101
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
102
|
Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 2019; 10:emmm.201708259. [PMID: 30224384 PMCID: PMC6180304 DOI: 10.15252/emmm.201708259] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review highlights the role of three key immune pathways in the pathophysiology of major retinal degenerative diseases including diabetic retinopathy, age‐related macular degeneration, and rare retinal dystrophies. We first discuss the mechanisms how loss of retinal homeostasis evokes an unbalanced retinal immune reaction involving responses of local microglia and recruited macrophages, activity of the alternative complement system, and inflammasome assembly in the retinal pigment epithelium. Presenting these key mechanisms as complementary targets, we specifically emphasize the concept of immunomodulation as potential treatment strategy to prevent or delay vision loss. Promising molecules are ligands for phagocyte receptors, specific inhibitors of complement activation products, and inflammasome inhibitors. We comprehensively summarize the scientific evidence for this strategy from preclinical animal models, human ocular tissue analyses, and clinical trials evolving in the last few years.
Collapse
Affiliation(s)
- Isha Akhtar-Schäfer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim U Krohne
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Heping Xu
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany .,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
103
|
Fletcher EL, Wang AY, Jobling AI, Rutar MV, Greferath U, Gu B, Vessey KA. Targeting P2X7 receptors as a means for treating retinal disease. Drug Discov Today 2019; 24:1598-1605. [PMID: 30954685 DOI: 10.1016/j.drudis.2019.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Age-related macular degeneration and glaucoma are the commonest causes of irreversible vision loss in industrialized countries. The purine ATP is known to regulate a range of cellular functions in the retina via its action on P2 receptors, especially the P2X7 receptor. Although agents that attenuate P2X7 receptor function have been in development for many years, no compound is currently approved for the treatment of eye disease. However, newer compounds that cross the blood-brain barrier could have potential to reduce vision loss. This review will outline recent information relating to the role of P2X7 in age-related macular degeneration and glaucoma and, subsequently, we will discuss recent developments for attenuating P2X7 receptor function.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | - Anna Y Wang
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Matthew V Rutar
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Ben Gu
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
104
|
Reumueller A, Schmidt-Erfurth U, Salas M, Sacu S, Drexler W, Pircher M, Pollreisz A. Three-Dimensional Adaptive Optics–Assisted Visualization of Photoreceptors in Healthy and Pathologically Aged Eyes. ACTA ACUST UNITED AC 2019; 60:1144-1155. [DOI: 10.1167/iovs.18-25702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Adrian Reumueller
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Matthias Salas
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Stefan Sacu
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
105
|
Molecular profiling of resident and infiltrating mononuclear phagocytes during rapid adult retinal degeneration using single-cell RNA sequencing. Sci Rep 2019; 9:4858. [PMID: 30890724 PMCID: PMC6425014 DOI: 10.1038/s41598-019-41141-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
Neuroinflammation commonly accompanies neurodegeneration, but the specific roles of resident and infiltrating immune cells during degeneration remains controversial. Much of the difficulty in assessing myeloid cell-specific functions during disease progression arises from the inability to clearly distinguish between activated microglia and bone marrow-derived monocytes and macrophages in various stages of differentiation and activation within the central nervous system. Using an inducible model of photoreceptor cell death, we investigated the prevalence of infiltrating monocytes and macrophage subpopulations after the initiation of degeneration in the mouse retina. In vivo retinal imaging revealed infiltration of CCR2+ leukocytes across retinal vessels and into the parenchyma within 48 hours of photoreceptor degeneration. Immunohistochemistry and flow cytometry confirmed and characterized these leukocytes as CD11b+CD45+ cells. Single-cell mRNA sequencing of the entire CD11b+CD45+ population revealed the presence of resting microglia, activated microglia, monocytes, and macrophages as well as 12 distinct subpopulations within these four major cell classes. Our results demonstrate a previously immeasurable degree of molecular heterogeneity in the innate immune response to cell-autonomous degeneration within the central nervous system and highlight the necessity of unbiased high-throughput and high-dimensional molecular techniques like scRNAseq to understand the complex and changing landscape of immune responders during disease progression.
