101
|
Liu D, Fritz DT, Rogers MB, Shatkin AJ. Species-specific cis-regulatory elements in the 3'-untranslated region direct alternative polyadenylation of bone morphogenetic protein 2 mRNA. J Biol Chem 2008; 283:28010-9. [PMID: 18703506 PMCID: PMC2661379 DOI: 10.1074/jbc.m804895200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/30/2008] [Indexed: 01/12/2023] Open
Abstract
BMP2 (bone morphogenetic protein 2) is a multifunctional member of the transforming growth factor-beta family of growth factors. Disruption of BMP2 signaling results in developmental defects, cancers, and other diseases. BMP2 mRNAs are alternatively polyadenylated, resulting in mRNAs with distinct 3'-untranslated regions. The longer mRNA contains additional putative binding sites for post-transcriptional regulatory factors, including micro-RNAs. We combined functional assays with computational analyses of emerging genome data to define site- and species-specific polyadenylation determinants. In all mouse and human cell lines tested, shorter mRNAs resulting from using the first polyadenylation signal (PA1) were more abundant than mRNAs from the second signal (PA2). However, the PA1/PA2 usage ratios were 2-3-fold higher in human than in mouse cells. Expression of human BMP2 constructs in mouse cells and mouse constructs in human cells showed that cis-regulatory elements direct species-specific 3' processing of BMP2 transcripts. A 72-nucleotide region downstream of PA2 in the mouse sequence contains two novel cis-acting elements previously hypothesized to regulate polyadenylation in a bioinformatics analysis. Mutations that humanized the mouse-specific elements lowered the affinity for cleavage stimulation factor CstF64 and significantly weakened the PA2 signal relative to the PA1 signal. Thus, we have experimentally defined for the first time cis-regulatory elements that control a species-specific difference in the 3'-end processing of BMP2 and potentially of other genes.
Collapse
Affiliation(s)
- Donglin Liu
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
102
|
Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol Syst Biol 2008; 4:223. [PMID: 18854817 PMCID: PMC2583085 DOI: 10.1038/msb.2008.59] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/14/2008] [Indexed: 11/20/2022] Open
Abstract
The state of the transcriptome reflects a balance between mRNA production and degradation. Yet how these two regulatory arms interact in shaping the kinetics of the transcriptome in response to environmental changes is not known. We subjected yeast to two stresses, one that induces a fast and transient response, and another that triggers a slow enduring response. We then used microarrays following transcriptional arrest to measure genome-wide decay profiles under each condition. We found condition-specific changes in mRNA decay rates and coordination between mRNA production and degradation. In the transient response, most induced genes were surprisingly destabilized, whereas repressed genes were somewhat stabilized, exhibiting counteraction between production and degradation. This strategy can reconcile high steady-state level with short response time among induced genes. In contrast, the stress that induces the slow response displays the more expected behavior, whereby most induced genes are stabilized, and repressed genes are destabilized. Our results show genome-wide interplay between mRNA production and degradation, and that alternative modes of such interplay determine the kinetics of the transcriptome in response to stress.
Collapse
|
103
|
Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One 2008; 3:e3164. [PMID: 18776931 PMCID: PMC2522278 DOI: 10.1371/journal.pone.0003164] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 08/18/2008] [Indexed: 12/03/2022] Open
Abstract
Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3′-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3′-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs.
Collapse
Affiliation(s)
- Alessia Galgano
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Forrer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Alexander Kanitz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - André P. Gerber
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
104
|
Abstract
In a breast tumor xenograft model, the MCT-1 oncogene increases the in vivo tumorgenicity of MCF7 cells by promoting angiogenesis and inhibiting apoptosis. Increases in the tumor microvascular density are accompanied by a strong reduction in the levels of the angiogenesis inhibitor thrombospondin-1 (TSP1), but the mechanisms underlying this process are unknown. We show that TSP1 expression is controlled, at least in part, by post-transcriptional events. Using RNA interference to knock down the expression of the RNA-binding protein HuR in MCF7 cells as well as HuR overexpression, we demonstrate that HuR plays an important role in translation of the TSP1 mRNA. Furthermore, employing the RIP-Chip assay yielded 595 transcripts with significantly altered binding to HuR in the more tumorigenic breast cancer clones compared with the weakly tumorigenic clones. These mRNAs clustered in several pathways implicated in the transformed phenotype, such as the RAS pathway (involved in mitogenesis), the PI3K pathway (evasion of apoptosis) and pathways mediating angiogenesis and the cellular response to hypoxia. These findings demonstrate for the first time that global changes in HuR-bound mRNAs are implicated in the evolution to a more tumorigenic phenotype in an in vivo tumor model and underscore the role of global mRNA-protein interactions toward tumor progression.
Collapse
|
105
|
Paukku K, Kalkkinen N, Silvennoinen O, Kontula KK, Lehtonen JYA. p100 increases AT1R expression through interaction with AT1R 3'-UTR. Nucleic Acids Res 2008; 36:4474-87. [PMID: 18603592 PMCID: PMC2490763 DOI: 10.1093/nar/gkn411] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
p100 protein (SND1, Tudor-SN) is a multifunctional protein that functions as a co-activator for several transcription factors, has a role in mRNA processing and participates in RNAi-induced silencing complex (RISC) with yet unknown function. In this study we identified a novel function for p100 as a regulator of angiotensin II type 1 receptor (AT1R) expression. The binding of p100 to AT1R 3′-untranslated region (3′-UTR) via staphylococcal nuclease-like (SN-like) domains increased receptor expression by decreasing the rate of mRNA decay and enhancing its translation. Overexpression of p100 increased AT1R expression, whereas decrease in p100 binding to 3′-UTR either by p100 silencing or by the deletion of p100 binding site downregulated receptor expression. The effect of p100 through AT1R 3′-UTR was independent of Argonaute2 (Ago2), a known p100 partner, and was thus RISC-independent. Nucleotides 118 to 120 of the AT1R 3′-UTR were found to be critical for the binding of p100 to 3′-UTR. In summary, p100 is a multifunctional regulator of gene expression that regulates transcription, mRNA maturation, and as described in this article, also mRNA stability and translation.
Collapse
Affiliation(s)
- Kirsi Paukku
- Research Program for Molecular Medicine, Biomedicum Helsinki, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
106
|
Nechama M, Ben-Dov IZ, Briata P, Gherzi R, Naveh-Many T. The mRNA decay promoting factor K-homology splicing regulator protein post-transcriptionally determines parathyroid hormone mRNA levels. FASEB J 2008; 22:3458-68. [PMID: 18583400 DOI: 10.1096/fj.08-107250] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serum calcium and phosphate concentrations and experimental chronic kidney failure control parathyroid hormone (PTH) gene expression post-transcriptionally through regulated binding of the trans-acting proteins AUF1 and upstream of N-ras (Unr) to an AU-rich element (ARE) in PTH mRNA 3'-untranslated region (3'UTR). We show that the mRNA decay promoting K-homology splicing regulator protein (KSRP) binds to PTH mRNA in intact parathyroid glands and in transfected cells. This binding is decreased in glands from calcium-depleted or experimental chronic kidney failure rats in which PTH mRNA is more stable compared to parathyroid glands from control and phosphorus-depleted rats in which PTH mRNA is less stable. PTH mRNA decay depends on the KSRP-recruited exosome in parathyroid extracts. In transfected cells, KSRP overexpression and knockdown experiments show that KSRP decreases PTH mRNA stability and steady-state levels through the PTH mRNA ARE. Overexpression of isoform p45 of the PTH mRNA stabilizing protein AUF1 blocks KSRP-PTH mRNA binding and partially prevents the KSRP mediated decrease in PTH mRNA levels. Therefore, calcium or phosphorus depletion, as well as chronic kidney failure, regulate the interaction of KSRP and AUF1 with PTH mRNA and its half-life. Our data indicate a novel role for KSRP in PTH gene expression.
