101
|
Carbon dots-assisted degradation of some common biogenic amines: An in vitro study. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
102
|
|
103
|
Wang CL, Zheng YX, Chen L, Zhu CY, Gao W, Li P, Jie-Ping L, Zhang XM. The construction of a multifunctional luminescent Eu-MOF for the sensing of Fe 3+, Cr 2O 72− and amines in aqueous solution. CrystEngComm 2021. [DOI: 10.1039/d1ce01192h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A 3D Eu(iii)-based metal–organic framework has been synthesized as a multiresponsive chemosensor for highly sensitive and selective detection of Fe3+, Cr2O72− and amines in water.
Collapse
Affiliation(s)
- Cui-Li Wang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Ya-Xin Zheng
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Le Chen
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Cai-Yong Zhu
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Wei Gao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Peng Li
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Liu Jie-Ping
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| |
Collapse
|
104
|
Zhang H, He F, Li X, Wang Z, Zhang H. A smart sensing Zn( ii) coordination polymer based on a new viologen ligand exhibiting photochromic and thermochromic and multiple solid detection properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03141d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A multi-functional one-dimensional chain coordination polymer synthesized from Zn(ii), m-phthalic acid and a novel viologen ligand.
Collapse
Affiliation(s)
- Heyi Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Fangyuan He
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xiaonan Li
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Zhihui Wang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Hong Zhang
- Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
105
|
Alexi N, Hvam J, Lund BW, Nsubuga L, de Oliveira Hansen RM, Thamsborg K, Lofink F, Byrne DV, Leisner JJ. Potential of novel cadaverine biosensor technology to predict shelf life of chilled yellowfin tuna (Thunnus albacares). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
106
|
An Overview of Histamine and Other Biogenic Amines in Fish and Fish Products. Foods 2020; 9:foods9121795. [PMID: 33287193 PMCID: PMC7761699 DOI: 10.3390/foods9121795] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
The occurrence of biogenic amines in fish is directly associated with microorganisms with decarboxylase activity. These compounds are generally detoxified by oxidases in the intestinal tract of humans, but some conditions, such as alcohol consumption, enzyme deficiency, or monoamino-oxidase antidepressant use, can make their intake by food dangerous. Due to its toxicity, histamine is a unique biogenic amine with regulatory limits for fishery products. This review focuses on biogenic amines in fish, with a detailed picture of the number of alert notifications or intoxication events reported in the last years. The favoring conditions for their formation, as well as the main preventive and control measures to ensure public health, are also reviewed.
Collapse
|
107
|
Moitessier C, Kital K, Danjou PE, Cazier-Dennin F. 4-Methoxy-ortho-phthalaldehyde: a promising derivatizing agent for the fluorimetric evaluation of histamine in seafood. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
108
|
Discrepancies in determination of biogenic amines in beer samples by reversed phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
109
|
Cao D, Xu X, Feng X, Zhang L. Designed multifunctional visual observation of magnetic ionic liquid coupling with microwave-assisted derivatization for determination of biogenic amines. Food Chem 2020; 333:127518. [DOI: 10.1016/j.foodchem.2020.127518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 11/16/2022]
|
110
|
Palomino-Vasco M, Acedo-Valenzuela MI, Rodríguez-Cáceres MI, Mora-Díez N. Monitoring winemaking process using tyrosine influence in the excitation-emission matrices of wine. Food Chem 2020; 344:128721. [PMID: 33272754 DOI: 10.1016/j.foodchem.2020.128721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022]
Abstract
Wine samples collected during the winemaking process have been analyzed employing a previously optimized UHPLC-FD method, determining their biogenic amines and amino acids profile. The results obtained have been submitted to a statistical analysis from which it was extracted that the most influential analyte was tyrosine. Thanks to its fluorescence, a method for its determination by excitation-emission matrices has been proposed. The accuracy of the method has been checked by means of Elliptical Joint Confidence Region test. The winemaking process has been monitored with this method, obtaining a faster and cheaper way to follow the process.
Collapse
Affiliation(s)
- Mónica Palomino-Vasco
- Department of Analytical Chemistry and Research Institute on Water, Climate Change and Sustainability (IACYS), Faculty of Sciences, University of Extremadura, Badajoz 06006, Spain.