Collapse
|
106
|
Léveillard T, Philp NJ, Sennlaub F. Is Retinal Metabolic Dysfunction at the Center of the Pathogenesis of Age-related Macular Degeneration? Int J Mol Sci 2019; 20:ijms20030762. [PMID: 30754662 PMCID: PMC6387069 DOI: 10.3390/ijms20030762] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023] Open
Abstract
The retinal pigment epithelium (RPE) forms the outer blood⁻retina barrier and facilitates the transepithelial transport of glucose into the outer retina via GLUT1. Glucose is metabolized in photoreceptors via the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS) but also by aerobic glycolysis to generate glycerol for the synthesis of phospholipids for the renewal of their outer segments. Aerobic glycolysis in the photoreceptors also leads to a high rate of production of lactate which is transported out of the subretinal space to the choroidal circulation by the RPE. Lactate taken up by the RPE is converted to pyruvate and metabolized via OXPHOS. Excess lactate in the RPE is transported across the basolateral membrane to the choroid. The uptake of glucose by cone photoreceptor cells is enhanced by rod-derived cone viability factor (RdCVF) secreted by rods and by insulin signaling. Together, the three cells act as symbiotes: the RPE supplies the glucose from the choroidal circulation to the photoreceptors, the rods help the cones, and both produce lactate to feed the RPE. In age-related macular degeneration this delicate ménage à trois is disturbed by the chronic infiltration of inflammatory macrophages. These immune cells also rely on aerobic glycolysis and compete for glucose and produce lactate. We here review the glucose metabolism in the homeostasis of the outer retina and in macrophages and hypothesize what happens when the metabolism of photoreceptors and the RPE is disturbed by chronic inflammation.
Collapse
Affiliation(s)
- Thierry Léveillard
- . Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Nancy J Philp
- . Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Florian Sennlaub
- . Department of Therapeutics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
107
|
Balser C, Wolf A, Herb M, Langmann T. Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina. J Neuroinflammation 2019; 16:26. [PMID: 30732627 PMCID: PMC6366121 DOI: 10.1186/s12974-019-1419-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of visual impairment in the elderly. The neovascular (wet) form of AMD can be treated with intravitreal injections of different anti-vascular endothelial growth factor (VEGF) agents. Placental growth factor (PGF) is another member of the VEGF family of cytokines with pro-angiogenic and pro-inflammatory effects. Here, we aimed to compare single and combined inhibition of VEGF-A and PGF in the laser-induced mouse model of choroidal neovascularization (CNV) with a focus on the effects on retinal mononuclear phagocytes. Methods CNV was induced in C57BL/6J mice using a YAG-Laser. Immediately after laser damage antibodies against VEGF-A (aVEGF), anti-PGF (aPGF), aVEGF combined with aPGF, aflibercept, or IgG control were injected intravitreally in both eyes. Three and 7 days after laser damage, the vascular leakage was determined by fluorescence angiography. Lectin staining of retinal and RPE/choroidal flat mounts was used to monitor CNV. In situ mRNA co-expression of Iba1, VEGF and PGF were quantified using in situ hybridization. Retinal and RPE/choroidal protein levels of VEGF and PGF as well as the pro-inflammatory cytokines IL-6, IL1-beta, and TNF were determined by ELISA. Results Early (day 3) and intermediate (day 7) vascular leakage and CNV were significantly inhibited by PGF and VEGF-A co-inhibition, most effectively with the trap molecule aflibercept. While VEGF-A blockage alone had no effects, trapping PGF especially with aflibercept prevented the accumulation of reactive microglia and macrophages in laser lesions. The lesion-related mRNA expression and secretion of VEGF-A and PGF by mononuclear phagocytes were potently suppressed by PGF and partially by VEGF-A inhibition. Protein levels of IL-6 and IL1-beta were strongly reduced in all treatment groups. Conclusions Retinal inhibition of PGF in combination with VEGF-A prevents vascular leakage and CNV possibly via modulating their own expression in mononuclear phagocytes. PGF-related, optimized strategies to target inflammation-mediated angiogenesis may help to increase efficacy and reduce non-responders in the treatment of wet AMD patients. Electronic supplementary material The online version of this article (10.1186/s12974-019-1419-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carsten Balser
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, 50931, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
108
|