Collapse
Affiliation(s)
- Morris Nechama
- Minerva Center for Calcium and Bone Metabolism, Hadassah Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel 91120
| | | | | | | | | |
Collapse
|
107
|
Ishmael FT, Fang X, Galdiero MR, Atasoy U, Rigby WF, Gorospe M, Cheadle C, Stellato C. Role of the RNA-binding protein tristetraprolin in glucocorticoid-mediated gene regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:8342-53. [PMID: 18523301 PMCID: PMC2505276 DOI: 10.4049/jimmunol.180.12.8342] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucocorticoids (GCs) are the mainstay of anti-inflammatory therapy. Modulation of posttranscriptional regulation (PTR) of gene expression by GCs is a relevant yet poorly characterized mechanism of their action. The RNA-binding protein tristetraprolin (TTP) plays a central role in PTR by binding to AU-rich elements in the 3'-untranslated region of proinflammatory transcripts and accelerating their decay. We found that GCs induce TTP expression in primary and immortalized human bronchial epithelial cells. To investigate the importance of PTR and the role of TTP in GC function, we compared the effect of GC treatment on genome-wide gene expression using mouse embryonic fibroblasts (MEFs) obtained from wild-type and TTP(-/-) mice. We confirmed that GCs induce TTP in MEFs and observed in TTP(-/-) MEFs a striking loss of up to 85% of GC-mediated gene expression. Gene regulation by TNF-alpha was similarly affected, as was the antagonistic effect of GC on TNF-alpha-induced response. Inflammatory genes, including cytokines and chemokines, were among the genes whose sensitivity to GCs was affected by lack of TTP. Silencing of TTP in WT MEFs by small interfering RNA confirmed loss of GC response in selected targets. Immunoprecipitation of ribonucleoprotein complexes revealed binding of TTP to several validated transcripts. Changes in the rate of transcript degradation studied by actinomycin D were documented for only a subset of transcripts bound to TTP. These results reveal a strong and previously unrecognized contribution of PTR to the anti-inflammatory action of GCs and point at TTP as a key factor mediating this process through a complex mechanism of action.
Collapse
Affiliation(s)
- Faoud T. Ishmael
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Xi Fang
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Maria Rosaria Galdiero
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Ulus Atasoy
- University of Missouri-Columbia, Columbia, MO
| | | | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute of Aging, NIH, Baltimore, MD 21224
| | - Chris Cheadle
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| | - Cristiana Stellato
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224
| |
Collapse
|
108
|
Maitra S, Chou CF, Luber CA, Lee KY, Mann M, Chen CY. The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA (NEW YORK, N.Y.) 2008; 14:950-959. [PMID: 18326031 PMCID: PMC2327367 DOI: 10.1261/rna.983708] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/24/2008] [Indexed: 05/26/2023]
Abstract
Regulated mRNA decay is a highly important process for the tight control of gene expression. Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3' untranslated regions that direct rapid mRNA decay by interaction with decay-promoting ARE-binding proteins (ARE-BPs). The decay of ARE-containing mRNAs is regulated by signaling pathways that are believed to directly target ARE-BPs. Here, we show that BRF1 involved in ARE-mediated mRNA decay (AMD) is phosphorylated by MAPK-activated protein kinase 2 (MK2). In vitro kinase assays using different BRF1 fragments suggest that MK2 phosphorylates BRF1 at four distinct sites, S54, S92, S203, and an unidentified site at the C terminus. Coexpression of an active form of MK2 inhibits ARE mRNA decay activity of BRF1. MK2-mediated inhibition of BRF1 requires phosphorylation at S54, S92, and S203. Phosphorylation of BRF1 by MK2 does not appear to alter its ability to interact with AREs or to associate with mRNA decay enzymes. Thus, MK2 inhibits BRF1-dependent AMD through direct phosphorylation. Although the mechanism underlying this inhibition is still unclear, it appears to target BRF1-dependent AMD at a level downstream from RNA binding and the recruitment of mRNA decay enzymes.
Collapse
Affiliation(s)
- Sushmit Maitra
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
109
|
Mining small RNA structure elements in untranslated regions of human and mouse mRNAs using structure-based alignment. BMC Genomics 2008; 9:189. [PMID: 18439287 PMCID: PMC2413145 DOI: 10.1186/1471-2164-9-189] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UnTranslated Regions (UTRs) of mRNAs contain regulatory elements for various aspects of mRNA metabolism, such as mRNA localization, translation, and mRNA stability. Several RNA stem-loop structures in UTRs have been experimentally identified, including the histone 3' UTR stem-loop structure (HSL3) and iron response element (IRE). These stem-loop structures are conserved among mammalian orthologs, and exist in a group of genes encoding proteins involved in the same biological pathways. It is not known to what extent RNA structures like these exist in all mammalian UTRs. RESULTS In this paper we took a systematic approach, named GLEAN-UTR, to identify small stem-loop RNA structure elements in UTRs that are conserved between human and mouse orthologs and exist in multiple genes with common Gene Ontology terms. This approach resulted in 90 distinct RNA structure groups containing 748 structures, with HSL3 and IRE among the top hits based on conservation of structure. CONCLUSION Our result indicates that there may exist many conserved stem-loop structures in mammalian UTRs that are involved in coordinate post-transcriptional regulation of biological pathways.
Collapse
|
110
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
111
|
Cold shock exoribonuclease R (VacB) is involved in Aeromonas hydrophila pathogenesis. J Bacteriol 2008; 190:3467-74. [PMID: 18344363 DOI: 10.1128/jb.00075-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we cloned and sequenced a virulence-associated gene (vacB) from a clinical isolate SSU of Aeromonas hydrophila. We identified this gene based on our recently annotated genome sequence of the environmental isolate ATCC 7966(T) of A. hydrophila and the vacB gene of Shigella flexneri. The A. hydrophila VacB protein contained 798 amino acid residues, had a molecular mass of 90.5 kDa, and exhibited an exoribonuclease (RNase R) activity. The RNase R of A. hydrophila was a cold-shock protein and was required for bacterial growth at low temperature. The vacB isogenic mutant, which we developed by homologous recombination using marker exchange mutagenesis, was unable to grow at 4 degrees C. In contrast, the wild-type (WT) A. hydrophila exhibited significant growth at this low temperature. Importantly, the vacB mutant was not defective in growth at 37 degrees C. The vacB mutant also exhibited reduced motility, and these growth and motility phenotype defects were restored after complementation of the vacB mutant. The A. hydrophila RNase R-lacking strain was found to be less virulent in a mouse lethality model (70% survival) when given by the intraperitoneal route at as two 50% lethal doses (LD(50)). On the other hand, the WT and complemented strains of A. hydrophila caused 80 to 90% of the mice to succumb to infection at the same LD(50) dose. Overall, this is the first report demonstrating the role of RNase R in modulating the expression of A. hydrophila virulence.
Collapse
|
112
|
Casolaro V, Fang X, Tancowny B, Fan J, Wu F, Srikantan S, Asaki SY, De Fanis U, Huang SK, Gorospe M, Atasoy UX, Stellato C. Posttranscriptional regulation of IL-13 in T cells: role of the RNA-binding protein HuR. J Allergy Clin Immunol 2008; 121:853-9.e4. [PMID: 18279945 DOI: 10.1016/j.jaci.2007.12.1166] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 12/06/2007] [Accepted: 12/19/2007] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-13, a critical cytokine in allergy, is regulated by as-yet-elusive mechanisms. OBJECTIVE We investigated IL-13 posttranscriptional regulation by HuR, a protein associating with adenylate-uridylate-rich elements in the 3' untranslated regions (UTRs) of mRNA, promoting mRNA stability and translation. METHODS IL-13 mRNA decay was monitored in human T(H)2-skewed cells by using the transcriptional inhibitor actinomycin D. The IL-13 3'UTR was subcloned into an inducible beta-globin reporter transiently expressed in H2 cells in the absence or presence of overexpressed HuR. Association of HuR with IL-13 mRNA was detected by means of immunoprecipitation of ribonucleoprotein complexes and a biotin pull-down assay. The effects of HuR transient overexpression and silencing on IL-13 expression were investigated. RESULTS IL-13 mRNA half-life increased significantly in restimulated T(H)2-skewed cells compared with baseline values. Decay of beta-globin mRNA was significantly faster in H2 cells transfected with the IL-13 3'UTR-containing plasmid than in those carrying a control vector. HuR overexpression increased the beta-globin IL-13 3'UTR reporter half-life. Significant enrichment of IL-13 mRNA was produced by means of immunoprecipitation of Jurkat cell ribonucleoprotein complexes with anti-HuR. HuR binding to the IL-13 3'UTR was confirmed by means of pull-down assay of biotin-labeled RNA probes spanning the IL-13 3'UTR. Two-dimensional Western blot analysis showed stimulus-induced posttranslational modification of HuR. In Jurkat cells mitogen-induced IL-13 mRNA was significantly affected by HuR overexpression and silencing. CONCLUSIONS Mitogen-induced IL-13 expression involves changes in transcript turnover and a change in phosphorylation of HuR and its association with the mRNA 3'UTR.
