101
|
De Silva SR, Arno G, Robson AG, Fakin A, Pontikos N, Mohamed MD, Bird AC, Moore AT, Michaelides M, Webster AR, Mahroo OA. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res 2020; 82:100898. [PMID: 32860923 DOI: 10.1016/j.preteyeres.2020.100898] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
X-linked retinopathies represent a significant proportion of monogenic retinal disease. They include progressive and stationary conditions, with and without syndromic features. Many are X-linked recessive, but several exhibit a phenotype in female carriers, which can help establish diagnosis and yield insights into disease mechanisms. The presence of affected carriers can misleadingly suggest autosomal dominant inheritance. Some disorders (such as RPGR-associated retinopathy) show diverse phenotypes from variants in the same gene and also highlight limitations of current genetic sequencing methods. X-linked disease frequently arises from loss of function, implying potential for benefit from gene replacement strategies. We review X-inactivation and X-linked inheritance, and explore burden of disease attributable to X-linked genes in our clinically and genetically characterised retinal disease cohort, finding correlation between gene transcript length and numbers of families. We list relevant genes and discuss key clinical features, disease mechanisms, carrier phenotypes and novel experimental therapies. We consider in detail the following: RPGR (associated with retinitis pigmentosa, cone and cone-rod dystrophy), RP2 (retinitis pigmentosa), CHM (choroideremia), RS1 (X-linked retinoschisis), NYX (complete congenital stationary night blindness (CSNB)), CACNA1F (incomplete CSNB), OPN1LW/OPN1MW (blue cone monochromacy, Bornholm eye disease, cone dystrophy), GPR143 (ocular albinism), COL4A5 (Alport syndrome), and NDP (Norrie disease and X-linked familial exudative vitreoretinopathy (FEVR)). We use a recently published transcriptome analysis to explore expression by cell-type and discuss insights from electrophysiology. In the final section, we present an algorithm for genes to consider in diagnosing males with non-syndromic X-linked retinopathy, summarise current experimental therapeutic approaches, and consider questions for future research.
Collapse
Affiliation(s)
- Samantha R De Silva
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Ana Fakin
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Moin D Mohamed
- Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Alan C Bird
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK; Section of Ophthalmology, King's College London, UK; Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
102
|
Muralidharan M, Guo T, Shivdasani MN, Tsai D, Fried S, Li L, Dokos S, Morley JW, Lovell NH. Neural activity of functionally different retinal ganglion cells can be robustly modulated by high-rate electrical pulse trains. J Neural Eng 2020; 17:045013. [DOI: 10.1088/1741-2552/ab9a97] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
103
|
He Y, Sun SY, Roy A, Caspi A, Montezuma SR. Improved mobility performance with an artificial vision therapy system using a thermal sensor. J Neural Eng 2020; 17:045011. [PMID: 32650330 DOI: 10.1088/1741-2552/aba4fb] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the benefit of integrating thermal imaging into an artificial vision therapy system, the Argus II retinal prosthesis, in simplifying a complex scene and improving mobility performance in the presence of other persons. APPROACH Four Argus II retinal implant users were evaluated on two tasks: to locate and approach target persons in a booth, and to navigate a hallway while avoiding people. They completed the tasks using both the original Argus II system (the 'Argus II camera') and a thermal-integrated Argus II system (the 'thermal camera'). The safety and efficiency of their navigation were evaluated by their walking speed, navigation errors, and the number of collisions. MAIN RESULTS Navigation performance was significantly superior when using the thermal camera compared to using the Argus II camera, including 75% smaller angle of deviation (p < 0.001), 48% smaller error of distance (p < 0.05), and 30% fewer collisions (p < 0.05). The thermal camera also brought the additional benefit of allowing the participants to perform the task in the dark as efficiently as in the light. More importantly, these benefits did not come at a cost of reduced walking speed. SIGNIFICANCE Using the thermal camera in the Argus II system, compared to a visible-light camera, could improve the wearers' navigation performance by helping them better approach or avoid other persons. Adding the thermal camera to future artificial vision therapy systems may complement the visible-light camera and improve the users' mobility safety and efficiency, enhancing their quality of life.
Collapse
Affiliation(s)
- Yingchen He
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
104
|
Shim SY, Gong S, Fan VH, Rosenblatt MI, Al-Qahtani AF, Sun MG, Zhou Q, Kanu L, Vieira IV, Yu CQ. Characterization of an Electronic Corneal Prosthesis System. Curr Eye Res 2020; 45:914-920. [PMID: 31886728 PMCID: PMC9997130 DOI: 10.1080/02713683.2019.1708957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Corneal opacity is a leading cause of reversible blindness worldwide. An electronic corneal prosthesis, or intraocular projector, could potentially restore high-quality vision without need for corneal clarity. MATERIALS AND METHODS Four intraocular projection systems were constructed from commercially available electronic components and encased in biocompatible plastic housing. They were tested for optical properties, biocompatibility, heat dissipation, waterproofing, and accelerated wear. A surgical implantation technique was developed. RESULTS Intraocular projectors were produced of a size that can fit within the eye. Their optics produce better than 20/200 equivalent visual acuity. MTT assay demonstrated no cytotoxicity of devices in vitro. Temperature testing demonstrated less than 2°C increase in temperature after 1 h. Three devices lasted over 12 weeks under accelerated wear conditions. Implantation surgery was demonstrated via corneal trephination insertion in a cadaver eye. CONCLUSION This is the first study to demonstrate and characterize fully functional intraocular projection systems. This technology has the potential to be an important new tool in the treatment of intractable corneal blindness.
Collapse
Affiliation(s)
- Sarah Y Shim
- Electrical and Computer Engineering, The University of Illinois Urbana Champaign , Champaign, IL, USA
| | - Songbin Gong
- Electrical and Computer Engineering, The University of Illinois Urbana Champaign , Champaign, IL, USA
| | - Victoria H Fan
- Department of Ophthalmology, Byers Eye Institute, Stanford University , Palo Alto, CA, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Ahmed F Al-Qahtani
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Michael G Sun
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Levi Kanu
- Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| | - Ibraim V Vieira
- Department of Ophthalmology, Byers Eye Institute, Stanford University , Palo Alto, CA, USA
| | - Charles Q Yu
- Department of Ophthalmology, Byers Eye Institute, Stanford University , Palo Alto, CA, USA.,Department of Ophthalmology and Visual Sciences, The University of Illinois Chicago , Chicago, IL, USA
| |
Collapse
|
105
|
Shandhi MMH, Negi S. Fabrication of Out-of-Plane High Channel Density Microelectrode Neural Array with 3D Recording and Stimulation Capabilities. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:522-531. [PMID: 39239464 PMCID: PMC11376443 DOI: 10.1109/jmems.2020.3004847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The Utah Electrode Array (UEA) and its different variants have become a gold standard in penetrating high channel count neural electrode for bi-directional neuroprostheses (simultaneous recording and stimulation). However, despite its usage in numerous applications, it has one major drawback of having only one active site per shaft, which is at the tip of the shaft. In this work, we are demonstrating a next-generation device, the Utah Multisite Electrode Array (UMEA), which is capable of having multiple sites around the shaft and also retaining the site at the tip. The UMEA can have up to 9 sites per shaft (hence can accommodate 900 active sites) while retaining the form factor of the conventional UEA with 100 sites. However, in this work and to show the proof of concept, the UMEA was fabricated with one active site at the tip and two around the shaft at different heights; thus, three active sites per shaft. The UMEA device is fabricated using a 3D shadow mask patterning technology, which is suitable for a batch fabrication process for these out-of-plane structures. The UMEA was characterized by in-vitro tests to showcase the electrochemical properties of the shaft sites for bi-directional neuroprostheses in contrast to the traditional tip sites of the standard UEA. The UMEA not only improves the channel density of conventional UEAs and hence can access a larger population of neurons, but also enhances the recording and stimulation capabilities from different layers of the human cortex without further increasing the risk of neuronal damage.
Collapse
Affiliation(s)
| | - Sandeep Negi
- School of Electrical and Computer Engineering. University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
106
|
Sun SY, Mammo DA, Koozekanani DD, Montezuma SR. Hemifacial Spasm in an Argus II Retinal Prosthesis Patient. JOURNAL OF VITREORETINAL DISEASES 2020; 4:325-326. [PMID: 37009174 PMCID: PMC9976104 DOI: 10.1177/2474126419890497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
PURPOSE A 59-year-old man with retinitis pigmentosa, who received an Argus II retinal prosthesis in the left eye 3 years prior, presented with left-sided involuntary facial contractions that occurred only after turning on the Argus II device. METHODS A case report. RESULTS Given that this patient's reported and visualized lower eyelid twitching corresponds to the location of the external region of the implanted coil, we hypothesize that heat or wirelessly transmitted electrical signals from the external coil to the implanted coil may induce spasm of the facial nerve and thus play a role in hemifacial spasm onset. CONCLUSIONS To our knowledge, this is the first report of hemifacial spasm associated with Argus II use.
