101
|
Zerti D, Collin J, Queen R, Cockell SJ, Lako M. Understanding the complexity of retina and pluripotent stem cell derived retinal organoids with single cell RNA sequencing: current progress, remaining challenges and future prospective. Curr Eye Res 2020; 45:385-396. [PMID: 31794277 PMCID: PMC7034531 DOI: 10.1080/02713683.2019.1697453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Single-cell sequencing technologies have emerged as a revolutionary tool with transformative new methods to profile genetic, epigenetic, spatial, and lineage information in individual cells. Single-cell RNA sequencing (scRNA-Seq) allows researchers to collect large datasets detailing the transcriptomes of individual cells in space and time and is increasingly being applied to reveal cellular heterogeneity in retinal development, normal physiology, and disease, and provide new insights into cell-type specific markers and signaling pathways. In recent years, scRNA-Seq datasets have been generated from retinal tissue and pluripotent stem cell-derived retinal organoids. Their cross-comparison enables staging of retinal organoids, identification of specific cells in developing and adult human neural retina and provides deeper insights into cell-type sub-specification and geographical differences. In this article, we review the recent rapid progress in scRNA-Seq analyses of retina and retinal organoids, the questions that remain unanswered and the technical challenges that need to be overcome to achieve consistent results that reflect the complexity, functionality, and interactions of all retinal cell types.
Collapse
Affiliation(s)
- Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Rachel Queen
- Bioinformatics Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Simon J. Cockell
- Bioinformatics Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
102
|
Javed A, Mattar P, Lu S, Kruczek K, Kloc M, Gonzalez-Cordero A, Bremner R, Ali RR, Cayouette M. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development 2020; 147:dev.188730. [DOI: 10.1242/dev.188730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022]
Abstract
Multipotent retinal progenitor cells (RPCs) generate various cell types in a precise chronological order, but how exactly cone photoreceptor production is restricted to early stages remains unclear. Here, we show that the POU-homeodomain factors Pou2f1/Pou2f2, the homologs of Drosophila temporal identity factors nub/pdm2, regulate the timely production of cones in mice. Forcing sustained expression of Pou2f1 or Pou2f2 in RPCs expands the period of cone production, whereas misexpression in late-stage RPCs triggers ectopic cone production at the expense of late-born fates. Mechanistically, we report that Pou2f1 induces Pou2f2 expression, which binds to a POU motif in the promoter of the rod-inducing factor Nrl to repress its expression. Conversely, conditional inactivation of Pou2f2 in RPCs increases Nrl expression and reduces cone production. Finally, we provide evidence that Pou2f1 is part of a cross-regulatory cascade with the other temporal identity factors Ikzf1 and Casz1. These results uncover Pou2f1/2 as regulators of the temporal window for cone genesis and, given their widespread expression in the nervous system, raise the possibility of a general role in temporal patterning.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
- Molecular Biology Program, Université de Montréal, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
| | - Suying Lu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. Department of Ophthalmology and Vision Science, Department of Lab Medicine and Pathobiology, University of Toronto
| | | | | | | | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. Department of Ophthalmology and Vision Science, Department of Lab Medicine and Pathobiology, University of Toronto
| | - Robin R. Ali
- UCL Institute of Ophthalmology, London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
- Molecular Biology Program, Université de Montréal, Canada
- Department of Medicine, Université de Montréal, Canada
- Department of Anatomy and Cell Biology; Division of Experimental Medicine, McGill University, Canada
| |
Collapse
|
103
|
The Temporal Neurogenesis Patterning of Spinal p3-V3 Interneurons into Divergent Subpopulation Assemblies. J Neurosci 2019; 40:1440-1452. [PMID: 31826942 DOI: 10.1523/jneurosci.1518-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Neuronal diversity provides the spinal cord with the functional flexibility required to perform complex motor tasks. Spinal neurons arise during early embryonic development with the establishment of spatially and molecularly discrete progenitor domains that give rise to distinct, but highly heterogeneous, postmitotic interneuron (IN) populations. Our previous studies have shown that Sim1-expressing V3 INs, originating from the p3 progenitor domain, are anatomically and physiologically divergent. However, the developmental logic guiding V3 subpopulation diversity remains elusive. In specific cases of other IN classes, neurogenesis timing can play a role in determining the ultimate fates and unique characteristics of distinctive subpopulations. To examine whether neurogenesis timing contributes to V3 diversity, we systematically investigated the temporal neurogenesis profiles of V3 INs in the mouse spinal cord. Our work uncovered that V3 INs were organized into either early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves. Early-born V3 INs displayed both ascending and descending commissural projections and clustered into subgroups across dorsoventral spinal laminae. In contrast, late-born V3 INs became fate-restricted to ventral laminae and displayed mostly descending and local commissural projections and uniform membrane properties. Furthermore, we found that the postmitotic transcription factor, Sim1, although expressed in all V3 INs, exclusively regulated the dorsal clustering and electrophysiological diversification of early-born, but not late-born, V3 INs, which indicates that neurogenesis timing may enable newborn V3 INs to interact with different postmitotic differentiation pathways. Thus, our work demonstrates neurogenesis timing as a developmental mechanism underlying the postmitotic differentiation of V3 INs into distinct subpopulation assemblies.SIGNIFICANCE STATEMENT Interneuron (IN) diversity empowers the spinal cord with the computation flexibility required to perform appropriate sensorimotor control. As such, uncovering the developmental logic guiding spinal IN diversity is fundamental to understanding the development of movement. In our current work, through a focus on the cardinal spinal V3 IN population, we investigated the role of neurogenesis timing on IN diversity. We uncovered that V3 INs are organized into early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves, where late-born V3 INs display increasingly restricted subpopulation fates. Next, to better understand the consequences of V3 neurogenesis timing, we investigated the time-dependent functions of the Sim1 transcription factor, which is expressed in postmitotic V3 INs. Interestingly, Sim1 exclusively regulated the diversification of early-born, but not late-born, V3 INs. Thus, our current work indicates neurogenesis timing can modulate the functions of early postmitotic transcription factors and, thus, subpopulation fate specifications.
Collapse
|
104
|
Seritrakul P, Gross JM. Genetic and epigenetic control of retinal development in zebrafish. Curr Opin Neurobiol 2019; 59:120-127. [PMID: 31255843 PMCID: PMC6888853 DOI: 10.1016/j.conb.2019.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
The vertebrate retina is a complex structure composed of seven cell types (six neuron and one glia), and all of which originate from a seemingly homogeneous population of proliferative multipotent retinal progenitor cells (RPCs) that exit the cell cycle and differentiate in a spatio-temporally regulated and stereotyped fashion. This neurogenesis process requires intricate genetic regulation involving a combination of cell intrinsic transcription factors and extrinsic signaling molecules, and many critical factors have been identified that influence the timing and composition of the developing retina. Adding complexity to the process, over the past decade, a variety of epigenetic regulatory mechanisms have been shown to influence neurogenesis, and these include changes in histone modifications and the chromatin landscape and changes in DNA methylation and hydroxymethylation patterns. This review summarizes recent findings in the genetic and epigenetic regulation of retinal development, with an emphasis on the zebrafish model system, and it outlines future areas of investigation that will continue to push the field forward into the epigenomics era.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Phetchaburi, 76120, Thailand.
| | - Jeffrey M Gross
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States.
| |
Collapse
|
105
|
Brooks MJ, Chen HY, Kelley RA, Mondal AK, Nagashima K, De Val N, Li T, Chaitankar V, Swaroop A. Improved Retinal Organoid Differentiation by Modulating Signaling Pathways Revealed by Comparative Transcriptome Analyses with Development In Vivo. Stem Cell Reports 2019; 13:891-905. [PMID: 31631019 PMCID: PMC6895716 DOI: 10.1016/j.stemcr.2019.09.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/31/2023] Open
Abstract
Stem cell-derived retinal organoids recapitulate many landmarks of in vivo differentiation but lack functional maturation of distinct cell types, especially photoreceptors. Using comprehensive temporal transcriptome analyses, we show that transcriptome shift from postnatal day 6 (P6) to P10, associated with morphogenesis and synapse formation during mouse retina development, was not evident in organoids, and co-expression clusters with similar patterns included different sets of genes. Furthermore, network analysis identified divergent regulatory dynamics between developing retina in vivo and in organoids, with temporal dysregulation of specific signaling pathways and delayed or reduced expression of genes involved in photoreceptor function(s) and survival. Accordingly, addition of docosahexaenoic acid and fibroblast growth factor 1 to organoid cultures specifically promoted the maturation of photoreceptors, including cones. Our study thus identifies regulatory signals deficient in developing retinal organoids and provides experimental validation by producing a more mature retina in vitro, thereby facilitating investigations in disease modeling and therapies.
