101
|
Rapid Removal of Acid Red 88 by Zeolite/Chitosan Hydrogel in Aqueous Solution. Polymers (Basel) 2022; 14:polym14050893. [PMID: 35267716 PMCID: PMC8912896 DOI: 10.3390/polym14050893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
In the present study, we developed a new adsorbent product with zeolite crosslinked chitosan (ZL–CH hydrogel) to remove acid red 88 (AR88) in an aqueous solution. The effects of several factors, such as the comparison of ZL–CH hydrogel and the absence of chitosan, pH, adsorbent dosage, initial AR88 concentration, contact time, and ion strength, were determined. Obtained results showed that ZL–CH hydrogel improved AR88 removal compared to the absence of chitosan, with an adsorption capacity of 332.48 mg/g in equilibrium time of 1 min, and adding ionic strength had no significant effect. However, with optimal conditions at pH 2.0, dry ZL–CH became hydrogel due to protonation of amino and hydroxyl groups through hydrogen bonds in the AR88 solution. Volume fraction and interaction force decreased with increasing porosity, leading to an increase in adsorption capacity and swelling ratio. Experimental data of the adsorption process showed the Freundlich isotherm model. The equilibrium for adsorption and swelling kinetics studies showed and fitted a pseudo-second-order model. NaOH was successful as a desorbing agent with 93.8%, and it followed the pseudo-second-order kinetics model. The recycling process indicates great potential for AR88 removal.
Collapse
|
102
|
Hamad HN, Idrus S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers (Basel) 2022; 14:783. [PMID: 35215695 PMCID: PMC8876036 DOI: 10.3390/polym14040783] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB's removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.
Collapse
Affiliation(s)
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
103
|
Ji C, Xu M, Yu H, Lv L, Zhang W. Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127684. [PMID: 34774352 DOI: 10.1016/j.jhazmat.2021.127684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The development of heavy metal adsorbents with high selectivity has become a research hotspot due to the interference of coexisting ions (e.g., Na+, Ca2+) in the actual wastewater, but the more difficult regeneration caused by high adsorption selectivity severely limits its practical applications. Herein, a carboxyl adsorbent, MIL-121, demonstrated high adsorption selectivity for heavy metals at 10,000 mg/L of Na+ (removal > 99% for Cu2+) as well as unexpected easy regeneration (desorption > 99%) at low H+ concentration (10-3.5-10-3.0 M), which is hundreds of times lower than that of ever reported selective adsorbents (> 10-1 M H+). X-ray photoelectron spectrometry (XPS), extended X-ray absorption fine structure (EXAFS) coupled with Density functional theory (DFT) simulation unveil that the -COOH groups in MIL-121 for heavy metals adsorption is specific inner-sphere coordination with higher binding energy (1.31 eV for Cu), and less energy required for regeneration (0.26 eV for H). Similar high selectivity and easy regeneration were also satisfied with other heavy metals (e.g., Pb2+, Ni2+), and removal of heavy metals remained > 99% in 10 consecutive adsorption-desorption cycles. For actual copper electroplating wastewater treatment, MIL-121 could produce ~ 3600 mL clean water/g sample, outperforming 300 mL that of the benchmark commercial adsorbent D-113. This study shows the potential of MIL-121 for heavy metal wastewater treatment and provides mechanistic insight for developing adsorbents with high selective adsorption and easy regeneration.
Collapse
Affiliation(s)
- Chenghan Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mujian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210046, China.
| |
Collapse
|
104
|
Patti A, Acierno D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers (Basel) 2022; 14:692. [PMID: 35215604 PMCID: PMC8878127 DOI: 10.3390/polym14040692] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims to provide an overview of the latest research studies on the use of biopolymers in various textile processes, from spinning processes to dyeing and finishing treatment, proposed as a possible solution to reduce the environmental impact of the textile industry. Recently, awareness of various polluting aspects of textile production, based on petroleum derivatives, has grown significantly. Environmental issues resulting from greenhouse gas emissions, and waste accumulation in nature and landfills, have pushed research activities toward more sustainable, low-impact alternatives. Polymers derived from renewable resources and/or with biodegradable characteristics were investigated as follows: (i) as constituent materials in yarn production, in view of their superior ability to be decomposed compared with common synthetic petroleum-derived plastics, positive antibacterial activities, good breathability, and mechanical properties; (ii) in textile finishing to act as biological catalysts; (iii) to impart specific functional properties to treated textiles; (iv) in 3D printing technologies on fabric surfaces to replace traditionally more pollutive dye-based and inkjet printing; and (v) in the implants for the treatment of dye-contaminated water. Finally, current projects led by well-known companies on the development of new materials for the textile market are presented.
Collapse
Affiliation(s)
- Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Acierno
- CRdC Nuove Tecnologie per le Attività Produttive Scarl, Via Nuova Agnano 11, 80125 Naples, Italy
| |
Collapse
|
105
|
Maslamani N, Bakhsh EM, Khan SB, Danish EY, Akhtar K, Fagieh TM, Su X, Asiri AM. Chitosan@Carboxymethylcellulose/CuO-Co 2O 3 Nanoadsorbent as a Super Catalyst for the Removal of Water Pollutants. Gels 2022; 8:91. [PMID: 35200472 PMCID: PMC8871360 DOI: 10.3390/gels8020091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
In this work, an efficient nanocatalyst was developed based on nanoadsorbent beads. Herein, carboxymethyl cellulose-copper oxide-cobalt oxide nanocomposite beads (CMC/CuO-Co2O3) crosslinked by using AlCl3 were successfully prepared. The beads were then coated with chitosan (Cs), Cs@CMC/CuO-Co2O3. The prepared beads, CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, were utilized as adsorbents for heavy metal ions (Ni, Fe, Ag and Zn). By using CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, the distribution coefficients (Kd) for Ni, Fe, Ag and Zn were (41.166 and 6173.6 mLg-1), (136.3 and 1500 mLg-1), (20,739.1 and 1941.1 mLg-1) and (86.9 and 2333.3 mLg-1), respectively. Thus, Ni was highly adsorbed by Cs@CMC/CuO-Co2O3 beads. The metal ion adsorbed on the beads were converted into nanoparticles by treating with reducing agent (NaBH4) and named Ni/Cs@CMC/CuO-Co2O3. Further, the prepared nanoparticles-decorated beads (Ni/Cs@CMC/CuO-Co2O3) were utilized as nanocatalysts for the reduction of organic and inorganic pollutants (4-nitophenol, MO, EY dyes and potassium ferricyanide K3[Fe(CN)6]) in the presence of NaBH4. Among all catalysts, Ni/Cs@CMC/CuO-Co2O3 had the highest catalytic activity toward MO, EY and K3[Fe(CN)6], removing up to 98% in 2.0 min, 90 % in 6.0 min and 91% in 6.0 min, respectively. The reduction rate constants of MO, EY, 4-NP and K3[Fe(CN)6] were 1.06 × 10-1, 4.58 × 10-3, 4.26 × 10-3 and 5.1 × 10-3 s-1, respectively. Additionally, the catalytic activity of the Ni/Cs@CMC/CuO-Co2O3 beads was effectively optimized. The stability and recyclability of the beads were tested up to five times for the catalytic reduction of MO, EY and K3[Fe(CN)6]. It was confirmed that the designed nanocomposite beads are ecofriendly and efficient with high strength and stability as catalysts for the reduction of organic and inorganic pollutants.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Esraa M. Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ekram Y. Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Taghreed M. Fagieh