Collapse
Affiliation(s)
- Susan Y. Sun
- Department of Ophthalmology and Visual Neurosciences, University of
Minnesota, Minneapolis, MN, USA
| | - Danny A. Mammo
- Department of Ophthalmology and Visual Neurosciences, University of
Minnesota, Minneapolis, MN, USA
| | - Dara D. Koozekanani
- Department of Ophthalmology and Visual Neurosciences, University of
Minnesota, Minneapolis, MN, USA
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of
Minnesota, Minneapolis, MN, USA
| |
Collapse
|
107
|
Scheller M, Proulx MJ, Haan M, Dahlmann‐Noor A, Petrini K. Late‐ but not early‐onset blindness impairs the development of audio‐haptic multisensory integration. Dev Sci 2020; 24:e13001. [DOI: 10.1111/desc.13001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/04/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Michelle Haan
- Developmental Neurosciences Programme University College London London UK
| | - Annegret Dahlmann‐Noor
- NIHR Biomedical Research Centre Moorfields London UK
- Paediatric Service Moorfields Eye Hospital London UK
| | - Karin Petrini
- Department of Psychology University of Bath London UK
| |
Collapse
|
108
|
Liu X, Feng B, Vats A, Tang H, Seibel W, Swaroop M, Tawa G, Zheng W, Byrne L, Schurdak M, Chen Y. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa. FASEB J 2020; 34:10146-10167. [PMID: 32536017 DOI: 10.1096/fj.202000282r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023]
Abstract
Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bing Feng
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, Cincinnati, OH, USA.,Oncology Department, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Gregory Tawa
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Leah Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
109
|
Lemoine D, Simon E, Buc G, Deterre M. In vitro reliability testing and in vivo lifespan estimation of wireless Pixium Vision PRIMA photovoltaic subretinal prostheses suggest prolonged durability and functionality in clinical practice. J Neural Eng 2020; 17:035005. [PMID: 32357356 DOI: 10.1088/1741-2552/ab8f70] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Retinal implants have the potential to restore some sight in patients with retinal degeneration. The PRIMA implant's novel design features simpler insertion and no transscleral cabling or extraocular components. This in vitro study investigated PRIMA's durability under real time and accelerated conditions and estimated the device's lifespan in vivo. APPROACH Two potential failure modes were examined: corrosion and overstimulation. Real-time aging was tested using implants immersed in balanced saline solution (BSS) at 37 °C, mimicking the intraocular environment. Accelerated aging was examined at 77 °C (Arrhenius theory). Confirmatory testing of acceleration factor was performed using different temperatures (37 °C-87 °C) and weakened implant coatings. The effect of repeated maximum stimulation was tested using a pulsed infrared laser (6x acceleration factor). Data were used to estimate device lifespan. MAIN RESULTS 175 implants were tested for up to 33 months. No corrosion or water ingress was observed after approximately 20 accelerated years. A pixel failure rate of 0.15% was recorded after 10 accelerated years' stimulation. The derived lifespan estimation for the PRIMA implant was 27.0 years with a reliability of 90% (95% confidence interval). SIGNIFICANCE The PRIMA implant was found to be robust, with in vitro reliability of at least 10 years. The PRIMA implant shows durability and functionality for clinically relevant timespans under similar environmental conditions to the human eye. These results require in vivo confirmation.
Collapse
|
110
|
Shim S, Eom K, Jeong J, Kim SJ. Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients. MICROMACHINES 2020; 11:E535. [PMID: 32456341 PMCID: PMC7281011 DOI: 10.3390/mi11050535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Retinal prostheses are implantable devices that aim to restore the vision of blind patients suffering from retinal degeneration, mainly by artificially stimulating the remaining retinal neurons. Some retinal prostheses have successfully reached the stage of clinical trials; however, these devices can only restore vision partially and remain insufficient to enable patients to conduct everyday life independently. The visual acuity of the artificial vision is limited by various factors from both engineering and physiological perspectives. To overcome those issues and further enhance the visual resolution of retinal prostheses, a variety of retinal prosthetic approaches have been proposed, based on optimization of the geometries of electrode arrays and stimulation pulse parameters. Other retinal stimulation modalities such as optics, ultrasound, and magnetics have also been utilized to address the limitations in conventional electrical stimulation. Although none of these approaches have been clinically proven to fully restore the function of a degenerated retina, the extensive efforts made in this field have demonstrated a series of encouraging findings for the next generation of retinal prostheses, and these could potentially enhance the visual acuity of retinal prostheses. In this article, a comprehensive and up-to-date overview of retinal prosthetic strategies is provided, with a specific focus on a quantitative assessment of visual acuity results from various retinal stimulation technologies. The aim is to highlight future directions toward high-resolution retinal prostheses.
Collapse
Affiliation(s)
- Shinyong Shim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea;
- Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyungsik Eom
- Department of Electronics Engineering, College of Engineering, Pusan National University, Busan 46241, Korea
| | - Joonsoo Jeong
- School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan 50612, Korea
| | - Sung June Kim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Korea;
- Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 08826, Korea
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
111
|
Schulze Schwering M, Oltrup T, Rückheim KS, Bende T, Bartz-Schmidt KU, Leitritz MA. New retinal tack designs: an analysis of retention forces in human scleral tissue. Graefes Arch Clin Exp Ophthalmol 2020; 258:1389-1394. [PMID: 32350651 PMCID: PMC7306019 DOI: 10.1007/s00417-020-04689-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The study aimed to construct a new retinal tack design with high retention forces to prevent spontaneous disentanglement in cases of complicated retinal surgery. Methods Six new forms for the peak of a retinal tack were developed using computer-aided design (CAD); then a prototype was produced for each model. Finally, standardised design testing was conducted using human (ex vivo) sclera by logging 15 consecutive measurements for each model. Results Seven different models underwent pull-out testing (six new models and the original tack model), but two tack models (Model 4, Model 5) failed to penetrate the human tissue. The highest pull-out forces (median) were measured for Model 3, followed by Model 6, Model 2 and Model 1. The original Heimann tack (Model H) was found to have the lowest retention forces. Conclusion The different tack designs altered the penetration and holding forces. The retention forces of the proposed peak design led to a significant increase in the retention forces that were more than twice as high as those in the original Heimann Model.
Collapse
Affiliation(s)
| | - Theo Oltrup
- Section for Experimental Eye Surgery and Refractive Surgery, Centre for Ophthalmology, University Eye Hospital, Eberhard Karls University of Tübingen, Schleichstr. 12/1, 72076, Tübingen, Germany.
| | - Kai Sinan Rückheim
- Section for Experimental Eye Surgery and Refractive Surgery, Centre for Ophthalmology, University Eye Hospital, Eberhard Karls University of Tübingen, Schleichstr. 12/1, 72076, Tübingen, Germany
| | - Thomas Bende
- Section for Experimental Eye Surgery and Refractive Surgery, Centre for Ophthalmology, University Eye Hospital, Eberhard Karls University of Tübingen, Schleichstr. 12/1, 72076, Tübingen, Germany
| | | | - Martin Alexander Leitritz
- Section for Experimental Eye Surgery and Refractive Surgery, Centre for Ophthalmology, University Eye Hospital, Eberhard Karls University of Tübingen, Schleichstr. 12/1, 72076, Tübingen, Germany
| |
Collapse
|
112
|
Seo HW, Kim N, Kim S. Fabrication of Subretinal 3D Microelectrodes with Hexagonal Arrangement. MICROMACHINES 2020; 11:mi11050467. [PMID: 32365472 PMCID: PMC7281732 DOI: 10.3390/mi11050467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023]
Abstract
This study presents the fabrication of three-dimensional (3D) microelectrodes for subretinal stimulation, to accommodate adjacent return electrodes surrounding a stimulating electrode. For retinal prosthetic devices, the arrangement of return electrodes, the electrode size and spacing should be considered together, to reduce the undesired dissipation of electric currents. Here, we applied the hexagonal arrangement to the microelectrode array for the localized activation of retinal cells and better visual acuity. To provide stimuli more efficiently to non-spiking neurons, a 3D structure was created through a customized pressing process, utilizing the elastic property of the materials used in the fabrication processes. The diameter and pitch of the Pt-coated electrodes were 150 μm and 350 μm, respectively, and the height of the protruded electrodes was around 20 μm. The array consisted of 98 hexagonally arranged electrodes, supported by a flexible and transparent polydimethylsiloxane (PDMS) base, with a thickness of 140 μm. Also, the array was coated with 2 μm-thick parylene-C, except the active electrode sites, for more focused stimulation. Finally, the electrochemical properties of the fabricated microelectrodes were characterized, resulting in the mean impedance of 384.87 kΩ at 1 kHz and the charge storage capacity (CSC) of 2.83 mC·cm−2. The fabricated microelectrodes are to be combined with an integrated circuit (IC) for additional in vitro and in vivo experiments.