Collapse
Affiliation(s)
- Matthew J Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Holly Y Chen
- Neurobiology-Neurodegeneration and Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan A Kelley
- Neurobiology-Neurodegeneration and Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anupam K Mondal
- Neurobiology-Neurodegeneration and Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Natalia De Val
- Electron Microscopy Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tiansen Li
- Neurobiology-Neurodegeneration and Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration and Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
106
|
Ferdous S, Grossniklaus HE, Boatright JH, Nickerson JM. Characterization of LSD1 Expression Within the Murine Eye. Invest Ophthalmol Vis Sci 2019; 60:4619-4631. [PMID: 31675426 PMCID: PMC6827424 DOI: 10.1167/iovs.19-26728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose The purpose of this study was to extend the current understanding of endogenous lysine-specific demethylase 1 (LSD1) expression spatially and temporally in the retina. Toward that end, we determined the localization and levels of LSD1 and its substrates H3K4me1 and H3K4me2 (H3K4me1/2) within the murine eye. Methods Immunofluorescent microscopy for LSD1, H3K4me1, and H3K4me2 was conducted on murine formalin-fixed paraffin-embedded eye sections across development in addition to Western immunoblotting to assess localization and protein levels. Results Retinal LSD1 protein levels were highest at postnatal day 7 (P7), whereas its substrates H3K4me1 and H3K4me2 had equally high levels at P2 and P14. Concentrations of all three proteins gradually decreased over developmental time until reaching a basement level of ∼60% of maximum at P36. LSD1 and H3K4me1/2 were expressed uniformly in all retinal progenitor cells. By P36, there was variability in LSD1 expression in the ganglion cell layer, uniform expression in the inner nuclear layer, and dichotomous expression between photoreceptors in the outer nuclear layer. This contrasted with H3K4me1/2 expression, which remained uniform. Additionally, LSD1 was widely expressed in the lens, cornea, and retinal pigment epithelium. Conclusions Consistent with its known role in neuronal differentiation, LSD1 is highly and uniformly expressed throughout all retinal progenitor cells. Variability in LSD1 expression, particularly in photoreceptors, may be indicative of their unique transcriptomes and epigenetic patterns of rods and cones. Murine rod nuclei exhibit LSD1 expression in a ring or shell, rather than throughout the nucleus, consistent with their unique inverted chromatin organization. LSD1 has substantial expression throughout adulthood, especially in cone nuclei. By providing insight into endogenous LSD1 expression, our current findings could directly inform future studies to determine the exact role of Lsd1 in the development and maintenance of specific structures and cell types within the eye.
Collapse
Affiliation(s)
- Salma Ferdous
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | | | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
107
|
Gong Y, He X, Li Q, He J, Bian B, Li Y, Ge L, Zeng Y, Xu H, Yin ZQ. SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development 2019; 146:dev.174409. [PMID: 31548215 DOI: 10.1242/dev.174409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
The stem cell factor receptor (SCFR) has been demonstrated to be expressed in the neural retina of mice, rat and human for decades. Previous reports indicated that the SCFR correlates with glia differentiation of late retinal progenitor cells (RPCs), retinal vasculogenesis and homeostasis of the blood-retinal barrier. However, the role of SCF/SCFR signaling in the growth and development of the neural retina (NR), especially in the early embryonic stage, remains poorly understood. Here, we show that SCF/SCFR signaling orchestrates invagination of the human embryonic stem cell (hESC)-derived NR via regulation of cell cycle progression, cytoskeleton dynamic and apical constriction of RPCs in the ciliary marginal zone (CMZ). Furthermore, activation of SCF/SCFR signaling promotes neurogenesis in the central-most NR via acceleration of the migration of immature ganglion cells and repressing apoptosis. Our study reveals an unreported role for SCF/SCFR signaling in controlling ciliary marginal cellular behaviors during early morphogenesis and neurogenesis of the human embryonic NR, providing a new potential therapeutic target for human congenital eye diseases such as anophthalmia, microphthalmia and congenital high myopia.
Collapse
Affiliation(s)
- Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Xiangyu He
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Qiyou Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Juncai He
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Baishijiao Bian
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yijian Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Linlin Ge
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Yuxiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Haiwei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| | - Zheng Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, PR China
| |
Collapse
|
108
|
Lo Giudice Q, Leleu M, La Manno G, Fabre PJ. Single-cell transcriptional logic of cell-fate specification and axon guidance in early-born retinal neurons. Development 2019; 146:dev.178103. [PMID: 31399471 DOI: 10.1242/dev.178103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs), cone photoreceptors (cones), horizontal cells and amacrine cells are the first classes of neurons produced in the retina. However, an important question is how this diversity of cell states is transcriptionally produced. Here, we profiled 6067 single retinal cells to provide a comprehensive transcriptomic atlas showing the diversity of the early developing mouse retina. RNA velocities unveiled the dynamics of cell cycle coordination of early retinogenesis and define the transcriptional sequences at work during the hierarchical production of early cell-fate specification. We show that RGC maturation follows six waves of gene expression, with older-generated RGCs transcribing increasing amounts of guidance cues for young peripheral RGC axons that express the matching receptors. Spatial transcriptionally deduced features in subpopulations of RGCs allowed us to define novel molecular markers that are spatially restricted. Finally, the isolation of such a spatially restricted population, ipsilateral RGCs, allowed us to identify their molecular identity at the time they execute axon guidance decisions. Together, these data represent a valuable resource shedding light on transcription factor sequences and guidance cue dynamics during mouse retinal development.
Collapse
Affiliation(s)
- Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Marion Leleu
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gioele La Manno
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre J Fabre
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
109
|
JNK1 Induces Notch1 Expression to Regulate Genes Governing Photoreceptor Production. Cells 2019; 8:cells8090970. [PMID: 31450635 PMCID: PMC6769813 DOI: 10.3390/cells8090970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) regulate cell proliferation and differentiation via phosphorylating such transcription factors as c-Jun. The function of JNKs in retinogenesis remains to be elucidated. Here, we report that knocking out Jnk1, but not Jnk2, increased the number of photoreceptors, thus enhancing the electroretinogram (ERG) responses. Intriguingly, Notch1, a well-established negative regulator of photoreceptor genesis, was significantly attenuated in Jnk1 knockout (KO) mice compared to wild-type mice. Mechanistically, light specifically activated JNK1 to phosphorylate c-Jun, which in turn induced Notch1 transcription. The identified JNK1–c-Jun–Notch1 axis strongly inhibited photoreceptor-related transcriptional factor expression and ultimately impaired photoreceptor opsin expression. Our study uncovered an essential function of JNK1 in retinogenesis, revealing JNK1 as a potential candidate for targeting ophthalmic diseases.
Collapse
|
110
|
Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signalling in retinal progenitor cells leads to visual pathway dysfunction. Biol Open 2019; 8:bio.044370. [PMID: 31285269 PMCID: PMC6737973 DOI: 10.1242/bio.044370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Development of the vertebrate central nervous system involves the co-ordinated differentiation of progenitor cells and the establishment of functional neural networks. This neurogenic process is driven by both intracellular and extracellular cues that converge on the mammalian target of rapamycin complex 1 (mTORC1). Here we demonstrate that mTORC1-signalling mediates multi-faceted roles during central nervous system development using the mouse retina as a model system. Downregulation of mTORC1-signalling in retinal progenitor cells by conditional ablation of Rptor leads to proliferation deficits and an over-production of retinal ganglion cells during embryonic development. In contrast, reduced mTORC1-signalling in postnatal animals leads to temporal deviations in programmed cell death and the consequent production of asymmetric retinal ganglion cell mosaics and associated loss of axonal termination topographies in the dorsal lateral geniculate nucleus of adult mice. In combination these developmental defects induce visually mediated behavioural deficits. These collective observations demonstrate that mTORC1-signalling mediates critical roles during visual pathway development and function. Summary: Conditional deletion of Rptor in retinal progenitor cells demonstrates that mTORC1-signalling is critical for visual pathway development and function.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| | - Anna-Carin Hägglund
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
111
|
Sawant OB, Jidigam VK, Fuller RD, Zucaro OF, Kpegba C, Yu M, Peachey NS, Rao S. The circadian clock gene Bmal1 is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina. FASEB J 2019; 33:8745-8758. [PMID: 31002540 PMCID: PMC6662963 DOI: 10.1096/fj.201801832rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
A single pool of multipotent retinal progenitor cells give rise to the diverse cell types within the mammalian retina. Such cellular diversity is due to precise control of various cellular processes like cell specification, proliferation, differentiation, and maturation. Circadian clock genes can control the expression of key regulators of cell cycle progression and therefore can synchronize the cell cycle state of a heterogeneous population of cells. Here we show that the protein encoded by the circadian clock gene brain and muscle arnt-like protein-1 (Bmal1) is expressed in the embryonic retina and is required to regulate the timing of cell cycle exit. Accordingly, loss of Bmal1 during retinal neurogenesis results in increased S-phase entry and delayed cell cycle exit. Disruption in cell cycle kinetics affects the timely generation of the appropriate neuronal population thus leading to an overall decrease in the number of retinal ganglion cells, amacrine cells, and an increase in the number of the late-born type II cone bipolar cells as well as the Müller glia. Additionally, the mislocalized Müller cells are observed in the photoreceptor layer in the Bmal1 conditional mutants. These changes affect the functional integrity of the visual circuitry as we report a significant delay in visual evoked potential implicit time in the retina-specific Bmal1 null animals. Our results demonstrate that Bmal1 is required to maintain the balance between the neural and glial cells in the embryonic retina by coordinating the timing of cell cycle entry and exit. Thus, Bmal1 plays an essential role during retinal neurogenesis affecting both development and function of the mature retina.-Sawant, O. B., Jidigam, V. K., Fuller, R. D., Zucaro, O. F., Kpegba, C., Yu, M., Peachey, N. S., Rao, S. The circadian clock gene Bmal1 is required to control the timing of retinal neurogenesis and lamination of Müller glia in the mouse retina.