| | - María Isabel Acedo-Valenzuela
- Department of Analytical Chemistry and Research Institute on Water, Climate Change and Sustainability (IACYS), Faculty of Sciences, University of Extremadura, Badajoz 06006, Spain
| | - María Isabel Rodríguez-Cáceres
- Department of Analytical Chemistry and Research Institute on Water, Climate Change and Sustainability (IACYS), Faculty of Sciences, University of Extremadura, Badajoz 06006, Spain
| | - Nielene Mora-Díez
- Department of Analytical Chemistry and Research Institute on Water, Climate Change and Sustainability (IACYS), Faculty of Sciences, University of Extremadura, Badajoz 06006, Spain
| |
Collapse
|
111
|
Zhao J, Niu C, Du S, Liu C, Zheng F, Wang J, Li Q. Reduction of biogenic amines formation during soybean paste fermentation by using Staphylococcus carnosus M43 and Pediococcus acidilactici M28 as starter culture. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
112
|
Klupsaite D, Zavistanaviciute P, Sakiene V, Lele V, Mozuriene E, Klementaviciute J, Sidlauskiene S, Buckiuniene V, Tolpeznikaite E, Ruibys R, Bartkiene E. Evaluation of the use of lactic acid bacteria and
Thymus vulgaris
essential oil on Suffolk and Ile de France lamb breed (
MuscuIus gluteus
) quality parameters. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dovile Klupsaite
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Vytaute Sakiene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Vita Lele
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Erika Mozuriene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Sonata Sidlauskiene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Vilija Buckiuniene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences Agriculture Academy Vytautas Magnus University K. Donelaicio str. 58LT‐44244Kaunas Lithuania
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies Lithuanian University of Health Sciences Tilzes str. 18LT‐47181Kaunas Lithuania
| |
Collapse
|
113
|
Reis GC, Dala-Paula BM, Tavano OL, Guidi LR, Godoy HT, Gloria MBA. In vitro digestion of spermidine and amino acids in fresh and processed Agaricus bisporus mushroom. Food Res Int 2020; 137:109616. [DOI: 10.1016/j.foodres.2020.109616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
|
114
|
Dipsticks with Reflectometric Readout of an NIR Dye for Determination of Biogenic Amines. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrospun nanofibers (ENFs) are remarkable analytical tools for quantitative analysis since they are inexpensive, easily produced in uniform homogenous mats, and provide a high surface area-to-volume ratio. Taking advantage of these characteristics, a near-infrared (NIR)-dye was doped as chemosensor into ENFs of about 500 nm in diameter electrospun into 50 µm thick mats on indium tin oxide (ITO) supports. The mats were made of cellulose acetate (CA) and used as a sensor layer on optical dipsticks for the determination of biogenic amines (BAs) in food. The ENFs contained the chromogenic amine-reactive chameleon dye S0378 which is green and turns blue upon formation of a dye-BA conjugate. This SN1-reaction of the S0378 dye with various BAs was monitored by reflectance measurements at 635 nm where the intrinsic absorption of biological material is low. The difference of the reflectance before and after the reaction is proportional to BA levels from 0.04–1 mM. The LODs are in the range from 0.03–0.09 mM, concentrations that can induce food poisoning but are not recognized by the human nose. The calibration plots of histamine, putrescine, spermidine, and tyramine are very similar and suggesting the use of the dipsticks to monitor the total sample BA content. Furthermore, the dipsticks are selective to primary amines (both mono- and diamines) and show low interference towards most nucleophiles. A minute interference of proteins in real samples can be overcome by appropriate sample pretreatment. Hence, the ageing of seafood samples could be monitored via their total BA content which rose up to 21.7 ± 3.2 µmol/g over six days of storage. This demonstrates that optically doped NFs represent viable sensor and transducer materials for food analysis with dipsticks.
Collapse
|
115
|
Guo MY, Li P, Yang SL, Bu R, Piao XQ, Gao EQ. Distinct and Selective Amine- and Anion-Responsive Behaviors of an Electron-Deficient and Anion-Exchangeable Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43958-43966. [PMID: 32880426 DOI: 10.1021/acsami.0c14648] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Smart materials that respond to chemical stimuli with color or luminescence changes are highly desirable for daily-life and high-tech applications. Here, we report a novel porous metal-organic framework (MOF) that shows multiple, selective, and discriminative responsive properties owing to the combination of different functional ingredients [tripyridinium chromogen, Eu(III) luminophore, cationic framework, and special porous structure]. The MOF contains two interpenetrated three-dimensional cationic coordination networks built of a tetrahedral [Eu4(μ3-OH)4] cluster and a tripyridinium-tricarboxylate zwitterionic linker. It shows reversible and discriminative chromic response to aliphatic amines and aniline through different host-guest interactions between electron-deficient pyridinium and electron-rich amines. The size- and shape-selective response to aliphatic amines is ascribed to the radical formation through host-guest electron transfer, whereas the response to aniline is ascribed to the formation of sandwich-type acceptor-donor-acceptor complexes. The MOF is capable of reversible anion exchange with various anions and shows selective and discriminative ionochromic response to iodide, bromide, and thiocyanate, which is attributed to charge-transfer complexation. The above chromic behaviors are accompanied by efficient quenching of Eu(III) photoluminescence. The MOF represents a multi-stimuli dual-output responsive system. It can be used for discrimination and identification of anions and amines. The potential use in invisible printing, reusable sensory films, and optical switches was demonstrated by the ink and the membrane made of the MOF and organic polymers.
Collapse
Affiliation(s)
- Meng-Yue Guo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Peng Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xian-Qing Piao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
116
|
Torre R, Costa-Rama E, Nouws HPA, Delerue-Matos C. Screen-Printed Electrode-Based Sensors for Food Spoilage Control: Bacteria and Biogenic Amines Detection. BIOSENSORS 2020; 10:E139. [PMID: 33008005 PMCID: PMC7600659 DOI: 10.3390/bios10100139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Food spoilage is caused by the development of microorganisms, biogenic amines, and other harmful substances, which, when consumed, can lead to different health problems. Foodborne diseases can be avoided by assessing the safety and freshness of food along the production and supply chains. The routine methods for food analysis usually involve long analysis times and complex instrumentation and are performed in centralized laboratories. In this context, sensors based on screen-printed electrodes (SPEs) have gained increasing importance because of their advantageous characteristics, such as ease of use and portability, which allow fast analysis in point-of-need scenarios. This review provides a comprehensive overview of SPE-based sensors for the evaluation of food safety and freshness, focusing on the determination of bacteria and biogenic amines. After discussing the characteristics of SPEs as transducers, the main bacteria, and biogenic amines responsible for important and common foodborne diseases are described. Then, SPE-based sensors for the analysis of these bacteria and biogenic amines in food samples are discussed, comparing several parameters, such as limit of detection, analysis time, and sample type.