Collapse
|
113
|
Matsui K, Nishizawa M, Ozaki T, Kimura T, Hashimoto I, Yamada M, Kaibori M, Kamiyama Y, Ito S, Okumura T. Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 2008; 47:686-97. [PMID: 18161049 DOI: 10.1002/hep.22036] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED During inflammation, inducible nitric oxide synthase (iNOS) is induced to generate the important mediator nitric oxide (NO). Interleukin 1beta (IL-1beta) induces iNOS messenger RNA (mRNA), iNOS protein, and NO in rat hepatocytes. We found that the stability of iNOS mRNA changed during the induction and that the antisense (AS) strand corresponding to the 3'-untranslated region (3'UTR) of iNOS mRNA was transcribed from the iNOS gene. Expression levels of the iNOS AS transcript correlated with those of iNOS mRNA. The 1.5-kilobase region 3'-flanking to iNOS gene exon 27 was involved in IL-1beta induction. Knockdown experiments suggest that sense oligonucleotides to iNOS mRNA significantly reduced iNOS mRNA levels in the hepatocytes by blocking the interaction between iNOS mRNA and the AS transcript. Overexpression of iNOS AS transcript stabilized the reporter luciferase mRNA through the fused iNOS mRNA 3'UTR. These results together with the data in a yeast RNA-hybrid assay suggested that the iNOS AS transcript interacted with iNOS mRNA and stabilized iNOS mRNA. The iNOS mRNA colocalized with the AU-rich element-binding protein HuR, a human homolog of embryonic lethal-abnormal visual protein, and heterogeneous nuclear ribonucleoprotein L (hnRNP L) in the cytoplasm of rat hepatocytes. Interaction assays further revealed that the iNOS AS transcript interacted with HuR, which interacted with hnRNP L, suggesting that iNOS mRNA, the AS transcript, and the RNA-binding proteins may mutually interact. CONCLUSION The natural AS transcript of the iNOS gene interacts with iNOS mRNA and may play an important role in the stability of iNOS mRNA. This RNA-RNA interaction may be a new therapeutic target for NO-mediating inflammatory diseases.
Collapse
Affiliation(s)
- Kosuke Matsui
- Department of Surgery, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H. Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:554-65. [PMID: 17996020 PMCID: PMC3128381 DOI: 10.1111/j.1365-313x.2007.03364.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt Overly Sensitive 1 (SOS1), a plasma membrane Na+/H+ antiporter in Arabidopsis, is a salt tolerance determinant crucial for the maintenance of ion homeostasis in saline stress conditions. SOS1 mRNA is unstable at normal growth conditions, but its stability is substantially increased under salt stress and other ionic and dehydration stresses. In addition, H2O2 treatment increases the stability of SOS1 mRNA. SOS1 mRNA is inherently unstable and rapidly degraded with a half-life of approximately 10 min. Rapid decay of SOS1 mRNA requires new protein synthesis. Stress-induced SOS1 mRNA stability is mediated by reactive oxygen species (ROS). NADPH oxidase is also involved in the upregulation of SOS1 mRNA stability, presumably through the control of extracellular ROS production. The cis-element required for SOS1 mRNA instability resides in the 500-bp region within the 2.2 kb at the 3' end of the SOS1 mRNA. Furthermore, mutations in the SOS1 gene render sos1 mutants more tolerant to paraquat, a non-selective herbicide causing oxidative stress, indicating that SOS1 plays negative roles in tolerance of oxidative stress. A hypothetical model for the signaling pathway involving SOS1-mediated pH changes, NADPH oxidase activation, apoplastic ROS production and downstream signaling transduction is proposed, and the biological significance of ROS-mediated induction of SOS1 mRNA stability is discussed.
Collapse
Affiliation(s)
- Jung-Sung Chung
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Ray A. Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Paul M. Hasegawa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
115
|
Bajak EZ, Hagedorn CH. Efficient 5' cap-dependent RNA purification : use in identifying and studying subsets of RNA. Methods Mol Biol 2008; 419:147-60. [PMID: 18369981 DOI: 10.1007/978-1-59745-033-1_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microarray-based screening technologies have revealed a larger than expected diversity of gene expression profiles for many cells, tissues, and organisms. The complexity of RNA species, defined by their molecular structure, represents a major new development in biology. RNA not only carries genetic information in the form of templates and components of the translational machinery for protein synthesis but also directly regulates gene expression as exemplified by micro-RNAs (miRNAs). Recent evidence has demonstrated that 5' capped and 3' polyadenylated ends are not restricted to mRNAs, but that they are also present in precursors of both miRNAs and some antisense RNA transcripts. In addition, as many as 40% of transcribed RNAs may lack 3' poly(A) ends. In concert with the presence of a 5' cap (m7 GpppN), the length of the 3' poly(A) end plays a critical role in determining the translational efficiency, stability, and the cellular distribution of a specific mRNA. RNAs with short or lacking 3' poly(A) ends, that escape isolation and amplification with oligo(dT)-based methods, provide a challenge in RNA biology and gene expression studies. To circumvent the limitations of 3' poly(A)-dependent RNA isolation methods, we developed an efficient RNA purification system that binds the 5' cap of RNA with a high-affinity variant of the cap-binding protein eIF4E. This system can be used in differential selection approaches to isolate subsets of RNAs, including those with short 3' poly(A) ends that are likely targets of post-transcriptional regulation of gene expression. The length of the 3' poly(A) ends can be defined using a rapid polymerase chain reaction (PCR)- based approach.
Collapse
Affiliation(s)
- Edyta Z Bajak
- Department of Medicine and Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
116
|
Tharun S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:149-89. [PMID: 19121818 DOI: 10.1016/s1937-6448(08)01604-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The eukaryotic Lsm proteins belong to the large family of Sm-like proteins, which includes members from all organisms ranging from archaebacteria to humans. The Sm and Lsm proteins typically exist as hexameric or heptameric complexes in vivo and carry out RNA-related functions. Multiple complexes made up of different combinations of Sm and Lsm proteins are known in eukaryotes and these complexes are involved in a variety of functions such as mRNA decay in the cytoplasm, mRNA and pre-mRNA decay in the nucleus, pre-mRNA splicing, replication dependent histone mRNA 3'-end processing, etc. While most Lsm proteins function in the form of heteromeric complexes that include other Lsm proteins, some Lsm proteins are also known that do not behave in that manner. Abnormal expression of some Lsm proteins has also been implicated in human diseases. The various roles of eukaryotic Lsm complexes impacting mRNA function are discussed in this review.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
117
|
Rodríguez-Gabriel MA, Russell P. Control of mRNA stability by SAPKs. TOPICS IN CURRENT GENETICS 2008; 20:159-170. [PMID: 21738496 PMCID: PMC3129863 DOI: 10.1007/4735_2007_0248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Control of mRNA turnover is an essential step in the regulation of gene expression in eukaryotes. The concerted action of many enzymes regulates the way each mRNA is degraded. Moreover, the degradation of each mRNA is influenced by the environment surrounding the cell. The conection between the environment and changes in the half-lifes of mRNAs is regulated by the activity of stress activated MAP kinases (SAPKs) and their substrates. Here we will describe some of those mechanisms, and how SAPKs regulate mRNA stability in eukaryotic cells.
Collapse
Affiliation(s)
| | - Paul Russell
- Dept. Molecular Biology. The Scripps Research Institute. La Jolla, CA 92037. U.S.A
| |
Collapse
|
118
|
Lee PT, Liao PC, Chang WC, Tseng JT. Epidermal growth factor increases the interaction between nucleolin and heterogeneous nuclear ribonucleoprotein K/poly(C) binding protein 1 complex to regulate the gastrin mRNA turnover. Mol Biol Cell 2007; 18:5004-13. [PMID: 17928403 PMCID: PMC2096583 DOI: 10.1091/mbc.e07-04-0384] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 09/21/2007] [Accepted: 10/03/2007] [Indexed: 11/11/2022] Open
Abstract
Gastrin, a gastrointestinal hormone responsible for gastric acid secretion, has been confirmed as a growth factor for gastrointestinal tract malignancies. High expression of gastrin mRNA was observed in pancreatic and colorectal cancer; however, the mechanism is unclear. Epidermal growth factor (EGF) was found to increase gastrin mRNA stability, indicating mRNA turnover regulation mechanism is involved in the control of gastrin mRNA expression. Using biotin-labeled RNA probe pull-down assay combined with mass spectrometry analysis, we identified the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and poly(C) binding protein 1 (PCBP1) bound with the C-rich region in gastrin mRNA 3' untranslated region. Nucleolin bound with the AGCCCU motif and interacted with hnRNP K were also demonstrated. Under EGF treatment, we observed the amount of nucleolin interacting with hnRNP K and gastrin mRNA increased. Using small interfering RNA technology to define their functional roles, we found hnRNP K, PCBP1, and nucleolin were all responsible for stabilizing gastrin mRNA. Moreover, nucleolin plays a crucial role in mediating the increased gastrin mRNA stability induced by EGF signaling. Besides, we also observed hnRNP K/PCBP1 complex bound with the C-rich region in the gastrin mRNA increased nucleolin binding with gastrin mRNA. Finally, a novel binding model was proposed.