Collapse
Affiliation(s)
- Onkar B. Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vijay K. Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rebecca D. Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Olivia F. Zucaro
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cristel Kpegba
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
112
|
Transcriptome Analysis Did Not Show Endogenous Stem Cell Characteristics in Murine Lgr5 + Retinal Cells. Int J Mol Sci 2019; 20:ijms20143547. [PMID: 31331079 PMCID: PMC6678859 DOI: 10.3390/ijms20143547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Lgr5, an intestinal adult stem cell marker, was recently also found in neuronal tissues. We investigated whether retinal Lgr5+ cells express properties of neural stem cells (NSC) and/or of differentiated interneurons during retinal development. RNA was isolated from Lgr5+ and Lgr5− populations from postnatal day 5 (PN5) and adult retinas of Lgr5EGFP-Ires-CreERT2 knock-in mice sorted by fluorescence-activated cell sorting (FACS). Transcriptome analyses were performed on two RNA samples of each developmental stage (PN5 and adult). The online platform PANTHER (Protein ANalysis THrough Evolutionary Relationships) was used to determine overrepresented gene ontology (GO) terms of biological processes within the set of differentially expressed genes. The detailed evaluation included gene expression in regard to stem cell maintenance/proliferation, cell cycle, and Wnt signaling but also markers of differentiated retinal neurons. None of the enriched GO terms of upregulated genes of Lgr5+ cells showed a positive association to NSC. On the contrary, NSC maintenance and proliferation rather prevail in the Lgr5− cell population. Furthermore, results suggesting that Wnt signaling is not active in the Lgr5+ population. Therefore, our transcriptome analysis of Lgr5+ retinal cells suggest that these cells are differentiated neurons, specifically glycinergic amacrine cells.
Collapse
|
113
|
Wan Y, Liu X, Zheng D, Wang Y, Chen H, Zhao X, Liang G, Yu D, Gan L. Systematic identification of intergenic long-noncoding RNAs in mouse retinas using full-length isoform sequencing. BMC Genomics 2019; 20:559. [PMID: 31286854 PMCID: PMC6615288 DOI: 10.1186/s12864-019-5903-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background A great mass of long noncoding RNAs (lncRNAs) have been identified in mouse genome and increasing evidences in the last decades have revealed their crucial roles in diverse biological processes. Nevertheless, the biological roles of lncRNAs in the mouse retina remains largely unknown due to the lack of a comprehensive annotation of lncRNAs expressed in the retina. Results In this study, we applied the long-reads sequencing strategy to unravel the transcriptomes of developing mouse retinas and identified a total of 940 intergenic lncRNAs (lincRNAs) in embryonic and neonatal retinas, including about 13% of them were transcribed from unannotated gene loci. Subsequent analysis revealed that function of lincRNAs expressed in mouse retinas were closely related to the physiological roles of this tissue, including 90 lincRNAs that were differentially expressed after the functional loss of key regulators of retinal ganglion cell (RGC) differentiation. In situ hybridization results demonstrated the enrichment of three class IV POU-homeobox genes adjacent lincRNAs (linc-3a, linc-3b and linc-3c) in ganglion cell layer and indicated they were potentially RGC-specific. Conclusions In summary, this study systematically annotated the lincRNAs expressed in embryonic and neonatal mouse retinas and implied their crucial regulatory roles in retinal development such as RGC differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5903-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | | | - Yuying Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Huan Chen
- Key Laboratory of microbiological technology and Bioinformatics in Zhejiang Province, Hangzhou, China
| | - Xiaofeng Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China
| | - Guoqing Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China. .,Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, China.
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
114
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
115
|
Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina. Sci Rep 2019; 9:9358. [PMID: 31249345 PMCID: PMC6597718 DOI: 10.1038/s41598-019-45750-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023] Open
Abstract
During vertebrate retinal development, transient populations of retinal progenitor cells with restricted cell fate choices are formed. One of these progenitor populations expresses the Thrb gene and can be identified by activity of the ThrbCRM1 cis-regulatory element. Short-term assays have concluded that these cells preferentially generate cone photoreceptors and horizontal cells, however developmental timing has precluded an extensive cell type characterization of their progeny. Here we describe the development and validation of a recombinase-based lineage tracing system for the chicken embryo to further characterize the lineage of these cells. The ThrbCRM1 element was found to preferentially form photoreceptors and horizontal cells, as well as a small number of retinal ganglion cells. The photoreceptor cell progeny are exclusively cone photoreceptors and not rod photoreceptors, confirming that ThrbCRM1 progenitor cells are restricted from the rod fate. In addition, specific subtypes of horizontal cells and retinal ganglion cells were overrepresented, suggesting that ThrbCRM1 progenitor cells are not only restricted for cell type, but for cell subtype as well.
Collapse
|
116
|
Zibetti C, Liu S, Wan J, Qian J, Blackshaw S. Epigenomic profiling of retinal progenitors reveals LHX2 is required for developmental regulation of open chromatin. Commun Biol 2019; 2:142. [PMID: 31044167 PMCID: PMC6484012 DOI: 10.1038/s42003-019-0375-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/11/2019] [Indexed: 11/14/2022] Open
Abstract
Retinal neurogenesis occurs through partially overlapping temporal windows, driven by concerted actions of transcription factors which, in turn, may contribute to the establishment of divergent genetic programs in the developing retina by coordinating variations in chromatin landscapes. Here we comprehensively profile murine retinal progenitors by integrating next generation sequencing methods and interrogate changes in chromatin accessibility at embryonic and post-natal stages. An unbiased search for motifs in open chromatin regions identifies putative factors involved in the developmental progression of the epigenome in retinal progenitor cells. Among these factors, the transcription factor LHX2 exhibits a developmentally regulated cis-regulatory repertoire and stage-dependent motif instances. Using loss-of-function assays, we determine LHX2 coordinates variations in chromatin accessibility, by competition for nucleosome occupancy and secondary regulation of candidate pioneer factors.
Collapse
Affiliation(s)
- Cristina Zibetti
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Sheng Liu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jun Wan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
117
|
A High-Throughput Assay for Congenital and Age-Related Eye Diseases in Zebrafish. Biomedicines 2019; 7:biomedicines7020028. [PMID: 30979021 PMCID: PMC6631034 DOI: 10.3390/biomedicines7020028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023] Open
Abstract
Debilitating visual impairment caused by cataracts or microphthalmia is estimated to affect roughly 20 million people in the United States alone. According to the National Eye Institute, by 2050 that number is expected to more than double to roughly 50 million. The identification of candidate disease-causing alleles for cataracts and microphthalmia has been accelerated with advanced sequencing technologies creating a need for verification of the pathophysiology of these genes. Zebrafish pose many advantages as a high-throughput model for human eye disease. By 5 days post-fertilization, zebrafish have quantifiable behavioral responses to visual stimuli. Their small size, many progeny, and external fertilization allows for rapid screening for vision defects. We have adapted the OptoMotor Response to assay visual impairment in zebrafish models of cataracts and microphthalmia. This research demonstrates an inexpensive, high-throughput method for analyzing candidate genes involved in visual impairment.
Collapse
|
118
|
Multimodal Imaging and Functional Testing in a North Carolina Macular Disease Family: Toxoplasmosis, Fovea Plana, and Torpedo Maculopathy Are Phenocopies. Ophthalmol Retina 2019; 3:607-614. [PMID: 31043363 DOI: 10.1016/j.oret.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE To describe multimodal imaging and corresponding functional studies in a newly found family with North Carolina macular dystrophy (NCMD). To our knowledge, this is an original report using OCT angiography to evaluate persons with NCMD. DESIGN A descriptive, retrospective study of a family with NCMD. PARTICIPANTS A total of 3 participants, representing 3 generations of a single family, each demonstrating a different grade of NCMD, underwent clinical and genetic testing. METHODS Diagnostic multimodal imaging and functional testing of the retina included color fundus photography, fundus autofluorescence, intravenous fluorescein angiography, spectral-domain OCT and OCT angiography, multifocal electroretinography, full-field electroretinography, and microperimetry. DNA sequencing was performed using Sanger sequencing techniques. MAIN OUTCOME MEASURES Spectral-domain OCT images, fundus photographs, fundus autofluorescence images, fluorescein angiograms, OCT angiograms, multifocal electroretinography images, full-field electroretinography images, and microperimetry maps. Sanger sequencing was performed for molecular diagnosis. RESULTS Multimodal imaging helped to demonstrate the nature of the retinal and choroidal lesions in each participant and the extent of visual function. Genetic testing demonstrated the variant 2 point mutation (chromosome 6: 99593111) in the deoxyribonuclease 1 hypersensitivity binding site on chromosome 6q16 causing overexpression of the retinal transcription factor PRDM13. CONCLUSIONS NCMD has great phenotypic variability, which can be appreciated only by examining multiple family members. To our knowledge, this is an original report that shows a correlation of functional studies with multimodal imaging. These findings are consistent with NCMD being a developmental abnormality of the macula. All layers of the retina and choroid demonstrate maldevelopment and varying degrees of malfunction. Although PRDM13 is expressed in the amacrine cells, we have yet to identify an abnormality specific to this cellular layer. The retinal vasculature appears to be surprisingly well preserved or intact by OCT angiogram compared with that shown in intravenous fluorescein angiograms. OCT angiograms suggest that foveal hypoplasia is a phenocopy of grade 1 NCMD, torpedo maculopathy is a phenocopy of grade 2 NCMD, and in this single family, congenital toxoplasmosis is a phenocopy of grade 3 NCMD.