Collapse
Affiliation(s)
- Ricarda Torre
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Henri P. A. Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (R.T.); (H.P.A.N.)
| |
Collapse
|
117
|
Jabłońska-Ryś E, Sławińska A, Stachniuk A, Stadnik J. Determination of biogenic amines in processed and unprocessed mushrooms from the Polish market. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
118
|
Xu Y, Cheng Y, Jia Y, Ye BC. Synthesis of MOF-derived Ni@C materials for the electrochemical detection of histamine. Talanta 2020; 219:121360. [PMID: 32887083 DOI: 10.1016/j.talanta.2020.121360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/14/2023]
Abstract
Histamine (HA) plays an important role in food safety supervision and is also involved in various physiological functions. Accurate and rapid detection of HA in real sample is count for much as this is the significant prerequisite for its effective monitoring. In this study, we fabricated an electrochemical sensor to detect HA via the pyrolysis of the hydrothermal Ni-MOF (metal-organic frameworks), in which the obtained Ni@C material was deployed as the sensing agent. Ni@C was comprehensively characterized in terms of its morphology, constitution, as well as its electrochemical behavior. The as-prepared sensor (Ni@C/GCE) features excellent electrocatalytic activities. It was also observed that the electrochemical property of the sensor was substantially improved because Ni@C afforded an enlarged active surface and accelerated electron transport. This sensor affords amperometric analysis in the linear range of 10-3-100 μM HA with a 3.2 × 10-4 μM low detection limit (S/N = 3). Many important features, including decent anti-interference, reproducibility, stability, and reliability, were also observed. Importantly, the sensor enabled the measurement of HA in real samples obtained from fish, thus demonstrating its practical potential as a HA analytical detector.
Collapse
Affiliation(s)
- Yuwen Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yunxiang Cheng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Yunjiao Jia
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
119
|
Gama MR, Rocha FR. Solventless separation of underivatized biogenic amines by sequential injection chromatography. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
120
|
Chen C, Yu S, Jiang S, Liu J, Wang Z, Ye BC. A novel and sensitive electrochemical sensor based on nanoporous gold for determination of As(III). Mikrochim Acta 2020; 187:395. [PMID: 32564229 DOI: 10.1007/s00604-020-04365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/01/2020] [Indexed: 11/27/2022]
Abstract
Three-dimensional porous gold nanoparticles (NPG) were synthesized in situ on indium-doped tin oxide (ITO) substrates by a green and convenient one-step electrodeposition method to achieve super-sensitive As(III) detection. The introduction of NPG method not only greatly improves the electron transfer capacity and surface area of sensor interface but provides more active sites for As(III) enrichment, thus boosting sensitivity and selectivity. The sensor was characterized by scanning electron microscopy, energy dispersion spectroscopy, differential pulse anode stripping voltammetry (DPASV), and electrochemical impedance to evaluate its morphology, composition, and electrochemical performance. The wall thickness of NPG was customized by optimizing the concentration of electroplating solution, dissolved electrolyte, deposition potential, and reaction time. Under optimal conditions, the electrochemical sensor showed a wide linear range from 0.1 to 50 μg/L As(III), with a detection limit (LOD) of 0.054 μg/L (S/N = 3). The LOD is far below 10 μg/L, the recommended maximum value by the world health organization for drinking water. Stability, reproducibility, and repeatability of NGP/ITO were determined to be 2.77%, 4.9%, and 4.1%, respectively. Additionally, the constructed sensor has been successfully applied to determine As(III) in three actual samples, and the results are in good agreement with that of hydride generation atomic fluorescence spectrometry (AFS). Graphical abstract.
Collapse
Affiliation(s)
- Chunfeng Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Shiyi Yu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Shouyong Jiang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jili Liu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Zijun Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
121
|
Liquid chromatography-diode array-mass spectrometric analysis of amino and mercapto compounds coupled with chloroimino derivatization reagent. J Chromatogr A 2020; 1621:461078. [DOI: 10.1016/j.chroma.2020.461078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022]
|
122
|
Reis GCL, Guidi LR, Fernandes C, Godoy HT, Gloria MBA. UPLC-UV Method for the Quantification of Free Amino Acids, Bioactive Amines, and Ammonia in Fresh, Cooked, and Canned Mushrooms. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01777-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
123
|
Bartkiene E, Bartkevics V, Pugajeva I, Borisova A, Zokaityte E, Lele V, Sakiene V, Zavistanaviciute P, Klupsaite D, Zadeike D, Özogul F, Juodeikiene G. Challenges Associated with Byproducts Valorization-Comparison Study of Safety Parameters of Ultrasonicated and Fermented Plant-Based Byproducts. Foods 2020; 9:E614. [PMID: 32403256 PMCID: PMC7278600 DOI: 10.3390/foods9050614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023] Open
Abstract
In order to promote the efficient use of byproducts from the production of plant-based beverages, which still contain a large amount of nutritional and functional compounds, microbiological and chemical safety characteristics should be evaluated and, if needed, improved. Many challenges are associated with byproducts valorization, and the most important ones, which should be taken into account at the further steps of valorization, are biological and chemical safety. For safety improving, several technological treatments (biological, physical etc.) can be used. In this study, the influence of low-frequency ultrasonication (US) and fermentation with Lactobacillus casei LUHS210 strain, as physical and biotechnological treatments, on the safety characteristics of the byproducts (BYs) from the processing of rice, soy, almond, coconut, and oat drinks was compared. Ultrasonication, as well as fermentation, effectively improved the microbiological safety of BYs. Ultrasonication and fermentation reduced the concentration of deoxynivalenol, on average, by 24% only in soy BYs. After fermentation, 15-acetyldeoxynivalenol was formed in all samples (<12 µg kg-1), except for soy BYs. The lowest total biogenic amines content was found in fermented rice BYs and ultrasonicated coconut BYs. When comparing untreated and fermented BYs, significant changes in macro- and micro-elements content were found. Ultrasonication at 37 kHz did not significantly influence the concentrations of macro- and micro-elements, while fermentation affected most of the essential micro-elements. Consequently, while ultrasonication and fermentation can enhance the safety of BYs, the specific effects must be taken into account on biogenic amines, mycotoxins, and micro and macro elements.
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.L.); (V.S.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania
| | - Vadims Bartkevics
- Centre of Food Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia;
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, LV-1076 Riga, Latvia; (I.P.); (A.B.)
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, LV-1076 Riga, Latvia; (I.P.); (A.B.)
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes iela 3, LV-1076 Riga, Latvia; (I.P.); (A.B.)