Collapse
Affiliation(s)
- Pin-Tse Lee
- *Department of Pharmacology and
- Institute of Basic Medical Sciences, College of Medicine, and Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan 701; and
| | - Pao-Chi Liao
- Department of Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan 701
| | - Wen-Chang Chang
- *Department of Pharmacology and
- Institute of Basic Medical Sciences, College of Medicine, and Center for Gene Regulation and Signal Transduction Research, National Cheng Kung University, Tainan, Taiwan 701; and
| | | |
Collapse
|
119
|
Huang HW, Bi W, Jenkins GN, Alcorn JL. Glucocorticoid regulation of human pulmonary surfactant protein-B mRNA stability involves the 3'-untranslated region. Am J Respir Cell Mol Biol 2007; 38:473-82. [PMID: 18006875 DOI: 10.1165/rcmb.2007-0303oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Expression of pulmonary surfactant, a complex mixture of lipids and proteins that acts to reduce alveolar surface tension, is developmentally regulated and restricted to lung alveolar type II cells. The hydrophobic protein surfactant protein-B (SP-B) is essential in surfactant function, and insufficient levels of SP-B result in severe respiratory dysfunction. Glucocorticoids accelerate fetal lung maturity and surfactant synthesis both experimentally and clinically. Glucocorticoids act transcriptionally and post-transcriptionally to increase steady-state levels of human SP-B mRNA; however, the mechanism(s) by which glucocorticoids act post-transcriptionally is unknown. We hypothesized that glucocorticoids act post-transcriptionally to increase SP-B mRNA stability via sequence-specific mRNA-protein interactions. We found that glucocorticoids increase SP-B mRNA stability in isolated human type II cells and in nonpulmonary cells, but do not alter mouse SP-B mRNA stability in a mouse type II cell line. Deletion analysis of an artificially-expressed SP-B mRNA indicates that the SP-B mRNA 3'-untranslated region (UTR) is necessary for stabilization, and the region involved can be restricted to a 126-nucleotide-long region near the SP-B coding sequence. RNA electrophoretic mobility shift assays indicate that cytosolic proteins bind to this region in the absence or presence of glucocorticoids. The formation of mRNA:protein complexes is not seen in other regions of the SP-B mRNA 3'-UTR. These results indicate that a specific 126-nucleotide region of human SP-B 3'-UTR is necessary for increased SP-B mRNA stability by glucocorticoids by a mechanism that is not lung cell specific and may involve mRNA-protein interactions.
Collapse
Affiliation(s)
- Helen W Huang
- Department of Pediatrics, University of Texas-Houston Medical School, 6431 Fannin, suite 3.222, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
120
|
Abstract
Many cancers overexpress cyclin E1 and its tumor-specific low molecular weight (LMW) isoforms. However, the mechanism of cyclin E1 deregulation in cancers is still not well understood. We show here that the mRNA-binding protein HuR increases cyclin E1 mRNA stability in MCF-7 breast carcinoma cells. Thus, mRNA stabilization may be a key event in the deregulation of cyclin E1 in MCF-7 cells. Compared with MCF10A immortalized breast epithelial cells, MCF-7 cells overexpress full-length cyclin E1 and its LMW isoforms and exhibit increased cyclin E1 mRNA stability. Increased mRNA stability is associated with a stable adenylation state and an increased ratio of cytoplasmic versus nuclear HuR. UV cross-link competition and UV cross-link immunoprecipitation assays verified that HuR specifically bound to the cyclin E1 3'-untranslated region. Knockdown of HuR with small interfering RNA (siRNA) in MCF-7 cells decreased cyclin E1 mRNA half-life (t(1/2)) and its protein level: a 22% decrease for the full-length isoforms and 80% decrease for the LMW isoforms. HuR siRNA also delayed G(1)-S phase transition and inhibited MCF-7 cell proliferation, which was partially recovered by overexpression of a LMW isoform of cyclin E1. Overexpression of HuR in MCF10A cells increased cyclin E1 mRNA t(1/2) and its protein level. Taken together, our data show that HuR critically contributes to cyclin E1 overexpression and its growth-promoting function, at least in part by increasing cyclin E1 mRNA stability, which provides a new mechanism of cyclin E1 deregulation in breast cancer.
Collapse
Affiliation(s)
- Xun Guo
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
121
|
Gherzi R, Trabucchi M, Ponassi M, Ruggiero T, Corte G, Moroni C, Chen CY, Khabar KS, Andersen JS, Briata P. The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol 2007; 5:e5. [PMID: 17177604 PMCID: PMC1702562 DOI: 10.1371/journal.pbio.0050005] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/03/2006] [Indexed: 11/20/2022] Open
Abstract
β-catenin plays an essential role in several biological events including cell fate determination, cell proliferation, and transformation. Here we report that β-catenin is encoded by a labile transcript whose half-life is prolonged by Wnt and phosphatidylinositol 3-kinase–AKT signaling. AKT phosphorylates the mRNA decay-promoting factor KSRP at a unique serine residue, induces its association with the multifunctional protein 14-3-3, and prevents KSRP interaction with the exoribonucleolytic complex exosome. This impairs KSRP's ability to promote rapid mRNA decay. Our results uncover an unanticipated level of control of β-catenin expression pointing to KSRP as a required factor to ensure rapid degradation of β-catenin in unstimulated cells. We propose KSRP phosphorylation as a link between phosphatidylinositol 3-kinase–AKT signaling and β-catenin accumulation. During mammalian development and adulthood, β-catenin regulates the transcription of a family of genes with multiple essential roles in cell proliferation and differentiation. β-catenin also plays a role in cancer when it carries mutations that result in uncontrolled β-catenin function. Here, we report that the lifetime of the β-catenin–encoding transcript is under regulatory control. We show that specific cellular signals relevant to proper mammalian development and implicated in tumor formation can prolong β-catenin transcript half-life, leading to the accumulation of β-catenin protein. We identify a molecular mechanism for this prolongation by showing that a protein factor responsible for β-catenin transcript instability (and thus degradation) is impaired by phosphorylation, a chemical modification. When this factor is impaired, β-catenin mRNA and protein accumulate. Our results point to an unanticipated control of β-catenin levels through regulation of its transcript half-life in response to signals related to proliferation and differentiation. The authors show that the half-life of β-catenin mRNA is prolonged by PI3K-AKT signaling, revealing a new level of control on β-catenin.
Collapse
|
122
|
Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 2007; 21:2558-70. [PMID: 17901217 PMCID: PMC2000321 DOI: 10.1101/gad.443107] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
microRNAs (miRNAs) silence gene expression by suppressing protein production and/or by promoting mRNA decay. To elucidate how silencing is accomplished, we screened an RNA interference library for suppressors of miRNA-mediated regulation in Drosophila melanogaster cells. In addition to proteins known to be required for miRNA biogenesis and function (i.e., Drosha, Pasha, Dicer-1, AGO1, and GW182), the screen identified the decapping activator Ge-1 as being required for silencing by miRNAs. Depleting Ge-1 alone and/or in combination with other decapping activators (e.g., DCP1, EDC3, HPat, or Me31B) suppresses silencing of several miRNA targets, indicating that miRNAs elicit mRNA decapping. A comparison of gene expression profiles in cells depleted of AGO1 or of individual decapping activators shows that approximately 15% of AGO1-targets are also regulated by Ge-1, DCP1, and HPat, whereas 5% are dependent on EDC3 and LSm1-7. These percentages are underestimated because decapping activators are partially redundant. Furthermore, in the absence of active translation, some miRNA targets are stabilized, whereas others continue to be degraded in a miRNA-dependent manner. These findings suggest that miRNAs mediate post-transcriptional gene silencing by more than one mechanism.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Jan Rehwinkel
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Mona Stricker
- German Cancer Research Center (DKFZ), Boveri-Group Signaling and Functional Genomics, D-69120 Heidelberg, Germany
| | - Eric Huntzinger
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Schu-Fee Yang
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Tobias Doerks
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Silke Dorner
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Peer Bork
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Boveri-Group Signaling and Functional Genomics, D-69120 Heidelberg, Germany
| | - Elisa Izaurralde
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
- Corresponding author.E-MAIL ; FAX 49-7071-601-1353
| |
Collapse
|
123
|
Dori D, Choder M. Conceptual modeling in systems biology fosters empirical findings: the mRNA lifecycle. PLoS One 2007; 2:e872. [PMID: 17849002 PMCID: PMC1964809 DOI: 10.1371/journal.pone.0000872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 07/30/2007] [Indexed: 12/23/2022] Open
Abstract
One of the main obstacles to understanding complex biological systems is the extent and rapid evolution of information, way beyond the capacity individuals to manage and comprehend. Current modeling approaches and tools lack adequate capacity to model concurrently structure and behavior of biological systems. Here we propose Object-Process Methodology (OPM), a holistic conceptual modeling paradigm, as a means to model both diagrammatically and textually biological systems formally and intuitively at any desired number of levels of detail. OPM combines objects, e.g., proteins, and processes, e.g., transcription, in a way that is simple and easily comprehensible to researchers and scholars. As a case in point, we modeled the yeast mRNA lifecycle. The mRNA lifecycle involves mRNA synthesis in the nucleus, mRNA transport to the cytoplasm, and its subsequent translation and degradation therein. Recent studies have identified specific cytoplasmic foci, termed processing bodies that contain large complexes of mRNAs and decay factors. Our OPM model of this cellular subsystem, presented here, led to the discovery of a new constituent of these complexes, the translation termination factor eRF3. Association of eRF3 with processing bodies is observed after a long-term starvation period. We suggest that OPM can eventually serve as a comprehensive evolvable model of the entire living cell system. The model would serve as a research and communication platform, highlighting unknown and uncertain aspects that can be addressed empirically and updated consequently while maintaining consistency.