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
| | - Xintai Su
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.M.); (E.Y.D.); (K.A.); (T.M.F.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
106
|
Chang SH, Lu CC, Lin CW, Wang KS, Lee MW, Liu SH. Waste expanded polystyrene modified with H 2SO 4/biodegradable chelating agent for reuse: As a highly efficient adsorbent to remove fluoroquinolone antibiotic from water. CHEMOSPHERE 2022; 288:132619. [PMID: 34678352 DOI: 10.1016/j.chemosphere.2021.132619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Untreated wastewater containing fluoroquinolone antibiotics poses serious hazards to aquatic species and human health; therefore, treatment of waste expanded polystyrene (EPS) is a crucial environmental matter. In this study, waste EPS was modified with a H2SO4/biodegradable chelating agent, [S,S]-ethylenediamine-N,N'-disuccinic acid (EDDS), and used for highly efficient adsorption of the fluoroquinolone antibiotic ciprofloxacin. When ciprofloxacin of 25 mg/L was used, the H2SO4-modified EPS (EPSH2SO4) adsorbed 60.5% of the ciprofloxacin. During sulfonation, adding a low dose of EDDS markedly improved the adsorption ability of EPSH2SO4+EDDS. The optimal modification conditions were 95% H2SO4, 0.002 M EDDS, 80 °C, and 40 min. The increased adsorbent doses enhanced the adsorption. Approximately 0.2 g/L of EPSH2SO4+EDDS could effectively adsorb 97.8% of the ciprofloxacin (554.3 mg/g) within 30 min. Solution pH0 greatly influenced the adsorption, and the most suitable pH0 was 6. The Langmuir isotherm accurately described the adsorption behaviors of both EPSH2SO4 and EPSH2SO4+EDDS (R2 = 0.997-0.998). The adsorption ability of EPSH2SO4+EDDS (qmax = 1250 mg/g) was 32 times higher than that of EPSH2SO4 (qmax = 38.6 mg/g). A total of 1 M HCl effectively regenerated the exhausted adsorbent. The optimal solid/liquid ratio and time were 0.08 g/20 mL and 60 min, respectively. The regenerated EPSH2SO4+EDDS maintained a high adsorption ability (87.2%) after 10 regeneration cycles. The results thus indicate that the EPSH2SO4+EDDS adsorption-regeneration process is a potential approach to remove ciprofloxacin from water.
Collapse
Affiliation(s)
- Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chun-Cheng Lu
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Kai-Sung Wang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Ming-Wei Lee
- Department of Medical Laboratory and Biotechnology, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan.
| |
Collapse
|
107
|
Removal of nafcillin sodium monohydrate from aqueous solution by hydrogels containing nanocellulose: An experimental and theoretical study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
108
|
Tan Y, Wan X, Ni X, Wang L, Zhou T, Sun H, Wang N, Yin X. Efficient removal of Cd (II) from aqueous solution by chitosan modified kiwi branch biochar. CHEMOSPHERE 2022; 289:133251. [PMID: 34896419 DOI: 10.1016/j.chemosphere.2021.133251] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Production of cost-efficient composite materials from low-cost modified biochar for the removal of Cd (II) from wastewater is much needed to meet the growing needs of industrial wastewater treatments. A novel chitosan-modified kiwi branch biochar (CHKB) was fabricated as low-cost modified biochar for the removal of Cd (II) from aqueous solution. Batch adsorption and characterization experiments indicated that the modification of kiwi biochar (KB) by chitosan remarkably improved its adsorption performance. The results revealed that the adsorption isotherms can be best described by a Langmuir model and that a pseudo-second-order model fits the Cd (II) adsorption kinetics well, which indicates that it is a monolayer process controlled by chemisorption. CHKB exhibited a Langmuir maximum adsorption capacity of Cd (II) (126.58 mg g-1), whereas that of KB was only 4.26 mg g-1. The adsorption ability of CHKB was improved by increasing the surface area and an abundance of surface functional groups (-OH, -NH, CO, etc.). The cation exchange, electrostatic interaction, surface complexation, and precipitation were the main mechanisms in the sorption of Cd (II) on CHKB. Excellent adsorption performance, low cost, and environmental-friendliness made CHKB a fantastic adsorbent for the removal of Cd (II) in wastewater.
Collapse
Affiliation(s)
- Yuehui Tan
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xirui Wan
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xue Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Le Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ting Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China
| | - Nong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Tianjin, 300191, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China.
| |
Collapse
|
109
|
Omer AM, Dey R, Eltaweil AS, Abd El-Monaem EM, Ziora ZM. Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103543] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
110
|
Kalidason A, Kuroiwa T. Synthesis of chitosan–magnetite gel microparticles with improved stability and magnetic properties: A study on their adsorption, recoverability, and reusability in the removal of monovalent and multivalent azo dyes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
111
|
Adsorption of Cu (II) Ions Present in the Distilled Beverage (Sugar Cane Spirit) Using Chitosan Derived from the Shrimp Shell. Polymers (Basel) 2022; 14:polym14030573. [PMID: 35160562 PMCID: PMC8840202 DOI: 10.3390/polym14030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Cachaça (sugar cane spirit) is a typically Brazilian distilled beverage. Copper ions can be present in craft beverages despite their acceptance in the national and international market. This study aims to evaluate the efficiency of chitosan as an adsorbent in removing copper (II) from cachaça. The structural characteristics of the obtained chitosan and the effect of adsorbed copper were evaluated by Fourier Transform Infrared Spectroscopy (ATR-FTIR), viscosimetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The deacetylation reaction from chitin (shrimp shell) resulted in chitosan with a deacetylation degree of 88.9% (potentiometric titration) and 86.9% (FTIR), low crystallinity, and an estimated molecular weight of 162.96 kDa. The copper reduction rate was 84.09% evaluated by spectrophotometric titration and microwave-induced plasma optical emission spectrometry (MIP–OES). The amine groups of chitosan had adsorption affinity with copper ions, and the kinetic analysis showed a better fit of the data by the Elovich equation, suggesting that the chemosorption mechanism controlled the kinetic process. The results suggest that chitosan has the potential to improve the quality and safety of cachaça.