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.L.); (V.S.); (P.Z.); (D.K.)
| | - Vita Lele
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.L.); (V.S.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Sakiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.L.); (V.S.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.L.); (V.S.); (P.Z.); (D.K.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes g. 18, LT-47181 Kaunas, Lithuania; (E.Z.); (V.L.); (V.S.); (P.Z.); (D.K.)
| | - Daiva Zadeike
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (D.Z.); (G.J.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, The University of Cukurova, Balcali, Saricam, 01330 Adana, Turkey;
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (D.Z.); (G.J.)
| |
Collapse
|
124
|
Plakidi ES, Maragou NC, Dasenaki ME, Megoulas NC, Koupparis MA, Thomaidis NS. Liquid Chromatographic Determination of Biogenic Amines in Fish Based on Pyrene Sulfonyl Chloride Pre-Column Derivatization. Foods 2020; 9:foods9050609. [PMID: 32397518 PMCID: PMC7278825 DOI: 10.3390/foods9050609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022] Open
Abstract
Monitoring of biogenic amines in food is important for quality control, in terms of freshness evaluation and even more for food safety. A novel and cost-effective method was developed and validated for the determination of the main biogenic amines: histamine, putrescine, cadaverine, spermidine and spermine in fish tissues. The method includes extraction of amines with perchloric acid, pre-column derivatization with Pyrene Sulfonyl Chloride (PSCl), extraction of derivatives with toluene, back-dissolution in ACN after evaporation and determination by reversed phase high performance liquid chromatography with UV and intramolecular excimer fluorescence detection. The structure of the pyrene-derivatives was confirmed by liquid chromatography-mass spectrometry with electrospray ionization. The standard addition technique was applied for the quantitation due to significant matrix effect, while the use of 1,7-diaminoheptane as internal standard offered an additional confirmation tool for the identification of the analytes. Method repeatability expressed as %RSD ranged between 7.4-14% for the different amines and recovery ranged from 67% for histamine up to 114% for spermine. The limits of detection ranged between 0.1-1.4 mg kg-1 and the limits of quantification between 0.3-4.2 mg kg-1. The method was applied to canned fish samples and the concentrations of the individual biogenic amines were below the detection limit up to 40.1 mg kg-1, while their sum was within the range 4.1-49.6 mg kg-1.
Collapse
|
125
|
Danchuk AI, Komova NS, Mobarez SN, Doronin SY, Burmistrova NA, Markin AV, Duerkop A. Optical sensors for determination of biogenic amines in food. Anal Bioanal Chem 2020; 412:4023-4036. [PMID: 32382967 PMCID: PMC7320057 DOI: 10.1007/s00216-020-02675-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
This review presents the state-of-the-art of optical sensors for determination of biogenic amines (BAs) in food by publications covering about the last 10 years. Interest in the development of rapid and preferably on-site methods for quantification of BAs is based on their important role in implementation and regulation of various physiological processes. At the same time, BAs can develop in different kinds of food by fermentation processes or microbial activity or arise due to contamination, which induces toxicological risks and food poisoning and causes serious health issues. Therefore, various optical chemosensor systems have been devised that are easy to assemble and fast responding and low-cost analytical tools. If amenable to on-site analysis, they are an attractive alternative to existing instrumental analytical methods used for BA determination in food. Hence, also portable sensor systems or dipstick sensors are described based on various probes that typically enable signal readouts such as photometry, reflectometry, luminescence, surface-enhanced Raman spectroscopy, or ellipsometry. The quantification of BAs in real food samples and the design of the sensors are highlighted and the analytical figures of merit are compared. Future instrumental trends for BA sensing point to the use of cell phone-based fully automated optical evaluation and devices that could even comprise microfluidic micro total analysis systems.
Collapse
Affiliation(s)
- Alexandra I Danchuk
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany.,Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Nadezhda S Komova
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany.,Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Sarah N Mobarez
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany
| | - Sergey Yu Doronin
- Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Alexey V Markin
- Institute of Chemistry, Saratov State University, Saratov, Russian Federation, 410012
| | - Axel Duerkop
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
126
|
Technological Characterisation of Probiotic Lactic Acid Bacteria as Starter Cultures for Dry Fermented Sausages. Foods 2020; 9:foods9050596. [PMID: 32392743 PMCID: PMC7278822 DOI: 10.3390/foods9050596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to investigate probiotic microorganisms for use as starter cultures in dry fermented sausages production. A total of eight strains were studied evaluating technological and safety characteristics including the ability to grow, lactic acid production, gas formation, catalase activity, nitrate reductase activity, proteolytic activity, lipolytic activity, hydrogen peroxide production, salt tolerance, performance at low temperatures, decarboxylation of amino acids and antimicrobial activity against pathogens associated with the product. Lactobacillus rhamnosus R0011, L. rhamnosus Lr-32, Lactobacillus paracasei Lpc-37, Lactobacillus casei Shirota and Enterococcus faecium MXVK29 were good candidates for use as fermented sausages starters cultures because they showed the best technological and safety properties since they did not demonstrate amino acid decarboxylation but showed antimicrobial activity against Listeria monocytogenes, Escherichia coli, Salmonella Dublin and Staphylococcus aureus. L. rhamnosus Lr-32 was the strain best tolerating the levels of salt, nitrate and low pH during the simulated stages of fermentation and ripening of sausage. The strain was thus the most promising of the tested probiotics as sausage starter culture. The findings warrant studies in a meat matrix, such as that of raw-cured sausage, to evaluate the effects of L. rhamnosus Lr-32 under actual conditions.