Collapse
Affiliation(s)
- Dov Dori
- Faculty of Industrial Engineering and Management, Technion, Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
124
|
Tang Z, Diamond MA, Chen JM, Holly TA, Bonow RO, Dasgupta A, Hyslop T, Purzycki A, Wagner J, McNamara DM, Kukulski T, Wos S, Velazquez EJ, Ardlie K, Feldman AM. Polymorphisms in Adenosine Receptor Genes are Associated with Infarct Size in Patients with Ischemic Cardiomyopathy. Clin Pharmacol Ther 2007; 82:435-40. [PMID: 17728764 DOI: 10.1038/sj.clpt.6100331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.
Collapse
Affiliation(s)
- Z Tang
- Department of Medicine, The Center for Translational Medicine, The Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Naveh-Many T, Nechama M. Regulation of parathyroid hormone mRNA stability by calcium, phosphate and uremia. Curr Opin Nephrol Hypertens 2007; 16:305-10. [PMID: 17565271 DOI: 10.1097/mnh.0b013e3281c55ede] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the regulation of parathyroid hormone gene expression by dietary-induced hypocalcemia, hypophosphatemia and uremia. Understanding the mechanism by which calcium and phosphate regulate parathyroid hormone gene expression is important for both normal physiology and in pathological states, especially chronic kidney disease. RECENT FINDINGS Calcium and phosphate regulate parathyroid hormone secretion, gene expression and, if prolonged, parathyroid cell proliferation. Chronic kidney disease is characterized by a high serum phosphate level that often leads to secondary hyperparathyroidism. In the rat, regulation of parathyroid hormone gene expression by calcium, phosphate and uremia is posttranscriptional, affecting mRNA stability. Differences in binding of protective trans-acting proteins to a conserved protein-binding cis-acting instability element in the parathyroid hormone mRNA 3'-untranslated region alter parathyroid hormone mRNA stability. Two trans-acting proteins - adenosine-uridine rich binding factor 1 and Up-stream of N-ras- stabilize parathyroid hormone mRNA in vivo and in vitro. Parathyroid hormone mRNA also interacts with mRNA decay-promoting proteins and ribonucleases that lead to parathyroid hormone mRNA degradation. SUMMARY Calcium, phosphate and uremia determine parathyroid hormone mRNA stability through the binding of the protective factors adenosine-uridine rich binding factor 1 and Up-stream of N-ras and the recruitment of a degradation complex that cleaves parathyroid hormone mRNA.
Collapse
Affiliation(s)
- Tally Naveh-Many
- Minerva Center for Calcium and Bone Metabolism, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | | |
Collapse
|
126
|
Peculis BA, Reynolds K, Cleland M. Metal Determines Efficiency and Substrate Specificity of the Nuclear NUDIX Decapping Proteins X29 and H29K (Nudt16). J Biol Chem 2007; 282:24792-805. [PMID: 17567574 DOI: 10.1074/jbc.m704179200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xenopus X29 protein was identified by its high affinity binding to U8 small nucleolar RNA, a small nucleolar RNA required for ribosome biogenesis. X29 and its human homologue H29K (Nudt16) are nuclear nucleoside diphosphatase proteins localized within foci in the nucleolus and nucleoplasm. These proteins can remove m(7)G and m(227)G caps from RNAs, rendering them substrates for 5'-3' exonucleases for degradation in vivo. Here, a more complete characterization of these metal-dependent decapping proteins demonstrates that the metal identity determines both the efficiency of decapping and the RNA substrate specificity. In Mg(+2) the proteins hydrolyze the 5' cap from only one RNA substrate: U8 small nucleolar RNA. However, in the presence of Mn(+2) or Co(+2) all RNAs are substrates and the decapping efficiency is higher. The x-ray crystal structure of X29 facilitated structure-based mutagenesis. Mutation of single amino acids coordinating metal in the active site yielded mutant proteins confirming essential residues. In vitro assays with purified components are consistent with a lack of protein turnover, apparently due to an inability of the protein to release the decapped RNA, implicating critical in vivo interacting factors. Collectively, these studies indicate that the metal that binds the X29/H29K proteins in vivo may determine whether these decapping proteins function solely as a negative regulator of ribosome biogenesis or can decap a wider variety of nuclear-limited RNAs. With the potential broader RNA substrate specificity, X29/H29K may be the nuclear counterparts of the cytoplasmic decapping machinery, localized in specialized bodies involved in RNA decay.
Collapse
Affiliation(s)
- Brenda A Peculis
- Department of Biochemistry, University of Missouri--Columbia, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
127
|
Atz M, Walsh D, Cartagena P, Li J, Evans S, Choudary P, Overman K, Stein R, Tomita H, Potkin S, Myers R, Watson SJ, Jones E, Akil H, Bunney WE, Vawter MP. Methodological considerations for gene expression profiling of human brain. J Neurosci Methods 2007; 163:295-309. [PMID: 17512057 PMCID: PMC3835340 DOI: 10.1016/j.jneumeth.2007.03.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/12/2007] [Accepted: 03/22/2007] [Indexed: 11/29/2022]
Abstract
Gene expression profiles of postmortem brain tissue represent important resources for understanding neuropsychiatric illnesses. The impact(s) of quality covariables on the analysis and results of gene expression studies are important questions. This paper addressed critical variables which might affect gene expression in two brain regions. Four broad groups of quality indicators in gene expression profiling studies (clinical, tissue, RNA, and microarray quality) were identified. These quality control indicators were significantly correlated, however one quality variable did not account for the total variance in microarray gene expression. The data showed that agonal factors and low pH correlated with decreased integrity of extracted RNA in two brain regions. These three parameters also modulated the significance of alterations in mitochondrial-related genes. The average F-ratio summaries across all transcripts showed that RNA degradation from the AffyRNAdeg program accounted for higher variation than all other quality factors. Taken together, these findings confirmed prior studies, which indicated that quality parameters including RNA integrity, agonal factors, and pH are related to differences in gene expression profiles in postmortem brain. Individual candidate genes can be evaluated with these quality parameters in post hoc analysis to help strengthen the relevance to psychiatric disorders. We find that clinical, tissue, RNA, and microarray quality are all useful variables for collection and consideration in study design, analysis, and interpretation of gene expression results in human postmortem studies.
Collapse
Affiliation(s)
- Mary Atz
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - David Walsh
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Preston Cartagena
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Jun Li
- Stanford Human Genome Center, Stanford University, Palo Alto CA
| | | | | | - Kevin Overman
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Richard Stein
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Hiro Tomita
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Steven Potkin
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Rick Myers
- Stanford Human Genome Center, Stanford University, Palo Alto CA
| | | | - E.G. Jones
- Center for Neuroscience, University of California, Davis CA
| | - Huda Akil
- MHRI, University of Michigan, Ann Arbor, MI
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| | - Marquis P. Vawter
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
128
|
Abstract
Recent findings demonstrate that multiple mRNAs are co-regulated by one or more sequence-specific RNA-binding proteins that orchestrate their splicing, export, stability, localization and translation. These and other observations have given rise to a model in which mRNAs that encode functionally related proteins are coordinately regulated during cell growth and differentiation as post-transcriptional RNA operons or regulons, through a ribonucleoprotein-driven mechanism. Here I describe several recently discovered examples of RNA operons in budding yeast, fruitfly and mammalian cells, and their potential importance in processes such as immune response, oxidative metabolism, stress response, circadian rhythms and disease. I close by considering the evolutionary wiring and rewiring of these combinatorial post-transcriptional gene-expression networks.
Collapse
Affiliation(s)
- Jack D Keene
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Durham, North Carolina 27710, USA.
| |
Collapse
|
129
|
Apponi LH, Kelly SM, Harreman MT, Lehner AN, Corbett AH, Valentini SR. An interaction between two RNA binding proteins, Nab2 and Pub1, links mRNA processing/export and mRNA stability. Mol Cell Biol 2007; 27:6569-79. [PMID: 17636033 PMCID: PMC2099604 DOI: 10.1128/mcb.00881-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.