Collapse
Affiliation(s)
| | | | - Sohee Kim
- Correspondence: ; Tel.: +82-53-785-6217
| |
Collapse
|
113
|
Shim S, Seo K, Kim SJ. A preliminary implementation of an active intraocular prosthesis as a new image acquisition device for a cortical visual prosthesis. J Artif Organs 2020; 23:262-269. [PMID: 32342231 DOI: 10.1007/s10047-020-01168-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/07/2020] [Indexed: 11/30/2022]
Abstract
An active intraocular prosthesis is herein proposed as a new image acquisition device for a cortical visual prosthesis. A conventional intraocular prosthesis is a passive device that helps blind patients underwent eye enucleation to maintain the shape of an eyeball. In contrast, an active intraocular prosthesis, which works as an implantable wireless camera, can capture real-time images and transmit them to a cortical visual prosthesis to restore partial vision of the patients. This active device has distinct advantages in that it can garner a variety of image information while focusing on objects in accordance with natural eye movements, compared with a glasses-mounted camera and implanted micro-photodiodes in typical artificial vision systems. Coated with an epoxy and sealed by an elastomer for biocompatibility as well as durability, the active intraocular prosthesis was fabricated in a spherical form miniaturized enough to be inserted into the eye. Its operation was evaluated by wireless image acquisition displaying a processed gray-scale image. Furthermore, signal-to-noise ratio measurements were conducted to find a reliable communication range of the fabricated prosthesis, while it was covered by an 8-mm-thick biological medium that mimicked in vivo environments. In conclusion, the feasibility of the active intraocular prosthesis to cooperate with a cortical visual prosthesis is discussed.
Collapse
Affiliation(s)
- Shinyong Shim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul, 08826, South Korea.,Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Sung June Kim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul, 08826, South Korea. .,Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, South Korea. .,Institute on Aging, College of Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
114
|
Yang JW, Yu ZY, Cheng SJ, Chung JHY, Liu X, Wu CY, Lin SF, Chen GY. Graphene Oxide-Based Nanomaterials: An Insight into Retinal Prosthesis. Int J Mol Sci 2020; 21:E2957. [PMID: 32331417 PMCID: PMC7216005 DOI: 10.3390/ijms21082957] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Retinal prosthesis has recently emerged as a treatment strategy for retinopathies, providing excellent assistance in the treatment of age-related macular degeneration (AMD) and retinitis pigmentosa. The potential application of graphene oxide (GO), a highly biocompatible nanomaterial with superior physicochemical properties, in the fabrication of electrodes for retinal prosthesis, is reviewed in this article. This review integrates insights from biological medicine and nanotechnology, with electronic and electrical engineering technological breakthroughs, and aims to highlight innovative objectives in developing biomedical applications of retinal prosthesis.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Zih-Yu Yu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Sheng-Jen Cheng
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Johnson H. Y. Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia; (J.H.Y.C.); (X.L.)
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia; (J.H.Y.C.); (X.L.)
| | - Chung-Yu Wu
- Department of Electrical Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan;
| | - Shien-Fong Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (J.-W.Y.); (S.-J.C.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
115
|
Fallegger F, Schiavone G, Lacour SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903904. [PMID: 31608508 DOI: 10.1002/adma.201903904] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Indexed: 05/27/2023]
Abstract
Conformable bioelectronic systems are promising tools that may aid the understanding of diseases, alleviate pathological symptoms such as chronic pain, heart arrhythmia, and dysfunctions, and assist in reversing conditions such as deafness, blindness, and paralysis. Combining reduced invasiveness with advanced electronic functions, hybrid bioelectronic systems have evolved tremendously in the last decade, pushed by progress in materials science, micro- and nanofabrication, system assembly and packaging, and biomedical engineering. Hybrid integration refers here to a technological approach to embed within mechanically compliant carrier substrates electronic components and circuits prepared with traditional electronic materials. This combination leverages mechanical and electronic performance of polymer substrates and device materials, respectively, and offers many opportunities for man-made systems to communicate with the body with unmet precision. However, trade-offs between materials selection, manufacturing processes, resolution, electrical function, mechanical integrity, biointegration, and reliability should be considered. Herein, prominent trends in manufacturing conformable hybrid systems are analyzed and key design, function, and validation principles are outlined together with the remaining challenges to produce reliable conformable, hybrid bioelectronic systems.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| |
Collapse
|
116
|
Li R, Du Z, Qian X, Li Y, Martinez-Camarillo JC, Jiang L, Humayun MS, Chen Z, Zhou Q. High resolution optical coherence elastography of retina under prosthetic electrode. Quant Imaging Med Surg 2020; 11:918-927. [PMID: 33654665 DOI: 10.21037/qims-20-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Quantitatively investigating the biomechanics of retina with a retinal prosthetic electrode, we explored the effects of the prosthetic electrode on the retina, and further supplemented data for a potential clinical trial. Methods Biomechanical properties were assessed with a high resolution optical coherence tomography (OCT) based elastography (OCE) system. A shaker was used to initiate elastic waves and an OCT system was used to track axial displacement along with wave propagation. Rabbits received surgery to implant the retinal prosthetic electrode, and elastic wave speed was measured before and after implantation; anatomical B-mode images were also acquired. Results Spatial-temporal maps of each layer in retina with and without prosthetic electrodes were acquired. Elastic wave speed of nerve fiber to inner plexiform layer, inner nuclear to outer nuclear layer, retinal pigmented epithelium layer and choroid to sclera layer without prosthetic electrode were found to be 3.66±0.36, 5.33±0.07, 6.85±0.37, and 9.69±0.24 m/s, respectively. With prosthetic electrode, the elastic wave speed was found to be 4.09±0.26, 5.14±0.11, 6.88±0.70, and 9.99±0.73 m/s, respectively in each layer. Conclusions Our results show that the elastic wave speed in each layer of retina is slightly faster with the retinal electrode, and further demonstrate that the retinal prosthetic electrode does not affect biomechanical properties significantly. In the future, we expect OCE technology to be used by clinicians where it could become part of routine testing and evaluation of the biomechanical properties of the retina in response to long term use of prosthetic electrodes in patients.
