101
|
LaGree TJ, Byrd BA, Quelle RM, Schofield SL, Mok WWK. Stimulating Transcription in Antibiotic-Tolerant Escherichia coli Sensitizes It to Fluoroquinolone and Nonfluoroquinolone Topoisomerase Inhibitors. Antimicrob Agents Chemother 2023; 67:e0163922. [PMID: 36951560 PMCID: PMC10112259 DOI: 10.1128/aac.01639-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Antibiotic tolerant bacteria and persistent cells that remain alive after a course of antibiotic treatment can foster the chronicity of infections and the development of antibiotic resistance. Elucidating how bacteria overcome antibiotic action and devising strategies to bolster a new drug's activity can allow us to preserve our antibiotic arsenal. Here, we investigate strategies to potentiate the activities of topoisomerase inhibitors against nongrowing Escherichia coli that are often recalcitrant to existing antibiotics. We focus on sensitizing bacteria to the fluoroquinolone (FQ) levofloxacin (Levo) and to the spiropyrimidinetrione zoliflodacin (Zoli)-the first antibiotic in its class of compounds in clinical development. We found that metabolic stimulation either alone or in combination with inhibiting the AcrAB-TolC efflux pump sensitized stationary-phase E. coli to Levo and Zoli. We demonstrate that the added metabolites increased proton motive force generation and ATP production in stationary-phase cultures without restarting growth. Instead, the stimulated bacteria increased transcription and translation, which rendered the populations more susceptible to topoisomerase inhibitors. Our findings illuminate potential vulnerabilities of antibiotic-tolerant bacteria that can be leveraged to sensitize them to new and existing classes of topoisomerase inhibitors. These approaches enable us to stay one step ahead of adaptive bacteria and safeguard the efficacy of our existing antibiotics.
Collapse
Affiliation(s)
- Travis J. LaGree
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Brandon A. Byrd
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
- School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Ryan M. Quelle
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Stephanie L. Schofield
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
102
|
Başaran SN, Öksüz L. The role of efflux pumps ın antıbıotıc resıstance of gram negatıve rods. Arch Microbiol 2023; 205:192. [PMID: 37060362 DOI: 10.1007/s00203-023-03539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Antibiotic resistance is an important public health problem today, causing increased morbidity and mortality. Resistance to antibiotics in bacteria can develop by various mechanisms such as a change in the target site of the drug, a change in the outer membrane permeability, enzymatic defusing of the drug and efflux of the antimicrobial compound. Some bacteria have the potential to develop resistance to more than one drug by using several mechanisms together. One of the important resistance mechanisms of bacteria is active efflux pumps (EPs). EPs are pump proteins found in all cell types, located in the cell membrane. They are responsible for the excretion of various intracellular and extracellular substances (antibiotics, etc.) out of the cell. There is much research on various antimicrobials that cause antibiotic resistance in Gram negative rods, but studies on EPs are relatively few. Due to the concern that antibiotics will be insufficient in the treatment of diseases, a good understanding of EPs and the discovery of new EP inhibitors will shed light on the future of humanity. In this review, the structure of bacterial EPs in Gram negative bacteria, the role of EPs in multidrug resistance, the importance of EP inhibitors in the fight against antibiotic resistance and the phenotypic and genotypic detection methods of EPs are discussed.
Collapse
Affiliation(s)
- Sena Nur Başaran
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
103
|
Xu N, Sun W, Zhang H, Liu Y, Dong J, Zhou S, Yang Y, Yang Q, Ai X. Plasma and tissue kinetics of enrofloxacin and its metabolite, ciprofloxacin, in yellow catfish (Pelteobagrus fulvidraco) after a single oral administration at different temperatures. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109554. [PMID: 36709862 DOI: 10.1016/j.cbpc.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
The objective of this study was to examine the pharmacokinetic (PK) properties of enrofloxacin (EF) and its metabolite, ciprofloxacin (CF), in yellow catfish (Pelteobagrus fulvidraco) after a single oral dose of EF at 20 mg/kg at 20, 25, and 30 °C. Samples were collected at pre-designed time points and determined by high-performance liquid chromatography with a fluorescent detector. Results showed that most concentrations of EF and CF in plasma and tissues at the same time point at different temperatures were statistically significant. With the increase in temperature, the terminal half-life (T1/2λz) of EF and CF was first reduced from 20 to 25 °C but elevated from 25 to 30 °C in plasma, muscle + skin, gill, liver, and kidney, respectively. The area under the plasma concentration-time curves (AUClast) of EF were all decreased in plasma, muscle + skin, and gill except for that of EF in the liver and kidney. However, the AUClast and the apparent metabolic rate of CF were exhibited first elevated and then decreased trend. The apparent volume of distribution (Vz_F) of EF was first reduced from 20 to 25 °C but increased at 30 °C. The apparent total body clearance (CL_F) of EF was increased from 0.15 to 0.32 L/h·kg with the temperature elevation. These indicated that increased temperature markedly affected the PKs of EF and CF in yellow catfish. Through in-depth analysis, the EF dosage of 20 mg/kg is appropriate to use in yellow catfish at 20 and 25 °C but 30 °C.
Collapse
Affiliation(s)
- Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China.
| | - Weiyu Sun
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huan Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China.
| |
Collapse
|
104
|
Gill SP, Snelling WJ, Dooley JSG, Ternan NG, Banat IM, Arnscheidt J, Hunter WR. Biological and synthetic surfactant exposure increases antimicrobial gene occurrence in a freshwater mixed microbial biofilm environment. Microbiologyopen 2023; 12:e1351. [PMID: 37186226 PMCID: PMC10022493 DOI: 10.1002/mbo3.1351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Aquatic habitats are particularly susceptible to chemical pollution, such as antimicrobials, from domestic, agricultural, and industrial sources. This has led to the rapid increase of antimicrobial resistance (AMR) gene prevalence. Alternate approaches to counteract pathogenic bacteria are in development including synthetic and biological surfactants such as sodium dodecyl sulfate (SDS) and rhamnolipids. In the aquatic environment, these surfactants may be present as pollutants with the potential to affect biofilm formation and AMR gene occurrence. We tested the effects of rhamnolipid and SDS on aquatic biofilms in a freshwater stream in Northern Ireland. We grew biofilms on contaminant exposure substrates deployed within the stream over 4 weeks. We then extracted DNA and carried out shotgun sequencing using a MinION portable sequencer to determine microbial community composition, with 16S rRNA analyses (64,678 classifiable reads identified), and AMR gene occurrence (81 instances of AMR genes over 9 AMR gene classes) through a metagenomic analysis. There were no significant changes in community composition within all systems; however, biofilm exposed to rhamnolipid had a greater number of unique taxa as compared to SDS treatments and controls. AMR gene prevalence was higher in surfactant-treated biofilms, although not significant, with biofilm exposed to rhamnolipids having the highest presence of AMR genes and classes compared to the control or SDS treatments. Our results suggest that the presence of rhamnolipid encourages an increase in the prevalence of AMR genes in biofilms produced in mixed-use water bodies.
Collapse
Affiliation(s)
- Stephanie P. Gill
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Joerg Arnscheidt
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William R. Hunter
- Fisheries and Aquatic Ecosystems BranchAgri‐Food and Biosciences InstituteBelfastNorthern Ireland
| |
Collapse
|
105
|
Liang H, Zhang J, Hu J, Li X, Li B. Fluoroquinolone Residues in the Environment Rapidly Induce Heritable Fluoroquinolone Resistance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4784-4795. [PMID: 36917150 DOI: 10.1021/acs.est.2c04999] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive antibiotic use increases the environmental presence of their residues and may accelerate the development of antibiotic resistance, although this remains poorly understood at environmentally relevant concentrations. Herein, susceptible Escherichia coli K12 was continuously exposed to five antibiotics at such concentrations for 100 days. The de novo-evolved mutants rapidly obtained fluoroquinolone resistance within 10 days, as indicated by the 4- and 16-fold augmentation of minimum inhibitory concentrations against enrofloxacin and ciprofloxacin, respectively. Moreover, the mutants maintained heritable fluoroquinolone resistance after the withdrawal of antibiotics for 30 days. Genomic analysis identified Asp87Gly or Ser83Leu substitutions in the gyrA gene in the mutants. Transcriptomics data showed that the transcriptional response of the mutants to fluoroquinolones was primarily involved in biofilm formation, cellular motility, porin, oxidative stress defense, and energy metabolism. Homologous recombination and molecular docking revealed that mutations of gyrA primarily mainly conferred fluoroquinolone resistance, while mutations at different positions of gyrA likely endowed different fluoroquinolone resistance levels. Collectively, this study revealed that environmentally relevant concentrations of antibiotics could rapidly induce heritable antibiotic resistance; therefore, the discharge of antibiotics into the environment should be rigorously controlled to prevent the development of antibiotic resistance.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
106
|
Durcik M, Cotman AE, Toplak Ž, Možina Š, Skok Ž, Szili PE, Czikkely M, Maharramov E, Vu TH, Piras MV, Zidar N, Ilaš J, Zega A, Trontelj J, Pardo LA, Hughes D, Huseby D, Berruga-Fernández T, Cao S, Simoff I, Svensson R, Korol SV, Jin Z, Vicente F, Ramos MC, Mundy JEA, Maxwell A, Stevenson CEM, Lawson DM, Glinghammar B, Sjöström E, Bohlin M, Oreskär J, Alvér S, Janssen GV, Sterk GJ, Kikelj D, Pal C, Tomašič T, Peterlin Mašič L. New Dual Inhibitors of Bacterial Topoisomerases with Broad-Spectrum Antibacterial Activity and In Vivo Efficacy against Vancomycin-Intermediate Staphylococcus aureus. J Med Chem 2023; 66:3968-3994. [PMID: 36877255 PMCID: PMC10041525 DOI: 10.1021/acs.jmedchem.2c01905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 03/07/2023]
Abstract
A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125-0.25 μg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1-4 μg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.