Léveillard T, Klipfel L. Mechanisms Underlying the Visual Benefit of Cell Transplantation for the Treatment of Retinal Degenerations. Int J Mol Sci 2019; 20:ijms20030557. [PMID: 30696106 PMCID: PMC6387096 DOI: 10.3390/ijms20030557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The transplantation of retinal cells has been studied in animals to establish proof of its potential benefit for the treatment of blinding diseases. Photoreceptor precursors have been grafted in animal models of Mendelian-inherited retinal degenerations, and retinal pigmented epithelial cells have been used to restore visual function in animal models of age-related macular degeneration (AMD) and recently in patients. Cell therapy over corrective gene therapy in inherited retinal degeneration can overcome the genetic heterogeneity by providing one treatment for all genetic forms of the diseases. In AMD, the existence of multiple risk alleles precludes a priori the use of corrective gene therapy. Mechanistically, the experiments of photoreceptor precursor transplantation reveal the importance of cytoplasmic material exchange between the grafted cells and the host cells for functional rescue, an unsuspected mechanism and novel concept. For transplantation of retinal pigmented epithelial cells, the mechanisms behind the therapeutic benefit are only partially understood, and clinical trials are ongoing. The fascinating studies that describe the development of methodologies to produce cells to be grafted and demonstrate the functional benefit for vision are reviewed.
Collapse
Affiliation(s)
- Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Laurence Klipfel
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
109
|
Ma W, Silverman SM, Zhao L, Villasmil R, Campos MM, Amaral J, Wong WT. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. eLife 2019; 8:42049. [PMID: 30666961 PMCID: PMC6342522 DOI: 10.7554/elife.42049] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Constitutive TGFβ signaling is important in maintaining retinal neurons and blood vessels and is a factor contributing to the risk for age-related macular degeneration (AMD), a retinal disease involving neurodegeneration and microglial activation. How TGFβ signaling to microglia influences pathological retinal neuroinflammation is unclear. We discovered that ablation of the TGFβ receptor, TGFBR2, in retinal microglia of adult mice induced abnormal microglial numbers, distribution, morphology, and activation status, and promoted a pathological microglial gene expression profile. TGFBR2-deficient retinal microglia induced secondary gliotic changes in Müller cells, neuronal apoptosis, and decreased light-evoked retinal function reflecting abnormal synaptic transmission. While retinal vasculature was unaffected, TGFBR2-deficient microglia demonstrated exaggerated responses to laser-induced injury that was associated with increased choroidal neovascularization, a hallmark of advanced exudative AMD. These findings demonstrate that deficiencies in TGFβ-mediated microglial regulation can drive neuroinflammatory contributions to AMD-related neurodegeneration and neovascularization, highlighting TGFβ signaling as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Sean M Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Maria M Campos
- Section on Histopathology, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Juan Amaral
- Unit on Ocular Stem Cell and Translational Research, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
110
|
Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME. Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. J Neuroinflammation 2018; 15:344. [PMID: 30553275 PMCID: PMC7659426 DOI: 10.1186/s12974-018-1365-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 01/07/2023] Open
Abstract
Background Activation of resident microglia accompanies every known form of neurodegeneration, but the involvement of peripheral monocytes that extravasate and rapidly transform into microglia-like macrophages within the central nervous system during degeneration is far less clear. Methods Using a combination of in vivo ocular imaging, flow cytometry, and immunohistochemistry, we investigated the response of infiltrating cells in a light-inducible mouse model of photoreceptor degeneration. Results Within 24 h, resident microglia became activated and began migrating to the site of degeneration. Retinal expression of CCL2 increased just prior to a transient period of CCR2+ cell extravasation from the retinal vasculature. Proliferation of microglia and monocytes occurred concurrently; however, there was no indication of proliferation in either population until 72–96 h after neurodegeneration began. Eliminating CCL2-CCR2 signaling blocked monocyte recruitment, but did not alter the extent of retinal degeneration. Conclusions These results demonstrate that the immune response to photoreceptor degeneration includes both resident microglia and monocytes, even at very early times. Surprisingly, preventing monocyte infiltration did not block neurodegeneration, suggesting that in this model, degeneration is limited by cell clearance from other phagocytes or by the timing of intrinsic cell death programs. These results show monocyte involvement is not limited to disease states that overwhelm or deplete the resident microglial population and that interventions focused on modulating the peripheral immune system are not universally beneficial for staving off degeneration. Electronic supplementary material The online version of this article (10.1186/s12974-018-1365-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah J Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Eric B Miller
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA
| | - Xinlei Wang
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.,Department of Ophthalmology & Vision Science, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Emily S Levine