Collapse
|
127
|
García-Calvo V, García-Calvo J, Fernández-Espinosa I, Carbayo A, Rojo MJ, Rodríguez MT, García-Herbosa G, Torroba T, Cuevas JV. Luminescent complexes of iridium(iii) with aliphatic amines and detection of biogenic amines. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
128
|
Wen D, Liu Y, Yu Q. Metabolomic approach to measuring quality of chilled chicken meat during storage. Poult Sci 2020; 99:2543-2554. [PMID: 32359590 PMCID: PMC7597405 DOI: 10.1016/j.psj.2019.11.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
The metabolites of stored, chilled chicken meat were analyzed using liquid chromatograph-mass spectrometry and metabolomics. The results showed significant differences in the metabolites of chicken meat stored at 4°C for 0 D and meat stored for longer periods of 2 D, 4 D, 6 D, and 10 D, when analyzed based on a variable of importance >2 and P < 0.05. These changed metabolites included amino acids, amines, nucleosides, nucleotides, carbohydrates, organic acids, and other substances. The data from this study provide a holistic understanding of food quality changes in chicken meat during deterioration in storage.
Collapse
Affiliation(s)
- Dongling Wen
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, Guangdong Province, 510225, P.R. China
| | - Yue Liu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, Guangdong Province, 510225, P.R. China
| | - Qian Yu
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, No. 501 Zhongkai Road, Haizhu District, Guangzhou, Guangdong Province, 510225, P.R. China.
| |
Collapse
|
129
|
Mantoanelli JOF, Gonçalves LM, Pereira EA. Dansyl Chloride as a Derivatizing Agent for the Analysis of Biogenic Amines by CZE-UV. Chromatographia 2020. [DOI: 10.1007/s10337-020-03896-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
130
|
Abstract
Biogenic amines are ubiquitous bioactive compounds that are synthesized by living organisms and perform essential functions for their metabolism. In the human diet, their excessive intake can cause food poisoning. In food, especially in alcohol-free beverages, biogenic amines can be synthesized by enzymes, naturally present in raw materials, or by microorganisms, which may be naturally present in the matrix or be added during beverage transformation processes. For this reason, in alcohol-free beverages, biogenic amine amount can be considered, above a certain level, as undesired microorganism activity. Therefore, it is important to evaluate the biogenic amine profile of non-alcoholic beverages in order to monitor food quality and safety. Moreover, biogenic amines can be taken into account by industries in order to monitor production processes and products. This review article provides an overview on the biogenic amine profile of alcohol-free beverages (plant milk, nervine drinks, soft drinks, and fruit juices). Furthermore, the clinical and toxicological effects, the biogenic amines legislation, and biogenic amine synthesis have been evaluated in non-alcoholic beverages.
Collapse
|
131
|
Angulo MF, Flores M, Aranda M, Henriquez-Aedo K. Fast and selective method for biogenic amines determination in wines and beers by ultra high-performance liquid chromatography. Food Chem 2020; 309:125689. [DOI: 10.1016/j.foodchem.2019.125689] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/06/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023]
|
132
|
Ramos RM, Brandão PF, Rodrigues JA. Development of a SALLE-HPLC-FLD Analytical Method for the Simultaneous Determination of Ten Biogenic Amines in Cheese. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01730-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
133
|
Navarro J, de Marcos S, Galbán J. Colorimetric-enzymatic determination of tyramine by generation of gold nanoparticles. Mikrochim Acta 2020; 187:174. [PMID: 32072299 DOI: 10.1007/s00604-020-4141-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
In this paper, it has been demonstrated that Au(III) is able to act instead of O2 in the oxidase enzymatic reaction, so that it becomes reduced to purple gold nanoparticles (AuNPs). The plasmon band (at 540 nm) can be used as the analytical signal. Tyramine has been determined using its enzymatic reaction with tyramine oxidase (TAO). The kinetic of the AuNP formation has been studied in the light of both the Avrami equation for crystallization and the Finke-Watsy mechanism for AuNP nucleation and growth. The effects of the Au(III), TAO and tyramine concentrations on the corresponding kinetic constants have been investigated. Working at room temperature, under optimal conditions (phosphate buffer pH 7.0, TAO 0.5 U.mL-1 Au(III) 1 mM), the linear response ranges from 2.5 × 10-5 M to 3.3 × 10-4 M Tyramine (5.6% RSD) and the LOD is 2.9 × 10-6 M. Under these conditions, the signal is measured after 30 min reaction (to obtain the highest sensitivity), but this time can be significantly reduced by increasing the temperature (the reaction is finished after 4 min when working at 50 °C). The method has been applied to tyramine determination in a cheese sample with good results. The new scheme proposed in this paper can be extended, in principle, to other enzymatic methods based on oxidase enzymes. Graphical abstractTyramine is determined by measuring the plasmon band of the gold nanoparticles formed during its enzymatic reaction with Tyramine oxidase. Moreover, a mathematical model has been developed to explain the formation of the gold nanoparticles during the reaction.
Collapse
Affiliation(s)
- Jesús Navarro
- Analytical Chemistry Department, Faculty of Sciences, Aragón Institute of Nanoscience (INA-ICMA), University of Zaragoza, E-50009, Zaragoza, Spain
| | - Susana de Marcos
- Analytical Chemistry Department, Faculty of Sciences, Aragón Institute of Nanoscience (INA-ICMA), University of Zaragoza, E-50009, Zaragoza, Spain
| | - Javier Galbán
- Analytical Chemistry Department, Faculty of Sciences, Aragón Institute of Nanoscience (INA-ICMA), University of Zaragoza, E-50009, Zaragoza, Spain.
| |
Collapse
|
134
|
Torre R, Costa-Rama E, Nouws HPA, Delerue-Matos C. Diamine oxidase-modified screen-printed electrode for the redox-mediated determination of histamine. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-0203-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AbstractHistamine is an important biogenic amine because of its role in immune responses and the regulation of physiological functions. It is also used as a food freshness indicator, so its maximum concentration in fish is legally regulated. Although several robust and sensitive methods for histamine detection are already available, it continues to be a challenge to develop simple and portable devices that allow rapid histamine screening at any point of the fish production chain. Thus, in this work, a simple, miniaturized and low-cost sensor for histamine analysis was developed. The construction of the sensor only takes 30 min and consists of the immobilization of the enzyme diamine oxidase on the surface of a screen-printed carbon electrode by cross-linking. The quantification of histamine was achieved by chronoamperometry (+ 0.2V, 120 s) using hexacyanoferrate (III) as a redox mediator. This selective sensor provided a low limit of detection (0.97 mg L−1) and accurate and precise results and was successfully applied to the analysis of spiked tuna and mackerel extracts, obtaining recovery values of 99–100%. Moreover, the sensor shows good stability, maintaining 87.7% of its initial signal after 35 days.