Collapse
Affiliation(s)
- Martina Durcik
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Žan Toplak
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Štefan Možina
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Žiga Skok
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Petra Eva Szili
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Márton Czikkely
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Elvin Maharramov
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Thu Hien Vu
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Maria Vittoria Piras
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Nace Zidar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Janez Ilaš
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Jurij Trontelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Luis A. Pardo
- Max
Planck Institute for Multidisciplinary Sciences, Oncophysiology, Hermann-Rein-Str. 3, Göttingen 37075, Germany
| | - Diarmaid Hughes
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Douglas Huseby
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Tália Berruga-Fernández
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Sha Cao
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Ivailo Simoff
- Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP) Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Richard Svensson
- Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP) Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Sergiy V. Korol
- Department
of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Zhe Jin
- Department
of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Francisca Vicente
- Fundación
Medina, Avenida del Conocimiento
34, Parque Tecnológico Ciencias de la Salud, Granada 18016, Spain
| | - Maria C. Ramos
- Fundación
Medina, Avenida del Conocimiento
34, Parque Tecnológico Ciencias de la Salud, Granada 18016, Spain
| | - Julia E. A. Mundy
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Anthony Maxwell
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Clare E. M. Stevenson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - David M. Lawson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Björn Glinghammar
- Department
of Chemical and Pharmaceutical Toxicology, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Eva Sjöström
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Martin Bohlin
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Joanna Oreskär
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Sofie Alvér
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Guido V. Janssen
- Medicinal Chemistry Division, Vrije Universiteit
Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Geert Jan Sterk
- Medicinal Chemistry Division, Vrije Universiteit
Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Danijel Kikelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Csaba Pal
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Tihomir Tomašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Lucija Peterlin Mašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| |
Collapse
|
107
|
Edelstein IA, Guschin AE, Romanov AV, Negasheva ES, Kozlov RS. Genetic Determinants of Macrolide and Fluoroquinolone Resistance in Mycoplasma genitalium and Their Prevalence in Moscow, Russia. Pathogens 2023; 12:pathogens12030496. [PMID: 36986417 PMCID: PMC10058343 DOI: 10.3390/pathogens12030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Macrolide (MLR) and fluoroquinolone (FQR) resistance in Mycoplasma genitalium (MG) has recently become a major problem worldwide. The available data on the prevalence of MLR and FQR in MG in Russia are limited. In this study, we aimed to evaluate the prevalence and pattern of mutations in 213 MG-positive urogenital swabs from patients in Moscow between March 2021 and March 2022. MLR- and FQR-associated mutations were searched in 23S rRNA as well as in the parC and gyrA genes using Sanger sequencing. The prevalence of MLR was 55/213 (26%), with A2059G and A2058G substitutions being the two most common variants (36/55, 65%, and 19/55, 35%, respectively). FQR detection showed 17% (37/213); two major variants were D84N (20/37, 54%) and S80I (12/37, 32.4%) and three minor variants were S80N (3/37, 8.1%), D84G (1/37, 2.7%), and D84Y (1/37, 2.7%). Fifteen of the fifty-five MLR cases (27%) simultaneously harbored FQR. This study revealed the high frequency of MLR and FQR. We conclude that the improvement of patient examination algorithms and therapeutic approaches should be combined with the routine monitoring of antibiotic resistance based on the sensitivity profiles presented. Such a complex approach will be essential for restraining the development of treatment resistance in MG.
Collapse
Affiliation(s)
- Inna Alexandrovna Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University of the Ministry of Health of the Russian Federation, 214019 Smolensk, Russia
| | | | - Andrew Vyacheslavovich Romanov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University of the Ministry of Health of the Russian Federation, 214019 Smolensk, Russia
| | | | - Roman Sergeevich Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University of the Ministry of Health of the Russian Federation, 214019 Smolensk, Russia
| |
Collapse
|
108
|
Shi J, Jiang J, Chen Q, Wang L, Nian K, Long T. Production of higher toxic intermediates of organic pollutants during chemical oxidation processes: A review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
109
|
Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023; 15:pharmaceutics15030804. [PMID: 36986665 PMCID: PMC10056716 DOI: 10.3390/pharmaceutics15030804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antibacterial fluoroquinolones (FQs) are frequently used in treating infections. However, the value of FQs is debatable due to their association with severe adverse effects (AEs). The Food and Drug Administration (FDA) issued safety warnings concerning their side-effects in 2008, followed by the European Medicine Agency (EMA) and regulatory authorities from other countries. Severe AEs associated with some FQs have been reported, leading to their withdrawal from the market. New systemic FQs have been recently approved. The FDA and EMA approved delafloxacin. Additionally, lascufloxacin, levonadifloxacin, nemonoxacin, sitafloxacin, and zabofloxacin were approved in their origin countries. The relevant AEs of FQs and their mechanisms of occurrence have been approached. New systemic FQs present potent antibacterial activity against many resistant bacteria (including resistance to FQs). Generally, in clinical studies, the new FQs were well-tolerated with mild or moderate AEs. All the new FQs approved in the origin countries require more clinical studies to meet FDA or EMA requirements. Post-marketing surveillance will confirm or infirm the known safety profile of these new antibacterial drugs. The main AEs of the FQs class were addressed, highlighting the existing data for the recently approved ones. In addition, the general management of AEs when they occur and the rational use and caution of modern FQs were outlined.
Collapse
|
110
|
Using a batch test to derive sorption data of fluoroquinolone antibiotics in humic acids. MethodsX 2023; 10:102109. [PMID: 36970026 PMCID: PMC10033734 DOI: 10.1016/j.mex.2023.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Fluoroquinolone antibiotics (FQs) are of concern due to their disrupting effects on environmental bacterial communities. Evaluating FQ sorption by soil components is important to understand their interaction with soils and to address their environmental (bio)availability. However, data in soil organic components, especially humic acids, are scarce. Batch experiments following OECD guidelines are suitable for testing the sorption of pollutants in solid matrices. Here, we applied this methodology, with specific changes in the experimental setup, to derive sorption data and to identify the factors affecting sorption of four common FQs in seven humic acids with contrasting properties. The effect of shaking time, pH, calcium concentration in solution and dissolved organic carbon (DOC) content on the quantification of the solid-liquid distribution coefficient (Kd) of norfloxacin in three reference humic acids was evaluated. Sorption reversibility and sorption analogy of four FQs were additionally assessed in these three reference materials, whereas the effect of initial norfloxacin concentration was evaluated in the overall set of seven humic acids. Sorption was fast, strong, non-linear, irreversible and affected by changes in the pH and calcium levels in solution. The bell-shaped sorption trend at varying pH values confirmed the key role of FQ speciation in sorption and the high Kd values indicated a positive effect of soil organic matter components on FQ sorption in bulk soils at environmentally relevant pH values.•Relevant factors affecting sorption of pollutants in environmental matrices must be considered to derive Kd values with low variability and high representativeness.•In this article we modify the experimental conditions of standard batch tests to identify the factors that affect the sorption of FQs in humic acids.•The methodological approach followed can be extrapolated to the evaluation of other combinations of pollutant and environmental matrix.
Collapse
|
111
|
Strains Colonizing Different Intestinal Sites within an Individual Are Derived from a Single Founder Population. mBio 2023; 14:e0345622. [PMID: 36719226 PMCID: PMC9972980 DOI: 10.1128/mbio.03456-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Metagenomics has improved our understanding of commensal bacteria that colonize human intestines yet relies almost exclusively on fecal samples. Thus, spatial information about the niche range of these gut microbes and the level of specialized adaptation that they undergo has been inaccessible to fecal metagenomic studies. Here, we leveraged metagenomic data obtained through colonoscopy aspirates from three intestinal sites of healthy adults, and reconstructed metagenome-assembled genomes of several common gut bacteria to address intestinal site-specific evolution. We show that the genomes of bacterial strains at specific intestinal sites are clearly distinct yet are interrelated and are derived from a single founder strain colonizing multiple sites. We also reveal that within those intestinal sites, purifying selection is the dominant evolutionary force acting on Escherichia coli genomes within human hosts. Importantly, no site-specific adaptations at the level of accessory genes were detected, implying that these commensals are well-adapted to several host microniches and can therefore colonize multiple intestinal sites with high efficiency. Nevertheless, bacterial in situ growth rates differ markedly across different sections of the intestine. Metagenomics of aspirate samples can reveal unique strain- and intestinal tissue-specific genomic information. Such information may be critical for understanding bacterial contribution to gastrointestinal diseases, which involve only a part of the intestine, as is often the case in inflammatory bowel disease. IMPORTANCE By reconstructing bacterial genomes from samples taken from specific sites within the human intestines, via aspiration, we show that strains at specific intestinal sites are genetically distinct yet interrelated and are derived from a single founder population. Organ-specific metagenomic information represents a powerful tool to generate insights into gastrointestinal diseases, which involve only a part of the intestine, such as inflammatory bowel disease.
Collapse
|
112
|
Association of qnr Genes and OqxAB Efflux Pump in Fluoroquinolone-Resistant Klebsiella pneumoniae Strains. Int J Microbiol 2023; 2023:9199108. [PMID: 36865677 PMCID: PMC9974307 DOI: 10.1155/2023/9199108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Background The aim of this study was to investigate the frequency and relationship between plasmid-mediated quinolone resistance genes and OqxAB pump genes, as well as the genetic linkage in K. pneumoniae strains isolated from Hamadan hospitals in the west of Iran. Materials and Methods In this study, 100 K. pneumoniae clinical strains were isolated from clinical samples of inpatients at Hamadan Hospital in 2021. The antimicrobial susceptibility testing was performed using the disk diffusion method. The frequencies of genes encoding OqxAB efflux pumps and qnr were investigated by PCR. Molecular typing of qnr-positive K. pneumoniae isolates was assessed by ERIC-PCR. Results Antibiotic susceptibility testing showed high resistance (>80%) to fluoroquinolones. The gene encoding the OqxAB efflux pump was detected in more than 90% of K. pneumomiae strains. All K. pneumoniae isolates were negative for qnrA, and 20% and 9% of the isolates were positive for qnrB and qnrS, respectively. The genes encoding oqxA and oqxB were detected in 96% of qnr-positive strains. A qnrB + /qnrS + profile was observed in 16% of qnr-positive K. pneumoniae strains. Ciprofloxacin MIC ≥ 256 μg/ml was detected in 20% of qnr-positive strains. Genetic association analysis by ERIC-PCR revealed genetic diversity among 25 different qnr-positive strains of K. pneumonia. Conclusion However, no significant correlation was found between the qnr and the OqxAB efflux pump genes in this study. The high rate of fluoroquinolone resistance and determinants of antibiotic resistance among diverse K. pneumoniae strains increase the risk of fluoroquinolone-resistance transmission by K. pneumoniae strains in hospitals.