Collapse
Affiliation(s)
- Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhaodong Du
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Yan Li
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | | | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
117
|
Ahn J, Rueckauer B, Yoo Y, Goo YS. New Features of Receptive Fields in Mouse Retina through Spike-triggered Covariance. Exp Neurobiol 2020; 29:38-49. [PMID: 32122107 PMCID: PMC7075653 DOI: 10.5607/en.2020.29.1.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Retinal ganglion cells (RGCs) encode various spatiotemporal features of visual information into spiking patterns. The receptive field (RF) of each RGC is usually calculated by spike-triggered average (STA), which is fast and easy to understand, but limited to simple and unimodal RFs. As an alternative, spike-triggered covariance (STC) has been proposed to characterize more complex patterns in RFs. This study compares STA and STC for the characterization of RFs and demonstrates that STC has an advantage over STA for identifying novel spatiotemporal features of RFs in mouse RGCs. We first classified mouse RGCs into ON, OFF, and ON/OFF cells according to their response to full-field light stimulus, and then investigated the spatiotemporal patterns of RFs with random checkerboard stimulation, using both STA and STC analysis. We propose five sub-types (T1–T5) in the STC of mouse RGCs together with their physiological implications. In particular, the relatively slow biphasic pattern (T1) could be related to excitatory inputs from bipolar cells. The transient biphasic pattern (T2) allows one to characterize complex patterns in RFs of ON/OFF cells. The other patterns (T3–T5), which are contrasting, alternating, and monophasic patterns, could be related to inhibitory inputs from amacrine cells. Thus, combining STA and STC and considering the proposed sub-types unveil novel characteristics of RFs in the mouse retina and offer a more holistic understanding of the neural coding mechanisms of mouse RGCs.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Bodo Rueckauer
- Institute of Neuroinformatics, ETH Zurich and University of Zurich, Zurich 8057, Switzerland
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
118
|
Photovoltaic Restoration of Central Vision in Atrophic Age-Related Macular Degeneration. Ophthalmology 2020; 127:1097-1104. [PMID: 32249038 DOI: 10.1016/j.ophtha.2020.02.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Loss of photoreceptors in atrophic age-related macular degeneration results in severe visual impairment, although some peripheral vision is retained. To restore central vision without compromising the residual peripheral field, we developed a wireless photovoltaic retinal implant (PRIMA; Pixium Vision, Paris, France) in which pixels convert images projected from video glasses using near-infrared light into electric current to stimulate the nearby inner retinal neurons. DESIGN We carried out a first-in-human clinical trial to test the safety and efficacy of the prosthesis in patients with geographic atrophy (ClinicalTrials.gov identifier, NCT03333954). PARTICIPANTS Five patients with geographic atrophy zone of at least 3 optic disc diameters, no foveal light perception, and best-corrected visual acuity of 20/400 to 20/1000 in the worse-seeing study eye. METHODS The 2-mm wide, 30-μm thick chip, containing 378 pixels (each 100 μm in diameter), was implanted subretinally in the area of atrophy (absolute scotoma). MAIN OUTCOME MEASURES Anatomic outcomes were assessed with fundus photography and OCT for up to 12 months of follow-up. Prosthetic vision was assessed by mapping light perception, bar orientation, letter recognition, and Landolt C acuity. RESULTS In all patients, the prosthesis was implanted successfully under the macula, although in 2 patients, it was implanted in unintended locations: within the choroid and off center by 2 mm. All 5 patients could perceive white-yellow prosthetic visual patterns with adjustable brightness in the previous scotomata. The 3 with optimal placement of the implant demonstrated prosthetic acuity of 20/460 to 20/550, and the patient with the off-center implant demonstrated 20/800 acuity. Residual natural acuity did not decrease after implantation in any patient. CONCLUSIONS Implantation of the PRIMA did not decrease the residual natural acuity, and it restored visual sensitivity in the former scotoma in each of the 5 patients. In 3 patients with the proper placement of the chip, prosthetic visual acuity was only 10% to 30% less than the level expected from the pixel pitch (20/420). Therefore, the use of optical or electronic magnification in the glasses as well as smaller pixels in future implants may improve visual acuity even further.
Collapse
|
119
|
Abstract
Developments of new strategies to restore vision and improving on current strategies by harnessing new advancements in material and electrical sciences, and biological and genetic-based technologies are of upmost health priorities around the world. Federal and private entities are spending billions of dollars on visual prosthetics technologies. This review describes the most current and state-of-the-art bioengineering technologies to restore vision. This includes a thorough description of traditional electrode-based visual prosthetics that have improved substantially since early prototypes. Recent advances in molecular and synthetic biology have transformed vision-assisted technologies; For example, optogenetic technologies that introduce light-responsive proteins offer excellent resolution but cortical applications are restricted by fiber implantation and tissue damage. Other stimulation modalities, such as magnetic fields, have been explored to achieve non-invasive neuromodulation. Miniature magnetic coils are currently being developed to activate select groups of neurons. Magnetically-responsive nanoparticles or exogenous proteins can significantly enhance the coupling between external electromagnetic devices and any neurons affiliated with these modifications. The need to minimize cytotoxic effects for nanoparticle-based therapies will likely restrict the number of usable materials. Nevertheless, advances in identifying and utilizing proteins that respond to magnetic fields may lead to non-invasive, cell-specific stimulation and may overcome many of the limitations that currently exist with other methods. Finally, sensory substitution systems also serve as viable visual prostheses by converting visual input to auditory and somatosensory stimuli. This review also discusses major challenges in the field and offers bioengineering strategies to overcome those.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
120
|
Metabolite therapy guided by liquid biopsy proteomics delays retinal neurodegeneration. EBioMedicine 2020; 52:102636. [PMID: 32028070 PMCID: PMC7005447 DOI: 10.1016/j.ebiom.2020.102636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegenerative diseases are incurable disorders caused by progressive neuronal cell death. Retinitis pigmentosa (RP) is a blinding neurodegenerative disease that results in photoreceptor death and progresses to the loss of the entire retinal network. We previously found that proteomic analysis of the adjacent vitreous served as way to indirectly biopsy the retina and identify changes in the retinal proteome. Methods We analyzed protein expression in liquid vitreous biopsies from autosomal recessive (ar)RP patients with PDE6A mutations and arRP mice with Pde6ɑ mutations. Proteomic analysis of retina and vitreous samples identified molecular pathways affected at the onset of photoreceptor death. Based on affected molecular pathways, arRP mice were treated with a ketogenic diet or metabolites involved in fatty-acid synthesis, oxidative phosphorylation, and the tricarboxylic acid (TCA) cycle. Findings Dietary supplementation of a single metabolite, ɑ-ketoglutarate, increased docosahexaeonic acid levels, provided neuroprotection, and enhanced visual function in arRP mice. A ketogenic diet delayed photoreceptor cell loss, while vitamin B supplementation had a limited effect. Finally, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) on ɑ-ketoglutarate-treated mice revealed restoration of metabolites that correlated with our proteomic findings: uridine, dihydrouridine, and thymidine (pyrimidine and purine metabolism), glutamine and glutamate (glutamine/glutamate conversion), and succinic and aconitic acid (TCA cycle). Interpretation This study demonstrates that replenishing TCA cycle metabolites via oral supplementation prolongs retinal function and provides a neuroprotective effect on the photoreceptor cells and inner retinal network. Funding NIH grants [R01EY026682, R01EY024665, R01EY025225, R01EY024698, R21AG050437, P30EY026877, 5P30EY019007, R01EY018213, F30EYE027986, T32GM007337, 5P30CA013696], NSF grant CHE-1734082.
Collapse
|
121
|
Influence of optic media of the human eye on the imaging of Argus® II retinal prosthesis with intraoperative spectral-domain optical coherence tomography. SPEKTRUM DER AUGENHEILKUNDE 2020. [DOI: 10.1007/s00717-019-0429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
122
|
Sanchez-Garcia M, Martinez-Cantin R, Guerrero JJ. Semantic and structural image segmentation for prosthetic vision. PLoS One 2020; 15:e0227677. [PMID: 31995568 PMCID: PMC6988941 DOI: 10.1371/journal.pone.0227677] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/24/2019] [Indexed: 01/12/2023] Open
Abstract
Prosthetic vision is being applied to partially recover the retinal stimulation of visually impaired people. However, the phosphenic images produced by the implants have very limited information bandwidth due to the poor resolution and lack of color or contrast. The ability of object recognition and scene understanding in real environments is severely restricted for prosthetic users. Computer vision can play a key role to overcome the limitations and to optimize the visual information in the prosthetic vision, improving the amount of information that is presented. We present a new approach to build a schematic representation of indoor environments for simulated phosphene images. The proposed method combines a variety of convolutional neural networks for extracting and conveying relevant information about the scene such as structural informative edges of the environment and silhouettes of segmented objects. Experiments were conducted with normal sighted subjects with a Simulated Prosthetic Vision system. The results show good accuracy for object recognition and room identification tasks for indoor scenes using the proposed approach, compared to other image processing methods.
Collapse
Affiliation(s)
- Melani Sanchez-Garcia
- Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, Spain
| | - Ruben Martinez-Cantin
- Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, Spain
| | - Jose J. Guerrero
- Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
123
|
Finn KE, Zander HJ, Graham RD, Lempka SF, Weiland JD. A Patient-Specific Computational Framework for the Argus II Implant. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:190-196. [PMID: 33748766 PMCID: PMC7971167 DOI: 10.1109/ojemb.2020.3001563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Goal Retinal prosthesis performance is limited by the variability of elicited phosphenes. The stimulating electrode's position with respect to retinal ganglion cells (RGCs) affects both perceptual threshold and phosphene shape. We created a modeling framework incorporating patient-specific anatomy and electrode location to investigate RGC activation and predict inter-electrode differences for one Argus II user. Methods We used ocular imaging to build a three-dimensional finite element model characterizing retinal morphology and implant placement. To predict the neural response to stimulation, we coupled electric fields with multi-compartment cable models of RGCs. We evaluated our model predictions by comparing them to patient-reported perceptual threshold measurements. Results Our model was validated by the ability to replicate clinical impedance and threshold values, along with known neurophysiological trends. Inter-electrode threshold differences in silico correlated with in vivo results. Conclusions We developed a patient-specific retinal stimulation framework to quantitatively predict RGC activation and better explain phosphene variations.