Collapse
|
119
|
Stem cell-based retina models. Adv Drug Deliv Rev 2019; 140:33-50. [PMID: 29777757 DOI: 10.1016/j.addr.2018.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
From the early days of cell biological research, the eye-especially the retina-has evoked broad interest among scientists. The retina has since been thoroughly investigated and numerous models have been exploited to shed light on its development, morphology, and function. Apart from various animal models and human clinical and anatomical research, stem cell-based models of animal and human cells of origin have entered the field, especially during the last decade. Despite the observation that the retina of different species comprises endogenous stem cells, most stem cell-related research in the human retina is now based on pluripotent stem cell models. Herein, systems of two-dimensional (2D) cultures and co-cultures of distinctly differentiated retinal subtypes revealed a variety of cellular aspects but have in many aspects been replaced by three-dimensional (3D) structures-the so-called retinal organoids. These organoids not only contain all major retinal cell subtypes compared to the physiological situation, but also show a distinct layering in close proximity to the in vivo morphology. Nevertheless, all these models have inherent advantages and disadvantages, which are expounded and summarized in this review. Finally, we discuss current application aspects of stem cell-based retina models and the specific promises they hold for the future.
Collapse
|
120
|
Taylor SM, Giuffre E, Moseley P, Hitchcock PF. The MicroRNA, miR-18a, Regulates NeuroD and Photoreceptor Differentiation in the Retina of Zebrafish. Dev Neurobiol 2019; 79:202-219. [PMID: 30615274 PMCID: PMC6351175 DOI: 10.1002/dneu.22666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
During embryonic retinal development, six types of retinal neurons are generated from multipotent progenitors in a strict spatiotemporal pattern. This pattern requires cell cycle exit (i.e. neurogenesis) and differentiation to be precisely regulated in a lineage‐specific manner. In zebrafish, the bHLH transcription factor NeuroD governs photoreceptor genesis through Notch signaling but also governs photoreceptor differentiation though distinct mechanisms that are currently unknown. Also unknown are the mechanisms that regulate NeuroD and the spatiotemporal pattern of photoreceptor development. Members of the miR‐17‐92 microRNA cluster regulate CNS neurogenesis, and a member of this cluster, miR‐18a, is predicted to target neuroD mRNA. The purpose of this study was to determine if, in the developing zebrafish retina, miR‐18a regulates NeuroD and if it plays a role in photoreceptor development. Quantitative RT‐PCR showed that, of the three miR‐18 family members (miR‐18a, b, and c), miR‐18a expression most closely parallels neuroD expression. Morpholino oligonucleotides and CRISPR/Cas9 gene editing were used for miR‐18a loss‐of‐function (LOF) and both resulted in larvae with more mature photoreceptors at 70 hpf without affecting cell proliferation. Western blot showed that miR‐18a LOF increases NeuroD protein levels and in vitro dual luciferase assay showed that miR‐18a directly interacts with the 3′ UTR of neuroD. Finally, tgif1 mutants have increased miR‐18a expression, less NeuroD protein and fewer mature photoreceptors, and the photoreceptor deficiency is rescued by miR‐18a knockdown. Together, these results show that, independent of neurogenesis, miR‐18a regulates the timing of photoreceptor differentiation and indicate that this occurs through post‐transcriptional regulation of NeuroD.
Collapse
Affiliation(s)
- Scott M Taylor
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, Florida, 32514
| | - Emily Giuffre
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, Florida, 32514
| | - Patience Moseley
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, Florida, 32514
| | - Peter F Hitchcock
- Ophthalmology and Visual Sciences, University of Michigan, W. K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, Michigan, 48105
| |
Collapse
|
121
|
O'Sullivan C, Nickerson PEB, Krupke O, Christie J, Chen LL, Mesa-Peres M, Zhu M, Ryan B, Chow RL, Howard PL. ARS2 is required for retinal progenitor cell S-phase progression and Müller glial cell fate specification. Biochem Cell Biol 2019; 98:50-60. [PMID: 30673303 DOI: 10.1139/bcb-2018-0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During a developmental period that extends postnatally in the mouse, proliferating multipotent retinal progenitor cells produce one of 7 major cell types (rod, cone, bipolar, horizontal, amacrine, ganglion, and Müller glial cells) as they exit the cell cycle in consecutive waves. Cell production in the retina is tightly regulated by intrinsic, extrinsic, spatial, and temporal cues, and is coupled to the timing of cell cycle exit. Arsenic-resistance protein 2 (ARS2, also known as SRRT) is a component of the nuclear cap-binding complex involved in RNA Polymerase II transcription, and is required for cell cycle progression. We show that postnatal retinal progenitor cells (RPCs) require ARS2 for proper progression through S phase, and ARS2 disruption leads to early exit from the cell cycle. Furthermore, we observe an increase in the proportion of cells expressing a rod photoreceptor marker, and a loss of Müller glia marker expression, indicating a role for ARS2 in regulating cell fate specification or differentiation. Knockdown of Flice Associated Huge protein (FLASH), which interacts with ARS2 and is required for cell cycle progression and 3'-end processing of replication-dependent histone transcripts, phenocopies ARS2 knockdown. These data implicate ARS2-FLASH-mediated histone mRNA processing in regulating RPC cell cycle kinetics and neuroglial cell fate specification during postnatal retinal development.
Collapse
Affiliation(s)
- Connor O'Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | | - Oliver Krupke
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jennifer Christie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Li-Li Chen
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Monica Mesa-Peres
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Minyan Zhu
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Bridget Ryan
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Perry L Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
122
|
Complement Targets Newborn Retinal Ganglion Cells for Phagocytic Elimination by Microglia. J Neurosci 2019; 39:2025-2040. [PMID: 30647151 DOI: 10.1523/jneurosci.1854-18.2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/14/2018] [Accepted: 12/24/2018] [Indexed: 12/18/2022] Open
Abstract
Microglia play important roles in shaping the developing CNS, and at early stages they have been proposed to regulate progenitor proliferation, differentiation, and neuronal survival. However, these studies reveal contradictory outcomes, highlighting the complexity of these cell-cell interactions. Here, we investigate microglia function during embryonic mouse retina development, where only microglia, progenitors, and neurons are present. In both sexes, we determine that microglia primarily interact with retinal neurons and find that depletion of microglia via conditional KO of the Csf1 receptor results in increased density of retinal ganglion cells (RGCs). Pharmacological inhibition of microglia also results in an increase in RGCs, with no effect on retinal progenitor proliferation, RGC genesis, or apoptosis. We show that microglia in the embryonic retina are enriched for phagocytic markers and observe engulfment of nonapoptotic Brn3-labeled RGCs. We investigate the molecular pathways that can mediate cell engulfment by microglia and find selective downregulation of complement pathway components with microglia inhibition, and further show that C1q protein marks a subset of RGCs in the embryonic retina. KO of complement receptor 3 (CR3; Itgam), which is only expressed by microglia, results in increased RGC density, similar to what we observed after depletion or inhibition of microglia. Thus, our data suggest that microglia regulate neuron elimination in the embryonic mouse retina by complement-mediated phagocytosis of non-apoptotic newborn RGCs.SIGNIFICANCE STATEMENT Microglia are emerging as active and important participants in regulating neuron number in development, during adult neurogenesis, and following stem cell therapies. However, their role in these contexts and the mechanisms involved are not fully defined. Using a well-characterized in vivo system, we provide evidence that microglia regulate neuronal elimination by complement-mediated engulfment of nonapoptotic neurons. This work provides a significant advancement of the field by defining in vivo molecular mechanisms for microglia-mediated cell elimination. Our data add to a growing body of evidence that microglia are essential for proper nervous system development. In addition, we elucidate microglia function in the developing retina, which may shed light on microglia involvement in the context of retinal injury and disease.
Collapse
|
123
|
Mellough CB, Bauer R, Collin J, Dorgau B, Zerti D, Dolan DWP, Jones CM, Izuogu OG, Yu M, Hallam D, Steyn JS, White K, Steel DH, Santibanez-Koref M, Elliott DJ, Jackson MS, Lindsay S, Grellscheid S, Lako M. An integrated transcriptional analysis of the developing human retina. Development 2019; 146:146/2/dev169474. [PMID: 30696714 PMCID: PMC6361134 DOI: 10.1242/dev.169474] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
The scarcity of embryonic/foetal material as a resource for direct study means that there is still limited understanding of human retina development. Here, we present an integrated transcriptome analysis combined with immunohistochemistry in human eye and retinal samples from 4 to 19 post-conception weeks. This analysis reveals three developmental windows with specific gene expression patterns that informed the sequential emergence of retinal cell types and enabled identification of stage-specific cellular and biological processes, and transcriptional regulators. Each stage is characterised by a specific set of alternatively spliced transcripts that code for proteins involved in the formation of the photoreceptor connecting cilium, pre-mRNA splicing and epigenetic modifiers. Importantly, our data show that the transition from foetal to adult retina is characterised by a large increase in the percentage of mutually exclusive exons that code for proteins involved in photoreceptor maintenance. The circular RNA population is also defined and shown to increase during retinal development. Collectively, these data increase our understanding of human retinal development and the pre-mRNA splicing process, and help to identify new candidate disease genes.