Collapse
|
113
|
Zhou YY, Ma LY, Yu L, Lu X, Liang WL, Kan B, Su JR. Quinolone Resistance Genes and Their Contribution to Resistance in Vibrio cholerae Serogroup O139. Antibiotics (Basel) 2023; 12:antibiotics12020416. [PMID: 36830326 PMCID: PMC9952142 DOI: 10.3390/antibiotics12020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Quinolones are commonly used for reducing the duration of diarrhea, infection severity, and limiting further transmission of disease related to Vibrio cholerae, but V. cholerae susceptibility to quinolone decreases over time. In addition to mutations in the quinolone-resistance determining regions (QRDRs), the presence of qnr and other acquired genes also contributes to quinolone resistance. RESULTS We determined the prevalence of quinolone resistance related genes among V. cholerae O139 strains isolated in China. We determined that eight strains carried qnrVC, which encodes a pentapeptide repeat protein of the Qnr subfamily, the members of which protect topoisomerases from quinolone action. Four qnrVC alleles were detected: qnrVC1, qnrVC5, qnrVC12, and qnrVC9. However, the strains carrying qnrVC1, qnrVC5, and qnrVC12 were ciprofloxacin (CIP)-sensitive. Contrastingly, the strain carrying qnrVC9 demonstrated high CIP resistance. qnrVC9 was carried by a small plasmid, which was conjugative and contributed to the high CIP resistance to the receptor V. cholerae strain. The same plasmid was also detected in V. vulnificus. The qnrVC1, qnrVC5, and qnrVC12 were cloned into expression plasmids and conferred CIP resistance on the host V. cholerae O139 strain. CONCLUSIONS Our results revealed the contribution of quinolone resistance mediated by the qnrVC9 carried on the small plasmid and its active horizontal transfer among Vibrio species. The results also suggested the different effects of qnrVC alleles in different V. cholerae strains, which is possibly due to differences in sequences of qnrVC alleles and even the genetic characteristics of the host strains.
Collapse
Affiliation(s)
- Yan-Yan Zhou
- Department of Clinical Laboratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Yan Ma
- Department of Clinical Laboratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li Yu
- Beijing Municipal Center for Disease Prevention and Control, Beijing 100013, China
| | - Xin Lu
- Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Beijing 102206, China
| | - Wei-Li Liang
- Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Beijing 102206, China
| | - Biao Kan
- Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Beijing 102206, China
- Correspondence: (B.K.); (J.-R.S.); Tel.: +10-58900743 (B.K.); +10-63138545 (J.-R.S.)
| | - Jian-Rong Su
- Department of Clinical Laboratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Correspondence: (B.K.); (J.-R.S.); Tel.: +10-58900743 (B.K.); +10-63138545 (J.-R.S.)
| |
Collapse
|
114
|
Zlotnikov ID, Ezhov AA, Vigovskiy MA, Grigorieva OA, Dyachkova UD, Belogurova NG, Kudryashova EV. Application Prospects of FTIR Spectroscopy and CLSM to Monitor the Drugs Interaction with Bacteria Cells Localized in Macrophages for Diagnosis and Treatment Control of Respiratory Diseases. Diagnostics (Basel) 2023; 13:diagnostics13040698. [PMID: 36832185 PMCID: PMC9954918 DOI: 10.3390/diagnostics13040698] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Visualization of the interaction of drugs with biological cells creates new approaches to improving the bioavailability, selectivity, and effectiveness of drugs. The use of CLSM and FTIR spectroscopy to study the interactions of antibacterial drugs with latent bacterial cells localized in macrophages create prospects to solve the problems of multidrug resistance (MDR) and severe cases. Here, the mechanism of rifampicin penetration into E. coli bacterial cells was studied by tracking the changes in the characteristic peaks of cell wall components and intracellular proteins. However, the effectiveness of the drug is determined not only by penetration, but also by efflux of the drugs molecules from the bacterial cells. Here, the efflux effect was studied and visualized using FTIR spectroscopy, as well as CLSM imaging. We have shown that because of efflux inhibition, eugenol acting as an adjuvant for rifampicin showed a significant (more than three times) increase in the antibiotic penetration and the maintenance of its intracellular concentration in E. coli (up to 72 h in a concentration of more than 2 μg/mL). In addition, optical methods have been applied to study the systems containing bacteria localized inside of macrophages (model of the latent form), where the availability of bacteria for antibiotics is reduced. Polyethylenimine grafted with cyclodextrin carrying trimannoside vector molecules was developed as a drug delivery system for macrophages. Such ligands were absorbed by CD206+ macrophages by 60-70% versus 10-15% for ligands with a non-specific galactose label. Owing to presence of ligands with trimannoside vectors, the increase in antibiotic concentration inside macrophages, and thus, its accumulation into dormant bacteria, is observed. In the future, the developed FTIR+CLSM techniques would be applicable for the diagnosis of bacterial infections and the adjustment of therapy strategies.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Maksim A. Vigovskiy
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Olga A. Grigorieva
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Uliana D. Dyachkova
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Natalia G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
115
|
Tang K, Zhao H. Quinolone Antibiotics: Resistance and Therapy. Infect Drug Resist 2023; 16:811-820. [PMID: 36798480 PMCID: PMC9926991 DOI: 10.2147/idr.s401663] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The clinical application of quinolone antibiotics is particularly extensive. In addition to their high efficiency in infectious diseases, the treatment process brings multiple hidden dangers or side effects. In this regard, drug resistance becomes a major challenge and is almost unavoidable in the clinical application of quinolones. Both genetic and phenotypic variations contribute to bacterial survival resistance under antibiotic therapy. This review is focusing on the drug discovery history, compound structure, and bactericidal mechanism of quinolone antibiotics. Recent studies bring a more in-depth insight into the research progress of quinolone antibiotics in the causes of death, drug resistance formation, and closely related SOS response after disease treatment at this stage. Combined with the latest clinical studies, we summarize the clinical application of quinolone antibiotics and further lay a theoretical foundation for the mechanism study of resistant or sensitive bacteria in response to quinolone treatment.
Collapse
Affiliation(s)
- Kai Tang
- Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China
| | - Heng Zhao
- Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China,Correspondence: Heng Zhao, Fujian Provincial Key Laboratory of Innate Immune Biology, Fujian Normal University, Fujian, People’s Republic of China, Tel +86-17689970104, Email
| |
Collapse
|
116
|
Tanwar AS, Shruptha P, Paul B, Murali TS, Brand A, Satyamoorthy K. How Can Omics Inform Diabetic Foot Ulcer Clinical Management? A Whole Genome Comparison of Four Clinical Strains of Staphylococcus aureus. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:51-61. [PMID: 36753700 DOI: 10.1089/omi.2022.0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Foot ulcers and associated infections significantly contribute to morbidity and mortality in diabetes. While diverse pathogens are found in the diabetes-related infected ulcers, Staphylococcus aureus remains one of the most virulent and widely prevalent pathogens. The high prevalence of S. aureus in chronic wound infections, especially in clinical settings, is attributed to its ability to evolve and acquire resistance against common antibiotics and to elicit an array of virulence factors. In this study, whole genome comparison of four strains of S. aureus (MUF168, MUF256, MUM270, and MUM475) isolated from diabetic foot ulcer (DFU) infections showing varying resistance patterns was carried out to study the genomic similarity, antibiotic resistance profiling, associated virulence factors, and sequence variations in drug targets. The comparative genome analysis showed strains MUM475 and MUM270 to be highly resistant, MUF256 with moderate levels of resistance, and MUF168 to be the least resistant. Strain MUF256 and MUM475 harbored more virulence factors compared with other two strains. Deleterious sequence variants were observed suggesting potential role in altering drug targets and drug efficacy. This comparative whole genome study offers new molecular insights that may potentially inform evidence-based diagnosis and treatment of DFUs in the clinic.
Collapse
Affiliation(s)
- Ankit Singh Tanwar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Bobby Paul
- Department of Bioinformatics, and Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Angela Brand
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands.,Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
117
|
CID12261165, a flavonoid compound as antibacterial agents against quinolone-resistant Staphylococcus aureus. Sci Rep 2023; 13:1725. [PMID: 36720958 PMCID: PMC9889749 DOI: 10.1038/s41598-023-28859-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Flavonoids are plant-produced secondary metabolites that are found ubiquitously. We have previously reported that apigenin, a class of flavonoid, has unique antimicrobial activity against Staphylococcus aureus (S. aureus), one of the major human pathogens. Apigenin inhibited fluoroquinolone-resistant S. aureus with DNA gyrase harboring the quinolone-resistant S84L mutation but did not inhibit wild-type DNA gyrase. In this study, we describe five flavonoids, quercetin, luteolin, kaempferol, baicalein, and commercially available CID12261165, that show similar antimicrobial activity against fluoroquinolone-resistant S. aureus. Among them, CID12261165 was the most effective with MIC values of ≤ 4 mg/L against quinolone-resistant S. aureus strains. In vitro DNA cleavage and supercoiling assays demonstrated inhibitory activity of CID12261165 against mutated DNA gyrase, whereas activity against wild-type DNA gyrase was not observed. CID12261165 also inhibited quinolone-resistant Enterococci with an MIC value of 8 mg/L. While fluoroquinolone-resistant amino acid replacements can improve the fitness of bacterial cells, it is unknown why quinolone-susceptible S. aureus strains were predominant before the introduction of fluoroquinolone. The present study discusses the current discrepancies in the interpretation of antimicrobial activities of flavonoids, as well as the possible reasons for the preservation of wild-type DNA gyrase wherein the environmental flavonoids cannot be ignored.