Collapse
Affiliation(s)
- Kathleen E Finn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| |
Collapse
|
124
|
Arens-Arad T, Farah N, Lender R, Moshkovitz A, Flores T, Palanker D, Mandel Y. Cortical Interactions between Prosthetic and Natural Vision. Curr Biol 2019; 30:176-182.e2. [PMID: 31883811 DOI: 10.1016/j.cub.2019.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 01/15/2023]
Abstract
Outer retinal degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), are among the leading causes of incurable blindness in the Western world [1]. Retinal prostheses have been shown to restore some useful vision by electrically stimulating the remaining retinal neurons [2]. In contrast to inherited retinal degenerative diseases (e.g., RP), typically leading to a complete loss of the visual field, in AMD patients the disease is localized to the macula, leaving the peripheral vision intact. Implanting a retinal prosthesis in the central macula in AMD patients [3, 4] leads to an intriguing situation where the patient's central retina is stimulated electrically, whereas the peripheral healthy retina responds to natural light stimulation. An important question is whether the visual cortex responds to these two concurrent stimuli similarly to the interaction between two adjacent natural light stimuli projected onto healthy retina. Here, we investigated the cortical interactions between prosthetic and natural vision based on visually evoked potentials (VEPs) recorded in rats implanted with photovoltaic subretinal implants. Using this model, where prosthetic and natural vision information are combined in the visual cortex, we observed striking similarities in the interactions of natural and prosthetic vision, including similar effect of background illumination, linear summation of non-patterned stimuli, and lateral inhibition with spatial patterns [5], which increased with target contrast. These results support the idea of combined prosthetic and natural vision in restoration of sight for AMD patients.
Collapse
Affiliation(s)
- Tamar Arens-Arad
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel
| | - Nairouz Farah
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel
| | - Rivkah Lender
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel
| | - Avital Moshkovitz
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel
| | - Thomas Flores
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA; Ophthalmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
| | - Yossi Mandel
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Max ve-Anna Webb St, Ramat Gan 5290002, Israel.
| |
Collapse
|
125
|
Nanivadekar AC, Ayers CA, Gaunt RA, Weber DJ, Fisher LE. Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays. J Neural Eng 2019; 17:016011. [PMID: 31577993 PMCID: PMC9131467 DOI: 10.1088/1741-2552/ab4a24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We have shown previously that microstimulation of the lumbar dorsal root ganglia (L5-L7 DRG) using penetrating microelectrodes, selectively recruits distal branches of the sciatic and femoral nerves in an acute preparation. However, a variety of challenges limit the clinical translatability of DRG microstimulation via penetrating electrodes. For clinical translation of a DRG somatosensory neural interface, electrodes placed on the epineural surface of the DRG may be a viable path forward. The goal of this study was to evaluate the recruitment properties of epineural electrodes and compare their performance with that of penetrating electrodes. Here, we compare the number of selectively recruited distal nerve branches and the threshold stimulus intensities between penetrating and epineural electrode arrays. APPROACH Antidromically propagating action potentials were recorded from multiple distal branches of the femoral and sciatic nerves in response to epineural stimulation on 11 ganglia in four cats to quantify the selectivity of DRG stimulation. Compound action potentials (CAPs) were recorded using nerve cuff electrodes implanted around up to nine distal branches of the femoral and sciatic nerve trunks. We also tested stimulation selectivity with penetrating microelectrode arrays implanted into ten ganglia in four cats. A binary search was carried out to identify the minimum stimulus intensity that evoked a response at any of the distal cuffs, as well as whether the threshold response selectively occurred in only a single distal nerve branch. MAIN RESULTS Stimulation evoked activity in just a single peripheral nerve through 67% of epineural electrodes (35/52) and through 79% of the penetrating microelectrodes (240/308). The recruitment threshold (median = 9.67 nC/phase) and dynamic range of epineural stimulation (median = 1.01 nC/phase) were significantly higher than penetrating stimulation (0.90 nC/phase and 0.36 nC/phase, respectively). However, the pattern of peripheral nerves recruited for each DRG were similar for stimulation through epineural and penetrating electrodes. SIGNIFICANCE Despite higher recruitment thresholds, epineural stimulation provides comparable selectivity and superior dynamic range to penetrating electrodes. These results suggest that it may be possible to achieve a highly selective neural interface with the DRG without penetrating the epineurium.
Collapse
Affiliation(s)
- Ameya C Nanivadekar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Rehabilitation Neural Engineering Laboratories, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213, United States of America. Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States of America
| | | | | | | | | |
Collapse
|
126
|
Abstract
In outer retinal degenerative diseases such as retinitis pigmentosa, choroideremia, and geographic atrophy, 30% of the ganglion cell layer in the macula remains intact. With subretinal and epiretinal prostheses, these inner retinal cells are stimulated with controlled electrical current by either a microphotodiode placed in the subretinal area or a microelectrode array tacked to the epiretinal region. As the patient learns to interpret the resulting phosphene patterns created in the brain through special rehabilitation exercises, their orientation, mobility, and quality of life increase. Implants that stimulate the lateral geniculate nucleus or visual cortex are currently being studied for diseases in which the ganglion cells and optic nerve are completely destroyed.
Collapse
Affiliation(s)
- Emin Özmert
- Ankara University Faculty of Medicine, Department of Ophthalmology, Divisions of Medical and Surgical-Retina-Bionic Eye and Artificial Vision, Ankara, Turkey
| | | |
Collapse
|
127
|
Lunghi C, Galli-Resta L, Binda P, Cicchini GM, Placidi G, Falsini B, Morrone MC. Visual Cortical Plasticity in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:2753-2763. [PMID: 31247082 PMCID: PMC6746622 DOI: 10.1167/iovs.18-25750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Retinitis pigmentosa is a family of genetic diseases inducing progressive photoreceptor degeneration. There is no cure for retinitis pigmentosa, but prospective therapeutic strategies are aimed at restoring or substituting retinal input. Yet, it is unclear whether the visual cortex of retinitis pigmentosa patients retains plasticity to react to the restored visual input. Methods To investigate short-term visual cortical plasticity in retinitis pigmentosa, we tested the effect of short-term (2 hours) monocular deprivation on sensory ocular dominance (measured with binocular rivalry) in a group of 14 patients diagnosed with retinitis pigmentosa with a central visual field sparing greater than 20° in diameter. Results After deprivation most patients showed a perceptual shift in ocular dominance in favor of the deprived eye (P < 0.001), as did control subjects, indicating a level of visual cortical plasticity in the normal range. The deprivation effect correlated negatively with visual acuity (r = −0.63, P = 0.015), and with the amplitude of the central 18° focal electroretinogram (r = −0.68, P = 0.015) of the deprived eye, revealing that in retinitis pigmentosa stronger visual impairment is associated with higher plasticity. Conclusions Our results provide a new tool to assess the ability of retinitis pigmentosa patients to adapt to altered visual inputs, and suggest that in retinitis pigmentosa the adult brain has sufficient short-term plasticity to benefit from prospective therapies.
Collapse
Affiliation(s)
- Claudia Lunghi
- Laboratoire des systèmes perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Paola Binda
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Institute of Neuroscience CNR, Pisa, Italy
| | | | - Giorgio Placidi
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Stella Maris, Calambrone (Pisa), Italy
| |
Collapse
|
128
|
Abstract
In humans high quality, high acuity visual experience is mediated by the fovea, a tiny, specialized patch of retina containing the locus of fixation. Despite this, vision restoration strategies are typically developed in animal models without a fovea. While electrical prostheses have been approved by regulators, as yet they have failed to restore high quality, high acuity vision in patients. Approaches under pre-clinical development include regenerative cell therapies, optogenetics and chemical photosensitizers. All retinal vision restoration therapies require reactivation of inner retina that has lost photoreceptor input and that the restored signals can be interpreted at a behavioural level. A greater emphasis on tackling these challenges at the fovea may accelerate progress toward high quality vision restoration.
Collapse
Affiliation(s)
- Juliette E McGregor
- Center for Visual Science, University of Rochester, 601 Crittenden Blvd, Rochester, New York, USA
| |
Collapse
|
129
|
Ho E, Boffa J, Palanker D. Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses. J Vis 2019; 19:22. [PMID: 31770773 PMCID: PMC6880846 DOI: 10.1167/19.13.22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.