Collapse
Affiliation(s)
- Luciano H Apponi
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP 14801-902, Brazil
| | | | | | | | | | | |
Collapse
|
130
|
Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA (NEW YORK, N.Y.) 2007; 13:998-1016. [PMID: 17513695 PMCID: PMC1894922 DOI: 10.1261/rna.502507] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Decapping is a critical step in mRNA decay. In the 5'-to-3' mRNA decay pathway conserved in all eukaryotes, decay is initiated by poly(A) shortening, and oligoadenylated mRNAs (but not polyadenylated mRNAs) are selectively decapped allowing their subsequent degradation by 5' to 3' exonucleolysis. The highly conserved heptameric Lsm1p-7p complex (made up of the seven Sm-like proteins, Lsm1p-Lsm7p) and its interacting partner Pat1p activate decapping by an unknown mechanism and localize with other decapping factors to the P-bodies in the cytoplasm. The Lsm1p-7p-Pat1p complex also protects the 3'-ends of mRNAs in vivo from trimming, presumably by binding to the 3'-ends. In order to determine the intrinsic RNA-binding properties of this complex, we have purified it from yeast and carried out in vitro analyses. Our studies revealed that it directly binds RNA at/near the 3'-end. Importantly, it possesses the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs such that the former are bound with much higher affinity than the latter. These results indicate that the intrinsic RNA-binding characteristics of this complex form a critical determinant of its in vivo interactions and functions.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | | | | |
Collapse
|
131
|
Jakymiw A, Pauley KM, Li S, Ikeda K, Lian S, Eystathioy T, Satoh M, Fritzler MJ, Chan EKL. The role of GW/P-bodies in RNA processing and silencing. J Cell Sci 2007; 120:1317-23. [PMID: 17401112 DOI: 10.1242/jcs.03429] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GW bodies, also known as mammalian P-bodies, are cytoplasmic foci involved in the post-transcriptional regulation of eukaryotic gene expression. Recently, GW bodies have been linked to RNA interference and demonstrated to be important for short-interfering-RNA- and microRNA-mediated mRNA decay and translational repression. Evidence indicates that both passenger and guide strands of short-interfering RNA duplexes can localize to GW bodies, thereby indicating that RNA-induced silencing complexes may be activated within these cytoplasmic centers. Formation of GW bodies appears to depend on both specific protein factors and RNA, in particular, microRNA. Work over the past few years has significantly increased our understanding of the biology of GW bodies, revealing that they are specialized cell components that spatially regulate mRNA turnover in various biological processes. The formation of GW bodies appears to depend on both specific protein factors and RNA, in particular, microRNA. Here, we propose a working model for GW body assembly in terms of its relationship to RNA interference. In this process, one or more heteromeric protein complexes accumulate in successive steps into larger ribonucleoprotein structures.
Collapse
Affiliation(s)
- Andrew Jakymiw
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
The half-life of individual mRNA plays a central role in controlling the level of gene expression. However, the determinants of mRNA stability have not yet been well defined. Most previous studies suggest that mRNA length does not affect its stability. Here, we show significant negative correlations between mRNA length and stability in human and Escherichia coli, but not in Saccharomyces cerevisiae or Bacillus subtilis. This finding suggests the possibility that endonucleolytic attacks by RNA endonuclease and/or mechanical damage may strongly influence mRNA stability in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Liang Feng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | | |
Collapse
|
133
|
Bhandari D, Saha P. mRNA cycling sequence binding protein from Leishmania donovani (LdCSBP) is covalently modified by ubiquitination. FEMS Microbiol Lett 2007; 273:206-13. [PMID: 17559572 DOI: 10.1111/j.1574-6968.2007.00789.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The lack of transcriptional regulation in trypanosomatids suggests the presence of distinct posttranscriptional mechanisms to control differential gene expression. In fact, the stability of S-phase specific mRNAs in these parasites is determined primarily by the presence of the octanucleotide sequence (C/A)AUAGAA(G/A) in the UTRs of the transcripts. Here, the characterization of LdCSBP is reported, which specifically binds to the octanucleotide containing RNA. The LdCSBP protein contains multiple putative functional domains, including two types of ubiquitin binding domains (UBA and CUE), two CCCH-type Zn-finger motifs probably responsible for specific RNA binding activity and a speculative endonuclease domain SMR. Interestingly, the protein is covalently modified through ubiquitination. This observation and the occurrence of multiple ubiquitin binding domains in the protein raise the possibility of regulation of the activity of LdCSBP by ubiquitination.
Collapse
Affiliation(s)
- Dipankar Bhandari
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | |
Collapse
|
134
|
Sasaki K, Mitsuhara I, Seo S, Ito H, Matsui H, Ohashi Y. Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the Tobacco tpoxN1 gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1079-92. [PMID: 17488240 DOI: 10.1111/j.1365-313x.2007.03111.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The vascular system-specific and wound-responsive cis-element (VWRE) has been identified as a novel cis-element for wound-induced and vascular system-specific expression of the tobacco peroxidase gene, tpoxN1. Here we isolated two independent clones that encode VWRE binding proteins by yeast one-hybrid screening. As the gene products have an AP2/ERF (APETALA2/ethylene-responsive factor) domain, and the transcripts were accumulated transiently after wounding, we named them wound-responsive AP2/ERF-like factor 1 (WRAF1) and WRAF2. The AP2/ERF domains of the two WRAFs share 97% homology, and are classified into the ERF subfamily B-4. Gel mobility shift analysis indicated that WRAFs specifically bind VWRE, which contains no known cis-elements for other AP2/ERF proteins. The binding activity of the WRAFs was found to be localized in the AP2/ERF domain. The WRAFs transactivated a promoter containing four tandem repeats of the VWRE, but not that of the mutated VWRE. Overexpression of the WRAF genes led to constitutive expression of the potential target gene, tpoxN1, in unwounded transgenic plants. These results indicate that the novel transcription factors WRAF1 and WRAF2 bind the VWRE as positive regulators for the expression of the tpoxN1 gene.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- Division of Plant Sciences, Organization of National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
135
|
Tiedemann HB, Schneltzer E, Zeiser S, Rubio-Aliaga I, Wurst W, Beckers J, Przemeck GKH, Hrabé de Angelis M. Cell-based simulation of dynamic expression patterns in the presomitic mesoderm. J Theor Biol 2007; 248:120-9. [PMID: 17575987 DOI: 10.1016/j.jtbi.2007.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 04/04/2007] [Accepted: 05/14/2007] [Indexed: 11/25/2022]
Abstract
To model dynamic expression patterns in somitogenesis we developed a Java-application for simulating gene regulatory networks in many cells in parallel and visualising the results using the Java3D API, thus simulating the collective behaviour of many thousand cells. According to the 'clock-and-wave-front' model mesodermal segmentation of vertebrate embryos is regulated by a 'segmentation clock', which oscillates with a period of about 2h in mice, and a 'wave front' moving back with the growing caudal end of the presomitic mesoderm. The clock is realised through cycling expression of genes such as Hes1 and Hes7, whose gene products repress the transcription of their encoding genes in a negative feedback loop. By coupling the decay of the Hes1 mRNA to a gradient with the same features and mechanism of formation as the mesodermal Fgf8 gradient we can simulate typical features of the dynamic expression pattern of Hes1 in the presomitic mesoderm. Furthermore, our program is able to synchronise Hes1 oscillations in thousands of cells through simulated Delta-Notch signalling interactions.
Collapse
Affiliation(s)
- Hendrik B Tiedemann
- Institute of Experimental Genetics, GSF-National Research Centre for Environment and Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Lin WJ, Duffy A, Chen CY. Localization of AU-rich element-containing mRNA in cytoplasmic granules containing exosome subunits. J Biol Chem 2007; 282:19958-68. [PMID: 17470429 DOI: 10.1074/jbc.m702281200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic mRNAs can be degraded in either decapping/5'-to-3' or 3'-to-5' direction after deadenylation. In yeast and mammalian cells, decay factors involved in the 5'-to-3' decay pathway are concentrated in cytoplasmic processing bodies (P bodies). The mechanistic steps and localization of mammalian mRNA decay are still not completely understood. Here, we investigate functions of human mRNA decay enzymes in AU-rich element (ARE)-mediated mRNA decay (AMD) and find that the deadenylase, poly(A) ribonuclease PARN, and enzymes involved in the 5'-to-3' and 3'-to-5' decay pathways are required for AMD. The ARE-containing reporter mRNA accumulates in discrete cytoplasmic granular structures, which are distinct from P bodies and stress granules. These granules consist of poly(A)-specific ribonuclease, exosome subunits, and decay-promoting ARE-binding proteins. Inhibition of AMD increases accumulation of ARE-mRNA in these granules. We refer to these structures as cytoplasmic exosome granules and suggest that some AMD may occur in these granules.
