lee
- Department of Neuropsychiatry, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Seok Bum Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Korea
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, Korea
| | - Ki Woong Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.,Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, Korea.,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea
| |
Collapse
|
117
|
Galván ST, Flores-López M, Romero-Sanchiz P, Requena-Ocaña N, Porras-Perales O, Nogueira-Arjona R, Mayoral F, Araos P, Serrano A, Muga R, Pavón FJ, García-Marchena N, de Fonseca FR. Plasma concentrations of granulocyte colony-stimulating factor (G-CSF) in patients with substance use disorders and comorbid major depressive disorder. Sci Rep 2021; 11:13629. [PMID: 34211033 PMCID: PMC8249412 DOI: 10.1038/s41598-021-93075-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) has raised much interest because of its role in cocaine addiction in preclinical models. We explored the plasma concentrations of G-CSF in patients diagnosed with substance use disorder (SUD) and highly comorbid psychiatric disorders. In particular, we investigated the association between G-CSF concentrations and comorbid major depressive disorder (MDD) in patients with cocaine and alcohol use disorders (CUD and AUD, respectively). Additionally, patients with MDD but not SUD were included in the study. Three hundred and eleven participants were enrolled in this exploratory study: 136 control subjects, 125 patients with SUD (SUD group) from outpatient treatment programs for cocaine (N = 60, cocaine subgroup) and alcohol (N = 65, alcohol subgroup), and 50 patients with MDD but not SUD (MDD group) from primary-care settings. Participants were assessed based on DSM-IV-TR criteria, and a blood sample was collected to examine the plasma concentrations of G-CSF. G-CSF concentrations were negatively correlated with age in the entire sample (r = - 0.233, p < 0.001) but not in the patients with MDD. G-CSF concentrations were lower in patients with SUD than in controls (p < 0.05), specifically in the cocaine subgroup (p < 0.05). Patients with SUD and comorbid MDD had lower G-CSF concentrations than patients with SUD but not comorbid MDD or controls (p < 0.05). In contrast, patients with MDD but not SUD showed no differences compared with their controls. The negative association between G-CSF concentrations and age in the sample was not observed in patients with MDD. G-CSF concentrations were decreased in patients with SUD and comorbid MDD but not in patients with MDD. Therefore, G-CSF may be useful to improve the stratification of patients with dual diagnosis seeking treatment. Further investigation is needed to explore the impact of sex and type of drug on the expression of G-CSF.
Collapse
Affiliation(s)
- Sandra Torres Galván
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Flores-López
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Pablo Romero-Sanchiz
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Department of Psychology, University of Roehampton, London, UK
| | - Nerea Requena-Ocaña
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Oscar Porras-Perales
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Málaga, Spain
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de La Victoria, Málaga, Spain
| | - Raquel Nogueira-Arjona
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Department of Psychology, University of Roehampton, London, UK
| | - Fermín Mayoral
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Pedro Araos
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Roberto Muga
- Unidad de Adicciones- Servicio de Medicina Interna. Institut D'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Campus Can Ruti, Carrer del Canyet s/n, 08916, Badalona, Spain
- Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Javier Pavón
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
- Unidad de Gestión Clínica del Corazón, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Nuria García-Marchena
- Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
- Unidad de Adicciones- Servicio de Medicina Interna. Institut D'Investigació en Ciències de La Salut Germans Trias I Pujol (IGTP), Campus Can Ruti, Carrer del Canyet s/n, 08916, Badalona, Spain.
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Avda. Carlos Haya 82, sótano, 29010, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
- Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
118
|
Gut microbiota is involved in the antidepressant-like effect of (S)-norketamine in an inflammation model of depression. Pharmacol Biochem Behav 2021; 207:173226. [PMID: 34217782 DOI: 10.1016/j.pbb.2021.173226] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
The non-competitive glutamatergic N-methyl-d-aspartate receptor (NMDAR) antagonist, (R, S)-ketamine (ketamine), is known to exert rapid and long-lasting antidepressant-like effects. However, the widely use of ketamine is restricted owing to severe psychotomimetic side-effects and abuse liability. Very recently, we demonstrated that a major metabolite of ketamine, norketamine, in particular the (S)-enantiomer, had a potent antidepressant-like effect. We here examined the effects of a low-dose of norketamine enantiomers on depression symptoms and detected the changes in the composition of gut microbiota. In the behavioral tests, (S)-norketamine, but not (R)-norketamine, showed antidepressant-like effects in the lipopolysaccharide (LPS)-induced mice. At the genus level, (S)-norketamine, but not (R)-norketamine, significantly attenuated the increase in the levels of Escherichia-Shigella and Adlercreutzia, as well as the reduction in the levels of Harryflintia. At the species level, both (S)-norketamine and (R)-norketamine significantly attenuated the increase in the levels of bacterium ic1379 and Bacteroides sp. Marseille-P3166. Notably, (S)-norketamine was more potent than (R)-norketamine at reducing the levels of bacterium ic1379 and Bacteroides sp. Marseille-P3166. Furthermore, (S)-norketamine, but not (R)-norketamine, significantly attenuated the increased levels of Bacteroides caecigallinarum. In conclusion, this study suggests that the antidepressant-like effects of (S)-norketamine might be associated with the changes in the composition of gut microbiota. Therapeutic strategies improving the gut microbiota might facilitate the benefits for depression treatment.
Collapse
|
119
|
Cowdery SP, Stuart AL, Pasco JA, Berk M, Campbell D, Bjerkeset O, Williams LJ. Mood disorder and cancer onset: evidence from a population-based sample of Australian women. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2021; 43:355-361. [PMID: 32965431 PMCID: PMC8352740 DOI: 10.1590/1516-4446-2020-0932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The role of mood disorders in cancer onset is unclear. The aim of this study was to investigate the association between mood disorder and incident cancer in a population-based sample of women. METHODS Data were derived from women aged 28-94 years participating in the Geelong Osteoporosis Study. Mood disorder was identified via Clinical Interview (SCID-I/NP). Cancer data was obtained following linkage with the Victorian Cancer Registry. Demographic and lifestyle factors were self-reported. Nested case-control and retrospective study designs were utilized. RESULTS In the case-control study (n=807), mood disorder was documented for 18 of the 75 (9.3%) cancer cases and among 288 controls (24.0% vs. 39.3%, p = 0.009). Prior exposure to mood disorder was associated with reduced cancer incidence (OR 0.49, 95%CI 0.28-0.84); this was sustained following adjustment for confounders (ORadj 0.52, 95%CI 0.30-0.90). In the retrospective cohort study (n=655), among 154 women with a history of mood disorder at baseline, 13 (8.5%) developed incident cancer during follow-up, whereas among 501 women with no history of mood disorder, 54 (10.8%) developed incident cancer. Exposure to mood disorder was not associated with incident cancer over the follow-up period (HR 0.58, 95%CI 0.31-1.08, p = 0.09). CONCLUSION Mood disorder was associated with reduced odds of cancer onset. However, this finding was not supported in the retrospective cohort study. Larger studies able to investigate specific cancers and mood disorders as well as underlying mechanisms in both men and women are warranted.
