101
|
Deng F, Wu Z, Zou F, Wang S, Wang X. The Hippo–YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration After Injury. Front Cell Dev Biol 2022; 10:894737. [PMID: 35927987 PMCID: PMC9343807 DOI: 10.3389/fcell.2022.894737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The Hippo pathway and its downstream effectors, the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), control stem cell fate and cell proliferation and differentiation and are essential for tissue self-renewal and regeneration. YAP/TAZ are the core components of the Hippo pathway and they coregulate transcription when localized in the nucleus. The intestinal epithelium undergoes well-regulated self-renewal and regeneration programs to maintain the structural and functional integrity of the epithelial barrier. This prevents luminal pathogen attack, and facilitates daily nutrient absorption and immune balance. Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the entire digestive tract. Impaired mucosal healing is a prominent biological feature of IBD. Intestinal self-renewal is primarily dependent on functional intestinal stem cells (ISCs), especially Lgr5+ crypt base columnar (CBC) cells and transient-amplifying (TA) cells in the crypt base. However, intestinal wound healing is a complicated process that is often associated with epithelial cells, and mesenchymal and immune cells in the mucosal microenvironment. Upon intestinal injury, nonproliferative cells rapidly migrate towards the wound bed to reseal the damaged epithelium, which is followed by cell proliferation and differentiation. YAP is generally localized in the nucleus of Lgr5+ CBC cells, where it transcriptionally regulates the expression of the ISC marker Lgr5 and plays an important role in intestinal self-renewal. YAP/TAZ are the primary mechanical sensors of the cellular microenvironment. Their functions include expanding progenitor and stem cell populations, reprogramming differentiated cells into a primitive state, and mediating the regenerative function of reserve stem cells. Thus, YAP/TAZ play extremely crucial roles in epithelial repair after damage. This review provides an overview of the Hippo–YAP/TAZ signaling pathway and the processes of intestinal self-renewal and regeneration. In particular, we summarize the roles of YAP/TAZ in the phases of intestinal self-renewal and regeneration to suggest a potential strategy for IBD treatment.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| |
Collapse
|
102
|
Bernier-Latmani J, Mauri C, Marcone R, Renevey F, Durot S, He L, Vanlandewijck M, Maclachlan C, Davanture S, Zamboni N, Knott GW, Luther SA, Betsholtz C, Delorenzi M, Brisken C, Petrova TV. ADAMTS18 + villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat Commun 2022; 13:3983. [PMID: 35810168 PMCID: PMC9271081 DOI: 10.1038/s41467-022-31571-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/21/2022] [Indexed: 12/17/2022] Open
Abstract
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a “just-right” level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures. The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18+ telocytes maintain a “just-right” level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.
| | - Cristina Mauri
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - François Renevey
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Stephan Durot
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Catherine Maclachlan
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Suzel Davanture
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Graham W Knott
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Mauro Delorenzi
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland.
| |
Collapse
|
103
|
Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res 2022; 87:101178. [PMID: 35780915 DOI: 10.1016/j.plipres.2022.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and the isoforms are segregated according to their tissue origins. Several isoforms, such as adipose-FABP and epidermal-FABP, have been shown to participate in multiple pathologic processes due to their ubiquitous expression. Intestinal fatty acid binding protein, also termed FABP2 or I-FABP, is specifically expressed in the small intestine. FABP2 can traffic lipids from the intestinal lumen to enterocytes and bind superfluous fatty acids to maintain a steady pool of fatty acids in the epithelium. As a lipid chaperone, FABP2 can also carry lipophilic drugs to facilitate targeted transport. When the integrity of the intestinal epithelium is disrupted, FABP2 is released into the circulation. Thus, it can potentially serve as a clinical biomarker. In this review, we discuss the pivotal role of FABP2 in intestinal lipid metabolism. We also summarize the molecular interactions that have been reported to date, highlighting the clinical prospects of FABP2 research.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youci Zhou
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
104
|
Kumar S, Fathima E, Khanum F, Malini SS. Significance of the Wnt canonical pathway in radiotoxicity via oxidative stress of electron beam radiation and its molecular control in mice. Int J Radiat Biol 2022; 99:459-473. [PMID: 35758974 DOI: 10.1080/09553002.2022.2094018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Radiation triggers cell death events through signaling proteins, but the combined mechanism of these events is unexplored The Wnt canonical pathway, on the other hand, is essential for cell regeneration and cell fate determination. AIM The relationship between the Wnt pathway's response to radiation and its role in radiotoxicity is overlooked, even though it is a critical molecular control of the cell. The Wnt pathway has been predicted to have radioprotective properties in some reports, but the overall mechanism is unknown. We intend to investigate how this combined cascade works throughout the radiation process and its significance over radiotoxicity. MATERIALS AND METHODS Thirty adult mice were irradiated with electron beam radiation, and 5 served as controls. Mice were sacrificed after 24 h and 30 days of irradiation. We assessed DNA damage studies, oxidative stress parameters, mRNA profiles, protein level (liver, kidney, spleen, and germ cells), sperm viability, and motility. OBSERVATION The mRNA profile helps to understand how the combined cascade of the Wnt pathway and NHEJ work together during radiation to combat oxidative response and cell survival. The quantitative examination of mRNA uncovers unique critical changes in all mRNA levels in all cases, particularly in germ cells. Recuperation was likewise seen in post-30 day's radiation in the liver, spleen, and kidney followed by oxidative stress parameters, however not in germ cells. It proposes that reproductive physiology is exceptionally sensitive to radiation, even at the molecular level. It also suggests the suppression of Lef1/Axin2 could be the main reason for the permanent failure of the sperm function process. Post-irradiation likewise influences the morphology of sperm. The decrease in mRNA levels of Lef1, Axin2, Survivin, Ku70, and XRCC6 levels suggests radiation inhibits the Wnt canonical pathway and failure in DNA repair mechanisms in a coupled manner. An increase in Bax, Bcl2, and caspase3 suggests apoptosis activation followed by the decreased expression of enzymatic antioxidants. CONCLUSION Controlled several interlinked such as the Wnt canonical pathway, NHEJ pathway, and intrinsic apoptotic pathway execute when the whole body is exposed to radiation. These pathways decide the cell fate whether it will survive or will go to apoptosis which may further be used in a study to counterpart and better comprehend medication focus on radiation treatment.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Reproductive and Human Genetics Laboratory, Department of Zoology, University of Mysore, Mysuru, India
| | - Eram Fathima
- Defense Food Research Laboratory, Defense Research Development Organisation, Mysuru, India
| | - Farhath Khanum
- Defense Food Research Laboratory, Defense Research Development Organisation, Mysuru, India
| | - Suttur S Malini
- Molecular Reproductive and Human Genetics Laboratory, Department of Zoology, University of Mysore, Mysuru, India
| |
Collapse
|
105
|
Lin Y, Lu Y, Huang Z, Wang Y, Song S, Luo Y, Ren F, Guo H. Milk-Derived Small Extracellular Vesicles Promote Recovery of Intestinal Damage by Accelerating Intestinal Stem Cell-Mediated Epithelial Regeneration. Mol Nutr Food Res 2022; 66:e2100551. [PMID: 35253371 DOI: 10.1002/mnfr.202100551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/20/2022] [Indexed: 11/12/2022]
Abstract
SCOPE Milk-derived small extracellular vesicles (M-sEVs) are critical bioactive components in milk. They are considered to be regulators in milk that may have promising applications. Understanding their biological effects would be important in nutrition. Intestinal organoids and mice are used to explore the effects of M-sEVs on intestinal regeneration. METHODS AND RESULTS M-sEVs could be absorbed by intestinal epithelia and upregulate expression of the microRNAs (miRNAs) expressed in milk: miR-148a, miR-22, miR-30, and miR-29a. Interestingly, M-sEVs promote proliferation of intestinal epithelia and repairs the epithelial damage that is caused by tumor necrosis factor-α in intestinal organoids. M-sEVs ameliorate intestinal mucosa damage in mice caused by treatment with dextran sulfate sodium, as well as increasing expression of the intestinal stem cells (ISC) markers leucine-rich repeat containing G-protein-coupled receptor 5 (Lgr5), olfactomedin 4 (Olfm4), and Achaete-Scute Family BHLH Transcription Factor 2 (Ascl2) and stimulating intestinal epithelial proliferation to repair epithelial damage. Furthermore, miR-29 is more abundant in M-sEVs-treated mice, and miR-29 could upregulate expression of ISC marker genes and accelerates intestinal regeneration to recover damaged intestinal epithelia. CONCLUSIONS We reveal that M-sEVs and miR-29 can accelerate intestinal stem cell-mediated epithelial regeneration and repair epithelial damage.