Collapse
|
135
|
Histamine forming behaviour of bacterial isolates from aged cheese. Food Res Int 2020; 128:108719. [DOI: 10.1016/j.foodres.2019.108719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 01/02/2023]
|
136
|
Miao E, Zhang N, Lu S, Hu Y, Fu L, Zhou H, Zhan J, Wu M. Solid phase “on-situ” quadraplex isotope dimethyl labeling for the analysis of biogenic amines in beers by liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2020; 1613:460712. [DOI: 10.1016/j.chroma.2019.460712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
|
137
|
Colombo M, Nero LA, Todorov SD. Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. Braz J Microbiol 2020; 51:787-795. [PMID: 31970700 DOI: 10.1007/s42770-020-00227-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to assess the safety aspects of 15 lactic acid bacteria (LAB) strains previously isolated from a dairy environment with relation to their beneficial features. LAB strains were assessed using phenotypic methods according to their production of virulence factors at 25 °C and 37 °C, as well as by examining their potential resistance to 15 antibiotics. Polymerase chain reaction (PCR) was also used to identify the presence of 50 genes associated with virulence factors and antibiotic resistance in the strains. None of the strains presented hemolytic activity or the production of gelatinase, lipase, deoxyribonuclease, or the tested biogenic amines. Based on the disk diffusion assay, all strains were resistant to oxacillin and sulfa/trimethoprim. Further, some were resistant to gentamicin (14), clindamycin (11), vancomycin (9), rifampicin (8), erythromycin (5), tetracycline (4), ampicillin (2), and chloramphenicol (1); no strain was resistant to imipenem. Regarding virulence- and antibiotic-resistance-related genes, 19 out of 50 tested genes were present in some strains; there was a variable association of expression. Based on the obtained data, the isolates presented relatively safe characteristics and behavior, findings that should lead to further studies to assess their potential usage as beneficial cultures in the food industry.
Collapse
Affiliation(s)
- Monique Colombo
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Viçosa s/n - Centro, Viçosa, MG, 36570-900, Brazil
| | - Luis Augusto Nero
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Viçosa s/n - Centro, Viçosa, MG, 36570-900, Brazil.
| | - Svetoslav Dimitrov Todorov
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Viçosa s/n - Centro, Viçosa, MG, 36570-900, Brazil. .,Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental, Laboratório de Microbiologia de Alimentos, Universidade de São Paulo, Av. Prof. Lineu Prestes 580 Bloco 14, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
138
|
Świder O, Roszko MŁ, Wójcicki M, Szymczyk K. Biogenic Amines and Free Amino Acids in Traditional Fermented Vegetables-Dietary Risk Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:856-868. [PMID: 31891502 DOI: 10.1021/acs.jafc.9b05625] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biogenic amines (BAs) are low molecular weight organic bases. BAs occurring naturally in living organisms are responsible for a number of vital functions, including (in humans) secretion of gastric acids, controlling body temperature, differentiation and growth of cells, immune reactions, and brain activity. However, if oversupplied with food, BAs may cause food poisoning and produce undesirable effects. Nine BAs and eight free amino acids (FAAs) were determined in 85 samples of 19 different varieties of fermented vegetables available on the Polish retail market. Both BA and FAA levels differed significantly among various varieties of the studied fermented vegetables. Averages for the sum of all tested BAs ranged from 30.29 ± 16.43 mg·kg-1 in fermented olives to 612.1 ± 359.33 mg·kg-1 in fermented Brussels sprout. BA profiles were dominated by putrescine (42%), tyramine (20%), cadaverine (18%), and histamine (8%); jointly, the four amines amounted to 88% of all nine studied BAs. The combined level of the latter four BAs was calculated for each vegetable variety as the so-called BA index (BAI). On that basis, the risk of BA-related adverse health effects has been assessed as high/medium/low in 6/3/10 of all 19 studied varieties of fermented vegetables. Brussels sprout and broccoli turned out to be the most risky vegetables from that point of view (BAI above 400 mg·kg-1). FAA levels ranged from 54.8 ± 12.76 (fermented olives) to 3917.42 ± 1528.73 mg·kg-1 (fermented garlic). The high content of FAAs may increase the risk of forming toxic amounts of BAs, depending on characteristics of the current and added microflora as well as on environmental and technological conditions the product is subjected to.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Analysis , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| | - Marek Łukasz Roszko
- Department of Food Analysis , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| | - Michał Wójcicki
- Department of Fermentation Technology , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| | - Krystyna Szymczyk
- Department of Food Analysis , Institute of Agricultural and Food Biotechnology , Rakowiecka 36, 02-532 Warsaw , Poland
| |
Collapse
|
139
|