Collapse
Affiliation(s)
- Stephanie P. Cowdery
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia
| | - Amanda L. Stuart
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia
| | - Julie A. Pasco
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia
- Department of Medicine, Western Campus, University of Melbourne, St Albans, Australia
- University Hospital Geelong, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Parkville, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Orygen the National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - David Campbell
- University Hospital Geelong, Barwon Health, Geelong, Australia
| | - Ottar Bjerkeset
- Faculty of Nursing and Health Sciences, Nord University, Norway
| | - Lana J. Williams
- Deakin University, Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Barwon Health, Geelong, Australia
| |
Collapse
|
120
|
Memiah P, Nkinda L, Majigo M, Humwa F, Haile ZT, Muthoka K, Zuheri A, Kamau A, Ochola L, Buluku G. Mental health symptoms and inflammatory markers among HIV infected patients in Tanzania. BMC Public Health 2021; 21:1113. [PMID: 34112126 PMCID: PMC8193867 DOI: 10.1186/s12889-021-11064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/14/2021] [Indexed: 01/22/2023] Open
Abstract
Background HIV and mental disorders are predicted to be the leading causes of illness worldwide by the year 2030. HIV-infected patients are at increased risk of developing mental disorders which are significantly associated with negative clinical outcomes and propagation of new HIV infections. There is little evidence that links inflammation to development of mental disorders among HIV patients. Therefore, the main objective of this study was to evaluate if mental health symptoms were associated with biomarkers of inflammation in HIV infected subjects. Methods A cross-sectional study was conducted in Dar es Salam, Tanzania from March to May 2018. Standardized tools were used to collect data based on the World Health Organisation's (WHO) stepwise approach for non-communicable diseases (NCD) surveillance. A total of 407 HIV+ patients on antiretroviral therapy were recruited. The WHO stepwise approach for NCD surveillance was used to collect data together with anthropometric measurements. Mental health symptoms were determined based on self-reported thoughts of helplessness, suicide ideation, depression, despair, discouragement, and feelings of isolation. Enzyme-linked immunosorbent assay was used to test for inflammatory markers:- C-reactive protein (CRP), Iinterleukin-6 (IL-6), interleukin-18 (IL-18), soluble tumour necrosis factor receptor-I (sTNFR-I), and soluble tumour necrosis factor receptor-II (sTNFR-II). Bivariate and multi-variate analysis was conducted to examine the association between biomarkers and mental health symptoms. Results The prevalence of self-reported mental health symptoms was 42% (n = 169). Participants with self-reported symptoms of mental health had elevated CRP, were less likely to walk or use a bicycle for at least 10 minutes, were less likely to participate in moderate-intensity sports or fitness activities, and had poor adherence to HIV treatment (p < 0.005). CRP remained significant in the sex adjusted, age-sex adjusted, and age-sex-moderate exercise adjusted models. In the fully adjusted logistic regression model, self-reported mental health symptoms were significantly associated with a higher quartile of elevated CRP (OR 4.4; 95% CI 1.3–5.9) and sTNFR-II (OR 2.6; 95% CI 1.4–6.6) and the third quartile of IL-18 (OR 5.1;95% CI 1.5–17.5) as compared with those reporting no mental health symptoms. The significance of sTNFR-II and IL-18 in the fully adjusted model is confounded by viral load suppression rates at the sixth month. Conclusion High CRP and sTNFR II were important contributors to the prevalence of mental health symptoms. This study is among the minimal studies that have examined mental health issues in HIV, and therefore, the findings may offer significant knowledge despite the potential reverse causality. Regardless of the nature of these associations, efforts should be directed toward screening, referral, and follow-up of HIV patients who are at-risk for mental health disorders.
Collapse
Affiliation(s)
- Peter Memiah
- Division of Epidemiology and Prevention: Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Room N459, Baltimore, MD, 21201, USA. .,Department of Medicine, University of Maryland Medical Centre Midtown Campus, Baltimore, MD, USA.
| | - Lillian Nkinda
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mtebe Majigo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Felix Humwa
- Global Program for Research Teaching, University of California San Francisco, Nairobi, Kenya
| | - Zelalem T Haile
- Department of Social Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, USA
| | | | - Aisha Zuheri
- Infectious Disease Centre, Dar es Salaam, Tanzania
| | - Anne Kamau
- University of Nairobi, Institute for Development Studies, Nairobi, Kenya
| | - Lucy Ochola
- Institute of Primate Research, Nairobi, Kenya
| | | |
Collapse
|
121
|
Inflammation-Induced Histamine Impairs the Capacity of Escitalopram to Increase Hippocampal Extracellular Serotonin. J Neurosci 2021; 41:6564-6577. [PMID: 34083254 DOI: 10.1523/jneurosci.2618-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/11/2023] Open
Abstract
Commonly prescribed selective serotonin reuptake inhibitors (SSRIs) inhibit the serotonin transporter to correct a presumed deficit in extracellular serotonin signaling during depression. These agents bring clinical relief to many who take them; however, a significant and growing number of individuals are resistant to SSRIs. There is emerging evidence that inflammation plays a significant role in the clinical variability of SSRIs, though how SSRIs and inflammation intersect with synaptic serotonin modulation remains unknown. In this work, we use fast in vivo serotonin measurement tools to investigate the nexus between serotonin, inflammation, and SSRIs. Upon acute systemic lipopolysaccharide (LPS) administration in male and female mice, we find robust decreases in extracellular serotonin in the mouse hippocampus. We show that these decreased serotonin levels are supported by increased histamine activity (because of inflammation), acting on inhibitory histamine H3 heteroreceptors on serotonin terminals. Importantly, under LPS-induced histamine increase, the ability of escitalopram to augment extracellular serotonin is impaired because of an off-target action of escitalopram to inhibit histamine reuptake. Finally, we show that a functional decrease in histamine synthesis boosts the ability of escitalopram to increase extracellular serotonin levels following LPS. This work reveals a profound effect of inflammation on brain chemistry, specifically the rapidity of inflammation-induced decreased extracellular serotonin, and points the spotlight at a potentially critical player in the pathology of depression, histamine. The serotonin/histamine homeostasis thus, may be a crucial new avenue in improving serotonin-based treatments for depression.SIGNIFICANCE STATEMENT Acute LPS-induced inflammation (1) increases CNS histamine, (2) decreases CNS serotonin (via inhibitory histamine receptors), and (3) prevents a selective serotonin reuptake inhibitor (SSRI) from effectively increasing extracellular serotonin. A targeted depletion of histamine recovers SSRI-induced increases in extracellular hippocampal serotonin.
Collapse
|
122
|
Altered levels of interleukins and neurotrophic growth factors in mood disorders and suicidality: an analysis from periphery to central nervous system. Transl Psychiatry 2021; 11:341. [PMID: 34078872 PMCID: PMC8171230 DOI: 10.1038/s41398-021-01452-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/08/2022] Open
Abstract
Interleukins and neurotrophins levels are altered in the periphery of patients with major depression and suicidal behavior, however it is not clear if similar abnormalities occur in the central nervous system. Our objective was to examine the association of IL-6, IL-1β, BDNF, and GDNF levels between postmortem plasma, cerebrospinal fluid (CSF), and brain tissue in a heterogeneous diagnostic subject groups including normal controls, mood disorders only, mood disorders with AUD/SUD (alcohol abuse disorder, substance abuse disorder), and AUD/SUD without mood disorders. To address these questions we collected postmortem plasma (n = 29), CSF (n = 28), and brain (BA10) (n = 57) samples from individuals with mood disorder, mood disorder with AUD/SUD, AUD/SUD and normal controls. These samples were analyzed using a multiplex based luminex assay with a customized 4-plex cytokine/interleukins- IL-6, IL-1β, BDNF, and GDNF human acute phase based on xMAP technology platform. Protein levels were determined using a Luminex 200 instrument equipped with Xponent-analyzing software. We observed IL-6 (p = 2.1e-07), and GDNF (p = 0.046) were significantly correlated between brain and CSF. In addition, IL-6 (p = 0.031), were significantly correlated between brain and plasma. Overall diagnostic group analysis showed a significant difference with brain GDNF, p = 0.0106. Pairwise comparisons showed that GDNF level is-39.9 ± 12 pg/ml, p = 0.0106, was significantly higher than in the brains derived from mood disorders compared to normal controls, -23.8 ± 5.5 pg/ml, p = 0.034. Brain BDNF was higher in suicide (p = 0.0023), males compared to females (p = 0.017), and psychiatric medication treated vs. non-treated (p = 0.005) individuals. Overall, we demonstrate that blood IL-6, GDNF and BDNF could be informative peripheral biomarkers of brain biology associated with mood disorders, substance disorders, and suicide.