Collapse
|
118
|
Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines 2023; 11:371. [PMID: 36830908 PMCID: PMC9953508 DOI: 10.3390/biomedicines11020371] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used as a first-line drug for various types of infections. However, currently used quinolones are becoming less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme targets, with this type being the most clinically relevant. Additional mechanisms, conducive to quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism. Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop novel quinolones to overcome the resistance problem. This review discusses the development of quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity. Moreover, structural activity relationship (SAR) data included in this review could be useful for the development of future generations of quinolone antibiotics.
Collapse
Affiliation(s)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
119
|
Kaido M, Yasuda M, Komeda H, Okano M, Ito Y, Ohashi H, Ohta H, Akai Y. Prediction of presence of fastidious bacteria by the Fully Automated Urine Particle Analyzer UF-1000i in the case of ineffective antimicrobial therapy for urinary tract infection. J Infect Chemother 2023; 29:443-452. [PMID: 36702207 DOI: 10.1016/j.jiac.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Recent studies have reported associations between fastidious bacteria that are difficult to grow and isolate in conventional urine culture conditions and urinary tract infections (UTIs). Because the Fully Automated Urine Particle Analyzer UF-1000i (hereinafter referred to as "UF-1000i") detects fastidious bacteria without being affected by culture conditions, owing to its flow cytometry-based principle, we evaluated the robustness of UF-1000i detection using clinical urine samples from patients with UTIs following ineffective antimicrobial therapy. METHODS A total of 150 patients diagnosed with UTIs were enrolled, and their laboratory findings were analyzed, focusing on the discrepancy in bacterial numbers between UF-1000i and conventional culture at each antimicrobial therapy effectiveness classification. In addition, gene identification was conducted by molecular analysis using 16S ribosomal RNA gene sequencing and next-generation sequencing (NGS) to elucidate the reason for the presence of fastidious bacteria in these samples. RESULTS The ineffective therapy cases showed more than 100-fold discrepancy in bacterial counts, with a higher proportion (30.8%) than effective therapy cases without secondary administration (5.7%) between the bacterial counts in UF-1000i and conventional culture methods. The presence rates of fastidious bacteria were 100% and 66.7% in discrepant cases of ineffective and effective without secondary administrations, respectively. CONCLUSION This study suggests that discrepancies in bacterial numbers between the conventional culture method and UF-1000i measurement at the primary visit can predict the presence of fastidious bacteria, especially in cases of ineffective antimicrobial therapy.
Collapse
Affiliation(s)
- Masako Kaido
- Scientific Research, Scientific Affairs, Sysmex Corporation, 1-3-2 Murotani, Nisi-ku, Kobe, Hyogo, 651-2241, Japan.
| | - Mitsuru Yasuda
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University of Medicine, S1 W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Hisao Komeda
- Department of Urology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu city, Gifu, 500-8513, Japan.
| | - Manabu Okano
- Department of Urology, JA Gifu Kouseiren, Nishinimo Kosei Hospital, 986 Oshigoe, Yoro-cho, Yoro-gun, Gifu, 503-1394, Japan.
| | - Yasuhisa Ito
- Department of Urology, JA Gifu Kouseiren, Ibi Kosei Hospital, 2547-4 Miwa, Ibigawa-cho, Ibi-gun, Gifu, 501-0696, Japan.
| | - Hazuki Ohashi
- Division of Clinical Laboratory, Gifu University Hospital, Gifu University, 1-1 Yanagido, Gifu city, Gifu, 501-1193, Japan.
| | - Hirotoshi Ohta
- Division of Clinical Laboratory, Gifu University Hospital, Gifu University, 1-1 Yanagido, Gifu city, Gifu, 501-1193, Japan.
| | - Yasumasa Akai
- Scientific Research, Scientific Affairs, Sysmex Corporation, 1-3-2 Murotani, Nisi-ku, Kobe, Hyogo, 651-2241, Japan.
| |
Collapse
|
120
|
Roy TS, Akter S, Fahim MR, Gafur MA, Ferdous T. Incorporation of Ag-doped ZnO nanorod through Graphite hybridization: Effective approach for degradation of Ciprofloxacin. Heliyon 2023; 9:e13130. [PMID: 36846701 PMCID: PMC9950824 DOI: 10.1016/j.heliyon.2023.e13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
To remove the Ciprofloxacin (CIP) from aqueous solution, ZnO-Ag-Gp nanocomposite exhibited efficient photocatalytic properties. The biopersistent CIP is pervasive in surface water and also hazardous to human and animal health. This study utilized the hydrothermal technique to prepare Ag-doped ZnO hybridizing Graphite (Gp) sheet (ZnO-Ag-Gp) to degrade pharmaceuticals pollutant CIP from an aqueous medium. The structural and chemical compositions of the photocatalysts were determined by XRD, FTIR and XPS analysis. FESEM and TEM images revealed the nanorod ZnO with round shape Ag distributed on a Gp surface. The reduced bandgap of the ZnO-Ag-Gp sample enhanced the photocatalytic property which was measured by using UV-vis Spectroscopy. Dose optimization study found that 1.2 g/L is optimum for single (ZnO) and binary (ZnO-Gp and ZnO-Ag), where 0.3 g/L ternary (ZnO-Ag-Gp) exhibited maximum degradation efficiency (98%) within 60 min for 5 mg/L CIP. Pseudo 1st order reaction kinetics rate was found highest for ZnO-Ag-Gp (0.05983 min-1) and it decreased to 0.03428 min-1 for annealed sample. Removal efficiency decreased to only 90.97% at 5th run and hydroxyl radicals played a vital role to degrade CIP from aqueous solution. UV/ZnO-Ag-Gp will be a promising technique to degrade wide-ranging pharmaceutical antibiotics from the aquatic medium.
Collapse
Affiliation(s)
- Tanu Shree Roy
- Department of Physics, Bangladesh University of Textiles, Dhaka, Bangladesh,Department of Physics, Jahangirnagar University, Savar Union, Bangladesh
| | - Surya Akter
- Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh,Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Monabbir Rafsan Fahim
- Department of Textile Engineering Management, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md. Abdul Gafur
- Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh,Corresponding author.
| | - Tahmina Ferdous
- Department of Physics, Jahangirnagar University, Savar Union, Bangladesh
| |
Collapse
|
121
|
Thebti A, Meddeb A, Ben Salem I, Bakary C, Ayari S, Rezgui F, Essafi-Benkhadir K, Boudabous A, Ouzari HI. Antimicrobial Activities and Mode of Flavonoid Actions. Antibiotics (Basel) 2023; 12:225. [PMID: 36830135 PMCID: PMC9952116 DOI: 10.3390/antibiotics12020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The emergence of antibiotics-resistant bacteria has been a serious concern for medical professionals over the last decade. Therefore, developing new and effective antimicrobials with modified or different modes of action is a continuing imperative. In this context, our study focuses on evaluating the antimicrobial activity of different chemically synthesized flavonoids (FLAV) to guide the chemical synthesis of effective antimicrobial molecules. A set of 12 synthesized molecules (4 chalcones, 4 flavones and 4 flavanones), bearing substitutions with chlorine and bromine groups at the C6' position and methoxy group at the C4' position of the B-ring were evaluated for antimicrobial activity toward 9 strains of Gram-positive and Gram-negative bacteria and 3 fungal strains. Our findings showed that most tested FLAV exhibited moderate to high antibacterial activity, particularly against Staphylococcus aureus with minimum inhibitory concentrations (MIC) between the range of 31.25 and 125 μg/mL and that chalcones were more efficient than flavones and flavanones. The examined compounds were also active against the tested fungi with a strong structure-activity relationship (SAR). Interestingly, leakage measurements of the absorbent material at 260 nm and scanning electron microscopy (SEM) demonstrated that the brominated chalcone induced a significant membrane permeabilization of S. aureus.
Collapse
Affiliation(s)
- Amal Thebti
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| | - Ahmed Meddeb
- Laboratory of Structural Organic Chemistry and Macromolecular, LR99ES14, University of Tunis-El Manar, El-Manar I, Tunis 2092, Tunisia
| | - Issam Ben Salem
- Laboratory of Microbiology and LNR-Mycology, University Hospital of Abderahman Mami, Ariana 2038, Tunisia
| | - Coulibaly Bakary
- Environment and Agrifood Laboratory (ENVAL), Contaminant Group, Abidjan 21 BP 950, Côte d’Ivoire
| | - Sami Ayari
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| | - Farhat Rezgui
- Laboratory of Structural Organic Chemistry and Macromolecular, LR99ES14, University of Tunis-El Manar, El-Manar I, Tunis 2092, Tunisia
| | - Khadija Essafi-Benkhadir
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Pasteur Institute of Tunis, University of Tunis El-Manar, Tunis 1002, Tunisia
| | - Abdellatif Boudabous
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, LR03ES03, Faculty of Sciences of Tunis, University of Tunis-El Manar, El Manar I, Tunis 2092, Tunisia
| |
Collapse
|
122
|
Fluoroquinolones Are Useful as Directed Treatment for Complicated UTI in a Setting with a High Prevalence of Quinolone-Resistant Microorganisms. Antibiotics (Basel) 2023; 12:antibiotics12010183. [PMID: 36671384 PMCID: PMC9854898 DOI: 10.3390/antibiotics12010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Fluoroquinolones (FQs) have been widely used for treating urinary tract infections (UTIs); however, the increasing emergence of resistant strains has compromised their use. We aimed to know the usefulness of FQs for the treatment of community-acquired UTI in a setting with a high prevalence of fluoroquinolone-resistant microorganisms. A prospective observational study of patients diagnosed with community-acquired UTI was conducted, in which their outcomes according to whether they had FQs or not in their empirical and directed treatments were compared. A multivariate analysis was performed to identify risk factors for UTIs due to ciprofloxacin-resistant microorganisms. A total of 419 patients were included; 162 (38.7%) patients were treated with FQs, as empirical treatment in 27 (6.4%), and as directed treatment in 135 (32.2%). In-hospital mortality (2.2% vs. 6.6%, p 0.044) and 30-day mortality (4.4 vs. 11%, p 0.028) were both lower in the group of patients directly treated with FQ, while there were no differences when FQs were used as empirical treatment. A total of 37.2% of the cases were resistant to ciprofloxacin, which was associated with healthcare-associated UTI (OR 2.7, 95% CI 2-3.7) and prior exposure to FQs (OR 2.7, 95 % CI 1.9-3.7). In conclusion, our findings show that in a setting with a high prevalence of community-acquired UTI caused by quinolone-resistant microorganisms, FQs as directed treatment for community-acquired UTI were associated with better outcomes than other antibiotics, but their use as empirical treatment is not indicated, even in those cases without risk factors for quinolones resistance.