Cauchie E, Delhalle L, Taminiau B, Tahiri A, Korsak N, Burteau S, Fall PA, Farnir F, Baré G, Daube G. Assessment of Spoilage Bacterial Communities in Food Wrap and Modified Atmospheres-Packed Minced Pork Meat Samples by 16S rDNA Metagenetic Analysis. Front Microbiol 2020; 10:3074. [PMID: 32038536 PMCID: PMC6985204 DOI: 10.3389/fmicb.2019.03074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Although several studies have focused on the dynamics of bacterial food community, little is known about the variability of batch production and microbial changes that occur during storage. The aim of the study was to characterize the microbial spoilage community of minced pork meat samples, among different food production and storage, using both 16S rRNA gene sequencing and classical microbiology. Three batches of samples were obtained from four local Belgian facilities (A–D) and stored until shelf life under food wrap (FW) and modified atmosphere packaging (MAP, CO2 30%/O2 70%), at constant and dynamic temperature. Analysis of 288 samples were performed by 16S rRNA gene sequencing in combination with counts of psychrotrophic and lactic acid bacteria at 22°C. At the first day of storage, different psychrotrophic counts were observed between the four food companies (Kruskal-Wallist test, p-value < 0.05). Results shown that lowest microbial counts were observed at the first day for industries D and A (4.2 ± 0.4 and 5.6 ± 0.1 log CFU/g, respectively), whereas industries B and C showed the highest results (7.5 ± 0.4 and 7.2 ± 0.4 log CFU/g). At the end of the shelf life, psychrotrophic counts for all food companies was over 7.0 log CFU/g. With metagenetics, 48 OTUs were assigned. At the first day, the genus Photobacterium (86.7 and 19.9% for food industries A and C, respectively) and Pseudomonas (38.7 and 25.7% for food companies B and D, respectively) were dominant. During the storage, a total of 12 dominant genera (>5% in relative abundance) were identified in MAP and 7 in FW. Pseudomonas was more present in FW and this genus was potentially replaced by Brochothrix in MAP (two-sided Welch’s t-test, p-value < 0.05). Also, a high Bray-Curtis dissimilarity in genus relative abundance was observed between food companies and batches. Although the bacteria consistently dominated the microbiota in our samples are known, results indicated that bacterial diversity needs to be addressed on the level of food companies, batches variation and food storage conditions. Present data illustrate that the combined approach provides complementary results on microbial dynamics in minced pork meat samples, considering batches and packaging variations.
Collapse
Affiliation(s)
- Emilie Cauchie
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurent Delhalle
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Assia Tahiri
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolas Korsak
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | - Frédéric Farnir
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ghislain Baré
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
140
|
Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Zokaityte E, Dauksiene A, Jagminas P, Klupsaite D, Bliznikas S, Ruzauskas M. Variations of the antimicrobial, antioxidant, sensory attributes and biogenic amines content in Lithuania-derived bee products. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
141
|
Yin XM, Gao LL, Li P, Bu R, Sun WJ, Gao EQ. Fluorescence Turn-On Response Amplified by Space Confinement in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47112-47120. [PMID: 31738506 DOI: 10.1021/acsami.9b18307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensitive fluorescence turn-on response to specific substances is highly desired for development of chemical sensors and switches. Here we utilized a "two-in-one" strategy to prepare ionic metal-organic frameworks (MOFs) functionalized with the cationic bipyridinium receptors at the frameworks and anionic fluorescent indicators in the pores. The MOFs are rendered a fluorescence-resting state because the indicator's fluorescence is efficiently quenched by the ground-state charge-transfer (CT) complexation between the indicator and receptor. Addition of an alkylamine efficiently turns on the fluorescence because the indicator is displaced by the CT complexation between alkylamine with receptor. The turn-on response is highly specific to alkylamines. The MOFs can be used as recyclable sensors for selective and sensitive detection of alkylamines, with ultralow detection limits (0.5 nM). The fluorescence in solid state can be reversibly switched on and off with high contrast. The sensitive and high-contrast response can be attributed to the space confinement effects of the porous frameworks. The confined space can significantly enhance indicator-receptor and analyte-receptor interactions, and thereby both the quenching efficiency in the off state and the displacement efficiency in the on state are amplified.
Collapse
Affiliation(s)
- Xue-Mei Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Lu-Lu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Peng Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Weng-Jie Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| |
Collapse
|
142
|
Torović L, Gusman V, Kvrgić S. Biogenic amine and microbiological profile of Serbian dry fermented sausages of artisanal and industrial origin and associated health risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2019; 13:64-71. [PMID: 31790340 DOI: 10.1080/19393210.2019.1697380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
From the public health point of view, safety of dry fermented sausages is of concern due to possible presence of biogenic amines and some other food hazards. Taking into consideration that biogenic amines are chemical indicators of microbiological contamination, industrial and artisanal dry fermented sausages produced in Serbia were subjected to the microbiological and biogenic amine profiling. Microorganisms identified by MALDI-TOF MS included Cronobacter sakazakii and Listeria innocua, whereas the food pathogens were not detected. Biogenic amine content, determined by HPLC method in the range from 37.3 to 1186 mg/kg, was characterised as very low to low in 40% of the samples, moderate in 38%, high in 14% and very high in 8%. Risk assessment revealed that consumption of dry fermented sausages could cause histamine and tyramine intake up to 11.9% and 3.4% of threshold dose for healthy population, respectively. Adverse health effects would be rather unlikely for general population.