Collapse
|
123
|
Mental health during the COVID-19 pandemic and beyond: The importance of the vagus nerve for biopsychosocial resilience. Neurosci Biobehav Rev 2021; 125:1-10. [PMID: 33582230 PMCID: PMC8106638 DOI: 10.1016/j.neubiorev.2021.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
The COVID-19 pandemic has led to widespread increases in mental health problems, including anxiety and depression. The development of these and other psychiatric disorders may be related to changes in immune, endocrine, autonomic, cognitive, and affective processes induced by a SARS-CoV-2 infection. Interestingly, many of these same changes can be triggered by psychosocial stressors such as social isolation and rejection, which have become increasingly common due to public policies aimed at reducing the spread of SARS-CoV-2. The present review aims to shed light on these issues by describing how viral infections and stress affect mental health. First, we describe the multi-level mechanisms linking viral infection and life stress exposure with risk for psychopathology. Then, we summarize how resilience can be enhanced by targeting vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation and targeting lifestyle factors, such as exercise. With these biopsychosocial insights in mind, researchers and healthcare professionals will be better equipped to reduce risk for psychopathology and increase resilience during this challenging pandemic period and beyond.
Collapse
|
124
|
Pandey GN, Rizavi HS, Bhaumik R, Zhang H. Chemokines gene expression in the prefrontal cortex of depressed suicide victims and normal control subjects. Brain Behav Immun 2021; 94:266-273. [PMID: 33571631 PMCID: PMC8231709 DOI: 10.1016/j.bbi.2021.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/03/2023] Open
Abstract
Abnormalities of neuroinflammation have been implicated in the pathogenesis of depression and suicide. This is primarily based on the observation that cytokines, which are major inflammatory molecules and play an important role in depression and suicide, are increased in both serum and in postmortem brain of depressed and suicidal subjects. Another class of immune mediators are chemokines which are primarily involved in chemotactic properties and trafficking of immune cells in the central nervous system (CNS). Chemokines also play an important role in CNS function. Whereas chemokines have been studied in the serum of depressed and suicidal patients, their role in brain of depressed or suicidal subjects is relatively unexplored. We studied the gene expression of several chemokines in the prefrontal cortex (PFC) obtained from depressed suicidal (DS) and normal control (NC) subjects. We determined the mRNA expression of several chemokines belonging to CXCL and CCL groups of chemokines using qPCR array technique and qPCR gene expression validation in 24 DS and 24 NC subjects. The postmortem brain samples were obtained from the Maryland Brain Collection. We found that the mRNA expression of chemokines CXCL1, CXCL2, CXCL3 and CCL2 was significantly decreased in the PFC of DS compared with NC subjects. No significant change was observed in CXCL5, CXCL6, CXCL10, CCL8 and CCL19 between DS and NC subjects. Since many of the chemokines are involved in mediating certain important CNS functions, such as neurotrophic effect, neurogenesis, anti-apoptotic growth factor release, modulation of synaptic transmission, brain development and neuronal loss, decreased levels of chemokines can reduce these functions which may be involved in the pathophysiology of depression.
Collapse
Affiliation(s)
- Ghanshyam N. Pandey
- Corresponding Author: Ghanshyam N. Pandey, Ph.D., University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA, Phone (312) 413-4540, Fax: (312) 413-4547,
| | | | | | | |
Collapse
|
125
|
Bialek K, Czarny P, Wigner P, Synowiec E, Barszczewska G, Bijak M, Szemraj J, Niemczyk M, Tota-Glowczyk K, Papp M, Sliwinski T. Chronic Mild Stress and Venlafaxine Treatment Were Associated with Altered Expression Level and Methylation Status of New Candidate Inflammatory Genes in PBMCs and Brain Structures of Wistar Rats. Genes (Basel) 2021; 12:genes12050667. [PMID: 33946816 PMCID: PMC8146372 DOI: 10.3390/genes12050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Preclinical studies conducted to date suggest that depression could be elicited by the elevated expression of proinflammatory molecules: these play a key role in the mediation of neurochemical, neuroendocrine and behavioral changes. Thus, this study investigates the effect of chronic mild stress (CMS) and administration of venlafaxine (SSRI) on the expression and methylation status of new target inflammatory genes: TGFA, TGFB, IRF1, PTGS2 and IKBKB, in peripheral blood mononuclear cells (PMBCs) and in selected brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or venlafaxine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our results indicate that both CMS and chronic treatment with venlafaxine were associated with changes in expression of the studied genes and their promoter methylation status in PMBCs and the brain. Moreover, the effect of antidepressant administration clearly differed between brain structures. Summarizing, our results confirm at least a partial association between TGFA, TGFB, IRF1, PTGS2 and IKBKB and depressive disorders.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Gabriela Barszczewska
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
126
|
John F, Michelhaugh SK, Barger GR, Mittal S, Juhász C. Depression and tryptophan metabolism in patients with primary brain tumors: Clinical and molecular imaging correlates. Brain Imaging Behav 2021; 15:974-985. [PMID: 32767048 DOI: 10.1007/s11682-020-00305-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with brain tumors have an increased risk for depression, whose underlying pathomechanism may involve dysregulated tryptophan/kynurenine metabolism. In this study, we analyzed the relation of depressive symptoms to clinical and tumor characteristics as well as cerebral and systemic tryptophan metabolism in patients with primary brain tumors. Sixty patients with newly-diagnosed or recurrent primary brain tumor underwent testing with the Beck Depression Inventory-II (BDI-II), and 34 patients also had positron emission tomography (PET) imaging with alpha-[11C]methyl-L-tryptophan (AMT). BDI-II scores were correlated with clinical and tumor-related variables, cerebral regional AMT metabolism measured in the non-tumoral hemisphere, and plasma tryptophan metabolite levels. Sixteen patients (27%) had BDI-II scores indicating depression, including 6 with moderate/severe depression. High BDI-II scores were independent of clinical and tumor-related variables except lower Karnofsky Performance Status scores. In patients with recurrent malignant gliomas, depression was associated with shorter survival (hazard ratio: 3.7; p = 0.048). High BDI-II total and somatic subscale scores were associated with higher frontal cortical and thalamic AMT metabolic values measured on PET. In contrast, plasma tryptophan and kynurenine metabolite levels did not correlate with the BDI-II scores. In conclusion, our results confirm previous data that depression affects more than ¼ of patients with primary brain tumors, it is largely independent of tumor characteristics and is associated with shorter survival in patients with recurrent malignant gliomas. On PET imaging, higher tryptophan metabolism in the frontal cortex and thalamus was found in those with brain tumor-associated depression and supports the role of dysregulated tryptophan/kynurenine metabolism in this condition.
Collapse
Affiliation(s)
- Flóra John
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, 3901 Beaubien St, MI, Detroit, 48201, USA
| | - Sharon K Michelhaugh
- Department of Neurosurgery, Wayne State University, 4201 St. Antoine St., Detroit, MI, 48201, USA
| | - Geoffrey R Barger
- Department of Neurology, Wayne State University, 4201 St. Antoine St, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, 4100 John R. St, Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, 4201 St. Antoine St., Detroit, MI, 48201, USA
- Karmanos Cancer Institute, 4100 John R. St, Detroit, MI, 48201, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24014, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, 24061, USA
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, 3901 Beaubien St, MI, Detroit, 48201, USA.
- Department of Neurosurgery, Wayne State University, 4201 St. Antoine St., Detroit, MI, 48201, USA.
- Department of Neurology, Wayne State University, 4201 St. Antoine St, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, 4100 John R. St, Detroit, MI, 48201, USA.
| |
Collapse
|
127
|
Leite Dantas R, Freff J, Ambrée O, Beins EC, Forstner AJ, Dannlowski U, Baune BT, Scheu S, Alferink J. Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders? Cells 2021; 10:941. [PMID: 33921690 PMCID: PMC8072712 DOI: 10.3390/cells10040941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.