Collapse
|
123
|
Chen X, Cheng Z, Chen G, Yang Y, Sun P. Structural and antimicrobial property changes of veterinary antibiotics in thermal treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120519. [PMID: 36347415 DOI: 10.1016/j.envpol.2022.120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Agricultural application contributes major consumption of antibiotics worldwide. As veterinary antibiotics are poorly metabolized by animals, most of them end up in agricultural waste, which is increasingly subject to thermal treatment, such as torrefaction, pyrolysis, etc. However, there is a lack of research on their thermal decomposition mechanisms and products elucidation. Therefore, this study investigated the thermal decomposition of four major veterinary antibiotics groups (β-lactams, tetracyclines, fluoroquinolones, sulfonamides) with emphasis on their thermal stability, structural transformation and antibacterial activity. Results show that thermal treatment can remove the parent antibiotics with their antibacterial activity except for gatifloxacin (GAT). Although the parent form of GAT was fully removed at 200 °C, its products showed significant antibacterial activity against E. coli. We present novel evidence that the PhO-CH3 chemical bond on GAT preferentially brake to generate methyl radical, which underwent a substitution reaction at the para position of phenol. This reaction also occurred during the thermal decomposition of antibiotic analogues, balofloxacin and moxifloxacin, whose thermolysis products also showed significant antibacterial activity. Furthermore, these thermolysis products may present potentially cardiotoxic and pose higher risks to human health than their parent forms, based on the comparison with a group of drugs withdrawn from the market.
Collapse
Affiliation(s)
- Xi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
124
|
Li Y, Kumar S, Zhang L, Wu H, Wu H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Med (Wars) 2023; 18:20230707. [PMID: 37197355 PMCID: PMC10183727 DOI: 10.1515/med-2023-0707] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen that can cause a range of infections in hospitalized patients. With the growing use of antibiotics, MDR K. pneumoniae is more prevalent, posing additional difficulties and obstacles in clinical therapy. To provide a valuable reference to deeply understand K. pneumoniae, and also to provide the theoretical basis for clinical prevention of such bacteria infections, the antibiotic resistance and mechanism of K. pneumoniae are discussed in this article. We conducted a literature review on antibiotic resistance of K. pneumoniae. We ran a thorough literature search of PubMed, Web of Science, and Scopus, among other databases. We also thoroughly searched the literature listed in the papers. We searched all antibiotic resistance mechanisms and genes of seven important antibiotics used to treat K. pneumoniae infections. Antibiotics such as β-lactams, aminoglycosides, and quinolones are used in the treatment of K. pneumoniae infection. With both chromosomal and plasmid-encoded ARGs, this pathogen has diverse resistance genes. Carbapenem resistance genes, enlarged-spectrum β-lactamase genes, and AmpC genes are the most often β-lactamase resistance genes. K. pneumoniae is a major contributor to antibiotic resistance worldwide. Understanding K. pneumoniae antibiotic resistance mechanisms and molecular characteristics will be important for the design of targeted prevention and novel control strategies against this pathogen.
Collapse
Affiliation(s)
- Yanping Li
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
- Post Graduate Centre, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Selangor, Malaysia
| | - Suresh Kumar
- Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| | - Lihu Zhang
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongyan Wu
- Pharmacy Department, Jiangsu Vocational College of Medicine, 224005Yancheng, Jiangsu Province, China
| |
Collapse
|
125
|
Selvarajan R, Obize C, Sibanda T, Abia ALK, Long H. Evolution and Emergence of Antibiotic Resistance in Given Ecosystems: Possible Strategies for Addressing the Challenge of Antibiotic Resistance. Antibiotics (Basel) 2022; 12:28. [PMID: 36671228 PMCID: PMC9855083 DOI: 10.3390/antibiotics12010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Antibiotics were once considered the magic bullet for all human infections. However, their success was short-lived, and today, microorganisms have become resistant to almost all known antimicrobials. The most recent decade of the 20th and the beginning of the 21st century have witnessed the emergence and spread of antibiotic resistance (ABR) in different pathogenic microorganisms worldwide. Therefore, this narrative review examined the history of antibiotics and the ecological roles of antibiotics, and their resistance. The evolution of bacterial antibiotic resistance in different environments, including aquatic and terrestrial ecosystems, and modern tools used for the identification were addressed. Finally, the review addressed the ecotoxicological impact of antibiotic-resistant bacteria and public health concerns and concluded with possible strategies for addressing the ABR challenge. The information provided in this review will enhance our understanding of ABR and its implications for human, animal, and environmental health. Understanding the environmental dimension will also strengthen the need to prevent pollution as the factors influencing ABR in this setting are more than just antibiotics but involve others like heavy metals and biocides, usually not considered when studying ABR.
Collapse
Affiliation(s)
- Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chinedu Obize
- Centre d’étude de la Forêt, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Timothy Sibanda
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Akebe Luther King Abia
- Department of Microbiology, Venda University, Thohoyando 1950, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| | - Haijun Long
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
126
|
Increased Expression of Efflux Pump norA Drives the Rapid Evolutionary Trajectory from Tolerance to Resistance against Ciprofloxacin in Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0059422. [PMID: 36445128 PMCID: PMC9765010 DOI: 10.1128/aac.00594-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The intensively intermittent use of antibiotics promotes the rapid evolution of tolerance, which may lead to resistance acquisition in the following evolutionary trajectory. In addition to directly exporting antibiotics as an instant resistance strategy, efflux pumps are overexpressed in tolerant strains. To investigate how efflux pumps participate in resistance development from tolerance to resistance, we performed in vitro evolutional experiments against the antibiotic ciprofloxacin in norA efflux pump mutants of Staphylococcus aureus. These experiments demonstrated that overexpression of norA rapidly facilitated the development of ciprofloxacin resistance from tolerance to resistance through elevated spontaneous mutations. The generated resistance mutations were further fixed in the population by increasing survival ability. The observed Ser80Phe and Glu84Lys mutations in the topoisomerase IV ParC (GrlA in S. aureus) may be responsible for tolerant strains to develop resistance to ciprofloxacin since it has been reported that such mutations disrupt the water-metal ion bridge between quinolones and ParC. MepA and Sav1866 are related to the same antibiotic (ciprofloxacin) susceptibility as NorA, and they also contributed to resistance development against ciprofloxacin. MgrA positively regulated NorA expression and the development of ciprofloxacin resistance. Importantly, blocking the evolutionary pathway by coadministering ciprofloxacin with the efflux pump inhibitor reserpine effectively delayed the resistance acquisition in an in vitro experiment. This study illustrated the role of efflux pumps in the evolutionary trajectory from tolerance to resistance. The delayed resistance development caused by the efflux pump inhibitor illuminates a possible strategy for postponing the resistance acquisition from tolerance to resistance by disrupting efflux pumps.
Collapse
|
127
|
Bhatt S, Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation - A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120440. [PMID: 36265724 DOI: 10.1016/j.envpol.2022.120440] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics play an essential role in the medical healthcare world, but their widespread usage and high prevalence have posed negative environmental consequences. During the past few decades, various antibiotic drugs have been detected in aquatic and terrestrial ecosystems. Among them, the Fluoroquinolones (FQ) group is ubiquitous in the environment and has emerged as a major environmental pollutant. FQs are very significant, broad-spectrum antibiotics used in treating various pathogenic diseases of humans and animals. The most known and used FQs are ciprofloxacin, norfloxacin, ofloxacin, levofloxacin, enrofloxacin, danofloxacin, and moxifloxacin. After human and animal administration, about 70% of these drugs are excreted out in unaltered form into the environment. Besides, wastewater discharge from pharmaceutical industries, hospitals, and agriculture runoff is the major contributor to the accumulation of FQs into the ecosystem. Their long-term presence in the environment creates selection pressure on microorganisms and contributes to the emergence of multi-drug-resistant bacteria. In addition to the resistance, these antibiotics also impose ecotoxicological effects on various animals and plant species. The presence of the fluorine atom in Fluoroquinolones makes them highly electronegative, strong, recalcitrant, and less compatible with microbial degradation. Many biological and chemical processes have been invented and successfully implemented during the past few decades for the elimination of these pollutants from the environment. This review provides a detailed overview of the classification, occurrence, distribution, and ecotoxicological effects of Fluoroquinolones. Their modes of action, resistance mechanism, detection and analysis methods, and remediation strategies have also been discussed in detail.