Collapse
Affiliation(s)
- Yingying Lin
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ziyu Huang
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuqi Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Sijia Song
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yujia Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| |
Collapse
|
106
|
Fink M, Wrana JL. Regulation of homeostasis and regeneration in the adult intestinal epithelium by the TGF-β superfamily. Dev Dyn 2022; 252:445-462. [PMID: 35611490 DOI: 10.1002/dvdy.500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The delicate balance between the homeostatic maintenance and regenerative capacity of the intestine makes this a fascinating tissue of study. The intestinal epithelium undergoes continuous homeostatic renewal but is also exposed to a diverse array of stresses that can range from physiological processes such as digestion, to exposure to infectious agents, drugs, radiation therapy, and inflammatory stimuli. The intestinal epithelium has thus evolved to efficiently maintain and reinstate proper barrier function that is essential for intestinal integrity and function. Factors governing homeostatic epithelial turnover are well described, however, the dynamic regenerative mechanisms that occur following injury are the subject of intense ongoing investigations. The TGF-β superfamily is a key regulator of both homeostatic renewal and regenerative processes of the intestine. Here we review the roles of TGF-β and BMP on the adult intestinal epithelium during self-renewal and injury to provide a framework for understanding how this major family of morphogens can tip the scale between intestinal health and disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
107
|
Nath A, Chakrabarti P, Sen S, Barui A. Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Rev Rep 2022; 18:2328-2350. [DOI: 10.1007/s12015-022-10377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
|
108
|
Yuan Q, Peng R, Yu H, Wang S, Chen Z, Dong S, Li W, Cheng B, Jiang Q, Cong Y, Li F, Li C. Disulfiram Protects Against Radiation-Induced Intestinal Injury in Mice. Front Pharmacol 2022; 13:852669. [PMID: 35517788 PMCID: PMC9061966 DOI: 10.3389/fphar.2022.852669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced intestinal injury (RIII) occurs after high doses of radiation exposure. RIII restricts the therapeutic efficacy of radiotherapy in cancer and increases morbidity and mortality in nuclear disasters. Currently, there is no approved agent for the prevention or treatment of RIII. Here, we reported that the disulfiram, an FDA-approved alcohol deterrent, prolonged the survival in mice after lethal irradiation. Pretreatment with disulfiram inhibited proliferation within 24 h after irradiation, but improved crypt regeneration at 3.5 days post-irradiation. Mechanistically, disulfiram promoted Lgr5+ intestinal stem cells (ISCs) survival and maintained their ability to regenerate intestinal epithelium after radiation. Moreover, disulfiram suppresses DNA damage accumulation, thus inhibits aberrant mitosis after radiation. Unexpectedly, disulfiram treatment did not inhibit crypt cell apoptosis 4 h after radiation and the regeneration of crypts from PUMA-deficient mice after irradiation was also promoted by disulfiram. In conclusion, our findings demonstrate that disulfiram regulates the DNA damage response and survival of ISCs through affecting the cell cycle. Given its radioprotective efficacy and decades of application in humans, disulfiram is a promising candidate to prevent RIII in cancer therapy and nuclear accident.
Collapse
Affiliation(s)
- Qingwen Yuan
- The Postgraduate Training Base of Jinzhou Medical University, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Renjun Peng
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Huijie Yu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Sinian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhongmin Chen
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Suhe Dong
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wei Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bo Cheng
- Department of Pathology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Qisheng Jiang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuwen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing, China
| | - Fengsheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Changzheng Li
- Department of Gastroenterology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
109
|
Nalapareddy K, Zheng Y, Geiger H. Aging of intestinal stem cells. Stem Cell Reports 2022; 17:734-740. [PMID: 35276089 PMCID: PMC9023768 DOI: 10.1016/j.stemcr.2022.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
The intestine is one of the organs that relies on stem cell function for maintaining tissue homeostasis. Recent findings on intestinal aging show that intestinal architecture, such as villus length, crypt size, and cell composition changes in the aged crypts. The correspondent decline in the regenerative capacity of the intestine is mainly due to a decline in intestinal stem cell function upon aging, as the underlying mechanisms of aging intestinal stem cells are beginning to unravel. This review summarizes our current knowledge on stem cell-intrinsic mechanisms of aging of intestinal stem cells and their connection to extrinsic factors, such as niche cells and microbiota and will introduce recent approaches to attenuate or even revert the aging of intestinal stem cells.
Collapse
Affiliation(s)
- Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, OH 45229, USA
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany.
| |
Collapse
|
110
|
Cai S, Xie LW, Xu JY, Zhou H, Yang C, Tang LF, Tian Y, Li M. (-)-Epigallocatechin-3-Gallate (EGCG) Modulates the Composition of the Gut Microbiota to Protect Against Radiation-Induced Intestinal Injury in Mice. Front Oncol 2022; 12:848107. [PMID: 35480105 PMCID: PMC9036363 DOI: 10.3389/fonc.2022.848107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The high radiosensitivity of the intestinal epithelium limits the outcomes of radiotherapy against abdominal malignancies, which results in poor prognosis. Currently, no effective prophylactic or therapeutic strategy is available to mitigate radiation toxicity in the intestine. Our previous study revealed that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) attenuates radiation-induced intestinal injury (RIII). The aim of the present study was to determine the effect of EGCG on the intestinal flora of irradiated mice. EGCG administration reduced radiation-induced intestinal mucosal injury, and significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and Ki67+ crypt cells. In addition, EGCG reversed radiation-induced gut dysbiosis, restored the Firmicutes/Bacteroidetes ratio, and increased the abundance of beneficial bacteria. Our findings provide novel insight into EGCG-mediated remission of RIII, revealing that EGCG could be a potential modulator of gut microbiota to prevent and treat RIII.
Collapse
Affiliation(s)
- Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Li-Wei Xie
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Jia-Yu Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chao Yang
- Department of Nucleus Radiation-related Injury Treatment, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing, China
| | - Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
- *Correspondence: Ye Tian, ; Ming Li,
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Ye Tian, ; Ming Li,
| |
Collapse
|
111
|
Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Res 2022; 32:555-569. [PMID: 35379903 DOI: 10.1038/s41422-022-00645-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
Lgr5+ intestinal stem cells (ISCs) reside within specialized niches at the crypt base and harbor self-renewal and differentiation capacities. ISCs in the crypt base are sustained by their surrounding niche for precise modulation of self-renewal and differentiation. However, how intestinal cells in the crypt niche and microbiota in enteric cavity coordinately regulate ISC stemness remains unclear. Here, we show that ISCs are regulated by microbiota and niche enteric serotonergic neurons. The gut microbiota metabolite valeric acid promotes Tph2 expression in enteric serotonergic neurons via blocking the recruitment of the NuRD complex onto Tph2 promoter. 5-hydroxytryptamine (5-HT) in turn activates PGE2 production in a PGE2+ macrophage subset through its receptors HTR2A/3 A; and PGE2 via binding its receptors EP1/EP4, promotes Wnt/β-catenin signaling in ISCs to promote their self-renewal. Our findings illustrate a complex crosstalk among microbiota, intestinal nerve cells, intestinal immune cells and ISCs, revealing a new layer of ISC regulation by niche cells and microbiota.
Collapse
|
112
|
Liao Z, Hu C, Gao Y. Mechanisms modulating the activities of intestinal stem cells upon radiation or chemical agent exposure. JOURNAL OF RADIATION RESEARCH 2022; 63:149-157. [PMID: 35021216 PMCID: PMC8944320 DOI: 10.1093/jrr/rrab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, β-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.
Collapse
Affiliation(s)
| | | | - Yue Gao
- Corresponding author. Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine; 27 Taiping Road, Beijing, 100850, People’s Republic of China. E-mail:
| |
Collapse
|
113
|
Walter RJ, Sonnentag SJ, Munoz-Sagredo L, Merkel M, Richert L, Bunert F, Heneka YM, Loustau T, Hodder M, Ridgway RA, Sansom OJ, Mely Y, Rothbauer U, Schmitt M, Orian-Rousseau V. Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop. Cell Death Dis 2022; 13:168. [PMID: 35190527 PMCID: PMC8861016 DOI: 10.1038/s41419-022-04607-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
Enhancement of Wnt signaling is fundamental for stem cell function during intestinal regeneration. Molecular modules control Wnt activity by regulating signal transduction. CD44 is such a positive regulator and a Wnt target gene. While highly expressed in intestinal crypts and used as a stem cell marker, its role during intestinal homeostasis and regeneration remains unknown. Here we propose a CD44 positive-feedback loop that boosts Wnt signal transduction, thus impacting intestinal regeneration. Excision of Cd44 in Cd44fl/fl;VillinCreERT2 mice reduced Wnt target gene expression in intestinal crypts and affected stem cell functionality in organoids. Although the integrity of the intestinal epithelium was conserved in mice lacking CD44, they were hypersensitive to dextran sulfate sodium, and showed more severe inflammation and delayed regeneration. We localized the molecular function of CD44 at the Wnt signalosome, and identified novel DVL/CD44 and AXIN/CD44 complexes. CD44 thus promotes optimal Wnt signaling during intestinal regeneration.