Collapse
Affiliation(s)
- Elton Ho
- Department of Physics, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Jack Boffa
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
130
|
Ho E, Lei X, Flores T, Lorach H, Huang T, Galambos L, Kamins T, Harris J, Mathieson K, Palanker D. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays. J Neural Eng 2019; 16:066027. [PMID: 31341094 PMCID: PMC7192047 DOI: 10.1088/1741-2552/ab34b3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective Retinal prostheses aim to restore sight by electrically stimulating the surviving retinal neurons. In clinical trials of the current retinal implants, prosthetic visual acuity does not exceed 20/550. However, to provide meaningful restoration of central vision in patients blinded by age-related macular degeneration (AMD), prosthetic acuity should be at least 20/200, necessitating a pixel pitch of about 50 μm or lower. With such small pixels, stimulation thresholds are high due to limited penetration of electric field into tissue. Here, we address this challenge with our latest photovoltaic arrays and evaluate their performance in vivo. Approach We fabricated photovoltaic arrays with 55 and 40 μm pixels (a) in flat geometry, and (b) with active electrodes on 10 μm tall pillars. The arrays were implanted subretinally into rats with degenerate retina. Stimulation thresholds and grating acuity were evaluated using measurements of the visually evoked potentials (VEP). Main results With 55 μm pixels, we measured grating acuity of 48 ± 11 μm, which matches the linear pixel pitch of the hexagonal array. This geometrically corresponds to a visual acuity of 20/192 in a human eye, matching the threshold of legal blindness in the US (20/200). With pillar electrodes, the irradiance threshold was nearly halved, and duration threshold reduced by more than three-fold, compared to flat pixels. With 40 μm pixels, VEP was too low for reliable measurements of the grating acuity, even with pillar electrodes. Significance While being helpful for treating a complete loss of sight, current prosthetic technologies are insufficient for addressing the leading cause of untreatable visual impairment—AMD. Subretinal photovoltaic arrays may provide sufficient visual acuity for restoration of central vision in patients blinded by AMD.
Collapse
Affiliation(s)
- Elton Ho
- Department of Physics, Stanford University, Stanford, CA 94305, United States of America. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Joo HR, Fan JL, Chen S, Pebbles JA, Liang H, Chung JE, Yorita AM, Tooker AC, Tolosa VM, Geaghan-Breiner C, Roumis DK, Liu DF, Haque R, Frank LM. A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain. J Neural Eng 2019; 16:066021. [PMID: 31216526 PMCID: PMC7036288 DOI: 10.1088/1741-2552/ab2b2e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Electrode arrays for chronic implantation in the brain are a critical technology in both neuroscience and medicine. Recently, flexible, thin-film polymer electrode arrays have shown promise in facilitating stable, single-unit recordings spanning months in rats. While array flexibility enhances integration with neural tissue, it also requires removal of the dura mater, the tough membrane surrounding the brain, and temporary bracing to penetrate the brain parenchyma. Durotomy increases brain swelling, vascular damage, and surgical time. Insertion using a bracing shuttle results in additional vascular damage and brain compression, which increase with device diameter; while a higher-diameter shuttle will have a higher critical load and more likely penetrate dura, it will damage more brain parenchyma and vasculature. One way to penetrate the intact dura and limit tissue compression without increasing shuttle diameter is to reduce the force required for insertion by sharpening the shuttle tip. APPROACH We describe a novel design and fabrication process to create silicon insertion shuttles that are sharp in three dimensions and can penetrate rat dura, for faster, easier, and less damaging implantation of polymer arrays. Sharpened profiles are obtained by reflowing patterned photoresist, then transferring its sloped profile to silicon with dry etches. MAIN RESULTS We demonstrate that sharpened shuttles can reliably implant polymer probes through dura to yield high quality single unit and local field potential recordings for at least 95 days. On insertion directly through dura, tissue compression is minimal. SIGNIFICANCE This is the first demonstration of a rat dural-penetrating array for chronic recording. This device obviates the need for a durotomy, reducing surgical time and risk of damage to the blood-brain barrier. This is an improvement to state-of-the-art flexible polymer electrode arrays that facilitates their implantation, particularly in multi-site recording experiments. This sharpening process can also be integrated into silicon electrode array fabrication.
Collapse
Affiliation(s)
- Hannah R Joo
- Medical Scientist Training Program and Neuroscience Graduate Program, University of California, San Francisco, CA 94158, United States of America. Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, and Department of Physiology, University of California, San Francisco, CA 94158, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Chenais NAL, Leccardi MJIA, Ghezzi D. Capacitive-like photovoltaic epiretinal stimulation enhances and narrows the network-mediated activity of retinal ganglion cells by recruiting the lateral inhibitory network. J Neural Eng 2019; 16:066009. [DOI: 10.1088/1741-2552/ab3913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
133
|
Xiao Y, Wang Y, Li F, Lin T, Huffman K, Landeros S, Bosse B, Jing Y, Bartsch DU, Thorogood S, Freeman WR, Cheng L. Acute Rabbit Eye Model for Testing Subretinal Prostheses. Transl Vis Sci Technol 2019; 8:20. [PMID: 31602345 PMCID: PMC6779096 DOI: 10.1167/tvst.8.5.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose Subretinal prostheses are a novel technology for restoring useful vision in patients with retinitis pigmentosa or age-related macular degeneration. We characterize the surgical implantation technique and functional time window of an acute rabbit eye model for testing of human subretinal prostheses. Methods Retinal prostheses were implanted subretinally in 26 rabbits using a two-step technique. Fundus imaging, fluorescein fundus angiography, and optical coherence topography (OCT) were conducted postoperatively from days 1 to 21 to monitor prosthesis positioning and retinal anatomic changes. Results Successful implantation and excellent retina apposition were achieved in 84.6% of the rabbits. OCTs showed the overlying retina at full thickness for the first 2 days after implantation. Histology confirmed intact inner layers of the overlying retina until day 3. Progressive atrophy of the overlying retina was revealed by repeated OCTs; approximately 40% of the retina thickness remained on postoperative days 5 and 6. Conclusions The two-step implantation technique works well for the rabbit eye model with human prostheses. Rabbit retina may be used for acute electrophysiologic testing of a retinal prosthesis, but is unsuitable for chronic studies due to the merangiotic retina and its limited time window of validity. Translational Relevance The improved efficacy in prosthesis surgery using this technique will circumvent the challenges in animal models that provide human-like features critical for the transition into human clinical trials.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Yuqin Wang
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Fangting Li
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Tiezhu Lin
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Kristyn Huffman
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Stephanie Landeros
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | | | - Yi Jing
- Nanovision Biosciences, Inc., La Jolla, CA, USA
| | - Dirk-Uwe Bartsch
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | | | - William R Freeman
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Lingyun Cheng
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
134
|
Teunisse W, Youssef S, Schmidt M. Human enhancement through the lens of experimental and speculative neurotechnologies. HUMAN BEHAVIOR AND EMERGING TECHNOLOGIES 2019; 1:361-372. [PMID: 31894206 PMCID: PMC6919332 DOI: 10.1002/hbe2.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
Human enhancement deals with improving on and overcoming limitations of the human body and mind. Pharmaceutical compounds that alter consciousness and cognitive performance have been used and discussed for a long time. The prospect of neurotechnological applications such as brain-steered devices or using invasive and noninvasive electromagnetic stimulations of the human brain, however, has received less attention-especially outside of therapeutic practices-and remains relatively unexplored. Reflection and debates about neurotechnology for human enhancement are limited and remain predominantly with neurotech engineers, science-fiction enthusiasts and a small circle of academics in the field of neuroethics. It is well known, and described as the Collingridge dilemma, that at an early stage of development, changes can easily be enacted, but the need for changes can hardly be foreseen. Once the technology is entrenched, opportunities and risks start to materialize, and the need to adapt and change is clearly visible. However, carrying out these changes at such a late stage, in turn, becomes very difficult, tremendously expensive, and sometimes practically impossible. In this manuscript, we compile and categorize an overview of existing experimental and speculative applications of neurotechnologies, with the aim to find out, if these real or diegetic prototypes could be used to better understand the paths these applications are forging. In particular, we will investigate what kind of tools, motivations, and normative goals underpin experimental implementations by neurohackers, speculative designers and artists.