Collapse
Affiliation(s)
- Rafael Leite Dantas
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Jana Freff
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| | - Oliver Ambrée
- Department of Behavioural Biology, University of Osnabrück, 49076 Osnabrück, Germany;
- Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Eva C. Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
| | - Andreas J. Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127 Bonn, Germany; (E.C.B.); (A.J.F.)
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, 52428 Jülich, Germany
| | - Udo Dannlowski
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Judith Alferink
- Department of Mental Health, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.F.); (U.D.); (B.T.B.)
- Cells in Motion Interfaculty Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
128
|
Mosiołek A, Pięta A, Jakima S, Zborowska N, Mosiołek J, Szulc A. Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD). J Clin Med 2021; 10:jcm10081706. [PMID: 33920992 PMCID: PMC8071355 DOI: 10.3390/jcm10081706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent mental illness and a leading cause of disability worldwide. Despite a range of effective treatments, more than 30% of patients do not achieve remission as a result of conventional therapy. In these circumstances the identification of novel drug targets and pathogenic factors becomes essential for selecting more efficacious and personalized treatment. Increasing evidence has implicated the role of inflammation in the pathophysiology of depression, revealing potential new pathways and treatment options. Moreover, convergent evidence indicates that MDD is related to disturbed neurogenesis and suggests a possible role of neurotrophic factors in recovery of function in patients. Although the influence of antidepressants on inflammatory cytokines balance was widely reported in various studies, the exact correlation between drugs used and specific cytokines and neurotrophins serum levels often remains inconsistent. Available data suggest anti-inflammatory properties of selective serotonin reuptake inhibitors (SSRIs), selective serotonin and noradrenaline inhibitors (SNRIs), and tricyclic antidepressants (TCAs) as a possible additional mechanism of reduction of depressive symptoms. In this review, we outline emerging data regarding the influence of different antidepressant drugs on a wide array of peripheral biomarkers such as interleukin (IL)-1ß, IL-2, IL-5, IL-6, IL-8, IL-10, C-reactive protein (CRP), or interferon (IFN)-γ. Presented results indicate anti-inflammatory effect for selected drugs or lack of such effect. Research in this field is insufficient to define the role of inflammatory markers as a predictor of treatment response in MDD.
Collapse
Affiliation(s)
- Anna Mosiołek
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
- Correspondence:
| | - Aleksandra Pięta
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Sławomir Jakima
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Natalia Zborowska
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| | - Jadwiga Mosiołek
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1 Street, 50-367 Wrocław, Poland;
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Żwirki i Wigury 61 Street, 02-091 Warszawa, Poland; (A.P.); (A.S.)
- Mazovia Specialist Health Center in Pruszków, Partyzantów 2/4 Street, 05-802 Pruszków, Poland; (S.J.); (N.Z.)
| |
Collapse
|
129
|
Naeem K, Tariq Al Kury L, Nasar F, Alattar A, Alshaman R, Shah FA, Khan AU, Li S. Natural Dietary Supplement, Carvacrol, Alleviates LPS-Induced Oxidative Stress, Neurodegeneration, and Depressive-Like Behaviors via the Nrf2/HO-1 Pathway. J Inflamm Res 2021; 14:1313-1329. [PMID: 33854358 PMCID: PMC8041651 DOI: 10.2147/jir.s294413] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Major depressive disorder (MDD) is a debilitating human health condition characterized by mood swings and is associated with a high probability of suicide attempts. Several studies have reported a role of neuroinflammation in MMD, yet the efficacy of natural drug substances on neuroinflammation-associated depression has not been well-investigated. The present study examined the neuroprotective effects of carvacrol on lipopolysaccharide (LPS)-induced neuroinflammation, depression, and anxiety-like behavior. METHODS Male Sprague Dawley rats were divided into two experimental cohorts to determine the effects and the effective dose of carvacrol (whether 20 mg/kg or 50 mg/kg), and further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in depression. RESULTS We found marked neuronal alterations in the cortex and hippocampus of LPS-intoxicated animals that were associated with higher inflammatory cytokine expression such as cyclooxygenase (COX2), tumor necrosis factor-alpha (TNF-α), and c-Jun N-terminal kinase (p-JNK). These detrimental effects exacerbated oxidative stress, as documented by a compromised antioxidant system due to high lipid peroxidase (LPO). Carvacrol (20 mg/kg) significantly reverted these changes by positively modulating the antioxidant gene Nrf2, a master regulator of the downstream antioxidant pathway. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated LPS toxicity with a higher oxidative and inflammatory cytokine level. To further support our notion, we performed virtual docking of carvacrol with the Nrf2-Keap1 target and the resultant drug-protein interactions validated the in vivo findings. CONCLUSION Collectively, our findings suggest that carvacrol (20 mg/kg) could activate the endogenous master antioxidant Nrf2, which further regulates the expression of downstream antioxidants, eventually ameliorating LPS-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Komal Naeem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 747424, Pakistan
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, 49153, United Arab Emirates
| | - Faiza Nasar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 747424, Pakistan
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Fawad Ali Shah
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 747424, Pakistan
| | - Arif-ullah Khan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 747424, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
130
|
Chaves Filho AJM, Mottin M, Soares MVR, Jucá PM, Andrade CH, Macedo DS. Tetracyclines, a promise for neuropsychiatric disorders: from adjunctive therapy to the discovery of new targets for rational drug design in psychiatry. Behav Pharmacol 2021; 32:123-141. [PMID: 33595954 DOI: 10.1097/fbp.0000000000000585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Major mental disorders, such as schizophrenia, bipolar disorder, and major depressive disorder, represent the leading cause of disability worldwide. Nevertheless, the current pharmacotherapy has several limitations, and a large portion of patients do not respond appropriately to it or remain with disabling symptoms overtime. Traditionally, pharmacological interventions for psychiatric disorders modulate dysfunctional neurotransmitter systems. In the last decades, compelling evidence has advocated for chronic inflammatory mechanisms underlying these disorders. Therefore, the repurposing of anti-inflammatory agents has emerged as an attractive therapeutic tool for mental disorders. Minocycline (MINO) and doxycycline (DOXY) are semisynthetic second-generation tetracyclines with neuroprotective and anti-inflammatory properties. More recently, the most promising results obtained in clinical trials using tetracyclines for major psychiatric disorders were for schizophrenia. In a reverse translational approach, tetracyclines inhibit microglial reactivity and toxic inflammation by mechanisms related to the inhibition of nuclear factor kappa B signaling, cyclooxygenase 2, and matrix metalloproteinases. However, the molecular mechanism underlying the effects of these tetracyclines is not fully understood. Therefore, the present review sought to summarize the latest findings of MINO and DOXY use for major psychiatric disorders and present the possible targets to their molecular and behavioral effects. In conclusion, tetracyclines hold great promise as (ready-to-use) agents for being used as adjunctive therapy for human neuropsychiatric disorders. Hence, the understanding of their molecular mechanisms may contribute to the discovery of new targets for the rational drug design of novel psychoactive agents.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| |
Collapse
|
131
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
132
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
133
|
Steinbusch HWM, Dolatkhah MA, Hopkins DA. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. PROGRESS IN BRAIN RESEARCH 2021; 261:41-81. [PMID: 33785137 DOI: 10.1016/bs.pbr.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events. It is involved in neurodegeneration, e.g., amyloid plaques, neurofibrillary tangles, and impaired synaptic transmission in Alzheimer's disease as shown in our autopsy findings. The DRN is a phylogenetically old brain area, with projections that reach out to a large number of regions and nuclei of the central nervous system, particularly in the forebrain. These ascending projections contain multiple neurotransmitters. One of the main reasons for the past and current interest in the DRN is its involvement in depression, and its main transmitter serotonin. The DRN also points toward the increased importance and focus of the brainstem as key area in various age-related and neurodevelopmental diseases. This review describes the morphology, ascending projections and the complex neurotransmitter nature of the DRN, stressing its role as a key research target into the neural bases of depression.