Collapse
Affiliation(s)
- Carla B. Mellough
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK,Lions Eye Institute, 2 Verdun Street, Nedlands, Perth, WA 6009, Australia
| | - Roman Bauer
- School of Computing, Newcastle University, Newcastle NE4 5TG, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Birthe Dorgau
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - David W. P. Dolan
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Carl M. Jones
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Osagie G. Izuogu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK,European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Jannetta S. Steyn
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Kathryn White
- EM Research Services, Newcastle University, Newcastle NE2 4HH, UK
| | - David H. Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | | | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Michael S. Jackson
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Sushma Grellscheid
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| |
Collapse
|
124
|
Aberrant hiPSCs-Derived from Human Keratinocytes Differentiates into 3D Retinal Organoids that Acquire Mature Photoreceptors. Cells 2019; 8:cells8010036. [PMID: 30634512 PMCID: PMC6356277 DOI: 10.3390/cells8010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived three-dimensional retinal organoids are a new platform for studying the organoidogenesis. However, recurrent genomic aberration, acquired during generation of hiPSCs, limit its biomedical application and/or aberrant hiPSCs has not been evaluated for generation of differentiated derivatives, such as organoids and retinal pigment epithelium (RPE). In this study, we efficiently differentiated mosaic hiPSCs into retinal organoids containing mature photoreceptors. The feeder-free hiPSCs were generated from the human epidermal keratinocytes that were rapid in process with improved efficiency over several passages and maintained pluripotency. But, hiPSCs were cytogenetically mosaic with normal and abnormal karyotypes, while copy number variation analysis revealed the loss of chromosome 8q. Despite this abnormality, the stepwise differentiation of hiPSCs to form retinal organoids was autonomous and led to neuronal lamination. Furthermore, the use of a Notch inhibitor, DAPT, at an early timepoint from days 29⁻42 of culture improved the specification of the retinal neuron and the use of retinoic acid at days 70⁻120 led to the maturation of photoreceptors. hiPSC-derived retinal organoids acquired all subtypes of photoreceptors, such as RHODOPSIN, B-OPSIN and R/G-OPSIN. Additionally, the advanced maturation of photoreceptors was observed, revealing the development of specific sensory cilia and the formation of the outer-segment disc. This report is the first to show that hiPSCs with abnormal chromosomal content are permissive to the generation of three-dimensional retinal organoids.
Collapse
|
125
|
Miltner AM, Torre AL. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev Dyn 2019; 248:118-128. [PMID: 30242792 PMCID: PMC7141838 DOI: 10.1002/dvdy.24672] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
The neurons of the retina can be affected by a wide variety of inherited or environmental degenerations that can lead to vision loss and even blindness. Retinal ganglion cell (RGC) degeneration is the hallmark of glaucoma and other optic neuropathies that affect millions of people worldwide. Numerous strategies are being trialed to replace lost neurons in different degeneration models, and in recent years, stem cell technologies have opened promising avenues to obtain donor cells for retinal repair. Stem cell-based transplantation has been most frequently used for the replacement of rod photoreceptors, but the same tools could potentially be used for other retinal cell types, including RGCs. However, RGCs are not abundant in stem cell-derived cultures, and in contrast to the short-distance wiring of photoreceptors, RGC axons take a long and intricate journey to connect with numerous brain nuclei. Hence, a number of challenges still remain, such as the ability to scale up the production of RGCs and a reliable and functional integration into the adult diseased retina upon transplantation. In this review, we discuss the recent advancements in the development of replacement therapies for RGC degenerations and the challenges that we need to overcome before these technologies can be applied to the clinic. Developmental Dynamics 248:118-128, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam M. Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, U.S
| |
Collapse
|
126
|
Marcucci F, Soares CA, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol 2019; 527:212-224. [PMID: 29761490 PMCID: PMC6237670 DOI: 10.1002/cne.24467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
In higher vertebrates, the circuit formed by retinal ganglion cells (RGCs) projecting ipsilaterally (iRGCs) or contralaterally (cRGCs) to the brain permits binocular vision and depth perception. iRGCs and cRGCs differ in their position within the retina and in expression of transcription, guidance and activity-related factors. To parse whether these two populations also differ in the timing of their genesis, a feature of distinct neural subtypes and associated projections, we used newer birthdating methods and cell subtype specific markers to determine birthdate and cell cycle exit more precisely than previously. In the ventrotemporal (VT) retina, i- and cRGCs intermingle and neurogenesis in this zone lags behind RGC production in the rest of the retina where only cRGCs are positioned. In addition, within the VT retina, i- and cRGC populations are born at distinct times: neurogenesis of iRGCs surges at E13, and cRGCs arise as early as E14, not later in embryogenesis as reported. Moreover, in the ventral ciliary margin zone (CMZ), which contains progenitors that give rise to some iRGCs in ventral neural retina (Marcucci et al., 2016), cell cycle exit is slower than in other retinal regions in which progenitors give rise only to cRGCs. Further, when the cell cycle regulator Cyclin D2 is missing, cell cycle length in the CMZ is further reduced, mirroring the reduction of both i- and cRGCs in the Cyclin D2 mutant. These results strengthen the view that differential regulation of cell cycle dynamics at the progenitor level is associated with specific RGC fates and laterality of axonal projection.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Célia A. Soares
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Carol Mason
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
127
|
Khalili S, Ballios BG, Belair-Hickey J, Donaldson L, Liu J, Coles BLK, Grisé KN, Baakdhah T, Bader GD, Wallace VA, Bernier G, Shoichet MS, van der Kooy D. Induction of rod versus cone photoreceptor-specific progenitors from retinal precursor cells. Stem Cell Res 2018; 33:215-227. [PMID: 30453152 DOI: 10.1016/j.scr.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
During development, multipotent progenitors undergo temporally-restricted differentiation into post-mitotic retinal cells; however, the mechanisms of progenitor division that occurs during retinogenesis remain controversial. Using clonal analyses (lineage tracing and single cell cultures), we identify rod versus cone lineage-specific progenitors derived from both adult retinal stem cells and embryonic neural retinal precursors. Taurine and retinoic acid are shown to act in an instructive and lineage-restricted manner early in the progenitor lineage hierarchy to produce rod-restricted progenitors from stem cell progeny. We also identify an instructive, but lineage-independent, mechanism for the specification of cone-restricted progenitors through the suppression of multiple differentiation signaling pathways. These data indicate that exogenous signals play critical roles in directing lineage decisions and resulting in fate-restricted rod or cone photoreceptor progenitors in culture. Additional factors may be involved in governing photoreceptor fates in vivo.
Collapse
Affiliation(s)
- Saeed Khalili
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brian G Ballios
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, Ontario M5T 3A9, Canada
| | - Justin Belair-Hickey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Laura Donaldson
- Division of Ophthalmology, Department of Surgery, Faculty of Health Sciences, McMaster University, 2757 King Street East, Hamilton, Ontario L8G 4X3, Canada
| | - Jeff Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenneth N Grisé
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tahani Baakdhah
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Valerie A Wallace
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, Ontario M5T 3A9, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Ave., Rm 8KD413, Toronto, Ontario M5T 2S8, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal H1T 2M4, Canada; Faculté de Médecine, Départment de Neurosciences, Université de Montréal, Montréal H3T 1J4, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
128
|
Pérez Saturnino A, Lust K, Wittbrodt J. Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth. Development 2018; 145:dev.169698. [PMID: 30337377 PMCID: PMC6240314 DOI: 10.1242/dev.169698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023]
Abstract
Patterning of a continuously growing naive field in the context of a life-long growing organ such as the teleost eye is of high functional relevance. Intrinsic and extrinsic signals have been proposed to regulate lineage specification in progenitors that exit the stem cell niche in the ciliary marginal zone (CMZ). The proper cell-type composition arising from those progenitors is a prerequisite for retinal function. Our findings in the teleost medaka (Oryzias latipes) uncover that the Notch-Atoh7 axis continuously patterns the CMZ. The complement of cell types originating from the two juxtaposed progenitors marked by Notch or Atoh7 activity contains all constituents of a retinal column. Modulation of Notch signalling specifically in Atoh7-expressing cells demonstrates the crucial role of this axis in generating the correct cell-type proportions. After transiently blocking Notch signalling, retinal patterning and differentiation is re-initiated de novo. Taken together, our data show that Notch activity in the CMZ continuously structures the growing retina by juxtaposing Notch and Atoh7 progenitors that give rise to distinct complementary lineages, revealing coupling of de novo patterning and cell-type specification in the respective lineages. Summary: Mutually exclusive activity of Notch and Atoh7 in the ciliary marginal zone gives rise to two distinct lineages resulting in specification of the full complement of cell types in medaka retina.