Collapse
|
112
|
Laabd M, Imgharn A, Hsini A, Naciri Y, Mobarak M, Szunerits S, Boukherroub R, Albourine A. Efficient detoxification of Cr(VI)-containing effluents by sequential adsorption and reduction using a novel cysteine-doped PANi@faujasite composite: Experimental study supported by advanced statistical physics prediction. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126857. [PMID: 34399223 DOI: 10.1016/j.jhazmat.2021.126857] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, the global spreading of hazardous heavy metals becomes a top-priority environmental challenge, owing to its serious detrimental health outcomes. Herein, a novel cysteine-doped polyaniline@faujasite hybrid composite (Cys-PANi@FAU-50) was synthesized via a facile in-situ polymerization route for the effective detoxification of Cr(VI)-bearing wastewaters. The Cys-PANi@FAU-50 composite displayed an open mesoporous structure richly decorated with nitrogen/oxygen-containing functional groups, which consequently boosted the diffusion, adsorption and reduction of Cr(VI) oxyanions. The Cr(VI) adsorption behavior was satisfactorily tailored via pseudo-second-order law and Langmuir model with a maximum uptake capacity of 384.6 mg/g. Based on the advanced statistical physics theory, the monolayer model with two distinct receptor sites provided a reliable microscopic and macroscopic prediction of the Cr(VI) adsorption process. Stereographically, the Cr(VI) ions were adsorbed through horizontal multi-anchorage and vertical multi-molecular mechanisms on the amine and hydroxyl groups of Cys-PANi@FAU-50, respectively. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. XPS analysis proved that Cr(VI) ions were electrostatically adsorbed, and subsequently reduced to Cr(III), which were in turn immobilized by chelation with imine/sulfonate groups and electrostatic interactions with carboxylate groups. The Cys-PANi@FAU-50 featured an effortless regenerability and good reusability. Overall, the Cys-PANi@FAU-50 composite owns outstanding potentiality for detoxifying Cr(VI)-laden effluents.
Collapse
Affiliation(s)
- Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
113
|
Han B, Weatherley AJ, Mumford K, Bolan N, He JZ, Stevens GW, Chen D. Modification of naturally abundant resources for remediation of potentially toxic elements: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126755. [PMID: 34364213 DOI: 10.1016/j.jhazmat.2021.126755] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Water and soil contamination due to potentially toxic elements (PTEs) represents a critical threat to the global ecosystem and human health. Naturally abundant resources have significant advantages as adsorbent materials for environmental remediation over manufactured materials such as nanostructured materials and activated carbons. These advantages include cost-effectiveness, eco-friendliness, sustainability, and nontoxicity. In this review, we firstly compare the characteristics of representative adsorbent materials including bentonite, zeolite, biochar, biomass, and effective modification methods that are frequently used to enhance their adsorption capacity and kinetics. Following this, the adsorption pathways and sites are outlined at an atomic level, and an in-depth understanding of the structure-property relationships are provided based on surface functional groups. Finally, the challenges and perspectives of some emerging naturally abundant resources such as lignite are examined. Although both unamended and modified naturally abundant resources face challenges associated with their adsorption performance, cost performance, energy consumption, and secondary pollution, these can be tackled by using advanced techniques such as tailored modification, formulated mixing and reorganization of these materials. Recent studies on adsorbent materials provide a strong foundation for the remediation of PTEs in soil and water. We speculate that the pursuit of effective modification strategies will generate remediation processes of PTEs better suited to a wider variety of practical application conditions.
Collapse
Affiliation(s)
- Bing Han
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; College of Chemistry and Environmental Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| | - Anthony J Weatherley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
114
|
Li Y, Shao M, Huang M, Sang W, Zheng S, Jiang N, Gao Y. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier. CHEMOSPHERE 2022; 286:131470. [PMID: 34311401 DOI: 10.1016/j.chemosphere.2021.131470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
Heavy metals in the soil are major global environmental problems. Waste cotton was used to synthesize a novel β-CD/hydrothermal biochar (KCB), which is a low-cost and environment-friendly adsorbent for heavy metal soil remediation. KCB were used as reactive materials of electrokinetic-permeable reactive barrier (EK-PRB) to explore the removal characteristics of heavy metals. FTIR and XPS analysis revealed that KCB contained large numbers of surface functional groups. Adsorption of KCB for Pb2+ and Cd2+ reached 50.44 mg g-1 and 33.77 mg g-1, respectively. Metal ions in contaminated soil were removed by reactive barrier through electromigration, electrodialysis and electrophoresis, the removal efficiency of Pb2+ and Cd2+ in soil reached 92.87% and 86.19%. This finding proves that KCB/EK-PRB can be used as a cheap and green process to effectively remediate soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Yulin Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Mengyu Shao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China; Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Shanghai, 201620, China.
| | - Wenjing Sang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yanan Gao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
115
|
Wang Y, Ai Y, Liu X, Chen B, Zhang Y. Indole-functionalized cross-linked chitosan for effective uptake of uranium(VI) from aqueous solution. Polym Chem 2022. [DOI: 10.1039/d1py01725j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel indole-modified cross-linked chitosan aerogel (IAA-CTSA) was fabricated by grafting 3-indoleacetic acid onto chitosan and adding glutaraldehyde as crosslinking agent through a facile two-step one pot method. The...
Collapse
|
116
|
Cui J, Li W, Song X, Zhang Z, Yu H, Shan W, Xiong Y. Microwave-assisted one-pot rapid synthesis of mesoporous silica-chitosan composites for efficient recovery of rhenium(Ⅶ). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
117
|
Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. Int J Biol Macromol 2021; 192:1196-1216. [PMID: 34655588 DOI: 10.1016/j.ijbiomac.2021.10.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Globally, millions of people have no access to clean drinking water and are either striving for that or oppressed to intake polluted water. Arsenic is considered one of the most hazardous contaminants in water bodies that reaches there due to various natural and anthropogenic activities. Modified chitosan has gained much attention from researchers due to its potential for arsenic removal. This review focuses on the need and potential of chitosan-based biosorbents for arsenic removal from water systems. Chitosan is a low-cost, abundant, biodegradable biopolymer that possesses unique structural aspects and functional sites for the adsorption of contaminants like arsenic species from contaminated water. The chitosan-based biosorbents had also been modified using various techniques to enhance their arsenic removal efficiencies. This article reviews various forms of chitosan and parameters involved in chitosan modification which eventually affect the arsenic removal efficiency of the resultant sorbents. The literature revealed that the modified chitosan-based sorbents could express higher adsorption efficiency compared to those prepared from native chitosan. The sustainability of the chitosan-based sorbents has also been considered in terms of reusability. Finally, some recommendations have been underlined for further improvements in this domain.
Collapse
|
118
|
Yang F, Yang P. Biopolymer-Based Membrane Adsorber for Removing Contaminants from Aqueous Solution: Progress and Prospects. Macromol Rapid Commun 2021; 43:e2100669. [PMID: 34816531 DOI: 10.1002/marc.202100669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Indexed: 12/21/2022]
Abstract
The demand for energy-efficient water treatment as well as the limitation in adsorption of existing membranes has motivated the pursuit of membranes that can break the selectivity-permeability trade-off and provide high selective adsorption for chemicals of interest. The membrane adsorbers have received a lot of attention for removing contaminants from aqueous solution due to combine both advantages of adsorption and membrane separation. Membrane adsorbers constructed by biopolymer with many functional groups are widely used in water purification, because the biopolymers are easily available from biomass materials in nature, degradable, and low-cost. This paper summarizes the characteristics and important development direction of these types of biomass-based membrane adsorption materials to adsorb organic/inorganic contaminants of water and analyzes the preparation methods of natural biomacromolecule cellulose, chitosan, sodium alginate, and protein to construct the membrane adsorption materials, as well as the application of pollutant removal from aqueous solutions. According to the current problems and shortcomings in the research of biopolymer-based membrane adsorbers, it is proposed to improve the understanding of the adsorption mechanism of biopolymer-based membrane adsorbers and accelerate the development of practical applications as the focus of future research.