Collapse
Affiliation(s)
- Harry W M Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology-DGIST, Daegu, South Korea.
| | | | - David A Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
134
|
Yao H, Shen H, Yu H, Wang C, Ding R, Lan X, Tash D, Wu X, Wang X, Zhang G. Chronic ethanol exposure induced depressive-like behavior in male C57BL/6 N mice by downregulating GluA1. Physiol Behav 2021; 234:113387. [PMID: 33713693 DOI: 10.1016/j.physbeh.2021.113387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Chronic ethanol exposure can increase the risk of depression. The α-amino-3‑hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor is a key factor in depression and its treatment. The study was conducted to investigate the depressive-like behavior induced by chronic ethanol exposure in mice and to explore the mechanism in cells. To establish the chronic ethanol exposure mouse model, male C57BL/6 N mice were administered 10% (m/V) and 20% (m/V) ethanol as the only choice for drinking for 60 days, 90 days and 180 days. Depressive-like behavior in mice was confirmed by the forced swimming test (FST). Ethanol-induced changes in the mouse hippocampus were indicated by Western blotting, qPCR and Fluoro-Jade C (FJC) staining. We confirmed that 90- and 180-day ethanol exposure can lead to depressive-like mouse behavior, cell apoptosis, neuronal degeneration, a reduction in GluA1 and brain-derived neurotrophic factor (BDNF) expression, and an increase in IL-6 and IL-1β in the mouse hippocampus. GluA1 silencing and overexpression models of SH-SY5Y cells were established for further investigation. The cells were treated with 100 mM and 200 mM ethanol for 24 h. Ethanol exposure decreased cell viability and the expression of BDNF and increased the cell apoptosis rate and the expression of BAX, cleaved caspase-3, IL-1β and IL-6. GluA1 silencing aggravated ethanol-induced changes in cell viability and apoptosis and the expression of BDNF, BAX and cleaved caspase-3, and GluA1 overexpression attenuated these changes. Neither the silencing nor overexpression of GluA1 had an effect on ethanol-induced increases in IL-1β and IL-6. Our results indicated that chronic ethanol exposure induced depressive-like behavior in male C57BL/6 N mice by downregulating GluA1 expression.
Collapse
Affiliation(s)
- Hui Yao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Hui Shen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China; The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110032, P. R. China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Runtao Ding
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xinze Lan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Dilichati Tash
- Kizilsu Kirgiz Autonomous Prefecture Public Security Bureau, Artux, Xinjiang Uygur Autonomous Region, 845350, P. R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
135
|
Zhang Y, Anoopkumar-Dukie S, Davey AK. SIRT1 and SIRT2 Modulators: Potential Anti-Inflammatory Treatment for Depression? Biomolecules 2021; 11:biom11030353. [PMID: 33669121 PMCID: PMC7996578 DOI: 10.3390/biom11030353] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
Depression is a psychiatric disorder that has a significant health burden on patients and their families. Unfortunately, the current antidepressant medications that mainly target monoamine neurotransmitters have limited efficacy. Recent evidence has indicated that neuroinflammation participates in the genesis and development of depression, and interacts with other factors involved in depression. Therefore, exploring effective anti-inflammatory medications could be beneficial for the development of new treatment options for depression. Sirtuins are a unique class of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, which have seven members that can affect multiple downstream targets by deacetylation activity. Among these seven members, SIRT1 and SIRT2 have been shown to participate in the pathophysiology of inflammation in numerous studies. Thus, in this short article, we review the association of SIRT1 and SIRT2 activity and depression, and evidence of the effects of SIRT1 and SIRT2 modulators on inflammation in vitro and depressive-like behaviours in vivo.
Collapse
Affiliation(s)
- Yuqing Zhang
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (Y.Z.); (S.A.-D.)
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (Y.Z.); (S.A.-D.)
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Andrew Keith Davey
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (Y.Z.); (S.A.-D.)
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-07-5552-8361; Fax: +61-07-5552-8804
| |
Collapse
|
136
|
Li Y, Wang X, Chen J, Li Z, Yang P, Qin L. Aberrant Auditory Steady-State Response of Awake Mice Induced by Chronic Interferon-α Treatment. Front Pharmacol 2021; 11:584425. [PMID: 33584262 PMCID: PMC7873645 DOI: 10.3389/fphar.2020.584425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Patients receiving the cytokine immunotherapy of interferon-alpha (IFN-α) frequently present with depression. This is one of the excellent models to explore the action of peripheral cytokine on central nervous system (CNS) and to study the development of depression. The auditory steady-state response (ASSR), electroencephalogram (EEG) oscillations induced by periodic acoustic stimulation, is an effective approach to evaluate the neural function in mental illness including depression. The aim of the present study was to investigate the effect of IFN-α on the cortical ASSR and its correlation with depressive-like behavior. Methods: Chronic electrodes were implanted on the skull over the auditory cortex (AC) of male C57BL/6 mice. The animals were treated with daily injection of IFN-α or saline (vehicle) for three weeks. EEGs were recorded in AC of the same mouse before and after the injection treatment to monitor the changes of ASSR induced by IFN-α. Depressive-like behavior was analyzed in the forced swim test (FST). Immunohistochemical staining was used to examine the status of neuron and glia in the hippocampus and AC. Results: Compared to pretreatment condition, injection of IFN-α significantly reduced the power of 40 Hz ASSR in the mouse AC from the second week. Such a decrease continued to the third week. The immobility times of FST were significantly increased by a 3-week treatment of IFN-α and the immobility time was negatively correlated with the power of 40 Hz ASSR. Astrocytes and microglia in the hippocampus and AC were activated by IFN-α, but the density of neuron was not significantly affected. Conclusion: Our results suggest that EEG measurement of ASSR may be used as a biomarker to monitor the CNS side effects of IFN-α treatment and to search a novel intervention with potential therapeutic implications.
Collapse
Affiliation(s)
- Yingzhuo Li
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Jingyu Chen
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Zijie Li
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ling Qin
- Department of Physiology, China Medical Univeristy, Shenyang, China
| |
Collapse
|
137
|
Gut-brain axis: A matter of concern in neuropsychiatric disorders…! Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110051. [PMID: 32758517 DOI: 10.1016/j.pnpbp.2020.110051] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
The gut microbiota is composed of a large number of microbes, usually regarded as commensal bacteria. It has become gradually clear that gastrointestinal microbiota affects gut pathophysiology and the central nervous system (CNS) function by modulating the signaling pathways of the microbiota-gut-brain (MGB) axis. This bidirectional MGB axis communication primarily acts through neuroendocrine, neuroimmune, and autonomic nervous systems (ANS) mechanisms. Accumulating evidence reveals that gut microbiota interacts with the host brain, and its modulation may play a critical role in the pathology of neuropsychiatric disorders. Recently, neuroscience research has established the significance of gut microbiota in the development of brain systems that are essential to stress-related behaviors, including depression and anxiety. Application of modulators of the MGB, such as psychobiotics (e.g., probiotics), prebiotics, and specific diets, may be a promising therapeutic approach for neuropsychiatric disorders. The present review article primarily focuses on the relevant features of the disturbances of the MGB axis in the pathophysiology of neuropsychiatric disorders and its potential mechanisms.