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Robert J Zawadzki
- Department of Ophthalmology & Vision Science, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA. .,Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA. .,Department of Ophthalmology & Vision Science, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
111
|
McMenamin PG, Saban DR, Dando SJ. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog Retin Eye Res 2018; 70:85-98. [PMID: 30552975 DOI: 10.1016/j.preteyeres.2018.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
In the eye immune defenses must take place in a plethora of differing microenvironments ranging from the corneal and conjunctival epithelia facing the external environment to the pigmented connective tissue of the uveal tract containing smooth muscle, blood vessels and peripheral nerves to the innermost and highly protected neural retina. The extravascular environment of the neural retina, like the brain parenchyma, is stringently controlled to maintain conditions required for neural transmission. The unique physiological nature of the neural retina can be attributed to the blood retinal barriers (BRB) of the retinal vasculature and the retinal pigment epithelium, which both tightly regulate the transport of small molecules and restrict passage of cells and macromolecules from the circulation into the retina in a similar fashion to the blood brain barrier (BBB). The extracellular environment of the neural retina differs markedly from that of the highly vascular, loose connective tissue of the choroid, which lies outside the BRB. The choroid hosts a variety of immune cell types, including macrophages, dendritic cells (DCs) and mast cells. This is in marked contrast to the neural parenchyma of the retina, which is populated almost solely by microglia. This review will describe the current understanding of the distribution, phenotype and physiological role of ocular immune cells behind or inside the blood-retinal barriers and those in closely juxtaposed tissues outside the barrier. The nature and function of these immune cells can profoundly influence retinal homeostasis and lead to disordered immune function that can lead to vision loss.
Collapse
Affiliation(s)
- Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Daniel R Saban
- Department of Ophthalmology, Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha J Dando
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
112
|
Chen M, Chan CC, Xu H. Cholesterol homeostasis, macrophage malfunction and age-related macular degeneration. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S55. [PMID: 30613630 DOI: 10.21037/atm.2018.10.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, Centre for Experimental Medicine, Queen's University Belfast, UK
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Centre for Experimental Medicine, Queen's University Belfast, UK.,Aier Eye Institute, Aier Eye Hospital Group, Aier School of Ophthalmology, Central South University, Changsha 410015, China
| |
Collapse
|
113
|
Abstract
Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Sean M. Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| |
Collapse
|
114
|
Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases. Prog Retin Eye Res 2018; 66:1-16. [DOI: 10.1016/j.preteyeres.2018.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
|
115
|
Beaudry-Richard A, Nadeau-Vallée M, Prairie É, Maurice N, Heckel É, Nezhady M, Pundir S, Madaan A, Boudreault A, Hou X, Quiniou C, Sierra EM, Beaulac A, Lodygensky G, Robertson SA, Keelan J, Adams Waldorf KM, Olson DM, Rivera JC, Lubell WD, Joyal JS, Bouchard JF, Chemtob S. Antenatal IL-1-dependent inflammation persists postnatally and causes retinal and sub-retinal vasculopathy in progeny. Sci Rep 2018; 8:11875. [PMID: 30089839 PMCID: PMC6082873 DOI: 10.1038/s41598-018-30087-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Antenatal inflammation as seen with chorioamnionitis is harmful to foetal/neonatal organ development including to eyes. Although the major pro-inflammatory cytokine IL-1β participates in retinopathy induced by hyperoxia (a predisposing factor to retinopathy of prematurity), the specific role of antenatal IL-1β associated with preterm birth (PTB) in retinal vasculopathy (independent of hyperoxia) is unknown. Using a murine model of PTB induced with IL-1β injection in utero, we studied consequent retinal and choroidal vascular development; in this process we evaluated the efficacy of IL-1R antagonists. Eyes of foetuses exposed only to IL-1β displayed high levels of pro-inflammatory genes, and a persistent postnatal infiltration of inflammatory cells. This prolonged inflammatory response was associated with: (1) a marked delay in retinal vessel growth; (2) long-lasting thinning of the choroid; and (3) long-term morphological and functional alterations of the retina. Antenatal administration of IL-1R antagonists - 101.10 (a modulator of IL-1R) more so than Kineret (competitive IL-1R antagonist) - prevented all deleterious effects of inflammation. This study unveils a key role for IL-1β, a major mediator of chorioamnionitis, in causing sustained ocular inflammation and perinatal vascular eye injury, and highlights the efficacy of antenatal 101.10 to suppress deleterious inflammation.