Collapse
Affiliation(s)
- Romina J Walter
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Steffen J Sonnentag
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Leonel Munoz-Sagredo
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Faculty of Medicine, Universidad de Valparaiso, Angamos 655, 2540064, Vina del Mar, Chile
| | - Melanie Merkel
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ludovic Richert
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Felix Bunert
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yvonne M Heneka
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Thomas Loustau
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Yves Mely
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770, Reutlingen, Germany.,Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Mark Schmitt
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Strasse 2, 35043, Marburg, Germany
| | - Véronique Orian-Rousseau
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
114
|
Li H, Su YS, He W, Zhang JB, Zhang Q, Jing XH, Zhan LB. The nonneuronal cholinergic system in the colon: A comprehensive review. FASEB J 2022; 36:e22165. [PMID: 35174565 DOI: 10.1096/fj.202101529r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
Acetylcholine (ACh) is found not only in cholinergic nerve termini but also in the nonneuronal cholinergic system (NNCS). ACh is released from cholinergic nerves by vesicular ACh transporter (VAChT), but ACh release from the NNCS is mediated by organic cation transporter (OCT). Recent studies have suggested that components of the NNCS are located in intestinal epithelial cells (IECs), crypt-villus organoids, immune cells, intestinal stem cells (ISCs), and vascular endothelial cells (VECs). When ACh enters the interstitial space, its self-modulation or effects on adjacent tissues are part of the range of its biological functions. This review focuses on the current understanding of the mechanisms of ACh synthesis and release in the NNCS. Furthermore, studies on ACh functions in colonic disorders suggest that ACh from the NNCS contributes to immune regulation, IEC and VEC repair, ISC differentiation, colonic movement, and colonic tumor development. As indicated by the features of some colonic disorders, ACh and the NNCS have positive and negative effects on these disorders. Furthermore, the NNCS is located in multiple colonic organs, and the specific effects and cross-talk involving ACh from the NNCS in different colonic tissues are explored.
Collapse
Affiliation(s)
- Han Li
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China.,Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Bin Zhang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Zhang
- Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, China.,Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
115
|
Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. The Role of the Microbiota in Regeneration-Associated Processes. Front Cell Dev Biol 2022; 9:768783. [PMID: 35155442 PMCID: PMC8826689 DOI: 10.3389/fcell.2021.768783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota, the set of microorganisms associated with a particular environment or host, has acquired a prominent role in the study of many physiological and developmental processes. Among these, is the relationship between the microbiota and regenerative processes in various organisms. Here we introduce the concept of the microbiota and its involvement in regeneration-related cellular events. We then review the role of the microbiota in regenerative models that extend from the repair of tissue layers to the regeneration of complete organs or animals. We highlight the role of the microbiota in the digestive tract, since it accounts for a significant percentage of an animal microbiota, and at the same time provides an outstanding system to study microbiota effects on regeneration. Lastly, while this review serves to highlight echinoderms, primarily holothuroids, as models for regeneration studies, it also provides multiple examples of microbiota-related interactions in other processes in different organisms.
Collapse
Affiliation(s)
- Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
116
|
Ramadan R, van Driel MS, Vermeulen L, van Neerven SM. Intestinal stem cell dynamics in homeostasis and cancer. Trends Cancer 2022; 8:416-425. [DOI: 10.1016/j.trecan.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
|
117
|
Ohara TE, Colonna M, Stappenbeck TS. Adaptive differentiation promotes intestinal villus recovery. Dev Cell 2022; 57:166-179.e6. [PMID: 35016013 PMCID: PMC9092613 DOI: 10.1016/j.devcel.2021.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 01/26/2023]
Abstract
Loss of differentiated cells to tissue damage is a hallmark of many diseases. In slow-turnover tissues, long-lived differentiated cells can re-enter the cell cycle or transdifferentiate to another cell type to promote repair. Here, we show that in a high-turnover tissue, severe damage to the differentiated compartment induces progenitors to transiently acquire a unique transcriptional and morphological postmitotic state. We highlight this in an acute villus injury model in the mouse intestine, where we identified a population of progenitor-derived cells that covered injured villi. These atrophy-induced villus epithelial cells (aVECs) were enriched for fetal markers but were differentiated and lineage committed. We further established a role for aVECs in maintaining barrier integrity through the activation of yes-associated protein (YAP). Notably, loss of YAP activity led to impaired villus regeneration. Thus, we define a key repair mechanism involving the activation of a fetal-like program during injury-induced differentiation, a process we term "adaptive differentiation."
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
118
|
Ding L, Yang Y, Lu Q, Cao Z, Weygant N. Emerging Prospects for the Study of Colorectal Cancer Stem Cells using Patient-Derived Organoids. Curr Cancer Drug Targets 2022; 22:195-208. [DOI: 10.2174/1568009622666220117124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Human colorectal cancer (CRC) patient-derived organoids (PDOs) are a powerful ex vivo platform to directly assess the impact of molecular alterations and therapies on tumor cell proliferation, differentiation, response to chemotherapy, tumor-microenvironment interactions, and other facets of CRC biology. Next-generation sequencing studies have demonstrated that CRC is a highly heterogeneous disease with multiple distinct subtypes. PDOs are a promising new tool to study CRC due to their ability to accurately recapitulate their source tumor and thus reproduce this heterogeneity. This review summarizes the state-of-the-art for CRC PDOs in the study of cancer stem cells (CSCs) and the cancer stem cell niche. Areas of focus include the relevance of PDOs to understanding CSC-related paracrine signaling, identifying interactions between CSCs and the tumor microenvironment, and modeling CSC-driven resistance to chemotherapies and targeted therapies. Finally, we summarize current findings regarding the identification and verification of CSC targets using PDOs and their potential use in personalized medicine.
Collapse
Affiliation(s)
- Ling Ding
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Yuning Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Qin Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, CN 350122
| |
Collapse
|
119
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
120
|
Eggington HR, Mulholland EJ, Leedham SJ. Morphogen regulation of stem cell plasticity in intestinal regeneration and carcinogenesis. Dev Dyn 2022; 251:61-74. [PMID: 34716737 DOI: 10.1002/dvdy.434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023] Open
Abstract
The intestinal epithelium is a tissue with high cell turnover, supported by adult intestinal stem cells. Intestinal homeostasis is underpinned by crypt basal columnar stem cells, marked by expression of the LGR5 gene. However, recent research has demonstrated considerable stem cell plasticity following injury, with dedifferentiation of a range of other intestinal cell populations, induced by a permissive microenvironment in the regenerating mucosa. The regulation of this profound adaptive cell reprogramming response is the subject of current research. There is a demonstrable contribution from disruption of key homeostatic signaling pathways such as wingless-related integration site and bone morphogenetic protein, and an emerging signaling hub role for the mechanoreceptor transducers Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif, negatively regulated by the Hippo pathway. However, a number of outstanding questions remain, including a need to understand how tissues sense damage, and how pathways intersect to mediate dynamic changes in the stem cell population. Better understanding of these pathways, associated functional redundancies, and how they may be both enhanced for recovery of inflammatory diseases, and co-opted in neoplasia development, may have significant clinical implications, and could lead to development of more targeted molecular therapies which target individual stem or stem-like cell populations.
Collapse
Affiliation(s)
- Holly R Eggington
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Eoghan J Mulholland
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre Human Genetics, University of Oxford, Oxford, UK.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford and Oxford National Institute for Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
121
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
122
|
Lee C, An M, Joung JG, Park WY, Chang DK, Kim YH, Hong SN. TNFα Induces LGR5+ Stem Cell Dysfunction In Patients With Crohn's Disease. Cell Mol Gastroenterol Hepatol 2022; 13:789-808. [PMID: 34700029 PMCID: PMC8783132 DOI: 10.1016/j.jcmgh.2021.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Tumor necrosis factor alpha (TNFα) is considered a major tissue damage-promoting effector in Crohn's disease (CD) pathogenesis. Patient-derived intestinal organoid (enteroid) recapitulates the disease-specific characteristics of the intestinal epithelium. This study aimed to evaluate the intestinal epithelial responses to TNFα in enteroids derived from healthy controls and compare them with those of CD patient-derived enteroids. METHODS Human enteroids derived from patients with CD and controls were treated with TNFα (30 ng/mL), and cell viability and gene expression patterns were evaluated. RESULTS TNFα induced MLKL-mediated necroptotic cell death, which was more pronounced in CD patient-derived enteroids than in control enteroids. Immunohistochemistry and RNA sequencing revealed that treatment with TNFα caused expansion of the intestinal stem cell (ISC) populations. However, expanded ISC subpopulations differed in control and CD patient-derived enteroids, with LGR5+ active ISCs in control enteroids and reserve ISCs, such as BMI1+ cells, in CD patient-derived enteroids. In single-cell RNA sequencing, LGR5+ ISC-enriched cell cluster showed strong expression of TNFRSF1B (TNFR2) and cyclooxygenase-prostaglandin E2 (PGE2) activation. In TNFα-treated CD patient-derived enteroids, exogenous PGE2 (10 nmol/L) induced the expansion of the LGR5+ ISC population and improved organoid-forming efficiency, viability, and wound healing. CONCLUSIONS TNFα increases necroptosis of differentiated cells and induces the expansion of LGR5+ ISCs. In CD patient-derived enteroids, TNFα causes LGR5+ stem cell dysfunction (expansion failure), and exogenous PGE2 treatment restored the functions of LGR5+ stem cells. Therefore, PGE2 can be used to promote mucosal healing in patients with CD.