Collapse
Affiliation(s)
- Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India; Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India.
| |
Collapse
|
128
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
129
|
Alfonso EE, Troche R, Deng Z, Annamalai T, Chapagain P, Tse-Dinh YC, Leng F. Potent Inhibition of Bacterial DNA Gyrase by Digallic Acid and Other Gallate Derivatives. ChemMedChem 2022; 17:e202200301. [PMID: 36161274 PMCID: PMC9742164 DOI: 10.1002/cmdc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Indexed: 01/14/2023]
Abstract
Bacterial DNA gyrase, an essential enzyme, is a validated target for discovering and developing new antibiotics. Here we screened a pool of polyphenols and discovered that digallic acid is a potent DNA gyrase inhibitor. We also found that several food additives based on gallate, such as dodecyl gallate, potently inhibit bacterial DNA gyrase. Interestingly, the IC50 of these gallate derivatives against DNA gyrase is correlated with the length of hydrocarbon chain connecting to the gallate. These new bacterial DNA gyrase inhibitors are ATP competitive inhibitors of DNA gyrase. Our results also show that digallic acid and certain gallate derivatives potently inhibit E. coli DNA topoisomerase IV. Several gallate derivatives have strong antimicrobial activities against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). This study provides a solid foundation for the design and synthesis of gallate-based DNA gyrase inhibitors that may be used to combat antibacterial resistance.
Collapse
Affiliation(s)
- Eddy E Alfonso
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Rogelio Troche
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Zifang Deng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Thirunavukkarasu Annamalai
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem Chapagain
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Physics, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
130
|
Xu B, He J, Zou H, Zhang J, Deng L, Yang M, Liu F. Different responses of representative denitrifying bacterial strains to gatifloxacin exposure in simulated groundwater denitrification environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157929. [PMID: 35952894 DOI: 10.1016/j.scitotenv.2022.157929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The impact of antibiotics on denitrification in the ecological environment has attracted widespread attention. However, the concentration threshold and inhibitory effect of the same antibiotic on denitrification mediated by mixed denitrifying microbes were conflicting in some studies. In this study, Paracoccus denitrificans, Acidovorax sp., and Pseudomonas aeruginosa were selected as representative denitrifying bacterial strains to explore the response of a single strain to gatifloxacin (GAT) exposure in groundwater denitrification. The results showed that the nitrate and nitrite removal efficiencies of Pseudomonas aeruginosa decreased by 34.87-36.25 % and 18.27-23.31 %, respectively, with exposure to 10 μg/L GAT, accompanied by a significant decline in denitrifying enzyme activity and gene expression. In contrast, the elevated denitrifying enzyme activity and gene expression of Paracoccus denitrificans promoted its nitrate and nitrite reduction by 2.09-10.00 % and 0-8.44 %, respectively. Additionally, there were no obvious effects on the removal of nitrate and nitrite by Acidovorax sp. in the presence of 10 μg/L GAT, which was consistent with the variation in denitrifying enzyme activity and total gene expression levels. The fit results of the Monod equation and its modification further elucidated the nitrate degradation characteristics from the perspective of denitrification kinetics. Furthermore, antibiotic resistance gene (ARG) analysis showed that the addition of 10 μg/L GAT (approximately 30 days) did not observably increase the relative abundance of ARGs. This study provides some preliminary understanding of the response differences of representative denitrifying bacterial strains to antibiotic exposure in groundwater denitrification.
Collapse
Affiliation(s)
- Baoshi Xu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China.
| | - Jiangtao He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China.
| | - Hua Zou
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Jingang Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Lu Deng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Meiping Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| | - Fei Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
131
|
Pan Y, Yang H, Wen K, Ke Y, Shen J, Wang Z. Current advances in immunoassays for quinolones in food and environmental samples. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
132
|
Kundar R, Gokarn K. CRISPR-Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria. Pharmaceuticals (Basel) 2022; 15:1498. [PMID: 36558949 PMCID: PMC9781512 DOI: 10.3390/ph15121498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Rapidly emerging drug-resistant superbugs, especially Gram-negative bacteria, pose a serious threat to healthcare systems all over the globe. Newer strategies are being developed to detect and overcome the arsenal of weapons that these bacteria possess. The development of antibiotics is time-consuming and may not provide full proof of action on evolving drug-resistant pathogens. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) systems are promising in curbing drug-resistant bacteria. This review focuses on the pathogenesis of Gram-negative bacteria, emergence of antimicrobial drug resistance, and their treatment failures. It also draws attention to the present status of the CRISPR-Cas system in diagnosisand treatment of Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Rajeshwari Kundar
- Department of Microbiology, Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital & Research Centre, Mumbai 400004, Maharashtra, India
| | - Karuna Gokarn
- Department of Microbiology, Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital & Research Centre, Mumbai 400004, Maharashtra, India
- Department of Microbiology, St. Xavier’s College, 5- Mahapalika Marg, Mumbai 400001, Maharashtra, India
| |
Collapse
|
133
|
de Brito FAE, de Freitas APP, Nascimento MS. Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens 2022; 11:pathogens11121416. [PMID: 36558750 PMCID: PMC9784232 DOI: 10.3390/pathogens11121416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Biofilms are mono- or multispecies microbial communities enclosed in an extracellular matrix (EPS). They have high potential for dissemination and are difficult to remove. In addition, biofilms formed by multidrug-resistant strains (MDRs) are even more aggravated if we consider antimicrobial resistance (AMR) as an important public health issue. Quorum sensing (QS) and horizontal gene transfer (HGT) are mechanisms that significantly contribute to the recalcitrance (resistance and tolerance) of biofilms, making them more robust and resistant to conventional sanitation methods. These mechanisms coordinate different strategies involved in AMR, such as activation of a quiescent state of the cells, moderate increase in the expression of the efflux pump, decrease in the membrane potential, antimicrobial inactivation, and modification of the antimicrobial target and the architecture of the EPS matrix itself. There are few studies investigating the impact of the use of inhibitors on the mechanisms of recalcitrance and its impact on the microbiome. Therefore, more studies to elucidate the effect and applications of these methods in the food production chain and the possible combination with antimicrobials to establish new strategies to control MDR biofilms are needed.
Collapse
|
134
|
Kiratisin P, Arhin FF, Stone G, Utt E. Antimicrobial Activity of Ceftazidime–Avibactam and Comparators Against Fluoroquinolone-Resistant Klebsiella pneumoniae Collected Globally from Antimicrobial Testing Leadership and Surveillance: 2018–2019. Microb Drug Resist 2022; 28:1019-1027. [DOI: 10.1089/mdr.2022.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | | | - Gregory Stone
- Hospital Business Unit, Pfizer, Inc., Groton, Connecticut, USA
| | - Eric Utt
- Hospital Business Unit, Pfizer, Inc., Groton, Connecticut, USA
| |
Collapse
|
135
|
Beltrán M, Sanna A, Quintanilla P, Montes R, Molina M. Quinolones in goats’ milk: effect on the cheese-making process, chemical and microbial characteristics of acid-coagulated cheeses. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
136
|
Kaul G, Karale UB, Akhir A, Shukla M, Saxena D, Rode HB, Chopra S. Pyrvinium pamoate potentiates levofloxacin against levofloxacin-resistant Staphylococcus aureus. Future Microbiol 2022; 17:1475-1486. [DOI: 10.2217/fmb-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Drug repurposing is a viable approach to expediting the tedious conventional drug discovery process, given rapidly increasing bacterial resistance. In this context, we have repurposed pyrvinium pamoate (PP) for its antibacterial activity against Staphylococcus aureus. Methods: US FDA-approved non-antibiotics were screened against clinically relevant bacterial pathogens to identify antibacterials. The hits were further evaluated utilizing a variety of preclinical parameters, following which in vivo efficacy was estimated in isolation and in combination in a murine neutropenic thigh infection model. Result: The screening identified PP exhibiting potent activity against S. aureus along with concentration-dependent killing. PP also showed a post-antibiotic effect of >22 h and significantly eradicated preformed S. aureus biofilms and intracellular S. aureus at 1× and 5× MIC, respectively. PP synergized with levofloxacin both in vitro and in vivo, resulting in ∼1.5 and ∼0.5 log10 CFU/g reduction against susceptible and resistant S. aureus infections, respectively, as compared with untreated control. Conclusion: Pyrvinium potentiates levofloxacin against levofloxacin-resistant S. aureus.
Collapse
Affiliation(s)
- Grace Kaul
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Uttam B Karale
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Abdul Akhir
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Manjulika Shukla
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Haridas B Rode
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| | - Sidharth Chopra
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
137
|
Miranda CD, Concha C, Godoy FA, Lee MR. Aquatic Environments as Hotspots of Transferable Low-Level Quinolone Resistance and Their Potential Contribution to High-Level Quinolone Resistance. Antibiotics (Basel) 2022; 11:1487. [PMID: 36358142 PMCID: PMC9687057 DOI: 10.3390/antibiotics11111487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 08/27/2023] Open
Abstract
The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.