Collapse
|
135
|
Cehajic Kapetanovic J, Barnard AR, MacLaren RE. Molecular Therapies for Choroideremia. Genes (Basel) 2019; 10:genes10100738. [PMID: 31548516 PMCID: PMC6826983 DOI: 10.3390/genes10100738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023] Open
Abstract
Advances in molecular research have culminated in the development of novel gene-based therapies for inherited retinal diseases. We have recently witnessed several groundbreaking clinical studies that ultimately led to approval of Luxturna, the first gene therapy for an inherited retinal disease. In parallel, international research community has been engaged in conducting gene therapy trials for another more common inherited retinal disease known as choroideremia and with phase III clinical trials now underway, approval of this therapy is poised to follow suit. This chapter discusses new insights into clinical phenotyping and molecular genetic testing in choroideremia with review of molecular mechanisms implicated in its pathogenesis. We provide an update on current gene therapy trials and discuss potential inclusion of female carries in future clinical studies. Alternative molecular therapies are discussed including suitability of CRISPR gene editing, small molecule nonsense suppression therapy and vision restoration strategies in late stage choroideremia.
Collapse
Affiliation(s)
- Jasmina Cehajic Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Correspondence:
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK; (A.R.B.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
136
|
Losada PG, Rousseau L, Grzeskowiak M, Valet M, Nguyen D, Dégardin J, Dubus E, Picaud S, Lissorgues G. Protuberant Electrode Structures for Subretinal Electrical Stimulation: Modeling, Fabrication and in vivo Evaluation. Front Neurosci 2019; 13:885. [PMID: 31507363 PMCID: PMC6718636 DOI: 10.3389/fnins.2019.00885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 08/07/2019] [Indexed: 11/13/2022] Open
Abstract
Many neural interfaces used for therapeutic applications are based on extracellular electrical stimulation to control cell polarization and thus functional activity. Amongst them, retinal implants have been designed to restore visual perception in blind patients affected by photoreceptor degeneration diseases, such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP). While designing such a neural interface, several aspects must be taken into account, like the stimulation efficiency related to the current distribution within the tissue, the bio-interface optimization to improve resolution and tissue integration, and the material biocompatibility associated with long-term aging. In this study, we investigate the use of original microelectrode geometries for subretinal stimulation. The proposed structures combine the use of 3D wells with protuberant mushroom shaped electrode structures in the bottom, implemented on a flexible substrate that allows the in vivo implantation of the devices. These 3D microelectrode structures were first modeled using finite element analysis. Then, a specific microfabrication process compatible with flexible implants was developed to create the 3D microelectrode structures. These structures were tested in vivo to check the adaptation of the retinal tissue to them. Finally, preliminary in vivo stimulation experiments were performed.
Collapse
Affiliation(s)
| | - Lionel Rousseau
- Laboratory ESYCOM, University Paris Est-ESIEE-MLV, Noisy-le-Grand, France
| | | | - Manon Valet
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Diep Nguyen
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Julie Dégardin
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Elisabeth Dubus
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Gaelle Lissorgues
- Laboratory ESYCOM, University Paris Est-ESIEE-MLV, Noisy-le-Grand, France
| |
Collapse
|
137
|
Seo HW, Kim N, Ahn J, Cha S, Goo YS, Kim S. A 3D flexible microelectrode array for subretinal stimulation. J Neural Eng 2019; 16:056016. [PMID: 31357188 DOI: 10.1088/1741-2552/ab36ab] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Various retinal prostheses have been developed to restore the vision for blind patients, and some of them are already in clinical use. In this paper, we present a three-dimensional (3D) microelectrode array for a subretinal device that can effectively stimulate retinal cells. APPROACH To investigate the effect of electrode designs on the electric field distribution, we simulated various electrode shapes and sizes using finite element analysis. Based on the simulation results, the 3D microelectrode array was fabricated and evaluated in in vitro condition. MAIN RESULTS Through the simulation, we verified that an electrode design of square frustum was effective to stimulate with high contrast. Also, the 3D flexible and transparent microelectrode array based on silicon and polydimethylsiloxane was fabricated using micro-electro-mechanical system technologies. In in vitro experiments, the subretinally positioned 3D microelectrodes properly evoked spikes in retinal ganglion cells. The mean threshold current was 7.4 µA and the threshold charge density was 33.64 µC·cm-2 per phase. SIGNIFICANCE The results demonstrate the feasibility of the fabricated 3D microelectrodes as the subretinal prosthesis. The developed microelectrode array would be integrated with the stimulation circuitry and implanted in animals for further in vivo experiments.
Collapse
Affiliation(s)
- Hee Won Seo
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
138
|
He Y, Huang NT, Caspi A, Roy A, Montezuma SR. Trade-Off Between Field-of-View and Resolution in the Thermal-Integrated Argus II System. Transl Vis Sci Technol 2019; 8:29. [PMID: 31440426 PMCID: PMC6701876 DOI: 10.1167/tvst.8.4.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose To investigate the effect of a wider field-of-view (FOV) of a retinal prosthesis on the users' performance in locating objects. Methods One female and four male subjects who were blind due to end-stage retinitis pigmentosa and had been implanted with the Argus II retinal prosthesis participated (aged 63.4 ± 15.4). Thermal imaging was captured by an external sensor and converted to electrical stimulation to the retina. Subjects were asked to localize and to reach for heat-emitting objects using two different FOV mappings: a normal 1:1 mapping (no zoom) that provided 18° × 11° FOV and a 3:1 mapping (zoom out) that provided 49° × 35° FOV. Their accuracy and response time were recorded. Results Subjects were less accurate and took longer to complete the tasks with zoom out compared to no zoom. Localization accuracy decreased from 83% (95% confidence interval, 75%, 90%) with no zoom to 76% (67%, 83%) with zoom out (P = 0.07). Reaching accuracy differed between the two mappings only in one subject. Response time increased by 43% for the localization task (24%, 66%; P < 0.001) and by 20% for the reaching task (0%, 45%; P = 0.055). Conclusions Argus II wearers can efficiently find heat-emitting objects with the default 18° × 11° FOV of the current Argus II. For spatial localization, a higher spatial resolution may be preferred over a wider FOV. Translational Relevance Understanding the trade-off between FOV and spatial resolution in retinal prosthesis users can guide device optimization.
Collapse
Affiliation(s)
- Yingchen He
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Natalie T Huang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Avi Caspi
- Department of Electrical and Electronic Engineering, Jerusalem College of Technology, Jerusalem, Israel.,Second Sight Medical Products, Inc., Sylmar, CA, USA
| | - Arup Roy
- Second Sight Medical Products, Inc., Sylmar, CA, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
139
|
Gaillet V, Cutrone A, Artoni F, Vagni P, Mega Pratiwi A, Romero SA, Lipucci Di Paola D, Micera S, Ghezzi D. Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve. Nat Biomed Eng 2019; 4:181-194. [DOI: 10.1038/s41551-019-0446-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2019] [Indexed: 01/22/2023]
|
140
|
Zeng Q, Zhao S, Yang H, Zhang Y, Wu T. Micro/Nano Technologies for High-Density Retinal Implant. MICROMACHINES 2019; 10:E419. [PMID: 31234507 PMCID: PMC6630275 DOI: 10.3390/mi10060419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
During the past decades, there have been leaps in the development of micro/nano retinal implant technologies, which is one of the emerging applications in neural interfaces to restore vision. However, higher feedthroughs within a limited space are needed for more complex electronic systems and precise neural modulations. Active implantable medical electronics are required to have good electrical and mechanical properties, such as being small, light, and biocompatible, and with low power consumption and minimal immunological reactions during long-term implantation. For this purpose, high-density implantable packaging and flexible microelectrode arrays (fMEAs) as well as high-performance coating materials for retinal stimulation are crucial to achieve high resolution. In this review, we mainly focus on the considerations of the high-feedthrough encapsulation of implantable biomedical components to prolong working life, and fMEAs for different implant sites to deliver electrical stimulation to targeted retinal neuron cells. In addition, the functional electrode materials to achieve superior stimulation efficiency are also reviewed. The existing challenge and future research directions of micro/nano technologies for retinal implant are briefly discussed at the end of the review.
Collapse
Affiliation(s)
- Qi Zeng
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Saisai Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Hangao Yang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Yi Zhang
- Shenzhen CAS-Envision Medical Technology Co. Ltd., Shenzhen 518100, China.
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
141
|
Abstract
Despite many decades of research and development, corneal opacity remains a leading cause of reversible blindness worldwide. Corneal transplantation and keratoprosthesis can restore corneal clarity, but both have well-known limitations. High-resolution electronic microdisplays may offer an alternative to traditional methods of treating corneal disease using an intraocular implant to project imagery onto the retina, obviating the need for a clear cornea. In this study, we review previous work and recent technologic developments relevant to the development of such an intraocular projection system.