Collapse
Affiliation(s)
- Alexandra Beaudry-Richard
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada.,Department of Pharmacology, Université de Montréal, Montréal, Canada
| | - Élizabeth Prairie
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Noémie Maurice
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Émilie Heckel
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Mohammad Nezhady
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Sheetal Pundir
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Ankush Madaan
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Amarilys Boudreault
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Xin Hou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Estefania Marin Sierra
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Alexandre Beaulac
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Gregory Lodygensky
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynaecology, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jeffrey Keelan
- Div Obstetrics & Gynaecology, University of Western Australia King Edward Memorial Hospital, Perth, Australia
| | | | - David M Olson
- Departments of Obstetrics and Gynaecology, Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada
| | - Jose-Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada.,Department of Pharmacology, Université de Montréal, Montréal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | | | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada. .,Department of Pharmacology, Université de Montréal, Montréal, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| |
Collapse
|
116
|
Nowosielski Y, Haas G, Seifarth C, Wohlfarter W, Tasan R, Verius M, Troger J, Bechrakis N. The involvement of NK1 and Y2 receptor in the development of laser-induced CNVs in C57Bl/6N mice. Exp Eye Res 2018; 177:87-95. [PMID: 30076797 DOI: 10.1016/j.exer.2018.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE to explore whether the NK1 and Y2 receptors are involved in the pathogenesis of laser-induced CNV (choroidal neovascularization) in C57Bl/6N mice. METHODS CNV was induced by laser damage of Bruch's membrane and the CNV volume was determined by OCT and/or flatmount preparation. First, the development of the CNV volume over time was evaluated. Second, the CNV development in NK1- and Y2 KO mice was analyzed. Third, the effect on the development as well as the regression of CNV by intravitreal injections of the NK1 antagonist SR140333 and the Y2 antagonist BIIEO246 separately and each in combination with Eylea®, was investigated. Furthermore, flatmount CNV volume measurements were correlated to volumes obtained by the in vivo OCT technique. RESULTS CNV volume peak was observed at day 4 after laser treatment. Compared to wild type mice, NK1 and Y2 KO mice showed significantly smaller CNV volumes. Eylea® and the Y2 antagonist significantly reduced the volume of the developing CNV. In contrast to Eylea® there was no effect of either antagonist on the regression of CNV, additionally no additive effect upon combined Eylea®/antagonist treatment was observed. There was a strong positive correlation between CNV volumes obtained by OCT and flatmount. CONCLUSION NK1 and Y2 receptors mediate the development of laser-induced CNVs in mice. They seem to play an important role at the developmental stage of CNVs, whereas VEGF via VEGF receptor may be an important mediator throughout the CNV existence. In vivo OCT correlates with flatmount CNV volume, representing a useful tool for in vivo evaluations of CNV over time.