Collapse
Affiliation(s)
- Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Christopher Concha
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1780000, Chile
| | - Félix A. Godoy
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| | - Matthew R. Lee
- Centro i~mar, Universidad de Los Lagos, Puerto Montt 5480000, Chile
| |
Collapse
|
138
|
Low Ciprofloxacin Concentrations Select Multidrug-Resistant Mutants Overproducing Efflux Pumps in Clinical Isolates of Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0072322. [PMID: 36000896 PMCID: PMC9603996 DOI: 10.1128/spectrum.00723-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Low antibiotic concentrations present in natural environments are a severe and often neglected threat to public health. Even if they are present below their MICs, they may select for antibiotic-resistant pathogens. Notably, the minimal subinhibitory concentrations that select resistant bacteria, and define the respective sub-MIC selective windows, differ between antibiotics. The establishment of these selective concentrations is needed for risk-assessment studies regarding the presence of antibiotics in different habitats. Using short-term evolution experiments in a set of 12 Pseudomonas aeruginosa clinical isolates (including high-risk clones with ubiquitous distribution), we have determined that ciprofloxacin sub-MIC selective windows are strain specific and resistome dependent. Nonetheless, in all cases, clinically relevant multidrug-resistant (MDR) mutants emerged upon exposure to low ciprofloxacin concentrations, with these concentrations being below the levels reported in ciprofloxacin-polluted natural habitats where P. aeruginosa can be present. This feature expands the conditions and habitats where clinically relevant quinolone-resistant mutants can emerge. In addition, we established the lowest concentration threshold beyond which P. aeruginosa, regardless of the strain, becomes resistant to ciprofloxacin. Three days of exposure under this sub-MIC "risk concentration" led to the selection of MDR mutants that displayed resistance mechanisms usually ascribed to high selective pressures, i.e., the overproduction of the efflux pumps MexCD-OprJ and MexEF-OprN. From a One-Health viewpoint, these data stress the transcendent role of low drug concentrations, which can be encountered in natural ecosystems, in aggravating the antibiotic resistance problem, especially when it comes to pathogens of environmental origin. IMPORTANCE It has been established that antibiotic concentrations below MICs can select antibiotic-resistant pathogens, a feature of relevance for analyzing the role of nonclinical ecosystems in antibiotic resistance evolution. The range of concentrations where this selection occurs defines the sub-MIC selective window, whose width depends on the antibiotic. Herein, we have determined the ciprofloxacin sub-MIC selective windows of a set of Pseudomonas aeruginosa clinical isolates (including high-risk clones with worldwide distribution) and established the lowest concentration threshold, notably an amount reported to be present in natural ecosystems, beyond which this pathogen acquires resistance. Importantly, our results show that this ciprofloxacin sub-MIC selects for multidrug-resistant mutants overproducing clinically relevant efflux pumps. From a One-Health angle, this information supports that low antimicrobial concentrations, present in natural environments, may have a relevant role in worsening the antibiotic resistance crisis, particularly regarding pathogens with environmental niches, such as P. aeruginosa.
Collapse
|
139
|
Alfonso EE, Deng Z, Boaretto D, Hood BL, Vasile S, Smith LH, Chambers JW, Chapagain P, Leng F. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacol Transl Sci 2022; 5:932-944. [PMID: 36268121 PMCID: PMC9578135 DOI: 10.1021/acsptsci.2c00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.
Collapse
Affiliation(s)
- Eddy E. Alfonso
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Zifang Deng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Daniel Boaretto
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Becky L. Hood
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Vasile
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jeremy W. Chambers
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Environmental Health Sciences, Florida
International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
140
|
Graham LT, Vitale SN, Foss KD, Hague DW, Anderson KM, Maddox CW. Canine brucellosis in three littermates, case report. Front Vet Sci 2022; 9:958390. [PMID: 36277065 PMCID: PMC9583169 DOI: 10.3389/fvets.2022.958390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022] Open
Abstract
Three adult littermates were diagnosed with Brucella canis, two of which were diagnosed with discospondylitis. The first littermate, a 2-year-old spayed-female Labrador Retriever, was evaluated for progressive episodes of cervical pain, lethargy, reported circling to the right, and a right-sided head tilt. Magnetic resonance imaging (MRI) of the cervical spine revealed changes consistent with discospondylitis at C6-C7. MRI of the brain was unremarkable and cerebrospinal fluid analysis was declined. Brucella spp. was isolated from aerobic and Brucella blood cultures. PCR performed on the isolate identified Brucella canis and indirect fluorescent antibody (IFA) testing for Brucella canis also confirmed the species. Patient #1 was treated with doxycycline and marbofloxacin for 1 year. Clinical signs returned 2-years after diagnosis. Following the diagnosis of patient #1, a known littermate (patient #2) was tested for Brucella canis. Patient #2 was 2 years old and asymptomatic at the time of diagnosis. Aerobic and Brucella spp. cultures, PCR, and IFA were obtained and were diagnostic for Brucella canis. A 6-month course of marbofloxacin and doxycycline was implemented. The patient remained PCR positive following 4 months of treatment and repeat cultures were planned following 6 months of treatment; however, the patient was lost to follow-up. A third littermate (patient #3) was identified by the family of patient #1. Patient #3 was evaluated at 18 months of age for a 6-month history of progressive lumbosacral pain. Spinal radiographs revealed discospondylitis of the C3-C4, T12-T13, and L7-S1 vertebral endplates. Computed tomography (CT) of the lumbosacral spine was also consistent with discospondylitis at L7-S1. Brucella canis serologic testing consisting of rapid slide agglutination test, 2ME-rapid slide agglutination test, and cytoplasmic agar gel immunodiffusion was positive. Enrofloxacin was administered for 7 months and was discontinued thereafter based on radiographic evidence of healing and resolution of clinical signs. Although Brucella canis is not a rare disease in dogs, the documentation of two out of three adult littermates with associated discospondylitis is an interesting feature. In addition, this report highlights available diagnostic and treatment options, as each patient was managed differently based on clinical signs and the preference of the managing clinician.
Collapse
Affiliation(s)
- Lindsey T. Graham
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Samantha N. Vitale
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Kari D. Foss
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Devon W. Hague
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States,*Correspondence: Devon W. Hague
| | - Kimberly M. Anderson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Carol W. Maddox
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
141
|
Lu H, Li Z, Zhou Y, Jiang H, Liu Y, Hao C. Horizontal comparison of "red or blue shift" and binding energy of six fluoroquinolones: Fluorescence quenching mechanism, theoretical calculation and molecular modeling method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121383. [PMID: 35597157 DOI: 10.1016/j.saa.2022.121383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
In this article, the interaction between six fluoroquinolones (FQs) and bovine serum albumin (BSA) was initially studied at 298 K, 303 K and 310 K respectively under simulated physiological conditions by fluorescence spectroscopy. At the same time, the sub-structural domains on BSA that may bind to FQs were investigated by molecular docking simulation technique. A combination of quantitative and qualitative approaches was used in the analysis of the binding constants, binding sites and corresponding thermodynamic parameters in the interaction system, it was found that FQs forms a complex with BSA and undergoes static quenching, which is the main cause of fluorescence quenching. The results indicated that hydrogen bonds, Van der Waals force and electrostatic interaction were the main binding forces between the complexes, it also showed that these six fluoroquinolones mainly bound to the IIA and IIIA structural domains of BSA, while DANO and SARA may be more toxic than other antibiotics. Based on Foster's non-radiative energy transfer theory, the binding distance between FQs and BSA was calculated to be less than 7 nm, indicating the existence of energy transfer between small molecule drugs and proteins. Synchronous fluorescence and UV-Vis absorption spectroscopy further confirmed that FQs can alter the secondary conformational change of BSA. Lomefloxacin has a different effect from the other five fluoroquinolone antibiotics because it causes a decrease in polarity and an increase in hydrophobicity around tryptophan residues, while the other five FQs have the opposite effect. Together, the study of FQs-BSA is of great significance to elucidate the pharmacokinetics and pharmacodynamics of FQs.
Collapse
Affiliation(s)
- Haonan Lu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Zishan Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Yongshan Zhou
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Hao Jiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
142
|
Yitayew B, Woldeamanuel Y, Asrat D, Rahman A, Mihret A, Aseffa A, Olsson PE, Jass J. Antimicrobial resistance genes in microbiota associated with sediments and water from the Akaki river in Ethiopia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70040-70055. [PMID: 35583762 PMCID: PMC9512891 DOI: 10.1007/s11356-022-20684-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The spread of antimicrobial-resistant pathogens is a global health concern. Most studies report high levels of antimicrobial resistance genes (ARGs) in the aquatic environment; however, levels associated with sediments are limited. This study aimed to investigate the distribution of ARGs in the sediments and water of the Akaki river in Addis Ababa, Ethiopia. The diversity and abundance of 84 ARGs and 116 clinically important bacteria were evaluated from the sediments and water collected from five sites in the Akaki river. Most of the ARGs were found in the city close to anthropogenic activities. Water samples collected in the middle catchment of the river contained 71-75% of targeted ARGs, with genes encoding aminoglycoside acetyltransferase (aac(6)-Ib-cr), aminoglycoside adenylyl transferase (aadA1), β-lactamase (blaOXA-10), quinolone resistance S (qnrS), macrolide efflux protein A (mefA), and tetracycline resistance (tetA), were detected at all sampling sites. Much fewer ARGs were detected in all sediments, and those near the hospitals had the highest diversity and level. Despite the lower levels and diversity, there were no unique ARGs detected in the sediments that were also not detected in the waters. A wide range of clinically relevant pathogens were also detected in the Akaki river. The findings suggest that the water phase, rather than the sediments in the Akaki river, is a potential conduit for the spread of ARGs and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Berhanu Yitayew
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | | | - Daniel Asrat
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aminur Rahman
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | - Adane Mihret
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Per-Erik Olsson
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden
| | - Jana Jass
- School of Science and Technology, The Life Science Center - Biology, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
143
|
Yusof NY, Norazzman NII, Zaidi NFM, Azlan MM, Ghazali B, Najib MA, Malik AHA, Halim MAHA, Sanusi MNSM, Zainal AA, Aziah I. Prevalence of Antimicrobial Resistance Genes in Salmonella Typhi: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7100271. [PMID: 36288012 PMCID: PMC9611315 DOI: 10.3390/tropicalmed7100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) that has developed resistance to many antimicrobials poses a serious challenge to public health. Hence, this study aimed to systematically determine the prevalence of antimicrobial resistance (AMR) in S. Typhi isolated from the environment and humans as well as to ascertain the spread of the selected AMR genes in S. Typhi. This systematic review and meta-analysis were performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, and the study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO). A total of 2353 studies were retrieved from three databases, of which 42 studies fulfilled the selection criteria. The pooled prevalence of AMR S. Typhi (using a random-effect model) was estimated at 84.8% (95% CI; 77.3−90.2), with high heterogeneity (I2: 95.35%, p-value < 0.001). The high estimated prevalence indicates that control methods should be improved immediately to prevent the spread of AMR among S. Typhi internationally.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (N.Y.Y.); (I.A.)
| | - Nur Iffah Izzati Norazzman
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Fatihah Mohd Zaidi
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mawaddah Mohd Azlan
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Basyirah Ghazali
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Abdul Hafiz Abdul Malik
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | | | - Annur Ashyqin Zainal
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (N.Y.Y.); (I.A.)