Collapse
Affiliation(s)
- Chansu Lee
- Department of Medicine, Samsung Medical Center, Seoul, Korea; Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea
| | - Minae An
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea; Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Seoul, Korea; Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
123
|
Meyer AR, Brown ME, McGrath PS, Dempsey PJ. Injury-Induced Cellular Plasticity Drives Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2021; 13:843-856. [PMID: 34915204 PMCID: PMC8803615 DOI: 10.1016/j.jcmgh.2021.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The epithelial lining of the intestine, particularly the stem cell compartment, is affected by harsh conditions in the luminal environment and also is susceptible to genotoxic agents such as radiation and chemotherapy. Therefore, the ability for intestinal epithelial cells to revert to a stem cell state is an important physiological damage response to regenerate the intestinal epithelium at sites of mucosal injury. Many signaling networks involved in maintaining the stem cell niche are activated as part of the damage response to promote cellular plasticity and regeneration. The relative contribution of each cell type and signaling pathway is a critical area of ongoing research, likely dependent on the nature of injury as well as the regional specification within the intestine. Here, we review the current understanding of the multicellular cooperation to restore the intestinal epithelium after damage.
Collapse
Affiliation(s)
| | | | | | - Peter J. Dempsey
- Correspondence Address correspondence to: Peter J. Dempsey, PhD, Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, 1775 Aurora Court, Barbara Davis Center, M20–3306, Aurora, Colorado 80045. fax: (303) 724-6538.
| |
Collapse
|
124
|
Rocchi C, Cinat D, Serrano Martinez P, Bruin ALJD, Baanstra M, Brouwer U, Del Angel Zuivre C, Schepers H, van Os R, Barazzuol L, Coppes RP. The Hippo signaling pathway effector YAP promotes salivary gland regeneration after injury. Sci Signal 2021; 14:eabk0599. [PMID: 34874744 DOI: 10.1126/scisignal.abk0599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Davide Cinat
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Anne L Jellema-de Bruin
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Cinthya Del Angel Zuivre
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Ronald van Os
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| | - Robert P Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen 9700 RB, Netherlands
| |
Collapse
|
125
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
126
|
Radiosensitisation of SCCVII tumours and normal tissues in mice by the DNA-dependent protein kinase inhibitor AZD7648. Radiother Oncol 2021; 166:162-170. [PMID: 34861268 DOI: 10.1016/j.radonc.2021.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Inhibitors of DNA-dependent protein kinase (DNA-PK) are effective radiation sensitisers in preclinical tumours, but little is known about risks of normal tissue radiosensitisation. Here, we evaluate radiosensitisation of head and neck squamous cell carcinoma (HNSCC) cells by DNA-PK inhibitor AZD7648 under oxia and anoxia in vitro, and tumour (SCCVII), oral mucosa and small intestine in mice. MATERIALS AND METHODS Radiosensitisation of human (UT-SCC-54C) and murine (SCCVII) HNSCC cells by AZD7648 under oxia and anoxia was evaluated by clonogenic assay. Radiosensitisation of SCCVII tumours in C3H mice by oral AZD7648 (75 mg/kg) was determined by ex vivo clonogenic assay 3.5 days post-irradiation, with evaluation of normal tissue surrogate endpoints using 5-ethynyl-2'-deoxyuridine to facilitate detection of regenerating crypts in the ileum and repopulating S-phase cells in the ileum and oral mucosa of the same animals. RESULTS AZD7648 potently radiosensitised both cell lines, with similar sensitiser enhancement ratios for 10% survival (SER10) under oxia and anoxia. AZD7648 diffused rapidly through multicellular layers, suggesting rapid equilibration between plasma and hypoxic zones in tumours. SCCVII tumours were radiosensitised by AZD7648 (SER10 2.5). AZD7648 also enhanced radiation-induced body weight loss and suppressed regenerating intestinal crypts and repopulating S-phase cells in the ileum and tongue epithelium with SER values similar to SCCVII tumours. CONCLUSION AZD7648 is a potent radiation sensitiser of both oxic and anoxic tumour cells, but also markedly radiosensitises stem cells in the small intestine and oral mucosa.
Collapse
|
127
|
Colorectal Cancer Stem Cells: An Overview of Evolving Methods and Concepts. Cancers (Basel) 2021; 13:cancers13235910. [PMID: 34885020 PMCID: PMC8657142 DOI: 10.3390/cancers13235910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In recent years, colorectal cancer stem cells (cCSCs) have been the object of intense investigation for their promise to disclose new aspects of colorectal cancer cell biology, as well as to devise new treatment strategies for colorectal cancer (CRC). However, accumulating studies on cCSCs by complementary technologies have progressively disclosed their plastic nature, i.e., their capability to acquire different phenotypes and/or functions under different circumstances in response to both intrinsic and extrinsic signals. In this review, we aim to recapitulate how a progressive methodological development has contributed to deepening and remodeling the concept of cCSCs over time, up to the present. Abstract Colorectal cancer (CRC) represents one of the most deadly cancers worldwide. Colorectal cancer stem cells (cCSCs) are the driving units of CRC initiation and development. After the concept of cCSC was first formulated in 2007, a huge bulk of research has contributed to expanding its definition, from a cell subpopulation defined by a fixed phenotype in a plastic entity modulated by complex interactions with the tumor microenvironment, in which cell position and niche-driven signals hold a prominent role. The wide development of cellular and molecular technologies recent years has been a main driver of advancements in cCSCs research. Here, we will give an overview of the parallel role of technological progress and of theoretical evolution in shaping the concept of cCSCs.
Collapse
|
128
|
Zhu X, Yang M, Lin Z, Mael SK, Li Y, Zhang L, Kong Y, Zhang Y, Ren Y, Li J, Wang Z, Zhang Y, Yang B, Huang T, Guan F, Li Z, Moses RE, Li L, Wang B, Li X, Zhang B. REGγ drives Lgr5 + stem cells to potentiate radiation induced intestinal regeneration. SCIENCE CHINA. LIFE SCIENCES 2021; 65:1608-1623. [PMID: 34826093 DOI: 10.1007/s11427-021-2018-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), a marker of intestinal stem cells (ISCs), is considered to play key roles in tissue homoeostasis and regeneration after acute radiation injury. However, the activation of Lgr5 by integrated signaling pathways upon radiation remains poorly understood. Here, we show that irradiation of mice with whole-body depletion or conditional ablation of REGγ in Lgr5+ stem cell impairs proliferation of intestinal crypts, delaying regeneration of intestine epithelial cells. Mechanistically, REGγ enhances transcriptional activation of Lgr5 via the potentiation of both Wnt and Hippo signal pathways. TEAD4 alone or cooperates with TCF4, a transcription factor mediating Wnt signaling, to enhance the expression of Lgr5. Silencing TEAD4 drastically attenuated β-catenin/TCF4 dependent expression of Lgr5. Together, our study reveals how REGγ controls Lgr5 expression and expansion of Lgr5+ stem cells in the regeneration of intestinal epithelial cells. Thus, REGγ proteasome appears to be a potential therapeutic target for radiation-induced gastrointestinal disorders.
Collapse
Affiliation(s)
- Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Minglei Yang
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai, 200003, China
| | - Zaijun Lin
- Department of Spinal Surgery, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200438, China
| | - Solomon Kibreab Mael
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ya Li
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lili Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaqi Kong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaodong Zhang
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yuping Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianhui Li
- Department of Pathology, Xuchang Central Hospital Affiliated to Henan University of Science and Technology, Xuchang, 461000, China
| | - Zimeng Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bo Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tingmei Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Wang
- Department of Oncological Surgery, Minhang Branch, Shanghai Cancer Center, Fudan University, Shanghai, 200240, China.