Collapse
Affiliation(s)
- Wei-Jye Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
137
|
Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Mol Biol 2007; 8:28. [PMID: 17437629 PMCID: PMC1858702 DOI: 10.1186/1471-2199-8-28] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/16/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND KSRP is a AU-rich element (ARE) binding protein that causes decay of select sets of transcripts in different cell types. We have recently described that phosphatidylinositol 3-kinase/AKT (PI3K-AKT) activation induces stabilization and accumulation of the labile beta-catenin mRNA through an impairment of KSRP function. RESULTS Aim of this study was to identify additional KSRP targets whose stability and steady-state levels are enhanced by PI3K-AKT activation. First, through microarray analyses of the AU-rich transcriptome in pituitary alphaT3-1 cells, we identified 34 ARE-containing transcripts upregulated in cells expressing a constitutively active form of AKT1. In parallel, by an affinity chromatography-based technique followed by microarray analyses, 12 mRNAs target of KSRP, additional to beta-catenin, were identified. Among them, seven mRNAs were upregulated in cells expressing activated AKT1. Both steady-state levels and stability of these new KSRP targets were consistently increased by either KSRP knock-down or PI3K-AKT activation. CONCLUSION Our study identified a set of transcripts that are targets of KSRP and whose expression is increased by PI3K-AKT activation. These mRNAs encode RNA binding proteins, signaling molecules and a replication-independent histone. The increased expression of these gene products upon PI3K-AKT activation could play a role in the cellular events initiated by this signaling pathway.
Collapse
|
138
|
Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 2007; 27:3970-81. [PMID: 17403906 PMCID: PMC1900022 DOI: 10.1128/mcb.00128-07] [Citation(s) in RCA: 517] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
P bodies are cytoplasmic domains that contain proteins involved in diverse posttranscriptional processes, such as mRNA degradation, nonsense-mediated mRNA decay (NMD), translational repression, and RNA-mediated gene silencing. The localization of these proteins and their targets in P bodies raises the question of whether their spatial concentration in discrete cytoplasmic domains is required for posttranscriptional gene regulation. We show that processes such as mRNA decay, NMD, and RNA-mediated gene silencing are functional in cells lacking detectable microscopic P bodies. Although P bodies are not required for silencing, blocking small interfering RNA or microRNA silencing pathways at any step prevents P-body formation, indicating that P bodies arise as a consequence of silencing. Consistently, we show that releasing mRNAs from polysomes is insufficient to trigger P-body assembly: polysome-free mRNAs must enter silencing and/or decapping pathways to nucleate P bodies. Thus, even though P-body components play crucial roles in mRNA silencing and decay, aggregation into P bodies is not required for function but is instead a consequence of their activity.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
139
|
Abdelmohsen K, Pullmann R, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, Furneaux H, Gorospe M. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007; 25:543-57. [PMID: 17317627 PMCID: PMC1986740 DOI: 10.1016/j.molcel.2007.01.011] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 11/28/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
The RNA binding protein HuR regulates the stability of many target mRNAs. Here, we report that HuR associated with the 3' untranslated region of the mRNA encoding the longevity and stress-response protein SIRT1, stabilized the SIRT1 mRNA, and increased SIRT1 expression levels. Unexpectedly, oxidative stress triggered the dissociation of the [HuR-SIRT1 mRNA] complex, in turn promoting SIRT1 mRNA decay, reducing SIRT1 abundance, and lowering cell survival. The cell cycle checkpoint kinase Chk2 was activated by H(2)O(2), interacted with HuR, and was predicted to phosphorylate HuR at residues S88, S100, and T118. Mutation of these residues revealed a complex pattern of HuR binding, with S100 appearing to be important for [HuR-SIRT1 mRNA] dissociation after H(2)O(2). Our findings demonstrate that HuR regulates SIRT1 expression, underscore functional links between the two stress-response proteins, and implicate Chk2 in these processes.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Cellular and Molecular Biology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Fink M, Flekna G, Ludwig A, Heimbucher T, Czerny T. Improved translation efficiency of injected mRNA during early embryonic development. Dev Dyn 2007; 235:3370-8. [PMID: 17068769 DOI: 10.1002/dvdy.20995] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Injection techniques are a powerful approach to study gene function in fish and frog model systems. In particular, in vitro transcribed mRNA is broadly used for such misexpression experiments. Sequence elements flanking the coding region, such as untranslated repeats and polyadenylation sequences, are known to affect the stability and the translation efficiency of mRNA. Here we show that in early embryos, poly(A) signals strongly contribute to the activity of the injected mRNA. Of interest, they only marginally affect mRNA stability, whereas the translation efficiency is dramatically enhanced. Combination of a poly(A) tail and an SV40 late poly(A) signal leads to highly synergistic effects of the two elements for injected mRNA. Compared with established vector systems, we detected a 20-fold improvement for mRNA derived from the novel transcription vector pMC.
Collapse
Affiliation(s)
- Maria Fink
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | |
Collapse
|
141
|
Korhonen R, Linker K, Pautz A, Förstermann U, Moilanen E, Kleinert H. Post-transcriptional regulation of human inducible nitric-oxide synthase expression by the Jun N-terminal kinase. Mol Pharmacol 2007; 71:1427-34. [PMID: 17322004 DOI: 10.1124/mol.106.033449] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human inducible nitric-oxide synthase (iNOS) expression is regulated both at transcriptional and post-transcriptional levels. In the present study, the effect of Jun N-terminal kinase (JNK) on human iNOS expression was investigated. In A549/8 human alveolar epithelial cells, both the inhibition of JNK by a pharmacological inhibitor anthra[1,9-cd]pyrazol-6(2H)-one1,9-pyrazoloanthrone (SP600125) and small interfering RNA (siRNA)-mediated down-regulation of JNK led to a reduction of iNOS mRNA and protein expression. iNOS promoter activity was not affected by these treatments. Hence, JNK seems to regulate iNOS expression through post-transcriptional mechanisms by stabilizing iNOS mRNA. Our laboratory has shown recently that a cytokine-induced RNA binding protein tristetraprolin (TTP) is a major positive regulator of human iNOS expression by stabilizing iNOS mRNA. Therefore, the effect of JNK inhibition by SP600125 or down-regulation by siRNA on TTP expression was investigated. Both SP600125 and siRNA targeted at JNK resulted in a reduction of TTP protein expression without affecting the amount of TTP mRNA. These data suggest a post-transcriptional control of TTP expression by JNK. Moreover, the modulation of JNK signaling by SP600125 or siRNA did not change p38 phosphorylation. In summary, the results suggest that JNK regulates human iNOS expression by stabilizing iNOS mRNA possibly by a TTP-dependent mechanism.
Collapse
Affiliation(s)
- Riku Korhonen
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
142
|
Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 2007; 8:9-22. [PMID: 17183357 DOI: 10.1038/nrm2080] [Citation(s) in RCA: 698] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-transcriptional processes have a central role in the regulation of eukaryotic gene expression. Although it has been known for a long time that these processes are functionally linked, often by the use of common protein factors, it has only recently become apparent that many of these processes are also physically connected. Indeed, proteins that are involved in mRNA degradation, translational repression, mRNA surveillance and RNA-mediated gene silencing, together with their mRNA targets, colocalize within discrete cytoplasmic domains known as P bodies. The available evidence indicates that P bodies are sites where mRNAs that are not being translated accumulate, the information carried by associated proteins and regulatory RNAs is integrated, and their fate - either translation, silencing or decay - is decided.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
143
|
Liu Q, Greimann JC, Lima CD. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 2007; 127:1223-37. [PMID: 17174896 DOI: 10.1016/j.cell.2006.10.037] [Citation(s) in RCA: 425] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/16/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
The RNA exosome is a multisubunit 3' to 5' exoribonuclease complex that participates in degradation and processing of cellular RNA. To determine the activities and structure of the eukaryotic exosome, we report the reconstitution of 9-subunit exosomes from yeast and human and reconstitution of 10- and 11-subunit exosomes from yeast. Comparative biochemical analysis between purified subunits and reconstituted exosomes using AU-rich, polyadenylated (poly[A]), generic, and structured RNA substrates reveals processive phosphorolytic activities for human Rrp41/Rrp45 and the 9-subunit human exosome, processive hydrolytic activities for yeast Rrp44 and the yeast 10-subunit exosome, distributive hydrolytic activities for Rrp6, and processive and distributive hydrolytic activities for the yeast 11-subunit exosome. To elucidate the architecture of a eukaryotic exosome, its conserved surfaces, and the structural basis for RNA decay, we report the X-ray structure determination for the 286 kDa nine-subunit human exosome at 3.35 A.