Collapse
Affiliation(s)
- Facui Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
119
|
Hydrothermal synthesis of phosphorylated chitosan and its adsorption performance towards Acid Red 88 dye. Int J Biol Macromol 2021; 193:1716-1726. [PMID: 34742842 DOI: 10.1016/j.ijbiomac.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 01/16/2023]
Abstract
Phosphorylated chitosan (P-CS) was successfully synthesized using a facile experimental setup of hydrothermal method that was applied to the adsorption of anionic Acid Red 88 (AR88) from aqueous media. The adsorption process obeyed the pseudo-second-order (PSO) kinetic model. In contrast, the adsorption isotherm conformed to the Langmuir model, with the maximum adsorption capacity (qm = 230 mg g-1) at 303 K. Both external and intraparticle diffusion strongly influenced the rate of adsorption. The insights from this study reveal that P-CS could be easily prepared and regenerated for reusability applications. The adsorption mechanism and intermolecular interaction between P-CS and AR 88 were investigated using Fourier transform infrared (FTIR) spectroscopy and calculations via Density Functional Theory (DFT). The key modes of adsorption for the P-CS/AR 88 system are driven by electrostatic attractions, H-bonding, and n-π interactions. The findings herein reveal that P-CS is a promising adsorbent for the removal of anionic dyes such as AR88 or similar pollutants from water.
Collapse
|
120
|
Zou B, Zhang S, Sun P, Zhao Q, Zhang W, Zhang X, Ran L, Zhou L, Ye Z. Synthesis of a novel Poly-chloromethyl styrene chelating resin containing Tri-pyridine aniline groups and its efficient adsorption of heavy metal ions and catalytic degradation of bisphenol A. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
121
|
Hu W, Niu Y, Zhu H, Dong K, Wang D, Liu F. Remediation of zinc-contaminated soils by using the two-step washing with citric acid and water-soluble chitosan. CHEMOSPHERE 2021; 282:131092. [PMID: 34470156 DOI: 10.1016/j.chemosphere.2021.131092] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Remediation of heavy metal contaminated soil with appropriate washing agents is crucial to the decline in the harmfulness of contaminated soil by heavy metals to the environment and human health. In this study, citric acid (CA) and water-soluble chitosan (WSCS) as natural and degradable washing agents were used to remove Zn in the soil by two-step washing method. Results indicated that the two-step washing with CA and WSCS were found to be suitable for the removal of Zn from the contaminated soils, which significantly decreased the total concentration of Zn in the soil. After the remediation process with two-step soil washing, the contents of Zn in different chemical species decreased, especially for the carbonate-bound fraction. Therefore, the two-step soil washing with CA and WSCS was advisable for the remediation of Zn-contaminated soils. The washing mechanism could include the acid dissolution, ion exchange and complexation reaction between zinc ions and functional groups such as hydroxyl, carboxyl, amine and amide groups. This study provided the theoretical support for the exploitation and application of suitable washing agents used for the remediation of contaminated soils by heavy metals.
Collapse
Affiliation(s)
- Wei Hu
- Department of Building Environment and Energy Engineering, Guilin University of Aerospace Technology, Guilin, 541004, Guangxi, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Yaolan Niu
- Department of Building Environment and Energy Engineering, Guilin University of Aerospace Technology, Guilin, 541004, Guangxi, China.
| | - Hui Zhu
- Department of Building Environment and Energy Engineering, Guilin University of Aerospace Technology, Guilin, 541004, Guangxi, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, Guangxi, China
| | - Fei Liu
- Department of Building Environment and Energy Engineering, Guilin University of Aerospace Technology, Guilin, 541004, Guangxi, China
| |
Collapse
|
122
|
Zhang C, Peng Z, Guo Y, Zhang Y, Zhao W, Yang J, Zhang S, Zhang W. Facile synthesis of Melamine-Modified porous organic polymer for mercury (II) removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
123
|
Liu C, Wen H, Chen K, Chen Y. A Simple One-Step Modification of Shrimp Shell for the Efficient Adsorption and Desorption of Copper Ions. Molecules 2021; 26:5690. [PMID: 34577161 PMCID: PMC8467818 DOI: 10.3390/molecules26185690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Removing toxic heavy metal species from aqueous solutions is a point of concern in our society. In this paper, a promising biomass adsorbent, the modified waste shrimp shell (MS), for Cu (II) removal was successfully prepared using a facile and simple one-step modification, making it possible to achieve high-efficiency recycling of the waste NaOH solution as the modification agent. The outcome shows that with the continuous increase in pH, temperature and ion concentration, the adsorption effect of MS on Cu (II) can also be continuously improved. Adsorption isotherm and adsorption kinetics were fitted with the Langmuir isotherm model and the pseudo-second-order model, respectively, and the maximum adsorption capacity of Cu (II) as obtained from the Langmuir isotherm model fitting reached 1.04 mmol/g. The systematic desorption results indicated that the desorption rate of Cu (II) in the MS could reach 100% within 6 min, where HNO3 is used as the desorption agent. Moreover, experiments have proven that after five successive recycles of NaOH as a modifier, the adsorption capacity of MS on Cu (II) was efficient and stable, maintaining tendency in 0.83-0.85 mmol/g, which shows that waste NaOH solution can be used as a modification agent in the preparation of waste shrimp shell adsorbent, such as waste NaOH solution produced in industrial production, thereby making it possible to turn waste into renewable resources and providing a new way to recycle resources.
Collapse
Affiliation(s)
- Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (H.W.); (K.C.); (Y.C.)
| | | | | | | |
Collapse
|
124
|
Michailidou G, Koumentakou I, Liakos EV, Lazaridou M, Lambropoulou DA, Bikiaris DN, Kyzas GZ. Adsorption of Uranium, Mercury, and Rare Earth Elements from Aqueous Solutions onto Magnetic Chitosan Adsorbents: A Review. Polymers (Basel) 2021; 13:polym13183137. [PMID: 34578037 PMCID: PMC8473260 DOI: 10.3390/polym13183137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
The compound of chitin is the second most important and abundant natural biopolymer in the world. The main extraction and exploitation sources of this natural polysaccharide polymer are mainly crustaceans species, such as shrimps and crabs. Chitosan (CS) (poly-β-(1 → 4)-2-amino-2-deoxy-d-glucose) can be derived from chitin and can be mentioned as a compound that has high value-added applications due to its wide variety of uses, including pharmaceutical, biomedical, and cosmetics applications, food etc. Furthermore, chitosan is a biopolymer that can be used for adsorption applications because it contains amino and hydroxyl groups in its chemical structure (molecules), resulting in possible interactions of adsorption between chitosan and pollutants (uranium, mercury, rare earth elements (REEs), phenols, etc.). However, adsorption is a very effective, fast, simple, and low-cost process. This review article places emphasis on recent demonstrated research papers (2014–2020) where the chemical modifications of CS are explained briefly (grafting, cross-linking etc.) for the uptake of uranium, mercury, and REEs in synthesized aqueous solutions. Finally, figures and tables from selected synthetic routes of CS are presented and the effects of pH and the best mathematical fitting of isotherm and kinetic equations are discussed. In addition, the adsorption mechanisms are discussed.