Collapse
Affiliation(s)
- Alicia Pérez Saturnino
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
129
|
Medrano MP, Pisera Fuster A, Sanchis PA, Paez N, Bernabeu RO, Faillace MP. Characterization of proliferative, glial and angiogenic responses after a CoCl
2
‐induced injury of photoreceptor cells in the adult zebrafish retina. Eur J Neurosci 2018; 48:3019-3042. [DOI: 10.1111/ejn.14113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Matias Pedro Medrano
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Antonella Pisera Fuster
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Pablo Antonio Sanchis
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Natalia Paez
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Ramon Oscar Bernabeu
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Departamento de FisiologíaFacultad de MedicinaUniversidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Departamento de FisiologíaFacultad de MedicinaUniversidad de Buenos Aires (UBA) Buenos Aires Argentina
| |
Collapse
|
130
|
Rabesandratana O, Goureau O, Orieux G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front Neurosci 2018; 12:651. [PMID: 30294255 PMCID: PMC6158340 DOI: 10.3389/fnins.2018.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Sight is a major sense for human and visual impairment profoundly affects quality of life, especially retinal degenerative diseases which are the leading cause of irreversible blindness worldwide. As for other neurodegenerative disorders, almost all retinal dystrophies are characterized by the specific loss of one or two cell types, such as retinal ganglion cells, photoreceptor cells, or retinal pigmented epithelial cells. This feature is a critical point when dealing with cell replacement strategies considering that the preservation of other cell types and retinal circuitry is a prerequisite. Retinal ganglion cells are particularly vulnerable to degenerative process and glaucoma, the most common optic neuropathy, is a frequent retinal dystrophy. Cell replacement has been proposed as a potential approach to take on the challenge of visual restoration, but its application to optic neuropathies is particularly challenging. Many obstacles need to be overcome before any clinical application. Beyond their survival and differentiation, engrafted cells have to reconnect with both upstream synaptic retinal cell partners and specific targets in the brain. To date, reconnection of retinal ganglion cells with distal central targets appears unrealistic since central nervous system is refractory to regenerative processes. Significant progress on the understanding of molecular mechanisms that prevent central nervous system regeneration offer hope to overcome this obstacle in the future. At the same time, emergence of reprogramming of human somatic cells into pluripotent stem cells has facilitated both the generation of new source of cells with therapeutic potential and the development of innovative methods for the generation of transplantable cells. In this review, we discuss the feasibility of stem cell-based strategies applied to retinal ganglion cells and optic nerve impairment. We present the different strategies for the generation, characterization and the delivery of transplantable retinal ganglion cells derived from pluripotent stem cells. The relevance of pluripotent stem cell-derived retinal organoid and retinal ganglion cells for disease modeling or drug screening will be also introduced in the context of optic neuropathies.
Collapse
Affiliation(s)
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
131
|
Barrasso AP, Wang S, Tong X, Christiansen AE, Larina IV, Poché RA. Live imaging of developing mouse retinal slices. Neural Dev 2018. [PMID: 30219109 DOI: 10.1186/s13064-018-0120-y.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. RESULTS Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. CONCLUSIONS We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation.
Collapse
Affiliation(s)
- Anthony P Barrasso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
132
|
Barrasso AP, Wang S, Tong X, Christiansen AE, Larina IV, Poché RA. Live imaging of developing mouse retinal slices. Neural Dev 2018; 13:23. [PMID: 30219109 PMCID: PMC6139133 DOI: 10.1186/s13064-018-0120-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/04/2018] [Indexed: 11/20/2022] Open
Abstract
Background Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. Results Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. Conclusions We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation. Electronic supplementary material The online version of this article (10.1186/s13064-018-0120-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony P Barrasso
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
133
|
Hu CB, Sui BD, Wang BY, Li G, Hu CH, Zheng CX, Du FY, Zhu CH, Li HB, Feng Y, Jin Y, Yu XR. NDRG2 suppression as a molecular hallmark of photoreceptor-specific cell death in the mouse retina. Cell Death Discov 2018; 4:32. [PMID: 30245855 PMCID: PMC6135825 DOI: 10.1038/s41420-018-0101-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
Photoreceptor cell death is recognized as the key pathogenesis of retinal degeneration, but the molecular basis underlying photoreceptor-specific cell loss in retinal damaging conditions is virtually unknown. The N-myc downstream regulated gene (NDRG) family has recently been reported to regulate cell viability, in particular NDRG1 has been uncovered expression in photoreceptor cells. Accordingly, we herein examined the potential roles of NDRGs in mediating photoreceptor-specific cell loss in retinal damages. By using mouse models of retinal degeneration and the 661 W photoreceptor cell line, we showed that photoreceptor cells are indeed highly sensitive to light exposure and the related oxidative stress, and that photoreceptor cells are even selectively diminished by phototoxins of the alkylating agent N-Methyl-N-nitrosourea (MNU). Unexpectedly, we discovered that of all the NDRG family members, NDRG2, but not the originally hypothesized NDRG1 or other NDRG subtypes, was selectively expressed and specifically responded to retinal damaging conditions in photoreceptor cells. Furthermore, functional experiments proved that NDRG2 was essential for photoreceptor cell viability, which could be attributed to NDRG2 control of the photo-oxidative stress, and that it was the suppression of NDRG2 which led to photoreceptor cell loss in damaging conditions. More importantly, NDRG2 preservation contributed to photoreceptor-specific cell maintenance and retinal protection both in vitro and in vivo. Our findings revealed a previously unrecognized role of NDRG2 in mediating photoreceptor cell homeostasis and established for the first time the molecular hallmark of photoreceptor-specific cell death as NDRG2 suppression, shedding light on improved understanding and therapy of retinal degeneration.
Collapse
Affiliation(s)
- Cheng-Biao Hu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Bing-Dong Sui
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Bao-Ying Wang
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Gao Li
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China.,5Department of Stomatology, The People's Hospital of Zhangqiu City, 250200 Zhangqiu, Shandong China
| | - Cheng-Hu Hu
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Chen-Xi Zheng
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Fang-Ying Du
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Chun-Hui Zhu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Hong-Bo Li
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Yan Feng
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| | - Yan Jin
- 3State Key Laboratory of Military Stomatology, Center for Tissue Engineering, Fourth Military Medical University, 710032 Xi'an, Shaanxi China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, 710032 Xi'an, Shaanxi China
| | - Xiao-Rui Yu
- 1Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061 Xi'an, Shaanxi China.,2Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi Sheng China
| |
Collapse
|
134
|
MLL1 is essential for retinal neurogenesis and horizontal inner neuron integrity. Sci Rep 2018; 8:11902. [PMID: 30093671 PMCID: PMC6085291 DOI: 10.1038/s41598-018-30355-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022] Open
Abstract
Development of retinal structure and function is controlled by cell type-specific transcription factors and widely expressed co-regulators. The latter includes the mixed-lineage leukemia (MLL) family of histone methyltransferases that catalyze histone H3 lysine 4 di- and tri-methylation associated with gene activation. One such member, MLL1, is widely expressed in the central nervous system including the retina. However, its role in retinal development is unknown. To address this question, we knocked out Mll1 in mouse retinal progenitors, and discovered that MLL1 plays multiple roles in retinal development by regulating progenitor cell proliferation, cell type composition and neuron-glia balance, maintenance of horizontal neurons, and formation of functional synapses between neuronal layers required for visual signal transmission and processing. Altogether, our results suggest that MLL1 is indispensable for retinal neurogenesis and function development, providing a new paradigm for cell type-specific roles of known histone modifying enzymes during CNS tissue development.
Collapse
|
135
|
Small Molecule GSK-J1 Affects Differentiation of Specific Neuronal Subtypes in Developing Rat Retina. Mol Neurobiol 2018; 56:1972-1983. [PMID: 29981055 DOI: 10.1007/s12035-018-1197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Histone post-translational modification has been shown to play a pivotal role in regulating gene expression and fate determination during the development of the central nervous system. Application of pharmacological blockers that control histone methylation status has been considered a promising avenue to control abnormal developmental processes and diseases as well. In this study, we focused on the role of potent histone demethylase inhibitor GSK-J1 as a blocker of Jumonji domain-containing protein 3 (Jmjd3) in early postnatal retinal development. Jmjd3 participates in different processes such as cell proliferation, apoptosis, differentiation, senescence, and cell reprogramming via demethylation of histone 3 lysine 27 trimethylation status (H3K27 me3). As a first approach, we determined the localization of Jmjd3 in neonate and adult rat retina. We observed that Jmjd3 accumulation is higher in the adult retina, which is consistent with the localization in the differentiated neurons, including ganglion cells in the retina of neonate rats. At this developmental age, we also observed the presence of Jmjd3 in undifferentiated cells. Also, we confirmed that GSK-J1 caused the increase in the H3k27 me3 levels in the retinas of neonate rats. We next examined the functional consequences of GSK-J1 treatment on retinal development. Interestingly, injection of GSK-J1 simultaneously increased the number of proliferative and apoptotic cells. Furthermore, an increased number of immature cells were detected in the outer plexiform layer, with longer neuronal processes. Finally, the influence of GSK-J1 on postnatal retinal cytogenesis was examined. Interestingly, GSK-J1 specifically caused a significant decrease in the number of PKCα-positive cells, which is a reliable marker of rod-on bipolar cells, showing no significant effects on the differentiation of other retinal subtypes. To our knowledge, these data provide the first evidence that in vivo pharmacological blocking of histone demethylase by GSK-J1 affects differentiation of specific neuronal subtypes. In summary, our results indisputably revealed that the application of GSK-J1 could influence cell proliferation, maturation, apoptosis induction, and specific cell determination. With this, we were able to provide evidence that this small molecule can be explored in therapeutic strategies for the abnormal development and diseases of the central nervous system.
Collapse
|
136
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
137
|
Generation of Retinal Organoids with Mature Rods and Cones from Urine-Derived Human Induced Pluripotent Stem Cells. Stem Cells Int 2018; 2018:4968658. [PMID: 30008752 PMCID: PMC6020468 DOI: 10.1155/2018/4968658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Urine cells, a body trash, have been successfully reprogrammed into human induced pluripotent stem cells (U-hiPSCs) which hold a huge promise in regenerative medicine. However, it is unknown whether or to what extent U-hiPSCs can generate retinal cells so far. With a modified retinal differentiation protocol without addition of retinoic acid (RA), our study revealed that U-hiPSCs were able to differentiate towards retinal fates and form 3D retinal organoids containing laminated neural retina with all retinal cell types located in proper layer as in vivo. More importantly, U-hiPSCs generated highly mature photoreceptors with all subtypes, even red/green cone-rich photoreceptors. Our data indicated that a supplement of RA to culture medium was not necessary for maturation and specification of U-hiPSC-derived photoreceptors at least in the niche of retinal organoids. The success of retinal differentiation with U-hiPSCs provides many opportunities in cell therapy, disease modeling, and drug screening, especially in personalized medicine of retinal diseases since urine cells can be noninvasively collected from patients and their relatives.