Collapse
Affiliation(s)
- Yvonne Nowosielski
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria.
| | - Gertrud Haas
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Christof Seifarth
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Werner Wohlfarter
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Ramon Tasan
- Department of Pharmacology, Medical University of Innsbruck, Peter Mayr Straße 1a, Austria
| | - Michael Verius
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Josef Troger
- Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße 35, Austria
| | - Nikolaos Bechrakis
- Department of Ophthalmology, Essen University Hospital, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
117
|
Saban DR. New concepts in macrophage ontogeny in the adult neural retina. Cell Immunol 2018; 330:79-85. [PMID: 29703455 DOI: 10.1016/j.cellimm.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022]
Abstract
The number of neurons dedicated to vision itself is thought to be greater than the sum of the four other senses combined. Yet, little attention has been payed to the retina as compared to elsewhere in the central nervous system with respect to microglia, the macrophages of the neural parenchyma. Indeed, major advancements in the understanding of microglial ontogeny and maintenance in brain and spinal cord are now widely appreciated, whereas less notice has been given to the neural retina in this regard. The current Review covers topical concepts on adult microglia and perivascular macrophage ontogenies in the steady state retina, as well as parallels made with these macrophages in other areas of the central nervous system. The subject of recruited monocytes and their descendant monocyte-derived macrophages in degenerative diseases of the retina is also integrated into this Review. Key experiments that have led to the theories covered are highlighted throughout, as are the knowledge gaps that remain unresolved.
Collapse
Affiliation(s)
- Daniel R Saban
- Duke University School of Medicine, Department of Ophthalmology, Durham, NC, USA; Duke University School of Medicine, Department of Immunology, Durham, NC, USA.
| |
Collapse
|
118
|
Report on the National Eye Institute's Audacious Goals Initiative: Creating a Cellular Environment for Neuroregeneration. eNeuro 2018; 5:eN-COM-0035-18. [PMID: 29766041 PMCID: PMC5952320 DOI: 10.1523/eneuro.0035-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022] Open
Abstract
The cellular environment of the CNS is non-permissive for growth and regeneration. In the retina, transplantation of stem cells has been limited by inefficient survival and integration into existing circuits. In November 2016, as part of the National Eye Institute's Audacious Goals Initiative (AGI), a diverse collection of investigators gathered for a workshop devoted to articulating the gaps in knowledge, barriers to progress, and ideas for new approaches to understanding cellular environments within the retina and how these environments may be manipulated. In doing so, the group identified the areas of (1) retinal and optic nerve glia, (2) microglia and inflammation, and the (3) extracellular matrix (ECM) and retinal vasculature as key to advancing our understanding and manipulation of the retinal microenvironments. We summarize here the findings of the workshop for the broader scientific community.
Collapse
|
119
|
Chronic exposure to tumor necrosis factor alpha induces retinal pigment epithelium cell dedifferentiation. J Neuroinflammation 2018; 15:85. [PMID: 29548329 PMCID: PMC5857126 DOI: 10.1186/s12974-018-1106-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/25/2018] [Indexed: 12/02/2022] Open
Abstract
Background The retinal pigment epithelium (RPE) is a monolayer of pigmented cells with important barrier and immuno-suppressive functions in the eye. We have previously shown that acute stimulation of RPE cells by tumor necrosis factor alpha (TNFα) downregulates the expression of OTX2 (Orthodenticle homeobox 2) and dependent RPE genes. We here investigated the long-term effects of TNFα on RPE cell morphology and key functions in vitro. Methods Primary porcine RPE cells were exposed to TNFα (at 0.8, 4, or 20 ng/ml per day) for 10 days. RPE cell morphology, phagocytosis, barrier- and immunosuppressive-functions were assessed. Results Chronic (10 days) exposure of primary RPE cells to TNFα increases RPE cell size and polynucleation, decreases visual cycle gene expression, impedes RPE tight-junction organization and transepithelial resistance, and decreases the immunosuppressive capacities of the RPE. TNFα-induced morphological- and transepithelial-resistance changes were prevented by concomitant Transforming Growth Factor β inhibition. Conclusions Our results indicate that chronic TNFα-exposure is sufficient to alter RPE morphology and impede cardinal features that define the differentiated state of RPE cells with striking similarities to the alterations that are observed with age in neurodegenerative diseases such as age-related macular degeneration.