Collapse
Affiliation(s)
- Ljilja Torović
- University of Novi Sad first, Faculty of Medicine, Novi Sad, Serbia.,Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Vera Gusman
- University of Novi Sad first, Faculty of Medicine, Novi Sad, Serbia.,Institute of Public Health of Vojvodina, Novi Sad, Serbia
| | - Svetlana Kvrgić
- University of Novi Sad first, Faculty of Medicine, Novi Sad, Serbia.,Institute of Public Health of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
143
|
Paulo Vieira C, Pereira da Costa M, da Silva Frasão B, de Melo Silva VL, Vilela de Barros Pinto Moreira R, Chifarelli de Oliveira Nunes YE, Conte-Junior CA. Nondestructive prediction of the overall quality of cow milk yogurt by correlating a biogenic amine index with traditional quality parameters using validated nonlinear models. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
144
|
Bani SM, Saaid M, Saad B. An In Situ Dansylation Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Ionic Liquid for Determination of Biogenic Amines in Foods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01656-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
145
|
Han SY, Hao LL, Shi X, Niu JM, Zhang B. Development and Application of a New QuEChERS Method in UHPLC-QqQ-MS/MS to Detect Seven Biogenic Amines in Chinese Wines. Foods 2019; 8:foods8110552. [PMID: 31694278 PMCID: PMC6915522 DOI: 10.3390/foods8110552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop and validate an improved, simple, and sensitive method for the simultaneous determination of seven types (cadaverine, CAD; hexylamine, HEX; histamine, HIS; phenylethylamine, PEA; putrescine, PUT; tyramine, TYR) of biogenic amines (BAs) in wine matrices. For this reason, a modified QuEChERS combined with ultra-performance liquid chromatography coupled to a triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) method was investigated. The optimization of UHPLC-QqQ-MS/MS separation and QuEChERS procedure was performed. Under optimum conditions, the excellent chromatographic performance of the whole separation was accomplished within 6.3 min analyzing time. Meanwhile, the recoveries ranged from 77.2% to 101.7%, while relative standard deviation (RSD) remained between 0.0% and 9.4%. The limit of detection (LOD, 0.50–1.00 µg/L) and the limit of quantification (LOQ, 1.65–3.30 µg/L) were lower than those permitted by legislation in food matrices, which demonstrated the high sensitivity and applicability of this efficient method. This validated method was also applied in a pilot study to analyze BAs in 81 wine samples from Hexi Corridor Region (Gansu Province, Northwest China), CAD, HEX, HIS, PEA, PUT, and TYR were detected to varying degrees in the samples. However, when compared with the existing standards, the BAs in all 81 wine samples did not exceed the prescribed limit value or toxic dose (2–40 mg/L). Moreover, a statistical approach was also conducted using Pearson correlation analysis, and to evaluate their concentrations in terms of wine parameters (storage time, grape variety, wine type, and basic physicochemical index). The results showed that, among the seven kinds of BAs, the concentration of HIS had a certain correlation with alcoholic degree and grape variety. In addition, the level of PEA had a certain correlation with the wine pH and wine storage time. It is worth noting that this seems to be the first report regarding the application of QuEChERS-UHPLC-QqQ-MS/MS in the analysis of BAs in wine in this region.
Collapse
Affiliation(s)
| | | | | | | | - Bo Zhang
- Correspondence: ; Tel.: +86-0931-7631-201
| |
Collapse
|
146
|
Determination and identification of organic acids in wine samples. Problems and challenges. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115630] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
147
|
Shukla S, Lee JS, Bajpai VK, Khan I, Huh YS, Han YK, Kim M. Toxicological evaluation of lotus, ginkgo, and garlic tailored fermented Korean soybean paste (Doenjang) for biogenic amines, aflatoxins, and microbial hazards. Food Chem Toxicol 2019; 133:110729. [PMID: 31381944 DOI: 10.1016/j.fct.2019.110729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
The present study aimed to develop a consortium of nutritive fermented food products, supplemented with phytochemicals, with reduced toxicological contents. We developed new flavored Doenjang products (protein rich) fermented with lotus, ginkgo, and garlic plant extract-based Meju (termed as EMD) as the starter culture and by using traditional Meju (termed as TMD), where these plant extracts were added later during the fermentation process. Fermented Doenjang samples were analyzed for reduced levels of biogenic amines (BAs), aflatoxins, and microbial hazards, (including Bacillus cereus) as well as for their nutritive contents and antioxidant potential, after varying periods of fermentation (0, 3, 6, 9 and 12 months). All Doenjang samples prepared using plant extracts and their mixtures (1% and 10%) showed desired reduction in B. cereus counts, BAs, aflatoxins, and other foodborne pathogens as well as showed potent antioxidant abilities, including phenolic/flavonoid contents. Based on the higher efficiency in reducing various toxicants, Ginkgo biloba leaf extract added TMD samples were selected for the development of Doenjang products as an innovative approach, with great potential to improve the quality and safety of soybean fermented products in the Korean market, offering enhanced health benefits and reduced risks of toxicity.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
| | - Jong Suk Lee
- Department of Food and Nutrition and Cook, Taegu Science University, Daegu, 41453, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
| | - Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
148
|
|
149
|
Herrera-Chacón A, Dinç-Zor Ş, Del Valle M. Integrating molecularly imprinted polymer beads in graphite-epoxy electrodes for the voltammetric biosensing of histamine in wines. Talanta 2019; 208:120348. [PMID: 31816782 DOI: 10.1016/j.talanta.2019.120348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
This manuscript presents a voltammetric biosensing study with use of molecularly imprinted polymers to detect histamine in wine. Polymer beads were synthesized by standard precipitation polymerization method and implemented on the electrode surface via sol-gel immobilization. Scanning and confocal microscopy examinations permitted characterizing the material. Adsorptive stripping voltammetry in differential mode was the technique chosen for final application, selecting an enrichment time of 5 min. These conditions permitted a limit of detection of 0.19 μg mL-1 (1.0 μM), with a linear response range from 0.5 to 6.0 μg mL-1 (2.71-32.4 μM). The repeatability of the measurements was 4.6% relative standard deviation (n = 12). Principal component analysis showed the ability of the prepared receptor for discriminating other biogenic amines and potential interfering species. A final application, illustrating the determination of histamine, was completed to show agreement of results between the fluorimetric reference method and the proposed electrochemical approach.
Collapse
Affiliation(s)
- Anna Herrera-Chacón
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193, Bellaterra, Barcelona, Spain
| | - Şule Dinç-Zor
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Manel Del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
150
|
Palomino-Vasco M, Acedo-Valenzuela MI, Rodríguez-Cáceres MI, Mora-Diez N. Automated chromatographic method with fluorescent detection to determine biogenic amines and amino acids. Application to craft beer brewing process. J Chromatogr A 2019; 1601:155-163. [DOI: 10.1016/j.chroma.2019.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022]
|