Collapse
Affiliation(s)
- Georgia Michailidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Efstathios V. Liakos
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Maria Lazaridou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.M.); (I.K.); (M.L.)
- Correspondence: (D.N.B.); (G.Z.K.); Tel.: +30-2310-997-812 (D.N.B.); +30-2510-462-218 (G.Z.K.)
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
- Correspondence: (D.N.B.); (G.Z.K.); Tel.: +30-2310-997-812 (D.N.B.); +30-2510-462-218 (G.Z.K.)
| |
Collapse
|
125
|
Eltaweil AS, Mamdouh IM, Abd El-Monaem EM, El-Subruiti GM. Highly Efficient Removal for Methylene Blue and Cu 2+ onto UiO-66 Metal-Organic Framework/Carboxylated Graphene Oxide-Incorporated Sodium Alginate Beads. ACS OMEGA 2021; 6:23528-23541. [PMID: 34549149 PMCID: PMC8444308 DOI: 10.1021/acsomega.1c03479] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 05/02/2023]
Abstract
Herein, we report a new metal-organic framework (MOF)-based composite beads adsorbent made via incorporating UiO-66 MOF, carboxylated graphene oxide (GOCOOH) into sodium alginate for efficient removal of methylene blue dye, and Cu2+ ions. The successful fabrication of the synthesized UiO-66/GOCOOH@SA composite beads was confirmed by means of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, zeta potential, X-ray photoelectron spectroscopy analysis, and thermogravimetric analysis and BET measurement. The incorporation of both UiO-66 and GOCOOH into SA beads greatly increased their adsorption efficiency for the removal of both MB and Cu2+ with maximum adsorption capacities of 490.72 and 343.49 mg/g, respectively. The removal process of both MB and Cu2+ follows the pseudo-second-order model and Freundlich isotherm model. A plausible adsorption mechanism was discussed in detail. Regeneration tests clarified that the removal efficiencies toward both MB and Cu2+ remained higher than 87% after five cycles. These results reveal the potentiality of UiO-66/GOCOOH@SA beads as an excellent adsorbent.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Injy M. Mamdouh
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
126
|
CaCO 3-coated PVA/BC-based composite for the simultaneous adsorption of Cu(II), Cd(II), Pb(II) in aqueous solution. Carbohydr Polym 2021; 267:118227. [PMID: 34119180 DOI: 10.1016/j.carbpol.2021.118227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/09/2023]
Abstract
A polymer composite material comprising polyvinyl alcohol/bacterial cellulose/calcium carbonate (PVA/BC/CaCO3) was prepared for enabling the selective adsorption of toxic heavy metal ions, such as Cd(II), Cu(II), and Pb(II) from solution. FT-IR, SEM and XRD analyses confirmed the successful incorporation of CaCO3 into the PVA-based polymer by chemical cross-linking with epichlorohydrin. The optimal pH for adsorption of the metal ions onto PVA/BC/CaCO3 was determined to be 6.0. The pseudo-first-order kinetics model was best-suited for fitting the adsorption kinetics data, and the Langmuir model was best-suited for fitting the thermodynamic adsorption data. The maximum adsorption capacities of PVA/BC/CaCO3 for Cu(II), Pb(II), and Cd(II) were found to be 57.1, 513.6, and 238.6 mg/g, respectively, at 40 °C. In addition, the adsorbent was found to be highly recyclable. Overall, PVA/BC/CaCO3 adsorbent has the applicable potential in the removal of heavy metal ions from contaminated solution.
Collapse
|
127
|
Gupta A, Sharma V, Sharma K, Kumar V, Choudhary S, Mankotia P, Kumar B, Mishra H, Moulick A, Ekielski A, Mishra PK. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4702. [PMID: 34443225 PMCID: PMC8398132 DOI: 10.3390/ma14164702] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.
Collapse
Affiliation(s)
- Archana Gupta
- Department of Chemistry, MCM DAV College for Women, Sector 36,
Chandigarh 160036, India;
| | - Vishal Sharma
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh 160011, India;
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Srinagar 190006, India;
| | - Sonal Choudhary
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Priyanka Mankotia
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Brajesh Kumar
- Post Graduate Department of Chemistry, TATA College, Jharkhand, Chaibasa 833202, India;
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui 171103, Ecuador
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Amitava Moulick
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
128
|
Lan G, Zhu R, Jin W, Luo P, Chen R, Yi J, Wei W. Highly sensitive detection of Hg 2+ employing SPR sensor modified with chitosan/poly (vinyl alcohol)/SnO 2 film. Anal Bioanal Chem 2021; 413:5703-5714. [PMID: 34337685 DOI: 10.1007/s00216-021-03542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
Water contamination by mercury ions (Hg2+) causes irreversible and serious effect on the ambient environment, ecological systems, and human health, necessitating further improvement of Hg2+ monitoring at low concentrations. Here, we proposed a novel surface plasmon resonance (SPR) sensor for Hg2+ detection with desirable advantages of high sensitivity, simple operation, label-free, and low cost, in which the chitosan/poly (vinyl alcohol)/SnO2 composite film was modified on sensing surface as the active layer for sensitivity enhancement. Benefiting from the relatively high refractive index of SnO2 nanoparticles, the evanescent field generated at the metal-solution interface can be significantly enhanced, which results in a 5 times improvement of sensitivity. Through appropriate optimization in the aspects of componential constitutions, the sensor exhibits excellent sensitivity of 25.713 nm/μg/L and ultra-low calculated detection limit of 6.61 ng/L(32.95 pM). Such detection limit is strikingly lower than the limitation (10 nM) in drinking water set by the US Environmental Protection Agency. In addition, the as-prepared sensor presents relatively high selectivity for Hg2+, attributing to plenty of binding sites for specific adsorption produced by functionalized chitosan/poly (vinyl alcohol) composites, which have been furtherly verified by characterization of FTIR and XPS spectra. The proposed sensor also exhibits great repeatability and good time stability for 15 days. This work provides a promising strategy for developing high-performance SPR sensor for Hg2+ detection and a prospective application in environmental monitoring.