Collapse
|
120
|
Epps SJ, Boldison J, Stimpson ML, Khera TK, Lait PJP, Copland DA, Dick AD, Nicholson LB. Re-programming immunosurveillance in persistent non-infectious ocular inflammation. Prog Retin Eye Res 2018. [PMID: 29530739 PMCID: PMC6563519 DOI: 10.1016/j.preteyeres.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ocular function depends on a high level of anatomical integrity. This is threatened by inflammation, which alters the local tissue over short and long time-scales. Uveitis due to autoimmune disease, especially when it involves the retina, leads to persistent changes in how the eye interacts with the immune system. The normal pattern of immune surveillance, which for immune privileged tissues is limited, is re-programmed. Many cell types, that are not usually present in the eye, become detectable. There are changes in the tissue homeostasis and integrity. In both human disease and mouse models, in the most extreme cases, immunopathological findings consistent with development of ectopic lymphoid-like structures and disrupted angiogenesis accompany severely impaired eye function. Understanding how the ocular environment is shaped by persistent inflammation is crucial to developing novel approaches to treatment.
Collapse
Affiliation(s)
- Simon J Epps
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Madeleine L Stimpson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Tarnjit K Khera
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK
| | - Philippa J P Lait
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK; UCL-Institute of Ophthalmology and National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, EC1V 2PD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
121
|
Human aging and disease: Lessons from age-related macular degeneration. Proc Natl Acad Sci U S A 2018; 115:2866-2872. [PMID: 29483257 DOI: 10.1073/pnas.1721033115] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is the most significant risk factor associated with chronic disease in humans. The accumulation of genetic damage throughout life leads to a variety of biological aberrations, including disrupted protein homeostasis, metabolic dysfunction, and altered cellular signaling. Such changes ultimately result in cellular senescence, death, or transformation to uncontrolled proliferation, thereby compromising human health. Events contributing to age-dependent physiological decline also occur in the context of hormonal and metabolic changes, affecting interconnected cellular networks. This complexity often confounds the development of effective treatments for aging and age-related diseases. In contrast to monotherapy and polypharmacology, an innovative systems pharmacology approach can identify synergistic combinations of drugs that modulate distinct mechanistic nodes within a network, minimizing off-target side effects and enabling better therapeutic outcomes. G protein-coupled receptors (GPCRs) are particularly good targets for the application of systems pharmacology, because they activate different signal transduction pathways that can culminate in a common response. Here, we describe a systems pharmacology strategy for the treatment of age-related macular degeneration (AMD), a multifactorial chronic disease of the eye. By considering the retina as part of a large, interconnected network, systems pharmacology will enable the identification of combination therapies targeting GPCRs to help restore genomic, proteomic, and endocrine homeostasis. Such an approach can be advantageous in providing drug regimens for the treatment of AMD, while also having broader ramifications for ameliorating adverse effects of chronic, age-related disease in humans.
Collapse
|
122
|
Zheng Y, Rao YQ, Li JK, Huang Y, Zhao P, Li J. Age-related pro-inflammatory and pro-angiogenic changes in human aqueous humor. Int J Ophthalmol 2018; 11:196-200. [PMID: 29487806 DOI: 10.18240/ijo.2018.02.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
AIM To reveal age-related aqueous cytokine changes in human aqueous humor. METHODS Aqueous humor was collected from 12 young children (3-6.5 years old) and 71 healthy adults (22-106 years old) with cataract but without other systemic or ocular disorders. Levels of 22 cytokines, chemokines and vascular endothelial growth factor (VEGF) were measured and analyzed. RESULTS The following proteins showed significant increase from childhood to adult: interferon-gamma (IFN-γ), interleukin (IL)-13, IL-6, IL-12(p70), IL-10, CCL2, CCL3, CCL4, CXCL8, CXCL9, CXCL10, IFN-α2 and VEGF (all P<0.05). IFN-γ, IL-13, IL-12(p70), IL-10, CCL3, CXCL9 and VEGF also showed moderate strength age-related increase in the adult group (r>0.5). The strength of correlation between aging and CCL4 were fair (r=0.398). The concentrations of IL-2, IL-4, IL-5, IL-1β and TNF-α were low in both groups. CONCLUSION From childhood to adult, the immunological milieu of the anterior chamber become more pro-inflammatory and pro-angiogenic. Such changes may represent the parainflammation state of the human eye.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Ophthalmology, Xinhua Hospital, Chong Ming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu-Qing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jia-Kai Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yue Huang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Ophthalmology, Xinhua Hospital, Chong Ming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
123
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|