Collapse
|
138
|
Liu J, Reggiani JDS, Laboulaye MA, Pandey S, Chen B, Rubenstein JLR, Krishnaswamy A, Sanes JR. Tbr1 instructs laminar patterning of retinal ganglion cell dendrites. Nat Neurosci 2018; 21:659-670. [PMID: 29632360 PMCID: PMC5920715 DOI: 10.1038/s41593-018-0127-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Visual information is delivered to the brain by >40 types of retinal ganglion cells (RGCs). Diversity in this representation arises within the inner plexiform layer (IPL), where dendrites of each RGC type are restricted to specific sublaminae, limiting the interneuronal types that can innervate them. How such dendritic restriction arises is unclear. We show that the transcription factor Tbr1 is expressed by four mouse RGC types with dendrites in the outer IPL and is required for their laminar specification. Loss of Tbr1 results in elaboration of dendrites within the inner IPL, while misexpression in other cells retargets their neurites to the outer IPL. Two transmembrane molecules, Sorcs3 and Cdh8, act as effectors of the Tbr1-controlled lamination program. However, they are expressed in just one Tbr1+ RGC type, supporting a model in which a single transcription factor implements similar laminar choices in distinct cell types by recruiting partially non-overlapping effectors.
Collapse
Affiliation(s)
- Jinyue Liu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Jasmine D S Reggiani
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mallory A Laboulaye
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Arjun Krishnaswamy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.,Center for Brain Science, Harvard University, Cambridge, MA, USA.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA. .,Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
139
|
de Almeida-Pereira L, Repossi MG, Magalhães CF, Azevedo RDF, Corrêa-Velloso JDC, Ulrich H, Ventura ALM, Fragel-Madeira L. P2Y 12 but not P2Y 13 Purinergic Receptor Controls Postnatal Rat Retinogenesis In Vivo. Mol Neurobiol 2018; 55:8612-8624. [PMID: 29574630 DOI: 10.1007/s12035-018-1012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
Adenine nucleotides through P2Y1 receptor stimulation are known to control retinal progenitor cell (RPC) proliferation by modulating expression of the p57KIP2, a cell cycle regulator. However, the role of Gi protein-coupled P2Y12 and P2Y13 receptors also activated by adenine nucleotides in RPC proliferation is still unknown. Gene expression of the purinergic P2Y12 subtype was detected in rat retina during early postnatal days (P0 to P5), while expression levels of P2Y13 were low. Immunohistochemistry assays performed with rat retina on P3 revealed P2Y12 receptor expression in both Ki-67-positive cells in the neuroblastic layer and Ki-67-negative cells in the ganglion cell layer and inner nuclear layer. Nonetheless, P2Y13 receptor expression could not be detected in any stratum of rat retina. Intravitreal injection of PSB 0739 or clopidogrel, both selective P2Y12 receptor antagonists, increased by 20 and 15%, respectively, the number of Ki-67-positive cells following 24 h of exposure. Moreover, the P2Y12 receptor inhibition increased cyclin D1 and decreased p57KIP2 expression. However, there were no changes in the S phase of the cell cycle (BrdU-positive cells) or in mitosis (phospho-histone-H3-positive cells). Interestingly, an increase in the number of cyclin D1/TUNEL-positive cells after treatment with PSB 0739 was observed. These data suggest that activation of P2Y12 receptors is required for the successful exit of RPCs from cell cycle in the postnatal rat retina.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
| |
Collapse
|
140
|
Zelinger L, Swaroop A. RNA Biology in Retinal Development and Disease. Trends Genet 2018; 34:341-351. [PMID: 29395379 DOI: 10.1016/j.tig.2018.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
For decades, RNA has served in a supporting role between the genetic carrier (DNA) and the functional molecules (proteins). It is finally time for RNA to take center stage in all aspects of biology. The retina provides a unique opportunity to dissect the molecular underpinnings of neuronal diversity and disease. Transcriptome profiles of the retina and its resident cell types have unraveled unique features of the RNA landscape. The discovery of distinct RNA molecules and the recognition that RNA processing is a major cause of retinal neurodegeneration have prompted the design of biomarkers and novel therapeutic paradigms. We review here RNA biology as it pertains to the retina, emphasizing new avenues for investigations in development and disease.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
141
|
Abstract
The eye is susceptible to adverse toxic effects by direct application, inadvertent ocular contact, or systemic exposure to chemicals or their metabolites. Although the albino rat is a less than ideal model for ocular toxicity studies, it has gained popularity for specific applications and may be the first species in which the ocular toxicity of a systemically administered xenobiotic becomes evident. This chapter reviews the embryology, anatomy, and physiology of the eye and associated glands and describes common nonneoplastic and neoplastic lesions encountered in laboratory rats.
Collapse
|
142
|
Vancamp P, Darras VM. Dissecting the role of regulators of thyroid hormone availability in early brain development: Merits and potential of the chicken embryo model. Mol Cell Endocrinol 2017; 459:71-78. [PMID: 28153797 DOI: 10.1016/j.mce.2017.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormones (THs) are important mediators of vertebrate central nervous system (CNS) development, thereby regulating the expression of a wide variety of genes by binding to nuclear TH receptors. TH transporters and deiodinases are both needed to ensure appropriate intracellular TH availability, but the precise function of each of these regulators and their coaction during brain development is only partially understood. Rodent knockout models already provided some crucial insights, but their in utero development severely hampers research regarding the role of TH regulators during early embryonic stages. The establishment of novel gain- and loss-of-function techniques has boosted the position of externally developing non-mammalian vertebrates as research models in developmental endocrinology. Here, we elaborate on the chicken as a model organism to elucidate the function of TH regulators during embryonic CNS development. The fast-developing, relatively big and accessible embryo allows easy experimental manipulation, especially at early stages of brain development. Recent data on the characterisation and spatiotemporal expression pattern of different TH regulators in embryonic chicken CNS have provided the necessary background to dissect the function of each of them in more detail. We highlight some recent advances and important strategies to investigate the role of TH transporters and deiodinases in various CNS structures like the brain barriers, the cerebellum, the retina and the hypothalamus. Exploiting the advantages of this non-classical model can greatly contribute to complete our understanding of the regulation of TH bioavailability throughout embryonic CNS development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000, Leuven, Belgium.
| |
Collapse
|
143
|
Javed A, Cayouette M. Temporal Progression of Retinal Progenitor Cell Identity: Implications in Cell Replacement Therapies. Front Neural Circuits 2017; 11:105. [PMID: 29375321 PMCID: PMC5770695 DOI: 10.3389/fncir.2017.00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
Abstract
Retinal degenerative diseases, which lead to the death of rod and cone photoreceptor cells, are the leading cause of inherited vision loss worldwide. Induced pluripotent or embryonic stem cells (iPSCs/ESCs) have been proposed as a possible source of new photoreceptors to restore vision in these conditions. The proof of concept studies carried out in mouse models of retinal degeneration over the past decade have highlighted several limitations for cell replacement in the retina, such as the low efficiency of cone photoreceptor production from stem cell cultures and the poor integration of grafted cells in the host retina. Current protocols to generate photoreceptors from stem cells are largely based on the use of extracellular factors. Although these factors are essential to induce the retinal progenitor cell (RPC) fate from iPSCs/ESCs, developmental studies have shown that RPCs alter fate output as a function of time (i.e., their temporal identity) to generate the seven major classes of retinal cell types, rather than spatial position. Surprisingly, current stem cell differentiation protocols largely ignore the intrinsic temporal identity of dividing RPCs, which we argue likely explains the low efficiency of cone production in such cultures. In this article, we briefly review the mechanisms regulating temporal identity in RPCs and discuss how they could be exploited to improve cone photoreceptor production for cell replacement therapies.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
144
|
Vrolyk V, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Sprague-Dawley Rats: A Histomorphological and Immunohistochemical Study. Vet Pathol 2017; 55:310-330. [DOI: 10.1177/0300985817738098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As in many altricial species, rats are born with fused eyelids and markedly underdeveloped eyes. While the normal histology of the eyes of mature rats is known, the histomorphological changes occurring during postnatal eye development in this species remain incompletely characterized. This study was conducted to describe the postnatal development of ocular structures in Sprague-Dawley (SD) rats during the first month of age using histology and immunohistochemistry (IHC). Both eyes were collected from 51 SD rats at 13 time points between postnatal day (PND)1 and PND30. Histologic examination of hematoxylin and eosin-stained sections was performed, as well as IHC for cleaved-caspase-3 and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) to evaluate apoptosis, and IHC for Ki-67 and phospho-histone-H3 to evaluate cell proliferation. Extensive ocular tissue remodeling occurred prior to the eyelid opening around PND14 and reflected the interplay between apoptosis and cell proliferation. Apoptosis was particularly remarkable in the maturing subcapsular anterior epithelium of the lens, the inner nuclear and ganglion cell layers of the developing retina, and the Harderian gland, and was involved in the regression of the hyaloid vasculature. Nuclear degradation in the newly formed secondary lens fibers was noteworthy after birth and was associated with TUNEL-positive nuclear remnants lining the lens organelle-free zone. Cell proliferation was marked in the developing retina, cornea, iris, ciliary body and Harderian gland. The rat eye reached histomorphological maturity at PND21 after a rapid phase of morphological changes characterized by the coexistence of cell death and proliferation.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | | | - Marie-Odile Benoit-Biancamano
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Faculty of Veterinary Medicne University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
145