Collapse
Affiliation(s)
- Guilian Lan
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Ruirui Zhu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Weifeng Jin
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Peng Luo
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Rong Chen
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Juemin Yi
- Institut für Physik, Carl von Ossietzky Universität, 26111, Oldenburg, Germany
| | - Wei Wei
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education of China, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
129
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
130
|
Preparation and characterization of magnetic bioadsorbent for adsorption of Cd(II) ions. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
131
|
Wang W, Liu X, Wang X, Zong L, Kang Y, Wang A. Fast and Highly Efficient Adsorption Removal of Toxic Pb(II) by a Reusable Porous Semi-IPN Hydrogel Based on Alginate and Poly(Vinyl Alcohol). Front Chem 2021; 9:662482. [PMID: 34395376 PMCID: PMC8355593 DOI: 10.3389/fchem.2021.662482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
A porous semi-interpenetrating network (semi-IPN) hydrogel adsorbent with excellent adsorption properties and removal efficiency towards Pb(II) was prepared by a facile grafting polymerization reaction in aqueous medium using natural biopolymer sodium alginate (SA) as the main chains, sodium acrylate (NaA) as the monomers, and poly(vinyl alcohol) (PVA) as the semi-IPN component. FTIR, TGA and SEM analyses confirm that NaA monomers were grafted onto the macromolecular chains of SA, and PVA chains were interpenetrated and entangled with the crosslinked network. The incorporation of PVA facilitates to form pores on the surface of hydrogel adsorbent. The semi-IPN hydrogel containing 2 wt% of PVA exhibits high adsorption capacity and fast adsorption rate for Pb(II). The best adsorption capacity reaches 784.97 mg/g, and the optimal removal rate reaches 98.39% (adsorbent dosage, 2 g/L). In addition, the incorporation of PVA improved the gel strength of hydrogel, and the storage modulus of hydrogel increased by 19.4% after incorporating 2 wt% of PVA. The increase of gel strength facilitates to improve the reusability of hydrogel. After 5 times of regeneration, the adsorption capacity of SA-g-PNaA decreased by 23.2%, while the adsorption capacity of semi-IPN hydrogel only decreased by 10.8%. The adsorption kinetics of the hydrogel in the initial stage (the moment when the adsorbent contacts solution) and the second stage are fitted by segmentation. It is intriguing that the adsorption kinetics fits well with both pseudo-second-order kinetic model and pseudo-first-order model before 60 s, while only fits well with pseudo-second-order adsorption model in the whole adsorption process. The chemical complexing adsorption mainly contribute to the efficient capturing of Pb(II).
Collapse
Affiliation(s)
- Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Li Zong
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
132
|
A sustainable way for surface functionalisation of PET nonwoven with novel chitosan-cinnamaldehyde cross-linked nanoparticles. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
133
|
N-methylene phosphonic chitosan aerogels for efficient capture of Cu 2+ and Pb 2+ from aqueous environment. Carbohydr Polym 2021; 269:118355. [PMID: 34294357 DOI: 10.1016/j.carbpol.2021.118355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/05/2023]
Abstract
In this paper, N-methylene phosphonic acid chitosan (NPCS-PEI) was synthesized from chitosan, phosphorous acid, formaldehyde and hyperbranched polyethyleneimine (PEI), and Cu2+ and Pb2+ removal performance was examined in aqueous solution. NPCS-PEI exhibited three-dimensional porous architectures, with a specific surface area of 490.61 m2/g. The effects of pH, initial concentration, adsorption time, temperature and ionic strength on the adsorption capacity were investigated. The adsorption kinetics indicated that Cu2+ and Pb2+ adsorption onto NPCS-PEI follows a pseudo-second-order model. The adsorption isotherms agree well with the Langmuir isotherm model, and the maximum adsorption capacities of Cu2+ and Pb2+ on the NPCS-PEI are approximately 276.12 and 645.16 mg/g, respectively. The adsorption efficiency of NPCS-PEI remained above 85% after 5 adsorption-desorption successive cycles. Moreover, the NPCS-PEI aerogels had selective adsorption toward Cu2+. The FTIR and XPS analysis proved that amino, hydroxyl, and phosphonic acid groups were involved in the chelation with metal ions.
Collapse
|
134
|
Xin R, Ma H, Venkateswaran S, Hsiao BS. Electrospun Nanofibrous Adsorption Membranes for Wastewater Treatment: Mechanical Strength Enhancement. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1095-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
135
|
Baziar M, Zakeri HR, Ghaleh askari S, Nejad ZD, Shams M, Anastopoulos I, Giannakoudakis DA, Lima EC. Metal-organic and Zeolitic imidazole frameworks as cationic dye adsorbents: physicochemical optimizations by parametric modeling and kinetic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
136
|
Gomez-Maldonado D, Filpponen I, Johansson LS, Waters MN, Vega Erramuspe IB, Peresin MS. Environmentally dependent adsorption of 2,4-dichlorophenol on cellulose-chitosan self-assembled composites. Biopolymers 2021; 112:e23434. [PMID: 34000071 DOI: 10.1002/bip.23434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 11/07/2022]
Abstract
With the increasing need for bio-based materials developed by environmentally friendly procedures, this work shows a green method to develop shape-controlled structures from cellulose dissolving pulp coated by chitosan. This material was then tested to adsorb a common and widespread pollutant, 2,4-dichlorophenol under different pH conditions (5.5 and 9). Herein it was noticed that the adsorption only occurred in acidic pH (5.5) where electrostatic interaction drove the adsorption, demonstrating the potential to tune the response under desired conditions only. The adsorption was successful in the hydrogel structure with an adsorption capacity of 905 ± 71 mg/g from a solution with 16.6 ppm; furthermore, adsorption was also possible with dried hydrogel structures, presenting a maximum of adsorption of 646 ± 50 mg/g in a similar 16.6 ppm solution. Finally, adsorbent regeneration was successfully tested for both, dry (rewetted) and never-dried states, showing improved adsorption after regeneration in the case of the never dried hydrogel structures.