| | - Xiaotao Li
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, 20051, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
129
|
Chen G, Zeng H, Li X, Liu J, Li Z, Xu R, Ma Y, Liu C, Xue B. Activation of G protein coupled estrogen receptor prevents chemotherapy-induced intestinal mucositis by inhibiting the DNA damage in crypt cell in an extracellular signal-regulated kinase 1- and 2- dependent manner. Cell Death Dis 2021; 12:1034. [PMID: 34718327 PMCID: PMC8557214 DOI: 10.1038/s41419-021-04325-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a common adverse reaction to antineoplastic treatment with few appropriate, specific interventions. We aimed to identify the role of the G protein coupled estrogen receptor (GPER) in CIM and its mechanism. Adult male C57BL/6 mice were intraperitoneally injected with 5-fluorouracil to establish the CIM model. The selective GPER agonist G-1 significantly inhibited weight loss and histological damage in CIM mice and restored mucosal barrier dysfunction, including improving the expression of ZO-1, increasing the number of goblet cells, and decreasing mucosal permeability. Moreover, G-1 treatment did not alter the antitumor effect of 5-fluorouracil. In the CIM model, G-1 therapy reduced the expression of proapoptotic protein and cyclin D1 and cyclin B1, reversed the changes in the number of TUNEL+ cells, Ki67+ and bromodeoxyuridine+ cells in crypts. The selective GPER antagonist G15 eliminated all of the above effects caused by G-1 on CIM, and application of G15 alone increased the severity of CIM. GPER was predominantly expressed in ileal crypts, and G-1 inhibited the DNA damage induced by 5-fluorouracil in vivo and vitro, as confirmed by the decrease in the number of γH2AX+ cells in the crypts and the comet assay results. Referring to the data from GEO dataset we verified GPER activation restored ERK1/2 activity in CIM and 5-fluorouracil-treated IEC-6 cells. Once the effects of G-1 on ERK1/2 activity were abolished with the ERK1/2 inhibitor PD0325901, the effects of G-1 on DNA damage both in vivo and in vitro were eliminated. Correspondingly, all of the manifestations of G-1 protection against CIM were inhibited by PD0325901, such as body weight and histological changes, the mucosal barrier, the apoptosis and proliferation of crypt cells. In conclusion, GPER activation prevents CIM by inhibiting crypt cell DNA damage in an ERK1/2-dependent manner, suggesting GPER might be a target preventing CIM.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Honghui Zeng
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyun Li
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianbo Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Li
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Runze Xu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuntao Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
130
|
Zhang D, Zhou X, Liu L, Guo M, Huang T, Zhou W, Geng F, Cui SW, Nie S. Glucomannan from Aloe vera Gel Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration via the Wnt/β-Catenin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10581-10591. [PMID: 34432461 DOI: 10.1021/acs.jafc.1c03814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intestinal stem cells (ISCs) are essential to maintain intestinal epithelial regeneration and barrier function. Our previous work showed that glucomannan from Aloe vera gel (AGP) alleviated epithelial damage, but the mechanism was still elusive. Herein, RNA-sequencing analysis showed that proliferation and differentiation of intestinal epithelial cells as well as the canonical Wnt pathway were involved in this process. Further experiments exhibited that AGP promoted nuclear translocation of β-catenin and expression of transcription factor 7, increased the number of Lgr5+ ISCs, and differentiated epithelial cells in mice colon. Intriguingly, AGP reversed the inhibition of IEC-6 cells proliferation induced by an inhibitor of the canonical Wnt pathway. Hence, this study implied that AGP promoted proliferation and differentiation of colon stem cells via Wnt/β-catenin signaling, which subsequently facilitated the regeneration of epithelial cells and alleviated colitis in mice. It may provide new insights into the role of polysaccharides in regulating intestinal homeostasis and relieving intestinal injury.
Collapse
Affiliation(s)
- Duoduo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Linyuan Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Mi Guo
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Tongwen Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Wengan Zhou
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| |
Collapse
|
131
|
Ara T, Hashimoto D. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Front Immunol 2021; 12:713631. [PMID: 34512636 PMCID: PMC8429834 DOI: 10.3389/fimmu.2021.713631] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Prophylaxis for and treatment of graft-versus-host disease (GVHD) are essential for successful allogeneic hematopoietic stem cell transplantation (allo-SCT) and mainly consist of immunosuppressants such as calcineurin inhibitors. However, profound immunosuppression can lead to tumor relapse and infectious complications, which emphasizes the necessity of developing novel management strategies for GVHD. Emerging evidence has revealed that tissue-specific mechanisms maintaining tissue homeostasis and promoting tissue tolerance to combat GVHD are damaged after allo-SCT, resulting in exacerbation and treatment refractoriness of GVHD. In the gastrointestinal tract, epithelial regeneration derived from intestinal stem cells (ISCs), a microenvironment that maintains healthy gut microbiota, and physical and chemical mucosal barrier functions against pathogens are damaged by conditioning regimens and/or GVHD. The administration of growth factors for cells that maintain intestinal homeostasis, such as interleukin-22 (IL-22) for ISCs, R-spondin 1 (R-Spo1) for ISCs and Paneth cells, and interleukin-25 (IL-25) for goblet cells, mitigates murine GVHD. In this review, we summarize recent advances in the understanding of GVHD-induced tissue damage and emerging strategies for the management of GVHD.
Collapse
Affiliation(s)
- Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
132
|
Girish N, Liu CY, Gadeock S, Gomez ML, Huang Y, Sharifkhodaei Z, Washington MK, Polk DB. Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2021; 321:G308-G324. [PMID: 34260310 PMCID: PMC8461791 DOI: 10.1152/ajpgi.00248.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Intestinal mucosal healing is the primary therapeutic goal of medical treatments for inflammatory bowel disease (IBD). Epithelial stem cells are key players in the healing process. Lgr5+ stem cells maintain cellular turnover during homeostasis in the colonic crypt. However, they are lost and dispensable for repair in a wide variety of injury models, including dextran sulfate sodium (DSS) colitis, radiation, helminth infection, and T-cell activation. The direct loss of Lgr5+ cells activates a plasticity response in the epithelium in which other cell types can serve as stem cells. Whether this paradigm applies to mouse models of IBD remains unknown. In contrast to previously tested models, IBD models involve an inflammatory response rooted in the loss of immunologic tolerance to intestinal luminal contents including the microbiome. Here, we show the persistence of Lgr5+ cells in oxazolone, 2,4,6-trinitrobenzene sulfonic acid (TNBS), and Il10-/-, and Il10-/- Tnfr1-/- IBD models. This contrasts with results obtained from DSS-induced injury. Through high-throughput expression profiling, we find that these colitis models were associated with distinct patterns of cytokine expression. Direct exposure of colonic epithelial organoids to DSS, oxazolone, or TNBS resulted in increased apoptosis and loss of Lgr5+ cells. Targeted ablation of Lgr5+ cells resulted in severe exacerbation of chronic, antibody-induced IL-10-deficient colitis, but had only modest effects in TNBS-induced colitis. These results show that distinct mouse models of IBD-like colitis induce different patterns of Lgr5+ stem cell retention and function.NEW & NOTEWORTHY Acute intestinal injury and epithelial repair are associated with the loss of fast-cycling Lgr5+ stem cells and plasticity in the activation of formerly quiescent cell populations. In contrast, here we show in murine inflammatory bowel disease the persistence of the Lgr5+ stem cell population and its essential role in restricting the severity of chronic colitis. This demonstrates a diversity of stem cell responses to colitis.
Collapse
Affiliation(s)
- Nandini Girish
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
| | - Cambrian Y Liu
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Safina Gadeock
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
| | - Marie L Gomez
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ying Huang
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Zohreh Sharifkhodaei
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
133
|
Zhang H, Lin M, Dong C, Tang Y, An L, Ju J, Wen F, Chen F, Wang M, Wang W, Chen M, Zhao Y, Li J, Hou SX, Lin X, Hu L, Bu W, Wu D, Li L, Jiao S, Zhou Z. An MST4-pβ-Catenin Thr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004850. [PMID: 34240584 PMCID: PMC8425901 DOI: 10.1002/advs.202004850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 06/04/2023]
Abstract
Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pβ-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Moubin Lin
- Department of General SurgeryYangpu HospitalTongji University School of MedicineShanghai200090China
| | - Chao Dong
- Department of the Second Medical OncologyThe 3rd Affiliated Hospital of Kunming Medical UniversityYunnan Tumor HospitalKunming650118China
| | - Yang Tang
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Liwei An
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Junyi Ju
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Fuping Wen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fan Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Meng Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Wenjia Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Min Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yun Zhao
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Xinhua Lin
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Lulu Hu
- Fudan University Shanghai Cancer CenterInstitutes of Biomedical SciencesState Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical EpigeneticsShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenbo Bu
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Dianqing Wu
- Department of PharmacologyYale School of MedicineNew HavenCT06520USA
| | - Lin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Shi Jiao
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
134
|
Frizzled 7 Activates β-Catenin-Dependent and β-Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handb Exp Pharmacol 2021. [PMID: 34455486 DOI: 10.1007/164_2021_524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Frizzled7 activates β-catenin-dependent and β-catenin-independent Wnt signalling pathways, is highly conserved through evolution from the ancient phylum hydra to man, plays essential roles in stem cells, tissue homeostasis and regeneration in the adult, and is upregulated in diverse cancers. Much of what is known about the core components of the Wnt signalling pathways was derived from studying the function of Frizzled7 orthologues in the development of lower organism. As we interrogate Frizzled7 signalling and function for therapeutic targeting in cancer, it is timely to revisit lower organisms to gain insight into the context dependent and dynamic nature of Wnt signalling for effective drug design.
Collapse
|
135
|
Wang S, Kai L, Zhu L, Xu B, Chen N, Valencak TG, Wang Y, Shan T. Cathelicidin-WA Protects Against LPS-Induced Gut Damage Through Enhancing Survival and Function of Intestinal Stem Cells. Front Cell Dev Biol 2021; 9:685363. [PMID: 34381773 PMCID: PMC8350165 DOI: 10.3389/fcell.2021.685363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Preservation of intestinal stem cells (ISCs) plays a critical role in initiating epithelial regeneration after intestinal injury. Cathelicidin peptides have been shown to participate in regulating intestinal damage repair. However, it is not known how exactly Cathelicidin-WA (CWA) exert its function after tissue damage. Using a gut injury model in mice involving Lipopolysaccharide (LPS), we observed that CWA administration significantly improved intestinal barrier function, preserved ISCs survival, and augmented ISCs viability within the small intestine (SI) under LPS treatment. In addition, CWA administration effectively prevented proliferation stops and promoted the growth of isolated crypts. Mechanistically, our results show that the appearance of γH2AX was accompanied by weakened expression of SETDB1, a gene that has been reported to safeguard genome stability. Notably, we found that CWA significantly rescued the decreased expression of SETDB1 and reduced DNA damage after LPS treatment. Taken together, CWA could protect against LPS-induced gut damage through enhancing ISCs survival and function. Our results suggest that CWA may become an effective therapeutic regulator to treat intestinal diseases and infections.