Collapse
Affiliation(s)
- Quansheng Liu
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | |
Collapse
|
144
|
Wang HF, Feng L, Niu DK. Relationship between mRNA stability and intron presence. Biochem Biophys Res Commun 2007; 354:203-8. [PMID: 17207776 PMCID: PMC7092898 DOI: 10.1016/j.bbrc.2006.12.184] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 12/26/2006] [Indexed: 12/02/2022]
Abstract
Introns were found to enhance almost every steps of gene expression except increasing mRNA stability. By analyzing the genome-wide data of mRNA stability published by someone previously, we found that human intron-containing genes have more stable mRNAs than intronless genes, and the Arabidopsis thaliana genes with the most unstable mRNAs have fewer introns than other genes in the genome. After controlling for mRNA length, we found mRNA stability is still positively correlated with intron number in human intron-containing genes. But in yeast Saccharomyces cerevisiae, two different datasets on mRNA half-life gave conflicting results. The components of messenger ribonucleoprotein particles recruited during intron splicing may be retained in cytoplasmic mRNPs and act as signals of mRNA stability or simply insulators to avoid mRNA degradation.
Collapse
|
145
|
Moraes KC, Wilusz CJ, Wilusz J. CUG-BP and 3'UTR sequences influence PARN-mediated deadenylation in mammalian cell extracts. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000400024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
146
|
Garbarino-Pico E, Green CB. Posttranscriptional regulation of mammalian circadian clock output. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:145-156. [PMID: 18419272 DOI: 10.1101/sqb.2007.72.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Circadian clocks are present in many different cell types/tissues and control many aspects of physiology. This broad control is exerted, at least in part, by the circadian regulation of many genes, resulting in rhythmic expression patterns of 5-10% of the mRNAs in a given tissue. Although transcriptional regulation is certainly involved in this process, it is becoming clear that posttranscriptional mechanisms also have important roles in producing the appropriate rhythmic expression profiles. In this chapter, we review the available data about posttranscriptional regulation of circadian gene expression and highlight the potential role of Nocturnin (Noc) in such processes. NOC is a deadenylase-a ribonuclease that specifically removes poly(A) tails from mRNAs-that is expressed widely in the mouse with high-amplitude rhythmicity. Deadenylation affects the stability and translational properties of mRNAs. Mice lacking the Noc gene have metabolic defects including a resistance to diet-induced obesity, decreased fat storage, changes in lipid-related gene expression profiles in the liver, and altered glucose and insulin sensitivities. These findings suggest that NOC has a pivotal role downstream from the circadian clockwork in the post-transcriptional regulation genes involved in the circadian control of metabolism.
Collapse
Affiliation(s)
- E Garbarino-Pico
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
147
|
Keene JD. Biological clocks and the coordination theory of RNA operons and regulons. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:157-165. [PMID: 18419273 DOI: 10.1101/sqb.2007.72.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
One of the regulatory models of circadian rhythms involves the oscillation of transcription and translation. Although transcription factors have been widely examined during circadian processes, posttranscriptional mechanisms are less well-studied. Several laboratories have used microarrays to detect changes in mRNA expression throughout the circadian cycle and have found that mRNAs encoding the RNA-binding proteins (RBPs) nocturnin and butyrate response factor (BRF1) undergo rhythmic changes. Nocturnin is a deadenylation enzyme that removes poly(A) from the 3' ends of mRNAs, whereas BRF1 destabilizes mRNAs encoding early response gene (ERG) transcripts that contain AU-rich sequences in their 3'-untranslated regions (UTRs). Moroni and coworkers proposed that BRF1 functions as an oscillating posttranscriptional RNA operon (PTRO) that diurnally degrades ERG transcripts in peripheral organs (Keene and Tenenbaum 2002; Benjamin et al. 2006). The PTRO model posits that mRNAs can be members of one or more discrete functionally related subsets of mRNAs as determined by cis elements in mRNA and trans-acting RBPs or microRNAs that collectively recognize these cis elements (Keene 2007). This chapter describes the basis of posttranscriptional coordination by RNA operons and their potential for horizontal transfer among cells and discusses the potential for RBPs and microRNAs to participate in coordinating circadian rhythms and other biological clocks.
Collapse
Affiliation(s)
- J D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
148
|
Kirino Y, Takeno M, Murakami S, Kobayashi M, Kobayashi H, Miura K, Ideguchi H, Ohno S, Ueda A, Ishigatsubo Y. Tumor necrosis factor α acceleration of inflammatory responses by down-regulating heme oxygenase 1 in human peripheral monocytes. ACTA ACUST UNITED AC 2007; 56:464-75. [PMID: 17265482 DOI: 10.1002/art.22370] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine the interaction between heme oxygenase 1 (HO-1), a stress-induced antiinflammatory protein, and tumor necrosis factor alpha (TNFalpha) in human peripheral blood monocytes. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors or from patients with rheumatoid arthritis (RA) receiving the anti-tumor necrosis factor alpha (anti-TNFalpha) monoclonal antibody infliximab. CD14+ cells were isolated by magnetic cell sorting, cultured with TNFalpha or auranofin, and transfected with a plasmid encoding HO-1 or an HO-1-specific small interfering RNA vector. Protein and messenger RNA (mRNA) levels were examined by immunoblotting and real-time polymerase chain reaction. Cytokine levels in culture supernatants were measured by enzyme-linked immunosorbent assay. HO-1 gene transcription was evaluated using a luciferase reporter gene assay. Actinomycin D and cycloheximide were used to monitor the stability of mRNA and protein. RESULTS HO-1 is constitutively expressed by CD14+ PBMCs from healthy donors. TNFalpha suppressed HO-1 expression by accelerating the decay of mRNA without affecting gene transcription or protein stability. Forced expression or selective knock-down of the HO-1 gene expression resulted in down-regulation or up-regulation, respectively, of proinflammatory cytokine synthesis by monocytes. Treatment with infliximab significantly increased HO-1 mRNA levels and reduced TNFalpha synthesis by PBMCs from RA patients. CONCLUSION TNFalpha accelerated inflammatory responses by down-regulating HO-1 expression in human monocytes. TNF antagonists may block this TNF-dependent suppression of HO-1 expression, resulting in an amelioration of inflammation.
Collapse
Affiliation(s)
- Yohei Kirino
- Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Tafech A, Bennett WR, Mills F, Lee CH. Identification of c-myc coding region determinant RNA sequences and structures cleaved by an RNase1-like endoribonuclease. ACTA ACUST UNITED AC 2006; 1769:49-60. [PMID: 17198736 DOI: 10.1016/j.bbaexp.2006.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 11/14/2006] [Accepted: 11/30/2006] [Indexed: 11/29/2022]
Abstract
The coding region of c-myc mRNA encompassing the coding region determinant (CRD) nucleotides (nts) 1705-1792 is critical in regulating c-myc mRNA stability. This is in part due to the susceptibility of c-myc CRD RNA to attack by an endoribonuclease. We have previously purified and characterized a mammalian endoribonuclease that cleaves c-myc CRD RNA in vitro. This enzyme is tentatively identified as a 35 kDa RNase1-like endonuclease. In an effort to understand the sequence and secondary structure requirements for RNA cleavage by this enzyme, we have determined the secondary structure of the c-myc CRD RNA nts 1705-1792 using RNase probing technique. The secondary structure of c-myc CRD RNA possesses five stems; two of which contain 4 base pairs (stems I and V) and three consisting of 3 base pairs (stems II, III, and IV). Endonucleolytic assays using the c-myc CRD and several c-myc CRD mutants as substrates led to the following conclusions: (i) the enzyme prefers to cleave in between the dinucleotides UA, CA, and UG in single-stranded regions; (ii) the enzyme is more specific towards UA dinucleotides. These properties further distinguish the enzyme from previously described mammalian endonuclease that cleaves c-myc mRNA in vitro.
Collapse
Affiliation(s)
- Alaeddin Tafech
- Chemistry Program, University of Northern British Columbia, 3333 University Way, Prince George, Canada BC V2N 4Z9
| | | | | | | |
Collapse
|
150
|
Paes de Faria J, Fernandes L. Protection against oxidative stress through SUA7/TFIIB regulation in Saccharomyces cerevisiae. Free Radic Biol Med 2006; 41:1684-93. [PMID: 17145557 DOI: 10.1016/j.freeradbiomed.2006.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 08/12/2006] [Accepted: 09/02/2006] [Indexed: 01/21/2023]
Abstract
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Collapse
Affiliation(s)
- Joana Paes de Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6 Apartado 14, 2780-156 Oeiras, Portugal
| | | |
Collapse
|