Collapse
Affiliation(s)
- Diego Gomez-Maldonado
- Forest Products Development Center, School of Forestry and Wildlife Science, Auburn University, Auburn, Alabama, USA
| | - Ilari Filpponen
- Forest Products Development Center, School of Forestry and Wildlife Science, Auburn University, Auburn, Alabama, USA.,Department of Chemical Engineering, Alabama Center for Paper and Bioresource Engineering (AC-PABE), Auburn University, Auburn, Alabama, USA
| | - Leena-Sisko Johansson
- Department of Bioprocesses and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Matthew N Waters
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, USA
| | - Iris Beatriz Vega Erramuspe
- Forest Products Development Center, School of Forestry and Wildlife Science, Auburn University, Auburn, Alabama, USA
| | - Maria S Peresin
- Forest Products Development Center, School of Forestry and Wildlife Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
137
|
Shirakura H, Hijikata Y, Pirillo J, Yoneda T, Manabe Y, Murugavel M, Ide Y, Inokuma Y. Insoluble π‐Conjugated Polyimine as an Organic Adsorbent for Group 10 Metal Ions. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Shirakura
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Sapporo Hokkaido 001-0021 Japan
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Sapporo Hokkaido 001-0021 Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yumehiro Manabe
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Muthuchamy Murugavel
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Sapporo Hokkaido 001-0021 Japan
| | - Yuki Ide
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Sapporo Hokkaido 001-0021 Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry Faculty of Engineering Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10 Sapporo Hokkaido 001-0021 Japan
| |
Collapse
|
138
|
Ahmed M, Hameed B, Hummadi E. Insight into the chemically modified crop straw adsorbents for the enhanced removal of water contaminants: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
139
|
Saheed IO, Oh WD, Suah FBM. Chitosan modifications for adsorption of pollutants - A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124889. [PMID: 33418525 DOI: 10.1016/j.jhazmat.2020.124889] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 05/18/2023]
Abstract
In recent times, research interest into the development of biodegradable, cost-effective and environmental friendly adsorbents with favourable properties for adsorption of pollutants is a challenge. Modification of chitosan via different physical and chemical methods have gained attention as a promising approach for removing organic (such as dyes and pharmaceuticals) and inorganic (such as metal/metal ions) pollutants from aqueous medium. In this regard, researchers have reported grafting and cross-linking approach among others as a potentially useful method for chitosan's modification for improved adsorption efficiency with respect to pollutant uptake. This article reviews the trend in chitosan modification, with regards to the summary of some recently published works on modification of chitosan and their adsorption application in pollutants (metal ion, dyes and pharmaceuticals) removal from aqueous medium. The review uniquely highlights some common cross-linkers and grafting procedures for chitosan modification, their influence on structure and adsorption capacity of modified-chitosan with respect to pollutants removal. Findings revealed that the performance of modified chitosan for adsorption of pollutants depends largely on the modification method adopted, materials used for the modification and adsorption experimental conditions. Cross-linking is commonly utilized for improving the chemical and mechanical stabilities of chitosan but usually decreases adsorption capacity of chitosan/modified-chitosan for adsorption of pollutants. However, literature survey revealed that adsorption capacity of cross-linked chitosan based materials have been enhanced in recently published works either by grafting, incorporation of solid adsorbents (e.g metals, clays and activated carbon) or combination of both prior to cross-linking.
Collapse
Affiliation(s)
- Ismaila Olalekan Saheed
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, Malete, P.M.B 1530, Ilorin, Nigeria
| | - Wen Da Oh
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| |
Collapse
|
140
|
Song J, Messele SA, Meng L, Huang Z, Gamal El-Din M. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based Biochar/Chitosan composite. WATER RESEARCH 2021; 194:116930. [PMID: 33631699 DOI: 10.1016/j.watres.2021.116930] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Some metals in oil sands process water (OSPW) are potential threats to human health and the environment. Hence, the removal of excess metals from OSPW is of great significance. In this study, anaerobic sludge waste from a wastewater treatment plant, was reused to prepare sludge-based biochar. A Biochar/Chitosan (Biochar/CS) adsorbent with excellent removal efficiency for metals (Cr, Cu, Se and Pb) in real OSPW was prepared through a facile hydrothermal method. The structural properties of the synthesized Biochar/CS composite were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) method. This study reports for the first time the removal of metals from OSPW under natural pH using Biochar/CS adsorbent. The composite exhibited a higher removal efficiency towards Cr (83.9%), Cu (97.5%), Se (87.9%) and Pb (94.3%) when the initial concentrations of Cr, Cu, Se and Pb were 0.02914, 0.06185, 0.00800 and 0.00516 mg/L, respectively, at a dosage of 0.5 g/L, compared with biochar or chitosan alone. The possible adsorption mechanism was proposed, and the enhanced removal ability was due to the improved specific surface area and pore volume, which increased by about 20 and 14 times as compared with chitosan. Functional groups in the composite, such as -NH2, -OH and some oxygen containing groups, were also responsible for the enhanced removal ability, which also might be the reason for the better performance of the composite than biochar alone due to the lack of functional groups on the biochar. Moreover, the adsorption process was best modelled by the Freundlich model, pseudo second order and intraparticle diffusion kinetic models. The results indicated that chemical adsorption might play the dominant role in the removal process. Overall, the Biochar/CS composite would be a promising and effective adsorbent for metals removal, owing to its advantages of being cost-effective and environmentally friendly.
Collapse
Affiliation(s)
- Junying Song
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China; Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Selamawit Ashagre Messele
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Lingjun Meng
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta, T6G 1H9, Edmonton, Alberta, Canada.
| |
Collapse
|
141
|
Zhang Y, Bian T, Jiang R, Zhang Y, Zheng X, Li Z. Bionic chitosan-carbon imprinted aerogel for high selective recovery of Gd(Ⅲ) from end-of-life rare earth productions. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124347. [PMID: 33144020 DOI: 10.1016/j.jhazmat.2020.124347] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
High selective recovery of Gd(Ⅲ) from end-of-life rare earth productions is essential for cleaner production. Chitosan(CS), a biomaterial, has shown excellent results in water treatment. The amino and hydroxyl groups on the surface of CS play a vital role in adsorbing metal ions. Polydopamine has good stability, strong water dispersibility, and excellent biocompatibility. As a bio-crosslinking agent, the amino and phenolic hydroxyl groups on its surface can be combined with metal ions to help the material absorb metal ions. This paper combines the active groups of biomimetic materials and the mechanical properties of new nanomaterials multi-walled carbon nanotubes and graphene oxide, and prepared a high-performance chitosan-based aerogel MWCNT-PDA-CS-GO through heat and mass transfer at low temperature and low pressure. The adsorption mechanism of MWCNT-PDA-CS-GO for Gd(Ⅲ) was analyzed through a series of characterization and adsorption experiments. At pH 7.0, the maximum adsorption capacity of aerogel for Gd(Ⅲ) reached 150.86 mg g-1. The relative selectivity of imprinted ions is 48.02 times higher than other ions. All the results indict MWCNT-PDA-CS-GO aerogel exhibits excellent selectivity and stability for effective recovery of Gd(Ⅲ).
Collapse
Affiliation(s)
- Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Tingting Bian
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Rong Jiang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yi Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xudong Zheng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou 213164, PR China.
| | - Zhongyu Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
142
|
Yu L, Pang Y, Mo Z, Huang Y, Shen X. Coordination array for accurate colorimetric sensing of multiple heavy metal ions. Talanta 2021; 231:122357. [PMID: 33965024 DOI: 10.1016/j.talanta.2021.122357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Heavy metals detection is of great significance to the environment and human health, and most of the detection methods require expensive instruments and laborious operation. Herein, we present a coordination array for accurate and rapid colorimetric heavy metal ions sensing. The array was composed of six chelates and has cross response to Hg2+, Cd2+, Pb2+ and Cu2+. The results could be observed by naked eyes or detected by plate reader combined with pattern analysis. Linear discrimination analysis was applied for the pattern analysis and the four heavy metal ions (Pb2+, Cd2+, Hg2+ and Cu2+) generated a clustering map at 1 μM. The coordination array demonstrates a great potential for sensing heavy metal ions simultaneously.