Collapse
Affiliation(s)
- Sisi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Lixia Kai
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Luoyi Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Bocheng Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Nana Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
136
|
Abud HE, Chan WH, Jardé T. Source and Impact of the EGF Family of Ligands on Intestinal Stem Cells. Front Cell Dev Biol 2021; 9:685665. [PMID: 34350179 PMCID: PMC8327171 DOI: 10.3389/fcell.2021.685665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022] Open
Abstract
Epidermal Growth Factor (EGF) has long been known for its role in promoting proliferation of intestinal epithelial cells. EGF is produced by epithelial niche cells at the base of crypts in vivo and is routinely added to the culture medium to support the growth of intestinal organoids ex vivo. The recent identification of diverse stromal cell populations that reside underneath intestinal crypts has enabled the characterization of key growth factor cues supplied by these cells. The nature of these signals and how they are delivered to drive intestinal epithelial development, daily homeostasis and tissue regeneration following injury are being investigated. It is clear that aside from EGF, other ligands of the family, including Neuregulin 1 (NRG1), have distinct roles in supporting the function of intestinal stem cells through the ErbB pathway.
Collapse
Affiliation(s)
- Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.,Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
137
|
Rao X, Tang P, Li Y, Fu G, Chen S, Xu X, Zhou Y, Li X, Zhang L, Mo S, Cai S, Peng J, Zhang Z, Gao J, Hua G. CBP/P300 Inhibitors Mitigate Radiation-Induced GI Syndrome by Promoting Intestinal Stem Cell-Mediated Crypt Regeneration. Int J Radiat Oncol Biol Phys 2021; 110:1210-1221. [PMID: 33545304 DOI: 10.1016/j.ijrobp.2021.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Radiation-induced gastrointestinal syndrome (RIGS) is currently the main cause of death for people exposed to a high dose of irradiation during nuclear incidents, and there is currently no approved effective therapy. Here, we found that CBP/P300 inhibitors, with high efficacy and low toxicity, might be promising radiation mitigators that can cure RIGS. METHODS AND MATERIALS Ex vivo 3D organoid cultures derived from mouse jejunum and human ileum and colon were used to examine the radio-mitigative effects of CBP/P300 inhibitors. The radio-mitigative effect was evaluated by quantifying the survival rate and size of organoids after radiation. SGC-CBP30 (50 mg/kg body weight), an inhibitor of CBP/P300, was intraperitoneally injected into C57B/6J mice 24 hours after subtotal-body irradiation or whole-body irradiation. The regenerated crypts and animal survival were determined by microcolony assay and the Kaplan-Meier method, respectively. Lgr5-lacZ mice were used to evaluate the survival of intestinal stem cells after treatments. RESULTS We found that CBP/P300 inhibitors were effective mitigators that could be used to treat RIGS. CBP/P300 inhibition promoted the regeneration of intestinal organoids in vitro and of crypts in vivo. Remarkably, the administration of CBP/P300 inhibitors to mice 24 hours after lethal irradiation promoted Lgr5+ intestinal stem cell and crypt recovery, resulting in improved mouse survival. Moreover, our data show that CBP/P300 inhibitors rescued irradiated mice from RIGS by delaying intestinal epithelial cell cycle progression after radiation. CONCLUSIONS These data demonstrate that CBP/P300 inhibitors are effective medical countermeasures to mitigate gastrointestinal toxicity from radiation.
Collapse
Affiliation(s)
- Xinxin Rao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyuan Tang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanchuang Li
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Fu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengzhi Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoya Xu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomeng Li
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jianjun Gao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoqiang Hua
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
138
|
Zhu X, Tian X, Yang M, Yu Y, Zhou Y, Gao Y, Zhang L, Li Z, Xiao Y, Moses RE, Li X, Zhang B. Procyanidin B2 Promotes Intestinal Injury Repair and Attenuates Colitis-Associated Tumorigenesis via Suppression of Oxidative Stress in Mice. Antioxid Redox Signal 2021; 35:75-92. [PMID: 32940048 DOI: 10.1089/ars.2019.7911] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Intact intestinal epithelium is essential to maintain normal intestinal physiological function. Irradiation-induced gastrointestinal syndrome or inflammatory bowel disease occurred when epithelial integrity was impaired. This study aims at exploring the mechanism of procyanidin B2 (PB2) administration to promote intestinal injury repair in mice. Results: PB2 treatment reduces reactive oxygen species (ROS) accumulation and protects the intestine damage from irradiation. Mechanistic studies reveal that PB2 could effectively slow down the degradation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and it significantly triggers Nrf2 into the nucleus, which leads to subsequent antioxidant enzyme expression. However, knockdown of Nrf2 attenuates PB2-induced protection in the intestine. More importantly, PB2 also promotes leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive intestinal stem cells (Lgr5+ ISCs) driven regeneration via enhancing Wnt/β-catenin signaling, which depends on, at least in part, activation of the Nrf2 signal. Evidence from an injury model of intestinal organoids is similar with in vivo results. Correspondingly, results from flow cytometric analysis and luciferase reporter assay reveal that PB2 also inhibits the level of ROS and promotes Lgr5 expression in vitro. Finally, PB2 alleviates the severity of experimental colitis and colitis-associated cancer in a long-term inflammatory model via inhibiting nuclear localization of p65. Innovation: This study, for the first time, reveals a role of PB2 for intestinal regeneration and repair after radiation or dextran sulfate sodium-induced injury in mice. Conclusion: Our results indicate that PB2 can repress oxidative stress via Nrf2/ARE signaling and then promote intestinal injury repair.
Collapse
Affiliation(s)
- Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Minglei Yang
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Ying Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yongdan Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Ye Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Lili Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, USA
| | - Yasong Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
139
|
Jatko JT, Darling CL, Kellett MP, Bain LJ. Arsenic exposure in drinking water reduces Lgr5 and secretory cell marker gene expression in mouse intestines. Toxicol Appl Pharmacol 2021; 422:115561. [PMID: 33957193 PMCID: PMC11931411 DOI: 10.1016/j.taap.2021.115561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Arsenic is a global health concern that causes toxicity through ingestion of contaminated water and food. In vitro studies suggest that arsenic reduces stem and progenitor cell differentiation. Thus, this study determined if arsenic disrupted intestinal stem cell (ISC) differentiation, thereby altering the number, location, and/or function of intestinal epithelial cells. Adult male C57BL/6 mice were exposed to 0 or 100 ppb sodium arsenite (AsIII) through drinking water for 5 weeks. Duodenal sections were collected to assess changes in morphology, proliferation, and cell types. qPCR analysis revealed a 40% reduction in Lgr5 transcripts, an ISC marker, in the arsenic-exposed mice, although there were no changes in the protein expression of Olfm4. Secretory cell-specific transcript markers of Paneth (Defa1), Goblet (Tff3), and secretory transit amplifying (Math1) cells were reduced by 51%, 44%, and 30% respectively, in the arsenic-exposed mice, indicating significant impacts on the Wnt-dependent differentiation pathway. Further, protein levels of phosphorylated β-catenin were reduced in the arsenic-exposed mice, which increased the expression of Wnt-dependent transcripts CD44 and c-myc. PCA analysis, followed by MANOVA and regression analyses, revealed significant changes and correlations between Lgr5 and the transit amplifying (TA) cell markers Math1 and Hes1, which are in the secretory cell pathway. Similar comparisons between Math1 and Defa1 show that terminal differentiation into Paneth cells is also reduced in the arsenic-exposed mice. The data suggests that ISCs are not lost following arsenic exposure, but rather, specific Wnt-dependent progenitor cell formation and terminal differentiation in the small intestine is reduced.