|
Reinhard J, Roll L, Faissner A. Tenascins in Retinal and Optic Nerve Neurodegeneration. Front Integr Neurosci 2017; 11:30. [PMID: 29109681 PMCID: PMC5660115 DOI: 10.3389/fnint.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023] Open
Abstract
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for regeneration under several pathological conditions. Additionally, tenascin-C (Tnc) represents a key modulator of the immune system and inflammatory processes. In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in the diseased CNS, specifically after retinal and optic nerve damage and degeneration. We summarize the current view on both tenascins in diseases such as glaucoma, retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this context, we discuss their expression profile, possible functional relevance, remodeling of the interacting matrisome and tenascin receptors, especially under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
146
|
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 2017; 13:e1006987. [PMID: 28926578 PMCID: PMC5621703 DOI: 10.1371/journal.pgen.1006987] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/29/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
DNA hydroxymethylation has recently been shown to play critical roles in regulating gene expression and terminal differentiation events in a variety of developmental contexts. However, little is known about its function during eye development. Methylcytosine dioxygenases of the Tet family convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an epigenetic mark thought to serve as a precursor for DNA demethylation and as a stable mark in neurons. Here, we report a requirement for Tet activity during zebrafish retinal neurogenesis. In tet2-/-;tet3-/- mutants, retinal neurons are specified but most fail to terminally differentiate. While differentiation of the first born retinal neurons, the retinal ganglion cells (RGCs), is less affected in tet2-/-;tet3-/- mutants than other retinal cell types, the majority of RGCs do not undergo terminal morphogenesis and form axons. Moreover, the few photoreceptors that differentiate in tet2-/-;tet3-/- mutants fail to form outer segments, suggesting that Tet function is also required for terminal morphogenesis of differentiated retinal neurons. Mosaic analyses revealed a surprising cell non-autonomous requirement for tet2 and tet3 activity in facilitating retinal neurogenesis. Through a combination of candidate gene analysis, transcriptomics and pharmacological manipulations, we identified the Notch and Wnt pathways as cell-extrinsic pathways regulated by tet2 and tet3 activity during RGC differentiation and morphogenesis. Transcriptome analyses also revealed the ectopic expression of non-retinal genes in tet2-/-;tet3-/- mutant retinae, and this correlated with locus-specific reduction in 5hmC. These data provide the first evidence that Tet-dependent regulation of 5hmC formation is critical for retinal neurogenesis, and highlight an additional layer of complexity in the progression from retinal progenitor cell to differentiated retinal neuron during development of the vertebrate retina.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Jeffrey M. Gross
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
147
|
Bessodes N, Parain K, Bronchain O, Bellefroid EJ, Perron M. Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina. Neural Dev 2017; 12:16. [PMID: 28863786 PMCID: PMC5580440 DOI: 10.1186/s13064-017-0093-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/22/2017] [Indexed: 11/26/2022] Open
Abstract
Background Amacrine interneurons that modulate synaptic plasticity between bipolar and ganglion cells constitute the most diverse cell type in the retina. Most are inhibitory neurons using either GABA or glycine as neurotransmitters. Although several transcription factors involved in amacrine cell fate determination have been identified, mechanisms underlying amacrine cell subtype specification remain to be further understood. The Prdm13 histone methyltransferase encoding gene is a target of the transcription factor Ptf1a, an essential regulator of inhibitory neuron cell fate in the retina. Here, we have deepened our knowledge on its interaction with Ptf1a and investigated its role in amacrine cell subtype determination in the developing Xenopus retina. Methods We performed prdm13 gain and loss of function in Xenopus and assessed the impact on retinal cell fate determination using RT-qPCR, in situ hybridization and immunohistochemistry. Results We found that prdm13 in the amphibian Xenopus is expressed in few retinal progenitors and in about 40% of mature amacrine cells, predominantly in glycinergic ones. Clonal analysis in the retina reveals that prdm13 overexpression favours amacrine cell fate determination, with a bias towards glycinergic cells. Conversely, knockdown of prdm13 specifically inhibits glycinergic amacrine cell genesis. We also showed that, as in the neural tube, prdm13 is subjected to a negative autoregulation in the retina. Our data suggest that this is likely due to its ability to repress the expression of its inducer, ptf1a. Conclusions Our results demonstrate that Prdm13, downstream of Ptf1a, acts as an important regulator of glycinergic amacrine subtype specification in the Xenopus retina. We also reveal that Prdm13 regulates ptf1a expression through a negative feedback loop.
Collapse
Affiliation(s)
- Nathalie Bessodes
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.,Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, UMR 9197- Neuro-PSI, Bat. 445, 91405, ORSAY Cedex, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, UMR 9197- Neuro-PSI, Bat. 445, 91405, ORSAY Cedex, France
| | - Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, UMR 9197- Neuro-PSI, Bat. 445, 91405, ORSAY Cedex, France
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, UMR 9197- Neuro-PSI, Bat. 445, 91405, ORSAY Cedex, France. .,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.
| |
Collapse
|
148
|
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLoS One 2017; 12:e0176905. [PMID: 28829770 PMCID: PMC5568747 DOI: 10.1371/journal.pone.0176905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.
Collapse
|
149
|
Dystroglycan Maintains Inner Limiting Membrane Integrity to Coordinate Retinal Development. J Neurosci 2017; 37:8559-8574. [PMID: 28760865 DOI: 10.1523/jneurosci.0946-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Proper neural circuit formation requires the precise regulation of neuronal migration, axon guidance, and dendritic arborization. Mutations affecting the function of the transmembrane glycoprotein dystroglycan cause a form of congenital muscular dystrophy that is frequently associated with neurodevelopmental abnormalities. Despite its importance in brain development, the role of dystroglycan in regulating retinal development remains poorly understood. Using a mouse model of dystroglycanopathy (ISPDL79* ) and conditional dystroglycan mutants of both sexes, we show that dystroglycan is critical for the proper migration, axon guidance, and dendritic stratification of neurons in the inner retina. Using genetic approaches, we show that dystroglycan functions in neuroepithelial cells as an extracellular scaffold to maintain the integrity of the retinal inner limiting membrane. Surprisingly, despite the profound disruptions in inner retinal circuit formation, spontaneous retinal activity is preserved. These results highlight the importance of dystroglycan in coordinating multiple aspects of retinal development.SIGNIFICANCE STATEMENT The extracellular environment plays a critical role in coordinating neuronal migration and neurite outgrowth during neural circuit development. The transmembrane glycoprotein dystroglycan functions as a receptor for multiple extracellular matrix proteins and its dysfunction leads to a form of muscular dystrophy frequently associated with neurodevelopmental defects. Our results demonstrate that dystroglycan is required for maintaining the structural integrity of the inner limiting membrane (ILM) in the developing retina. In the absence of functional dystroglycan, ILM degeneration leads to defective migration, axon guidance, and mosaic spacing of neurons and a loss of multiple neuron types during retinal development. These results demonstrate that disorganization of retinal circuit development is a likely contributor to visual dysfunction in patients with dystroglycanopathy.
Collapse
|
150
|
Wang J, O’Sullivan ML, Mukherjee D, Puñal VM, Farsiu S, Kay JN. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol 2017; 525:1759-1777. [PMID: 27997986 PMCID: PMC5542564 DOI: 10.1002/cne.24153] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
Abstract
Müller glia, the most abundant glia of vertebrate retina, have an elaborate morphology characterized by a vertical stalk that spans the retina and branches in each retinal layer. Müller glia play diverse, critical roles in retinal homeostasis, which are presumably enabled by their complex anatomy. However, much remains unknown, particularly in mouse, about the anatomical arrangement of Müller cells and their arbors, and how these features arise in development. Here we use membrane-targeted fluorescent proteins to reveal the fine structure of mouse Müller arbors. We find sublayer-specific arbor specializations within the inner plexiform layer (IPL) that occur consistently at defined laminar locations. We then characterize Müller glia spatial patterning, revealing how individual cells collaborate to form a pan-retinal network. Müller cells, unlike neurons, are spread across the retina with homogenous density, and their arbor sizes change little with eccentricity. Using Brainbow methods to label neighboring cells in different colors, we find that Müller glia tile retinal space with minimal overlap. The shape of their arbors is irregular but nonrandom, suggesting that local interactions between neighboring cells determine their territories. Finally, we identify a developmental window at postnatal Days 6 to 9 when Müller arbors first colonize the synaptic layers beginning in stereotyped inner plexiform layer sublaminae. Together, our study defines the anatomical arrangement of mouse Müller glia and their network in the radial and tangential planes of the retina, in development and adulthood. The local precision of Müller glia organization suggests that their morphology is sculpted by specific cell to cell interactions with neurons and each other.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC,
USA
- Program in Cell and Molecular Biology, Duke University School of Medicine,
Durham, NC, USA
| | - Matthew L. O’Sullivan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC,
USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC,
USA
| | - Dibyendu Mukherjee
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC,
USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Vanessa M. Puñal
- Department of Neurobiology, Duke University School of Medicine, Durham, NC,
USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC,
USA
| | - Sina Farsiu
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC,
USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeremy N. Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC,
USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC,
USA
| |
Collapse
|