Collapse
Affiliation(s)
- Lihong Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhenglian Mo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuying Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
143
|
Chang SH. Gold(III) recovery from aqueous solutions by raw and modified chitosan: A review. Carbohydr Polym 2021; 256:117423. [PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
Collapse
Affiliation(s)
- Siu Hua Chang
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia; Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
144
|
Kaczmarek H, Rybczyński P, Maćczak P, Smolarkiewicz-Wyczachowski A, Ziegler-Borowska M. Chitosan as a Protective Matrix for the Squaraine Dye. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1171. [PMID: 33801523 PMCID: PMC7958846 DOI: 10.3390/ma14051171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Chitosan was used as a protective matrix for the photosensitive dye-squaraine (2,4-bis[4-(dimethylamino)phenyl]cyclobutane-1,3-diol). The physicochemical properties of the obtained systems, both in solution and in a solid-state, were investigated. However, it was found that diluted chitosan solutions with a few percent additions of dye show an intense fluorescence, which is suppressed in the solid-state. This is related to the morphology of the heterogeneous modified chitosan films. The important advantage of using a biopolymer matrix is the prevention of dye degradation under the influence of high energy ultraviolet (UV) radiation while the dye presence improves the chitosan heat resistance. It is caused by mutual interactions between macromolecules and dye. Owing to the protective action of chitosan, the dye release in liquid medium is limited. Chitosan solutions with a few percent additions of squaraine can be used in biomedical imaging thanks to the ability to emit light, while chitosan films can be protective coatings resistant to high temperatures and UV radiation.
Collapse
Affiliation(s)
- Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
| | - Patryk Rybczyński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
| | - Piotr Maćczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
- Water Supply and Sewage Enterprise LLC, Przemysłowa 4, 99-300 Kutno, Poland
| | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.R.); (P.M.); (A.S.-W.); (M.Z.-B.)
| |
Collapse
|
145
|
Shoueir KR, El-Desouky N, Rashad MM, Ahmed MK, Janowska I, El-Kemary M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int J Biol Macromol 2021; 167:1176-1197. [PMID: 33197477 DOI: 10.1016/j.ijbiomac.2020.11.072] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in the synthesis, properties, and applications of chitosan as the second after cellulose available biopolymer in nature were discussed in this review. A general overview of processing and production procedures from A to Z was highlighted. Chitosan exists in three polymorphic forms which differ in degree of crystallinity (α, β, and γ). Thus, the degree of deacetylation, crystallinity, surface area, and molecular mass significantly affect most applications. Otherwise, the synthesis of chitosan nanofibers is suffering from many drawbacks that were recently treated by co-electrospun with other polymers such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolactone (PCL). Ultimately, this review focuses on the area of new trend utilization of chitosan nanoparticles as nanospheres and nanocapsules, in cartilage and bone regenerative medicine. Owing to its biocompatibility, bioavailability, biodegradability, and costless synthesis, chitosan is a promising biopolymeric structure for water remediation, drug delivery, antimicrobials, and tissue engineering.
Collapse
Affiliation(s)
- Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France.
| | - Nagwa El-Desouky
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Moataz M Rashad
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Izabela Janowska
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Pharos University, Alexandria, Egypt.
| |
Collapse
|
146
|
Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha K. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 2021; 251:117000. [DOI: 10.1016/j.carbpol.2020.117000] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
|
147
|
Liu E, Lin X, Zhang D, Xu W, Shi J, Hong Y. Preparation of an ion imprinted chitosan-based porous film with an interpenetrating network structure for efficient selective adsorption of Gd( iii). NEW J CHEM 2021. [DOI: 10.1039/d0nj04959j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a new Gd(III) ion imprinted CS-based porous film with interpenetrating network structure was fabricated by a simple polymerization–evaporation approach for the efficient selective adsorption of Gd(III) from aqueous solution.
Collapse
Affiliation(s)
- Enli Liu
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255000
- People's Republic of China
- School of Materials Science and Engineering
| | - Xue Lin
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| | - Dan Zhang
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| | - Wenbiao Xu
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| | - Junyou Shi
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo 255000
- People's Republic of China
- School of Materials Science and Engineering
| | - Yuanzhi Hong
- School of Materials Science and Engineering
- Beihua University
- Jilin 132013
- People's Republic of China
| |
Collapse
|
148
|
Szlachta M, Neitola R, Peräniemi S, Vepsäläinen J. Effective separation of uranium from mine process effluents using chitosan as a recyclable natural adsorbent. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117493] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
149
|
Dai Y, Zhou L, Tang X, Xi J, Ouyang J, Liu Z, Huang G, Adesina AA. Macroporous ion-imprinted chitosan foams for the selective biosorption of U(VI) from aqueous solution. Int J Biol Macromol 2020; 164:4155-4164. [DOI: 10.1016/j.ijbiomac.2020.08.238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 12/24/2022]
|
150
|
Alam O, Qiao X, Nath TK. The effect of Ca-bearing contents in chitosan on Pb 2+, Cd 2+ and Cu 2+ adsorption and its adsorption mechanism. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1401-1414. [PMID: 33312651 PMCID: PMC7721838 DOI: 10.1007/s40201-020-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
The preparation of chitosan has been investigated for more than half century; however, the application of chitosan for heavy metal (HM) adsorption is still under research. This study investigated the effects of chitosan with chemically controlled Ca-bearing contents (CBC) on Pb2+, Cd2+ and Cu2+ adsorption in the solution with the initial pH values of 2.10, 4.14 and 6.13. Highly purified chitosan showed the optimum HM adsorption at the initial pH values of 4.14 and 6.13, and the adsorption mechanism was chemisorption involving valence forces through sharing or exchange of electrons between the chitosan and HM ions. Highly purified chitosan prepared from HCl treated chitin only showed effective for Pb2+, however, those prepared from CH3COOH treated chitin showed effective for Pb2+, Cd2+ and Cu2+ adsorption due to a little amount of CBC. The HM adsorption mechanisms of partly purified chitosan were precipitation due to CBC and biosorption. Chitosan with 73% CBC showed the optimum adsorption of Pb2+ (755 mg/g) at an initial pH value of 2.10 while Cd2+ (979 mg/g) and Cu2+ (877 mg/g) at the initial pH values of 4.14 and 6.13. High Ca(OH)2-bearing chitosan prepared from HCl and H2SO4 treated chtin showed the optimum Cd2+ (978 mg/g) and Cu2+ (852 mg/g) adsorption at an initial pH value of 2.10. Biosorption isotherm and kinetics models showed that the adsorption data of Pb2+, Cd2+ and Cu2+ onto the surface of chitosan was well-fitted by Langmuir model and Pseudo-second-order model with correlation coefficient (R2 > 0.95 and R2 > 0.91, respectively). Pseudo-second-order model showed that the adsorption capacity strongly depended on CBC in chitosan and initial pH value of HM solution. It is concluded that the HM adsorption by the prepared chitosan is a chemical process that was supported by CBC of chitosan through elevating solution pH value.
Collapse
Affiliation(s)
- Ohidul Alam
- State - Key Laboratory of Chemical Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237 People’s Republic of China
| | - Xiuchen Qiao
- State - Key Laboratory of Chemical Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237 People’s Republic of China
| | - Tapan Kumar Nath
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|