Collapse
Affiliation(s)
- Jordan T Jatko
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Caitlin L Darling
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Michael P Kellett
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| |
Collapse
|
140
|
Li H, Jiang M, Zhao SY, Zhang SQ, Lu L, He X, Feng GX, Wu X, Fan SJ. Exosomes are involved in total body irradiation-induced intestinal injury in mice. Acta Pharmacol Sin 2021; 42:1111-1123. [PMID: 33637947 PMCID: PMC8209125 DOI: 10.1038/s41401-021-00615-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Ionizing radiation-induced intestinal injury is a catastrophic complication in patients receiving radiotherapy. Circulating exosomes from patients undergoing radiotherapy can mediate communication between cells and facilitate a variety of pathological processes in vivo, but its effects on ionizing radiation-induced intestinal damage are undetermined. In this study we investigated the roles of exosomes during total body irradiation (TBI)-induced intestinal injury in vivo and in vitro. We isolated exosomes from serum of donor mice 24 h after lethal dose (9 Gy) TBI (Exo-IR-24h), then intravenously injected the exosomes into receipt mice, and found that Exo-IR-24h injection not only exacerbated 9 Gy TBI-induced lethality and weight loss, but also promoted crypt-villus structural and functional injury of the small intestine in receipt mice. Moreover, Exo-IR-24h injection significantly enhanced the apoptosis and DNA damage of small intestine in receipt mice following TBI exposure. In murine intestinal epithelial MODE-K cells, treatment with Exo-IR-24h significantly promoted 4 Gy ionizing radiation-induced apoptosis, resulting in decreased cell vitality. We further demonstrated that Exo-IR-24h promoted the IR-induced injury in receipt mice partially through its DNA damage-promoting effects and attenuating Nrf2 antioxidant response in irradiated MODE-K cells. In addition, TBI-related miRNAs and their targets in the exosomes of mice were enriched functionally using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, injection of GW4869 (an inhibitor of exosome biogenesis and release, 1.25 mg·kg-1·d-1, ip, for 5 consecutive days starting 3 days before radiation exposure) was able to rescue mice against 9 Gy TBI-induced lethality and intestinal damage. Collectively, this study reveals that exosomes are involved in TBI-induced intestinal injury in mice and provides a new target to protect patients against irradiation-induced intestinal injury during radiotherapy.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shu-Ya Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Guo-Xing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
141
|
Zullo KM, Douglas B, Maloney NM, Ji Y, Wei Y, Herbine K, Cohen R, Pastore C, Cramer Z, Wang X, Wei W, Somsouk M, Hung LY, Lengner C, Kohanski MH, Cohen NA, Herbert DR. LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scand J Gastroenterol 2021; 56:791-805. [PMID: 33941035 PMCID: PMC8647134 DOI: 10.1080/00365521.2021.1917650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim: Recovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.Methods and Results: We find that LINGO3 is broadly expressed on human enterocytes and sparsely on discrete cells within the crypt niche, that contains ISCs. Loss of function studies indicate that LINGO3 is involved in recovery of normal intestinal architecture following dextran sodium sulfate (DSS)-induced colitis, and that LINGO3 is needed for therapeutic action of the long acting TFF2 fusion protein (TFF2-Fc), including a number of signaling pathways critical for cell proliferation and wound repair. LINGO3-TFF2 protein-protein interactions were relatively weak however and LINGO3 was only partially responsible for TFF2 induced MAPK signaling suggesting additional un-identified components of a receptor complex. However, deficiency in either TFF2 or LINGO3 abrogated budding/growth of intestinal organoids and reduced expression of the intestinal ISC gene leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), indicating homologous roles for these proteins in tissue regeneration, possibly via regulation of ISCs in the crypt niche.Conclusion: We propose that LINGO3 serves a previously unappreciated role in promoting mucosal wound healing.
Collapse
Affiliation(s)
- Kelly M. Zullo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Bonnie Douglas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Nicole M. Maloney
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Yingbiao Ji
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Yun Wei
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karl Herbine
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Rachel Cohen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Christopher Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Zvi Cramer
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Xin Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Wenjie Wei
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19147
| | - Ma Somsouk
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104,Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Lengner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Michael H. Kohanski
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104,The Corporal Michael J. Crescenz VA Medical Center Surgical Service, Philadelphia, PA 19104
| | - Noam A. Cohen
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104,The Corporal Michael J. Crescenz VA Medical Center Surgical Service, Philadelphia, PA 19104,Monell Chemical Senses Center, Philadelphia, PA 19104
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104,Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
142
|
The phosphatase PRL-3 affects intestinal homeostasis by altering the crypt cell composition. J Mol Med (Berl) 2021; 99:1413-1426. [PMID: 34129057 PMCID: PMC8455404 DOI: 10.1007/s00109-021-02097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 11/04/2022]
Abstract
Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events. Key messages • Transgenic mice homozygous for PRL-3 overexpression die early. • PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity. • PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine. • PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion. • Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.
Collapse
|
143
|
Lee C, Hong SN, Kim ER, Chang DK, Kim YH. Epithelial Regeneration Ability of Crohn's Disease Assessed Using Patient-Derived Intestinal Organoids. Int J Mol Sci 2021; 22:ijms22116013. [PMID: 34199463 PMCID: PMC8199630 DOI: 10.3390/ijms22116013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
Little is known about the ability for epithelial regeneration and wound healing in patients with inflammatory bowel diseases. We evaluated the epithelial proliferation and wound healing ability of patients with Crohn's disease (CD) using patient-derived intestinal organoids. Human intestinal organoids were constructed in a three-dimensional intestinal crypt culture of enteroscopic biopsy samples from controls and CD patients. The organoid-forming efficiency of ileal crypts derived from CD patients was reduced compared with those from control subjects (p < 0.001). Long-term cultured organoids (≥6 passages) derived from controls and CD patients showed an indistinguishable microscopic appearance and culturing behavior. Under TNFα-enriched conditions (30 ng/mL), the organoid reconstitution rate and cell viability of CD patient-derived organoids were significantly lower than those of the control organoids (p < 0.05 for each). The number of EdU+ cells was significantly lower in TNFα-treated organoids derived from CD patients than in TNFα-treated control organoids (p < 0.05). In a wound healing assay, the unhealed area in TNFα-treated CD patient-derived organoids was significantly larger than that of TNFα-treated control organoids (p < 0.001). The wound healing ability of CD patient-derived organoids is reduced in TNFα-enriched conditions, due to reduced cell proliferation. Epithelial regeneration ability may be impaired in patients with CD.
Collapse
Affiliation(s)
- Chansu Lee
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
- Stem Cell & Regenerative Medicine Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Sung-Noh Hong
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
- Stem Cell & Regenerative Medicine Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: or ; Tel.: +82-2-3410-3409; Fax: +82-2-3410-6983
| | - Eun-Ran Kim
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
| | - Dong-Kyung Chang
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
| | - Young-Ho Kim
- Samsung Medical Center, Department of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 0635l, Korea; (C.L.); (E.-R.K.); (D.-K.C.); (Y.-H.K.)
| |
Collapse
|
144
|
Functional recovery by colon organoid transplantation in a mouse model of radiation proctitis. Biomaterials 2021; 275:120925. [PMID: 34171755 DOI: 10.1016/j.biomaterials.2021.120925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023]
Abstract
Radiation proctitis is the collateral damage that occurs to healthy cells during radiation treatment of pelvic malignancies. Conservative treatment of radiation proctitis can mitigate inflammatory symptoms, but, to date, no therapeutic options are available for direct recovery of the damaged colonic epithelium. The present study assessed the ability of colon organoid-based regeneration to treat radiation proctitis. Radiation proctitis was induced in mice by irradiating their recta, followed by enema-based transplantation of mouse colon organoids. The transplanted colon organoids were found to successfully engraft onto the damaged rectal mucosa of the irradiated mice, reconstituting epithelial structure and integrity. Lgr5+ stem cells were shown to be pivotal to colon organoid mediated regeneration. Endoscopic examination showed the efficacy of localized transplantation of colon organoids with fibrin glue to irradiated sites. These findings provide useful insights into the use of colon organoid-based regenerative therapy for the treatment of radiation proctitis.
Collapse
|
145
|
Bensemmane L, Squiban C, Demarquay C, Mathieu N, Benderitter M, Le Guen B, Milliat F, Linard C. The stromal vascular fraction mitigates radiation-induced gastrointestinal syndrome in mice. Stem Cell Res Ther 2021; 12:309. [PMID: 34051871 PMCID: PMC8164266 DOI: 10.1186/s13287-021-02373-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/09/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The intestine is particularly sensitive to moderate-high radiation dose and the development of gastrointestinal syndrome (GIS) leads to the rapid loss of intestinal mucosal integrity, resulting in bacterial infiltration, sepsis that comprise patient survival. There is an urgent need for effective and rapid therapeutic countermeasures. The stromal vascular fraction (SVF) derived from adipose tissue is an easily accessible source of cells with angiogenic, anti-inflammatory and regenerative properties. We studied the therapeutic impact of SVF and its action on the intestinal stem cell compartment. METHODS Mice exposed to the abdominal radiation (18 Gy) received a single intravenous injection of stromal vascular fraction (SVF) (2.5 × 106 cells), obtained by enzymatic digestion of inguinal fat tissue, on the day of irradiation. Mortality was evaluated as well as intestinal regeneration by histological analyses and absorption function. RESULTS The SVF treatment limited the weight loss of the mice and inhibited the intestinal permeability and mortality after abdominal irradiation. Histological analyses showed that SVF treatment stimulated the regeneration of the epithelium by promoting numerous enlarged hyperproliferative zones. SVF restored CD24+/lysozyme- and Paneth cell populations in the ISC compartment with the presence of Paneth Ki67+ cells. SVF has an anti-inflammatory effect by repressing pro-inflammatory cytokines, increasing M2 macrophages in the ileum and anti-inflammatory monocyte subtypes CD11b+Ly6clowCX3CR1high in the spleen. CONCLUSIONS Through the pleiotropic effects that contribute to limiting radiation-induced lethality, SVF opens up attractive prospects for the treatment of emergency GIS.