Collapse
|
138
|
Gómez L, Verd S, de-la-Banda G, Cardo E, Servera M, Filgueira A, Ponce-Taylor J, Mulet M. Perinatal psychological interventions to promote breastfeeding: a narrative review. Int Breastfeed J 2021; 16:8. [PMID: 33407656 PMCID: PMC7789781 DOI: 10.1186/s13006-020-00348-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Emotional distress in mothers inhibits the let-down reflex, thus affecting breastfeeding self-efficacy. A breastfeeding mother may have to cope with both physical discomfort and psychological distress. However, literature on initiatives to improve breastfeeding rates has focused mainly on providing community-based peer support, or social policies. The aim of this review is to assess evidence on the effectiveness of a broad range of psychological interventions to facilitate breastfeeding for mothers facing difficulties around the time of delivery. Methods The review of the literature is derived from a search on Cochrane Library, PubMed, EBSCOhost, and PsycINFO for papers published since 1980. The approach was to explore quantitative and qualitative parameters. Quantitative parameters included breastfeeding initiation, duration, and composition. Qualitative parameters recorded the evaluation of maternal perceptions on breastfeeding success. The high heterogeneity of the studies led to a narrative review; 20 selected papers that report on breastfeeding outcomes and psychological programs met the inclusion criteria. Results The evidence on breastfeeding support through psychotherapy is heterogeneous and scant. Out of the included studies, 11 were randomized controlled trials, two were non-randomised trials, and two used a quasi-experimental design. None of the studies reported an increase in adverse breastfeeding outcomes. Three studies failed to report an association between psychological procedures and improved breastfeeding outcomes. A literature review showed that 17 (85%) analyses support stress-releasing techniques to facilitate breastfeeding. Conclusions This review suggests that relaxation interventions carefully tailored to address perinatal emotional distress may lead to important health benefits, including improvement in breastfeeding outcomes. There is also some indication that psychotherapy support while breastfeeding may have more impact than routine counselling. Conversely, this review did not find an association between self-hypnosis and breastfeeding outcomes. Data from this study can be used in designing prevention programs and future research with appropriate theoretical underpinning.
Collapse
Affiliation(s)
- Lidia Gómez
- Department of Child Psychiatry, Son Espases Hospital, Valldemossa road, 07120, Palma de Mallorca, Spain.,Baleares Medical Research Council (IdISBa), Valldemossa road, 07120, Palma de Mallorca, Spain
| | - Sergio Verd
- Baleares Medical Research Council (IdISBa), Valldemossa road, 07120, Palma de Mallorca, Spain. .,Pediatric Unit, La Vileta Surgery, Department of Primary Care, Matamusinos street, 07013, Palma de Mallorca, Spain.
| | - Gloria de-la-Banda
- Department of Psychology, Baleares Islands University, Valldemossa road, 07122, Palma de Mallorca, Spain
| | - Esther Cardo
- Pediatric Unit, La Vileta Surgery, Department of Primary Care, Matamusinos street, 07013, Palma de Mallorca, Spain.,Department of Paediatrics, Hospital Son Llatzer, Manacor road, 07128, Palma de Mallorca, Spain
| | - Mateu Servera
- Department of Psychology, Baleares Islands University, Valldemossa road, 07122, Palma de Mallorca, Spain
| | - Ana Filgueira
- Department of Paediatrics, Hospital Son Llatzer, Manacor road, 07128, Palma de Mallorca, Spain
| | - Jaume Ponce-Taylor
- Accidents & Emergency Unit, Department of Primary Care, Illes Balears street., 07014, Palma de Mallorca, Spain
| | - Margarita Mulet
- Mental Health Unit, Department of Primary Care, Simo Tort street, 07500, Mallorca, Manacor, Spain
| |
Collapse
|
139
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
140
|
Yu Y, Liang HF, Chen J, Li ZB, Han YS, Chen JX, Li JC. Postpartum Depression: Current Status and Possible Identification Using Biomarkers. Front Psychiatry 2021; 12:620371. [PMID: 34211407 PMCID: PMC8240635 DOI: 10.3389/fpsyt.2021.620371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Postpartum depression (PPD) is a serious health issue that can affect about 15% of the female population within after giving birth. It often conveys significant negative consequences to the offsprings. The symptoms and risk factors are somewhat similar to those found in non-postpartum depression. The main difference resides in the fact that PPD is triggered by postpartum specific factors, including especially biological changes in the hormone levels. Patients are usually diagnosed using a questionnaire onsite or in a clinic. Treatment of PPD often involves psychotherapy and antidepressant medications. In recent years, there have been more researches on the identification of biological markers for PPD. In this review, we will focus on the current research status of PPD, with an emphasis on the recent progress made on the identification of PPD biomarkers.
Collapse
Affiliation(s)
- Yi Yu
- Central Laboratory, Yangjiang People's Hospital, Yangjiang, China.,Center for Analyses and Measurements, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Hong-Feng Liang
- Central Laboratory, Yangjiang People's Hospital, Yangjiang, China
| | - Jing Chen
- Central Laboratory, Yangjiang People's Hospital, Yangjiang, China.,Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | - Zhi-Bin Li
- Central Laboratory, Yangjiang People's Hospital, Yangjiang, China.,Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | - Yu-Shuai Han
- Central Laboratory, Yangjiang People's Hospital, Yangjiang, China.,Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | - Jia-Xi Chen
- Central Laboratory, Yangjiang People's Hospital, Yangjiang, China.,Institute of Cell Biology, Zhejiang University, Hangzhou, China
| | - Ji-Cheng Li
- Central Laboratory, Yangjiang People's Hospital, Yangjiang, China.,Institute of Cell Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
141
|
Liu CH, Hua N, Yang HY. Alterations in Peripheral C-Reactive Protein and Inflammatory Cytokine Levels in Patients with Panic Disorder: A Systematic Review and Meta-Analysis. Neuropsychiatr Dis Treat 2021; 17:3539-3558. [PMID: 34908836 PMCID: PMC8665884 DOI: 10.2147/ndt.s340388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Accumulating evidence has shown the important role of the inflammatory process in the pathophysiology of mental disorders. However, the relative levels of inflammatory markers in patients with panic disorder (PD) have rarely been evaluated. The aim of the present study was to conduct a systematic review to determine the correlation of peripheral C-reactive protein (CRP) and inflammatory cytokine profiles with PD. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched for quantitative research studies published up to July 31, 2021 that measured peripheral levels of CRP and inflammatory cytokines in people with PD compared with controls. Meta-analysis using a random-effects model was performed for the levels of CRP and inflammatory cytokines with data from three or more studies. RESULTS Fourteen identified studies met the inclusion criteria. In total, 18 cytokines were evaluated. Markers that were reported in more than 3 studies were included in this meta-analysis. The results showed that peripheral levels of CRP, IL-6, IL-2 and TNF-α were significantly higher in PD patients than in healthy controls, while there was no significant difference in peripheral levels of IL-1β, IL-10 and IFN-γ between groups. Notably, the relevant studies involving IL-6, IL-1β, IL-10 and IFN-γ in PD patients were highly heterogeneous. Similar to meta-analyses of other inflammatory factors in mental disorders, our meta-analysis also reflected differences in participant medication use, comorbid anxiety or depression, sampling methods and detection methods. Eight inflammatory cytokines were reported in only one study, and their expression levels were higher, lower, or unchanged compared with those in healthy controls. CONCLUSION There is preliminary evidence to suggest a significant inflammatory response in PD patients, but the role of inflammatory markers in PD remains unclear. Studying inflammatory markers in PD will help to clarify the etiology and pathophysiological mechanisms of the disorder.
Collapse
Affiliation(s)
- Chang-He Liu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Na Hua
- Department of Otolaryngology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Huai-Yu Yang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| |
Collapse
|
142
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, Carito V, Tirassa P, Chaldakov GN, Messina MP, Ceccanti M, Fiore M. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 19:45-60. [PMID: 32348226 PMCID: PMC7903493 DOI: 10.2174/1570159x18666200429003239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
143
|
Yang J, Zheng P, Li Y, Wu J, Tan X, Zhou J, Sun Z, Chen X, Zhang G, Zhang H, Huang Y, Chai T, Duan J, Liang W, Yin B, Lai J, Huang T, Du Y, Zhang P, Jiang J, Xi C, Wu L, Lu J, Mou T, Xu Y, Perry SW, Wong ML, Licinio J, Hu S, Wang G, Xie P. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. SCIENCE ADVANCES 2020; 6:6/49/eaba8555. [PMID: 33268363 PMCID: PMC7710361 DOI: 10.1126/sciadv.aba8555] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 10/16/2020] [Indexed: 05/23/2023]
Abstract
Gut microbiome disturbances have been implicated in major depressive disorder (MDD). However, little is known about how the gut virome, microbiome, and fecal metabolome change, and how they interact in MDD. Here, using whole-genome shotgun metagenomic and untargeted metabolomic methods, we identified 3 bacteriophages, 47 bacterial species, and 50 fecal metabolites showing notable differences in abundance between MDD patients and healthy controls (HCs). Patients with MDD were mainly characterized by increased abundance of the genus Bacteroides and decreased abundance of the genera Blautia and Eubacterium These multilevel omics alterations generated a characteristic MDD coexpression network. Disturbed microbial genes and fecal metabolites were consistently mapped to amino acid (γ-aminobutyrate, phenylalanine, and tryptophan) metabolism. Furthermore, we identified a combinatorial marker panel that robustly discriminated MDD from HC individuals in both the discovery and validation sets. Our findings provide a deep insight into understanding of the roles of disturbed gut ecosystem in MDD.