| |
Collapse
|
144
|
Samtiya M, Matthews KR, Dhewa T, Puniya AK. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022; 11:2966. [PMID: 36230040 PMCID: PMC9614604 DOI: 10.3390/foods11192966] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) remains of major interest for different types of food stakeholders since it can negatively impact human health on a global scale. Antimicrobial-resistant bacteria and/or antimicrobial resistance genes (transfer in pathogenic bacteria) may contaminate food at any stage, from the field to retail. Research demonstrates that antimicrobial-resistant bacterial infection(s) occur more frequently in low- and middle-income countries (LMICs) than in developed countries. Worldwide, foodborne pathogens are a primary cause of morbidity and mortality. The spread of pathogenic bacteria from food to consumers may occur by direct or indirect routes. Therefore, an array of approaches both at the national and international level to control the spread of foodborne pathogens and promote food safety and security are essential. Zoonotic microbes can spread through the environment, animals, humans, and the food chain. Antimicrobial drugs are used globally to treat infections in humans and animals and prophylactically in production agriculture. Research highlights that foods may become contaminated with AMR bacteria (AMRB) during the continuum from the farm to processing to retail to the consumer. To mitigate the risk of AMRB in humans, it is crucial to control antibiotic use throughout food production, both for animal and crop agriculture. The main inferences of this review are (1) routes by which AMRB enters the food chain during crop and animal production and other modes, (2) prevention and control steps for AMRB, and (3) impact on human health if AMR is not addressed globally. A thorough perspective is presented on the gaps in current systems for surveillance of antimicrobial use in food production and/ or AMR in the food chain.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123029, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123029, India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| |
Collapse
|
145
|
Azzariti S, Bond R, Loeffler A, Zendri F, Timofte D, Chang YM, Pelligand L. Investigation of In Vitro Susceptibility and Resistance Mechanisms in Skin Pathogens: Perspectives for Fluoroquinolone Therapy in Canine Pyoderma. Antibiotics (Basel) 2022; 11:antibiotics11091204. [PMID: 36139982 PMCID: PMC9494949 DOI: 10.3390/antibiotics11091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones (FQ) are commonly used in dogs with bacterial skin infections. Their use as first choice, along with the increased incidence of FQ-resistance, represents a risk to animal and public health. Our study determined minimum inhibitory (MIC) and bactericidal (MBC) concentrations of five FQs in Staphylococcus aureus, Staphylococcus pseudintermedius, and Escherichia coli, together with FQ-resistance mechanisms. MICs, efflux pump (EP) overexpression and MBCs were measured in 249 skin infection isolates following CLSI guidelines (CLSI VET01-A4, CLSI M26-A). Chromosomal and plasmid-mediated resistance genes were investigated after DNA extraction and sequencing. FQ-resistance was detected in 10% of methicillin-susceptible (MS), 90% of methicillin-resistant (MR) staphylococci and in 36% of E. coli. Bactericidal effect was observed except in 50% of MRSA/P for ciprofloxacin and in 20% of MRSPs for enrofloxacin. Highest MICs were associated with double mutation in gyrA (Ser83Leu + Asp87Asn), efflux pumps and three PMQR genes in E. coli, and grlA (Ser80Phe + Glu84Lys) in S. aureus. EP overexpression was high among E. coli (96%), low in S. aureus (1%) and absent in S. pseudintermedius. Pradofloxacin and moxifloxacin showed low MICs with bactericidal effect. Since in vitro FQ resistance was associated with MR, FQ use should be prudently guided by susceptibility testing.
Collapse
Affiliation(s)
- Stefano Azzariti
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Flavia Zendri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Veterinary Microbiology Diagnostic, University of Liverpool Leahurst Campus, Neston CH64 7TE, UK
| | - Dorina Timofte
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Veterinary Microbiology Diagnostic, University of Liverpool Leahurst Campus, Neston CH64 7TE, UK
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Ludovic Pelligand
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
- Correspondence:
| |
Collapse
|
146
|
Shu Y, Zhang Q, He X, Liu Y, Wu P, Chen L. Fluoroquinolone-associated suspected tendonitis and tendon rupture: A pharmacovigilance analysis from 2016 to 2021 based on the FAERS database. Front Pharmacol 2022; 13:990241. [PMID: 36147351 PMCID: PMC9486157 DOI: 10.3389/fphar.2022.990241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: The objective of this study was to scientifically and systematically explore the association between fluoroquinolones (ciprofloxacin, levofloxacin, and moxifloxacin) and tendonitis and tendon rupture through the Food and Drug Administration Adverse Event Reporting System (FAERS) database. Methods: Disproportionality analysis was used to quantify the signals of fluoroquinolone-associated suspected tendonitis and tendon rupture based on the FAERS data from January 2016 to March 2021. Clinical characteristics, the onset time, oral and intravenous administrations, and the serious outcomes of fluoroquinolone-associated tendonitis and tendon rupture were further analyzed. Results: Out of 35,667 fluoroquinolone-associated adverse events recorded in the FAERS database during the study period, 1,771 tendonitis and 1,018 tendon ruptures induced by fluoroquinolones as the suspected drug were analyzed, with a median age of 49.88–63.87 years. All three fluoroquinolones detected positive signals of tendonitis and tendon rupture in the four methods. Ciprofloxacin had the strongest statistical association with tendonitis with the highest positive signal values (ROR 98.50, PRR 93.25, IC 6.15, and EBGM 76.80), while levofloxacin showed the strongest statistical association with tendon rupture (ROR 76.38, PRR 73.75, IC 5.84, and EBGM 63.89). Compared with ciprofloxacin and levofloxacin, moxifloxacin was relatively weakly associated with tendonitis and tendon rupture. Oral fluoroquinolone-induced tendonitis and tendon rupture had a stronger signal strength than intravenous administration. The majority of fluroquinolone-related suspected tendonitis and tendon rupture tended to occur within a few days or one month. As for the disability rate of tendonitis, ciprofloxacin counted the highest (n = 461, 50.94%), with moxifloxacin the lowest (n = 20, 29.41%). Conclusion: Fluoroquinolone-induced tendonitis and tendon rupture tended to occur early and might result in serious outcomes. Our study provided valuable references for early identification of the risk of fluoroquinolone-induced tendonitis and tendon rupture.
Collapse
Affiliation(s)
- Yamin Shu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xucheng He
- Department of Pharmacy, Pengzhou Second People’s Hospital, Pengzhou, China
| | - Yanxin Liu
- Department of Pharmacy, Pengzhou People’s Hospital, Pengzhou, China
| | - Pan Wu
- Department of Pharmacy, Chengfei Hospital, Chengdu, China
| | - Li Chen
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Li Chen,
| |
Collapse
|
147
|
Bawn M, Hernandez J, Trampari E, Thilliez G, Quince C, Webber MA, Kingsley RA, Hall N, Macaulay IC. Single-cell genomics reveals population structures from in vitro evolutionary studies of Salmonella. Microb Genom 2022; 8:mgen000871. [PMID: 36125951 PMCID: PMC9676037 DOI: 10.1099/mgen.0.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Single-cell DNA sequencing has the potential to reveal detailed hierarchical structures in evolving populations of cells. Single cell approaches are increasingly used to study clonal evolution in human ageing and cancer but have not yet been deployed to study evolving clonal microbial populations. Here, we present an approach for single bacterial genomic analysis for in vitro evolution experiments using FACS isolation of individual bacteria followed by whole-genome amplification and sequencing. We apply this to the experimental evolution of a hypermutator strain of Salmonella in response to antibiotic stress (ciprofloxacin). By analysing sequence polymorphisms in individual cells from populations we identified the presence and prevalence of sub-populations which have acquired polymorphisms in genes previously demonstrated to be associated with ciprofloxacin susceptibility. We were also able to identify that the population exposed to antibiotic stress was able to develop resistance whilst maintaining diversity. This population structure could not be resolved from bulk sequence data, and our results show how high-throughput single-cell sequencing can enhance experimental studies of bacterial evolution.
Collapse
Affiliation(s)
- Matt Bawn
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | | | - Gaetan Thilliez
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Christopher Quince
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mark A. Webber
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Robert A. Kingsley
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
148
|
Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci Biotechnol 2022; 31:1481-1499. [PMID: 36065433 PMCID: PMC9435411 DOI: 10.1007/s10068-022-01157-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.
Collapse
|
149
|
Wu Y, Zhong D, Qiu Q, Yan X, Wu D. Nanoporous Polyimide Microspheres Solid Phase Extraction Coupled to Liquid Chromatography with Fluorescence Detection to Determine Fluoroquinolones in Water and Food Samples. Chromatographia 2022. [DOI: 10.1007/s10337-022-04196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Hemez C, Clarelli F, Palmer AC, Bleis C, Abel S, Chindelevitch L, Cohen T, Abel zur Wiesch P. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput Struct Biotechnol J 2022; 20:4688-4703. [PMID: 36147681 PMCID: PMC9463365 DOI: 10.1016/j.csbj.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic's mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of existing ones. To this end, we developed a model that links bacterial population dynamics with antibiotic-target binding kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-scale experimental data and to quantify the interplay between drug mechanism and resistance selection. We find that both bacteriostatic and bactericidal agents can be equally effective at suppressing the selection of resistant mutants, but that key determinants of resistance selection are the relationships between the number of drug-inactivated targets within a cell and the rates of cellular growth and death. We also show that heterogeneous drug-target binding within a population enables resistant bacteria to evolve fitness-improving secondary mutations even when drug doses remain above the resistant strain's minimum inhibitory concentration. Our work suggests that antibiotic doses beyond this "secondary mutation selection window" could safeguard against the emergence of high-fitness resistant strains during treatment.
Collapse
Affiliation(s)
- Colin Hemez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Fabrizio Clarelli
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina Bleis
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sören Abel
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| | - Leonid Chindelevitch
- Department of Infectious Disease Epidemiology, Imperial College, London SW7 2AZ, UK
| | - Theodore Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Pia Abel zur Wiesch
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| |
Collapse
|