Collapse
Affiliation(s)
- Lydia Bensemmane
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Claire Squiban
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | | | - Fabien Milliat
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France
| | - Christine Linard
- Institute of Radiological Protection and Nuclear Safety, Laboratory of Medical Radiobiology, Fontenay-aux-Roses, France.
| |
Collapse
|
146
|
Bonis V, Rossell C, Gehart H. The Intestinal Epithelium - Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. Front Cell Dev Biol 2021; 9:661931. [PMID: 34095127 PMCID: PMC8172987 DOI: 10.3389/fcell.2021.661931] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
The single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Despite its seemingly simple architecture, the intestinal lining consists of highly distinct cell populations that are continuously renewed by the same stem cell population. The need to maintain balanced diversity of cell types in an unceasingly regenerating tissue demands intricate mechanisms of spatial or temporal cell fate control. Recent advances in single-cell sequencing, spatio-temporal profiling and organoid technology have shed new light on the intricate micro-structure of the intestinal epithelium and on the mechanisms that maintain it. This led to the discovery of unexpected plasticity, zonation along the crypt-villus axis and new mechanism of self-organization. However, not only the epithelium, but also the underlying mesenchyme is distinctly structured. Several new studies have explored the intestinal stroma with single cell resolution and unveiled important interactions with the epithelium that are crucial for intestinal function and regeneration. In this review, we will discuss these recent findings and highlight the technologies that lead to their discovery. We will examine strengths and limitations of each approach and consider the wider impact of these results on our understanding of the intestine in health and disease.
Collapse
Affiliation(s)
- Vangelis Bonis
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Carla Rossell
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Helmuth Gehart
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
147
|
Endoplasmic reticulum stress regulates the intestinal stem cell state through CtBP2. Sci Rep 2021; 11:9892. [PMID: 33972635 PMCID: PMC8111031 DOI: 10.1038/s41598-021-89326-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Enforcing differentiation of cancer stem cells is considered as a potential strategy to sensitize colorectal cancer cells to irradiation and chemotherapy. Activation of the unfolded protein response, due to endoplasmic reticulum (ER) stress, causes rapid stem cell differentiation in normal intestinal and colon cancer cells. We previously found that stem cell differentiation was mediated by a Protein kinase R-like ER kinase (PERK) dependent arrest of mRNA translation, resulting in rapid protein depletion of WNT-dependent transcription factor c-MYC. We hypothesize that ER stress dependent stem cell differentiation may rely on the depletion of additional transcriptional regulators with a short protein half-life that are rapidly depleted due to a PERK-dependent translational pause. Using a novel screening method, we identify novel transcription factors that regulate the intestinal stem cell fate upon ER stress. ER stress was induced in LS174T cells with thapsigargin or subtilase cytotoxin (SubAB) and immediate alterations in nuclear transcription factor activity were assessed by the CatTFRE assay in which transcription factors present in nuclear lysate are bound to plasmid DNA, co-extracted and quantified using mass-spectrometry. The role of altered activity of transcription factor CtBP2 was further examined by modification of its expression levels using CAG-rtTA3-CtBP2 overexpression in small intestinal organoids, shCtBP2 knockdown in LS174T cells, and familial adenomatous polyposis patient-derived organoids. CtBP2 overexpression organoids were challenged by ER stress and ionizing irradiation. We identified a unique set of transcription factors with altered activation upon ER stress. Gene ontology analysis showed that transcription factors with diminished binding were involved in cellular differentiation processes. ER stress decreased CtBP2 protein expression in mouse small intestine. ER stress induced loss of CtBP2 expression which was rescued by inhibition of PERK signaling. CtBP2 was overexpressed in mouse and human colorectal adenomas. Inducible CtBP2 overexpression in organoids conferred higher clonogenic potential, resilience to irradiation-induced damage and a partial rescue of ER stress-induced loss of stemness. Using an unbiased proteomics approach, we identified a unique set of transcription factors for which DNA-binding activity is lost directly upon ER stress. We continued investigating the function of co-regulator CtBP2, and show that CtBP2 mediates ER stress-induced loss of stemness which supports the intestinal stem cell state in homeostatic stem cells and colorectal cancer cells.
Collapse
|
148
|
Cycling Stem Cells Are Radioresistant and Regenerate the Intestine. Cell Rep 2021; 32:107952. [PMID: 32726617 PMCID: PMC7789978 DOI: 10.1016/j.celrep.2020.107952] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/09/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023] Open
Abstract
A certain number of epithelial cells in intestinal crypts are DNA damage resistant and contribute to regeneration. However, the cellular mechanism underlying intestinal regeneration remains unclear. Using lineage tracing, we show that cells marked by an Msi1 reporter (Msi1+) are right above Lgr5high cells in intestinal crypts and exhibit DNA damage resistance. Single-cell RNA sequencing reveals that the Msi1+ cells are heterogeneous with the majority being intestinal stem cells (ISCs). The DNA damage-resistant subpopulation of Msi1+ cells is characterized by low-to-negative Lgr5 expression and is more rapidly cycling than Lgr5high radiosensitive crypt base columnar stem cells (CBCs). This enables an efficient repopulation of the intestinal epithelium at early stage when Lgr5high cells are not emerging. Furthermore, relative to CBCs, Msi1+ cells preferentially produce Paneth cells during homeostasis and upon radiation repair. Together, we demonstrate that the DNA damage-resistant Msi1+ cells are cycling ISCs that maintain and regenerate the intestinal epithelium. Quiescent reserve stem cells in the intestine are thought to activate following irradiation to restore the depleted Lgr5high CBCs. Now, Sheng et al. demonstrate that cycling Msi1+ cells represent DNA damage-resistant ISCs that support efficient repopulation of the intestinal epithelium at the early stage of post-radiation repair, ahead of Lgr5high CBCs.
Collapse
|
149
|
Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, Petretto E, Virshup DM, Madan B. WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol Med 2021; 13:e13349. [PMID: 33660437 PMCID: PMC8033517 DOI: 10.15252/emmm.202013349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling maintains diverse adult stem cell compartments and is implicated in chemotherapy resistance in cancer. PORCN inhibitors that block Wnt secretion have proven effective in Wnt-addicted preclinical cancer models and are in clinical trials. In a survey for potential combination therapies, we found that Wnt inhibition synergizes with the PARP inhibitor olaparib in Wnt-addicted cancers. Mechanistically, we find that multiple genes in the homologous recombination and Fanconi anemia repair pathways, including BRCA1, FANCD2, and RAD51, are dependent on Wnt/β-catenin signaling in Wnt-high cancers, and treatment with a PORCN inhibitor creates a BRCA-like state. This coherent regulation of DNA repair genes occurs in part via a Wnt/β-catenin/MYBL2 axis. Importantly, this pathway also functions in intestinal crypts, where high expression of BRCA and Fanconi anemia genes is seen in intestinal stem cells, with further upregulation in Wnt-high APCmin mutant polyps. Our findings suggest a general paradigm that Wnt/β-catenin signaling enhances DNA repair in stem cells and cancers to maintain genomic integrity. Conversely, interventions that block Wnt signaling may sensitize cancers to radiation and other DNA damaging agents.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | - Jun Yi Stanley Lim
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Siddhi Patnaik
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
- Science DivisionYale‐NUS CollegeSingaporeSingapore
| | - May Ann Lee
- Experimental Drug Development CentreA*StarSingaporeSingapore
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic DisordersDuke‐NUS Medical SchoolSingaporeSingapore
| | - David M Virshup
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
- Department of PediatricsDuke University School of MedicineDurhamNCUSA
| | - Babita Madan
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
150
|
Park M, Kwon J, Youk H, Shin US, Han YH, Kim Y. Valproic acid protects intestinal organoids against radiation via NOTCH signaling. Cell Biol Int 2021; 45:1523-1532. [PMID: 33724613 DOI: 10.1002/cbin.11591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
Radiotherapy is a leading treatment for various types of cancer. However, exposure to high-dose ionizing radiation causes acute gastrointestinal injury and gastrointestinal syndrome. This has significant implications for human health, and therefore, radioprotection is a major area of research. Radiation induces the loss of intestinal stem cells; hence, the protection of stem cells expressing LGR5 (a marker of intestinal epithelial stem cells) is a key strategy for the prevention of radiation-induced injury. In this study, we identified valproic acid (VPA) as a potent radioprotector using an intestinal organoid culture system. VPA treatment increased the number of LGR5+ stem cells and organoid regeneration after irradiation. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, an inhibitor of NOTCH signaling) blocked the radioprotective effects of VPA, indicating that NOTCH signaling is a likely mechanism underlying the observed effects of VPA. In addition, VPA acted as a radiosensitizer via the inhibition of histone deacetylase (HDAC) in a colorectal cancer organoid. These results demonstrate that VPA exerts strong protective effects on LGR5+ stem cells via NOTCH signaling and that the inhibition of NOTCH signaling reduces these protective effects, providing a basis for the improved management of radiation injury.
Collapse
Affiliation(s)
- Misun Park
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea
| | - Junhye Kwon
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Heejeong Youk
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ui Sup Shin
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young-Hoon Han
- Department of Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon, Korea.,Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Younjoo Kim
- Department of Radiological & Clinical Research, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|