Collapse
Affiliation(s)
- Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jing Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- MOE Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xunmin Tan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- MOE Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Guofu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- MOE Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tingjia Chai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- MOE Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Duan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- MOE Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiwei Liang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- MOE Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bangmin Yin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- MOE Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Lai
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, No. 79, Qingchun Road, Hangzhou 310003, China
| | - Tingting Huang
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yanli Du
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Peifen Zhang
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiajun Jiang
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Caixi Xi
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lingling Wu
- Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, No. 79, Qingchun Road, Hangzhou 310003, China
| | - Tingting Mou
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, No. 79, Qingchun Road, Hangzhou 310003, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, No. 79, Qingchun Road, Hangzhou 310003, China
| | - Seth W Perry
- Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shaohua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, No. 79, Qingchun Road, Hangzhou 310003, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
144
|
van der Wurff ISM, von Schacky C, Bergeland T, Leontjevas R, Zeegers MP, Kirschner PA, de Groot RHM. Effect of one year krill oil supplementation on depressive symptoms and self-esteem of Dutch adolescents: A randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102208. [PMID: 33232912 DOI: 10.1016/j.plefa.2020.102208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/29/2020] [Accepted: 11/07/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Observational studies have shown a relationship between omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) and depression in adolescents. However, n-3 LCPUFA supplementation studies investigating the potential improvement in depressive feelings in adolescents from the general population are missing. METHODS A one-year double-blind, randomized, placebo controlled krill oil supplementation trial was conducted in two cohorts. Cohort I started with 400 mg eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) or placebo, after three months this increased to 800 mg EPA and DHA per day, whilst cohort II started with this higher dose. Omega-3 Index (O3I) was monitored via finger-prick blood measurements. At baseline, six and 12 months participants completed the Centre for Epidemiologic Studies Depression Scale (CES-D) and the Rosenberg Self Esteem questionnaire (RSE). Adjusted mixed models were run with treatment allocation/O3I as predictor of CES-D and RSE scores. RESULTS Both intention-to-treat and assessing the change in O3I analyses did not show significant effects on CES-D or RSE scores. CONCLUSION There is no evidence for less depressive feelings, or higher self-esteem after one year of krill oil supplementation. However, due to a lack of adherence and drop-out issues, these results should be interpreted with caution.
Collapse
Affiliation(s)
- I S M van der Wurff
- Faculty of Educational Sciences, Open University of the Netherlands, the Netherlands, Heerlen 6419 AT, the Netherlands.
| | - C von Schacky
- Omegametrix, Martinsried 82 152, Germany; Preventive Cardiology, Medical Clinic and Poli-Clinic I, Ludwig Maximilians-University Munich, 80336 Munich, Germany
| | - T Bergeland
- Aker BioMarine Antarctic AS, Lysaker NO-1327, Norway (former)
| | - R Leontjevas
- Faculty of Psychology, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands
| | - M P Zeegers
- Nutrition and Translational Research in Metabolism (School NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; Care and Public Health Research Institute (School CAPHRI), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - P A Kirschner
- Faculty of Educational Sciences, Open University of the Netherlands, the Netherlands, Heerlen 6419 AT, the Netherlands; Expertise Centre for Effective Learning, Thomas More University of Applied Sciences, Mechelen, Belgium; University of Oulu, Oulu, Finland
| | - R H M de Groot
- Faculty of Educational Sciences, Open University of the Netherlands, the Netherlands, Heerlen 6419 AT, the Netherlands; Nutrition and Translational Research in Metabolism (School NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
145
|
Nobis A, Zalewski D, Waszkiewicz N. Peripheral Markers of Depression. J Clin Med 2020; 9:E3793. [PMID: 33255237 PMCID: PMC7760788 DOI: 10.3390/jcm9123793] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide, creating a high medical and socioeconomic burden. There is a growing interest in the biological underpinnings of depression, which are reflected by altered levels of biological markers. Among others, enhanced inflammation has been reported in MDD, as reflected by increased concentrations of inflammatory markers-C-reactive protein, interleukin-6, tumor necrosis factor-α and soluble interleukin-2 receptor. Oxidative and nitrosative stress also plays a role in the pathophysiology of MDD. Notably, increased levels of lipid peroxidation markers are characteristic of MDD. Dysregulation of the stress axis, along with increased cortisol levels, have also been reported in MDD. Alterations in growth factors, with a significant decrease in brain-derived neurotrophic factor and an increase in fibroblast growth factor-2 and insulin-like growth factor-1 concentrations have also been found in MDD. Finally, kynurenine metabolites, increased glutamate and decreased total cholesterol also hold promise as reliable biomarkers for MDD. Research in the field of MDD biomarkers is hindered by insufficient understanding of MDD etiopathogenesis, substantial heterogeneity of the disorder, common co-morbidities and low specificity of biomarkers. The construction of biomarker panels and their evaluation with use of new technologies may have the potential to overcome the above mentioned obstacles.
Collapse
Affiliation(s)
- Aleksander Nobis
- Department of Psychiatry, Medical University of Bialystok, pl. Brodowicza 1, 16-070 Choroszcz, Poland; (D.Z.); (N.W.)
| | | | | |
Collapse
|
146
|
Zhang C. Flare-up of cytokines in rheumatoid arthritis and their role in triggering depression: Shared common function and their possible applications in treatment (Review). Biomed Rep 2020; 14:16. [PMID: 33269077 PMCID: PMC7694594 DOI: 10.3892/br.2020.1392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/31/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic illnesses are associated with an increased risk of depression and anxiety. Rheumatoid arthritis (RA) is a chronic autoimmune disease that typically causes damage to the joints. RA extensively impacts patients, both physically and psychologically. Depression is a common comorbid disorder with RA, which leads to worsened health outcomes. There are several cytokines that are active in the joints of patients with RA. Inflammatory cytokines serve important roles in the key processes in the joints, which usually cause inflammation, articular damage and other comorbidities associated with RA. The key role of inflammatory cytokines could be attributed to their interactions within signaling pathways. In RA, IL-1, and the cytokines of TNF-α, IL-6 and IL-18 are primarily involved. Furthermore, depression is hypothesized to be strongly associated with systemic inflammation, particularly with dysregulation of the cytokine network. The present review summarizes the current state of knowledge on these two diseases from the perspective of inflammation and cytokines, and emphasizes the possible bridge between them by exploring the involvement of systemic cytokines in both conditions.