Collapse
|
142
|
Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol 2019; 11:2515841418817501. [PMID: 30729233 PMCID: PMC6350159 DOI: 10.1177/2515841418817501] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Retinal prosthesis systems have undergone significant advances in the past quarter century, resulting in the development of several different novel surgical and engineering approaches. Encouraging results have demonstrated partial visual restoration, with improvement in both coarse objective function and performance of everyday tasks. To date, four systems have received marketing approval for use in Europe or the United States, with numerous others undergoing preclinical and clinical evaluation, reflecting the established safety profile of these devices for chronic implantation. This progress represents the first notion that the field of visual restorative medicine could offer blind patients a hope of real and measurable benefit. However, there are numerous complex engineering and biophysical obstacles still to be overcome, to reconcile the gap that remains between artificial and natural vision. Current developments in the form of enhanced image processing algorithms and data transfer approaches, combined with emerging nanofabrication and conductive polymerization techniques, herald an exciting and innovative future for retinal prosthetics. This review provides an update of retinal prosthetic systems currently undergoing development and clinical trials while also addressing future challenges in the field, such as the assessment of functional outcomes in ultra-low vision and strategies for tackling existing hardware and software constraints.
Collapse
Affiliation(s)
- Edward Bloch
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Yvonne Luo
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Lyndon da Cruz
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| |
Collapse
|
143
|
Wang AL, Knight DK, Vu TTT, Mehta MC. Retinitis Pigmentosa: Review of Current Treatment. Int Ophthalmol Clin 2019; 59:263-280. [PMID: 30585930 DOI: 10.1097/iio.0000000000000256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
144
|
Niketeghad S, Pouratian N. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeutics 2019; 16:134-143. [PMID: 30194614 PMCID: PMC6361050 DOI: 10.1007/s13311-018-0660-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Loss of vision alters the day to day life of blind individuals and may impose a significant burden on their family and the economy. Cortical visual prosthetics have been shown to have the potential of restoring a useful degree of vision via stimulation of primary visual cortex. Due to current advances in electrode design and wireless power and data transmission, development of these prosthetics has gained momentum in the past few years and multiple sites around the world are currently developing and testing their designs. In this review, we briefly outline the visual prosthetic approaches and describe the history of cortical visual prosthetics. Next, we focus on the state of the art of cortical visual prosthesis by briefly explaining the design of current devices that are either under development or in the clinical testing phase. Lastly, we shed light on the challenges of each design and provide some potential solutions.
Collapse
Affiliation(s)
- Soroush Niketeghad
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
145
|
Liu Y, Stiles NRB, Meister M. Augmented reality powers a cognitive assistant for the blind. eLife 2018; 7:e37841. [PMID: 30479270 PMCID: PMC6257813 DOI: 10.7554/elife.37841] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/27/2018] [Indexed: 11/24/2022] Open
Abstract
To restore vision for the blind, several prosthetic approaches have been explored that convey raw images to the brain. So far, these schemes all suffer from a lack of bandwidth. An alternate approach would restore vision at the cognitive level, bypassing the need to convey sensory data. A wearable computer captures video and other data, extracts important scene knowledge, and conveys that to the user in compact form. Here, we implement an intuitive user interface for such a device using augmented reality: each object in the environment has a voice and communicates with the user on command. With minimal training, this system supports many aspects of visual cognition: obstacle avoidance, scene understanding, formation and recall of spatial memories, navigation. Blind subjects can traverse an unfamiliar multi-story building on their first attempt. To spur further development in this domain, we developed an open-source environment for standardized benchmarking of visual assistive devices.
Collapse
Affiliation(s)
- Yang Liu
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Computation and Neural Systems ProgramCalifornia Institute of TechnologyPasadenaUnited States
| | - Noelle RB Stiles
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
- Institute for Biomedical Therapeutics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Markus Meister
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
146
|
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog Retin Eye Res 2018; 69:1-37. [PMID: 30445193 DOI: 10.1016/j.preteyeres.2018.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.
Collapse
Affiliation(s)
- Sylvia J Gasparini
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
147
|
Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 2018; 69:38-56. [PMID: 30419340 DOI: 10.1016/j.preteyeres.2018.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China.
| | - Mei-Ling Gao
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Wen-Li Deng
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Kun-Chao Wu
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
148
|
Trigui A, Hached S, Ammari AC, Savaria Y, Sawan M. Maximizing Data Transmission Rate for Implantable Devices Over a Single Inductive Link: Methodological Review. IEEE Rev Biomed Eng 2018; 12:72-87. [PMID: 30295628 DOI: 10.1109/rbme.2018.2873817] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Due to the constantly growing geriatric population and the projected increase of the prevalence of chronic diseases that are refractory to drugs, implantable medical devices (IMDs) such as neurostimulators, endoscopic capsules, artificial retinal prostheses, and brain-machine interfaces are being developed. According to many business forecast firms, the IMD market is expected to grow and they are subject to much research aiming to overcome the numerous challenges of their development. One of these challenges consists of designing a wireless power and data transmission system that has high power efficiency, high data rates, low power consumption, and high robustness against noise. This is in addition to minimal design and implementation complexity. This manuscript concerns a comprehensive survey of the latest techniques used to power up and communicate between an external base station and an IMD. Patient safety considerations related to biological, physical, electromagnetic, and electromagnetic interference concerns for wireless IMDs are also explored. The simultaneous powering and data communication techniques using a single inductive link for both power transfer and bidirectional data communication, including the various data modulation/demodulation techniques, are also reviewed. This review will hopefully contribute to the persistent efforts to implement compact reliable IMDs while lowering their cost and upsurging their benefits.
Collapse
|
149
|
Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B, Mehrali M, Hasany M, Orive G, Das P, Emneus J, Andresen TL, Dolatshahi‐Pirouz A. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700931. [PMID: 30356969 PMCID: PMC6193179 DOI: 10.1002/advs.201700931] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/24/2018] [Indexed: 05/22/2023]
Abstract
At the crossroads of chemistry, electronics, mechanical engineering, polymer science, biology, tissue engineering, computer science, and materials science, electrical devices are currently being engineered that blend directly within organs and tissues. These sophisticated devices are mediators, recorders, and stimulators of electricity with the capacity to monitor important electrophysiological events, replace disabled body parts, or even stimulate tissues to overcome their current limitations. They are therefore capable of leading humanity forward into the age of cyborgs, a time in which human biology can be hacked at will to yield beings with abilities beyond their natural capabilities. The resulting advances have been made possible by the emergence of conformal and soft electronic materials that can readily integrate with the curvilinear, dynamic, delicate, and flexible human body. This article discusses the recent rapid pace of development in the field of cybernetics with special emphasis on the important role that flexible and electrically active materials have played therein.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Sara Bagherifard
- Department of Mechanical EngineeringPolitecnico di Milano20156MilanItaly
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Ashish Thakur
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Bahram Mirani
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Mohammad Mehrali
- Process and Energy DepartmentDelft University of TechnologyLeeghwaterstraat 392628CBDelftThe Netherlands
| | - Masoud Hasany
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
| | - Paramita Das
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Jenny Emneus
- Technical University of DenmarkDTU Nanotech2800KgsDenmark
| | - Thomas L. Andresen
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | | |
Collapse
|
150
|
Abstract
OBJECTIVE In many applications, multielectrode arrays employed as neural implants require a high density and a high number of electrodes to precisely record and stimulate the activity of the nervous system while preserving the overall size of the array. APPROACH Here we present a multilayer and three-dimensional (3D) electrode array, together with its manufacturing method, enabling a higher electrode density and a more efficient signal transduction with the biological tissue. MAIN RESULTS The 3D structure of the electrode array allows for a multilayer placement of the interconnects within a flexible substrate, it narrows the probe size per the same number of electrodes, and it maintains the electrode contacts at the same level within the tissue. In addition, it augments the electrode surface area, leading to a lower electrochemical impedance and a higher charge storage capacity. To characterize the recordings capabilities of the multilayer 3D electrodes, we measured visually evoked cortical potentials in mice and analysed the evolution of the peak prominences and latencies according to different light intensities and recording depths within the brain. The resulting signal-to-noise ratio is improved compared to flat electrodes. Finally, the 3D electrodes have been imaged inside a clarified mouse brain using a light-sheet microscope to visualize their integrity within the tissue. SIGNIFICANCE The multilayer 3D electrodes have proved to be a valid technology to ensure tissue proximity and higher recording/stimulating efficiencies while enabling higher electrode density and reducing the probe size.
Collapse
Affiliation(s)
- Marta Jole Ildelfonsa Airaghi Leccardi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|