Collapse
Affiliation(s)
- Chunhai Zhang
- Thyroid Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin 1300332, P.R. China
| |
Collapse
|
147
|
Simeonova D, Stoyanov D, Leunis JC, Murdjeva M, Maes M. Construction of a nitro-oxidative stress-driven, mechanistic model of mood disorders: A nomothetic network approach. Nitric Oxide 2020; 106:45-54. [PMID: 33186727 DOI: 10.1016/j.niox.2020.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Major depression is accompanied by increased IgM-mediated autoimmune responses to oxidative specific epitopes (OSEs) and nitric oxide (NO)-adducts. These responses were not examined in bipolar disorder type 1 (BP1) and BP2. IgM responses to malondialdehyde (MDA), phosphatidinylinositol, oleic acid, azelaic acid, and NO-adducts were determined in 35 healthy controls, and 47 major depressed (MDD), 29 BP1, and 25 BP2 patients. We also measured serum peroxides, IgG to oxidized LDL (oxLDL), and IgM/IgA directed to lipopolysaccharides (LPS). IgM responses to OSEs and NO-adducts (OSENO) were significantly higher in MDD and BP1 as compared with controls, and IgM to OSEs higher in MDD than in BP2. Partial Least Squares (PLS) analysis showed that 57.7% of the variance in the clinical phenome of mood disorders was explained by number of episodes, a latent vector extracted from IgM to OSENO, IgG to oxLDL, and peroxides. There were significant specific indirect effects of IgA/IgM to LPS on the clinical phenome, which were mediated by peroxides, IgM OSENO, and IgG oxLDL. Using PLS we have constructed a data-driven nomothetic network which ensembled causome (increased plasma LPS load), adverse outcome pathways (namely neuro-affective toxicity), and clinical phenome features of mood disorders in a data-driven model. Based on those feature sets, cluster analysis discovered a new diagnostic class characterized by increased plasma LPS load, peroxides, autoimmune responses to OSENO, and increased phenome scores. Using the new nomothetic network approach, we constructed a mechanistically transdiagnostic diagnostic class indicating neuro-affective toxicity in 74.3% of the mood disorder patients.
Collapse
Affiliation(s)
- Denitsa Simeonova
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University, Plovdiv, Bulgaria
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University, Plovdiv, Bulgaria
| | | | - Marianna Murdjeva
- Research Institute, Medical University, Plovdiv, Bulgaria; Department of Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria; Section of Immunological Assessment of Chronic Stress, Technological Center of Emergency Medicine, Plovdiv, Bulgaria
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Impact Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
148
|
Exercise as Treatment for Youth With Major Depression: The Healthy Body Healthy Mind Feasibility Study. J Psychiatr Pract 2020; 26:444-460. [PMID: 33275382 DOI: 10.1097/pra.0000000000000516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The goals of this study were to determine the feasibility of engaging youth with major depressive disorder (MDD) in a multimodal exercise intervention (Healthy Body Healthy Mind) plus usual care and to evaluate the magnitude of its effects on psychological, physical fitness, and biomarker outcomes to inform a future randomized controlled trial. Youth (15 to 25 y of age) with MDD diagnosed using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) were eligible to participate. Feasibility measures included recruitment, retention, and program adherence rates. The exercise program consisted of a single session of motivational interviewing to enhance exercise adherence, then 1-hour, small-group supervised exercise sessions 3 times per week for 12 weeks. Assessments were administered at baseline and at 12 weeks. Depression symptoms were assessed using the Beck Depression Inventory (BDI-II). Physical fitness and blood biomarkers were also measured. Three males and 10 females with MDD, who were 18 to 24 years of age, participated. Retention at 12 weeks was 86%, and attendance at exercise sessions averaged 62%±28%. After 12 weeks, 69% of participants experienced a remission of MDD based on the SCID. Mean BDI-II scores decreased from 31.9±9.1 to 13.1±10.1 [Cohen d effect size (ES)=1.96]. Improvements were observed in upper (ES=0.64) and lower (ES=0.32) body muscular endurance. Exercise session attendance was moderately correlated with changes in BDI-II scores (Pearson r=0.49). It appears feasible to attract and engage some youth with MDD in an exercise intervention. The positive impact on depression symptoms justifies further studies employing exercise interventions as an adjunct to routine care for young people with MDD.
Collapse
|
149
|
Wittenberg GM, Greene J, Vértes PE, Drevets WC, Bullmore ET. Major Depressive Disorder Is Associated With Differential Expression of Innate Immune and Neutrophil-Related Gene Networks in Peripheral Blood: A Quantitative Review of Whole-Genome Transcriptional Data From Case-Control Studies. Biol Psychiatry 2020; 88:625-637. [PMID: 32653108 DOI: 10.1016/j.biopsych.2020.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/11/2020] [Accepted: 05/03/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Whole-genome transcription has been measured in peripheral blood samples as a candidate biomarker of inflammation associated with major depressive disorder. METHODS We searched for all case-control studies on major depressive disorder that reported microarray or RNA sequencing measurements on whole blood or peripheral blood mononuclear cells. Primary datasets were reanalyzed, when openly accessible, to estimate case-control differences and to evaluate the functional roles of differentially expressed gene lists by technically harmonized methods. RESULTS We found 10 eligible studies (N = 1754 depressed cases and N = 1145 healthy controls). Fifty-two genes were called significant by 2 of the primary studies (published overlap list). After harmonization of analysis across 8 accessible datasets (n = 1706 cases, n = 1098 controls), 272 genes were coincidentally listed in the top 3% most differentially expressed genes in 2 or more studies of whole blood or peripheral blood mononuclear cells with concordant direction of effect (harmonized overlap list). By meta-analysis of standardized mean difference across 4 studies of whole-blood samples (n = 1567 cases, n = 954 controls), 343 genes were found with false discovery rate <5% (standardized mean difference meta-analysis list). These 3 lists intersected significantly. Genes abnormally expressed in major depressive disorder were enriched for innate immune-related functions, coded for nonrandom protein-protein interaction networks, and coexpressed in the normative transcriptome module specialized for innate immune and neutrophil functions. CONCLUSIONS Quantitative review of existing case-control data provided robust evidence for abnormal expression of gene networks important for the regulation and implementation of innate immune response. Further development of white blood cell transcriptional biomarkers for inflamed depression seems warranted.
Collapse
Affiliation(s)
- Gayle M Wittenberg
- Neuroscience, Janssen Research & Development, LLC, Titusville, New Jersey
| | - Jon Greene
- Bioinformatics, Rancho BioSciences, LLC, San Diego, California
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Alan Turing Institute, London, United Kingdom
| | - Wayne C Drevets
- Neuroscience, Janssen Research & Development, LLC, San Diego, California
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom.
| |
Collapse
|
150
|
Berk A, Yılmaz İ, Abacıoğlu N, Kaymaz MB, Karaaslan MG, Kuyumcu Savan E. Antidepressant effect of Gentiana olivieri Griseb. in male rats exposed to chronic mild stress. Libyan J Med 2020; 15:1725991. [PMID: 32048914 PMCID: PMC7034455 DOI: 10.1080/19932820.2020.1725991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The flowering parts of Gentiana olivieri, known as ‘Afat’ in the southeastern Anatolia region of Turkey, are used as a tonic, an appetizer, and for the treatment of several mental disorders, including depression. The purpose of this study is to investigate the antidepressant effect of G. olivieri ethanol extract (GOEE) in a chronic mild stress-induced rat model, which was used to mimic a depressive state in humans, and to compare the effect with that of imipramine. Methods: Male Sprague-Dawley rats were randomly divided into six groups: control, stress, treated with imipramine (positive control) and treated with GOEE at three different (200, 500, 1000 mg/kg) doses groups. The rats in all groups, except the control group, were exposed to chronic mild stress. At the end of the 3-week experimental period, biochemical and behavioral parameters were examined. Results: The results showed that treatment with GOEE or imipramine significantly improved rats’ sucrose consumption which was diminished by chronic mild stress, restored serum levels of corticosterone and proinflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)), prevented the increase of liver index of rats. Moreover, in the hippocampus tissue, decreased serotonin and noradrenaline levels were significantly increased by treatment with GOEE or imipramine, and antioxidant parameters (thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and glutathione (GSH)) were significantly improved by treatment with GOEE though not with imipramine. Conclusion: The data demonstrate that G. olivieri may exert its antidepressant activity by improving monoaminergic system disorders, and by favorably affecting the antioxidant, inflammatory and the endocrine mechanisms.
Collapse
Affiliation(s)
- Ahmet Berk
- Department of Pharmacy, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - İsmet Yılmaz
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Nurettin Abacıoğlu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | | | | | - Ebru Kuyumcu Savan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| |
Collapse
|