101
|
Zhao H, Xu C, Luo X, Wei F, Wang N, Shi H, Ren X. Seroprevalence of Neutralizing Antibodies against Human Adenovirus Type-5 and Chimpanzee Adenovirus Type-68 in Cancer Patients. Front Immunol 2018; 9:335. [PMID: 29563911 PMCID: PMC5845880 DOI: 10.3389/fimmu.2018.00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/06/2018] [Indexed: 01/16/2023] Open
Abstract
Since the preclinical results about chimpanzee adenovirus serotype-68 (AdC68)-based vaccine showed an encouraging results, it reminded us that AdC68 may be a suitable cancer vaccine vector. Previous study indicated that the seroprevalence of neutralizing antibodies (NAbs) against adenovirus was different between cancer patients and healthy volunteers. Knowledge regarding the prevalence rates of AdC68 NAbs for cancer patients is lacking. Therefore, assessing the preexistence of NAbs against AdC68 in cancer patients could provide useful insights for developing future AdC68-based cancer vaccines. In this study, 440 patients with different pathological types of tumors and 204 healthy adult volunteers were enrolled to evaluate the NAbs against AdC68 and human adenovirus serotype-5 (AdHu5). The seroprevalence of NAbs against AdC68 was much lower than that against AdHu5 in cancer subjects (43.64 vs. 67.05%, P < 0.01). The seroprevalence rates of NAbs to AdC68 in the cancer subjects were statistically higher than those detected in the healthy adult volunteers (43.64 vs. 23.53%, P = 0.000). The seroprevalence rates of AdC68 NAbs were much lower in lung, laryngeal, esophageal, and cervical cancer patients compared with oropharyngeal, colon, and rectal cancer patients. Furthermore, the seroprevalence rates of AdC68 NAbs were much lower in lung adenocarcinoma patients than in lung squamous cell carcinoma patients (35.00 vs. 70.00%, P < 0.05). No significant difference in the AdC68 NAbs among patients with different clinical stages of cancer was detected. The percentage of NAbs against AdC68 was significantly lower than that against AdHu5 (P < 0.05) in stage-I, -II, and -III cancer patients. No significant difference between the percentage of NAbs against AdC68 and AdHu5 in the subjects with stage-IV cancer was detected. The study also demonstrated the distribution of AdHu5 and AdC68 NAb titers for the positive samples. It showed that very low NAb titers against AdC68 with respect to AdHu5 in both healthy subjects and cancer subjects, especially in lung, laryngeal, esophageal, gastric, and cervical carcinomas. Also, the titer of NAbs against AdC68 was significantly lower than that against AdHu5 in the same clinical stage and age group (P < 0.05). Taken together, the present study showed that NAbs against AdC68 is much lower than AdHu5, especially in lung adenocarcinoma, laryngeal cancer, esophageal cancer, and cervical cancer patients. These results provided strong support for candidating AdC68 as a suitable vector of cancer vaccines.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Can Xu
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Xiaoli Luo
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ning Wang
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Huiying Shi
- Bioroc Pharmaceutical & Biotech Company, Tianjin, China.,Tianjin Genstar Vaccine Limited Liability Company, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
102
|
Zhang W, Fu J, Liu J, Wang H, Schiwon M, Janz S, Schaffarczyk L, von der Goltz L, Ehrke-Schulz E, Dörner J, Solanki M, Boehme P, Bergmann T, Lieber A, Lauber C, Dahl A, Petzold A, Zhang Y, Stewart AF, Ehrhardt A. An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity. Cell Rep 2018; 19:1698-1709. [PMID: 28538186 DOI: 10.1016/j.celrep.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource.
Collapse
Affiliation(s)
- Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China; Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jing Liu
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China; Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maren Schiwon
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Sebastian Janz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lukas Schaffarczyk
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lukas von der Goltz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Johannes Dörner
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Philip Boehme
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Thorsten Bergmann
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Andre Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195-7720, USA
| | - Chris Lauber
- Institute for Medical Informatics and Biometry, Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Petzold
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China.
| | - A Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany.
| |
Collapse
|
103
|
Callendret B, Vellinga J, Wunderlich K, Rodriguez A, Steigerwald R, Dirmeier U, Cheminay C, Volkmann A, Brasel T, Carrion R, Giavedoni LD, Patterson JL, Mire CE, Geisbert TW, Hooper JW, Weijtens M, Hartkoorn-Pasma J, Custers J, Grazia Pau M, Schuitemaker H, Zahn R. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates. PLoS One 2018; 13:e0192312. [PMID: 29462200 PMCID: PMC5819775 DOI: 10.1371/journal.pone.0192312] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Collapse
Affiliation(s)
| | - Jort Vellinga
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | | | | | | | | | | | - Trevor Brasel
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jean L. Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Chad E. Mire
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas W. Geisbert
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jay W. Hooper
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Mo Weijtens
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| |
Collapse
|
104
|
Wong G, Mendoza EJ, Plummer FA, Gao GF, Kobinger GP, Qiu X. From bench to almost bedside: the long road to a licensed Ebola virus vaccine. Expert Opin Biol Ther 2018; 18:159-173. [PMID: 29148858 PMCID: PMC5841470 DOI: 10.1080/14712598.2018.1404572] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The Ebola virus (EBOV) disease epidemic during 2014-16 in West Africa has accelerated the clinical development of several vaccine candidates that have demonstrated efficacy in the gold standard nonhuman primate (NHP) model, namely cynomolgus macaques. AREAS COVERED This review discusses the pre-clinical research and if available, clinical evaluation of the currently available EBOV vaccine candidates, while emphasizing the translatability of pre-clinical data generated in the NHP model to clinical data in humans. EXPERT OPINION Despite the existence of many successful EBOV vaccine candidates in the pre-clinical stages, only two platforms became the focus of Phase 2/3 efficacy trials in Liberia, Sierra Leone, and Guinea near the peak of the epidemic: the Vesicular stomatitis virus (VSV)-vectored vaccine and the chimpanzee adenovirus type 3 (ChAd3)-vectored vaccine. The results of three distinct clinical trials involving these candidates may soon pave the way for a licensed, safe and efficacious EBOV vaccine to help combat future epidemics.
Collapse
Affiliation(s)
- Gary Wong
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
| | - Emelissa J. Mendoza
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - George F. Gao
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Gary P. Kobinger
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Département de microbiologie-infectiologie et d’immunologie, Universite Laval, Quebec, QC, Canada
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology, Winnipeg, MB, Canada
| |
Collapse
|
105
|
Kiener R, Fleischmann M, Schwegler C, Ruzsics Z, Thirion C, Schrödel S, Asbach B, Wagner R. Vaccine vectors based on Adenovirus 19a/64 exhibit broad cellular tropism and potently restimulate HCMV-specific T cell responses ex vivo. Sci Rep 2018; 8:1474. [PMID: 29367743 PMCID: PMC5784015 DOI: 10.1038/s41598-018-19874-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Human Cytomegalovirus (HCMV) remains a major health burden and the development of a vaccine is a global priority. We developed new viral vectors delivering the T cell immunogens IE-1 and pp65 based on Adenovirus 19a/64 (Ad19a/64), a member of subgroup D. In this ex vivo study, the novel vectors were compared side by side to Ad5 or modified Vaccinia Ankara (MVA) strains expressing the same transgenes. We found that unlike Ad5, Ad19a/64 vectors readily transduce a broad panel of immune cells, including monocytes, T cells, NK cells and monocyte-derived dendritic cells (moDCs). Both Ad19a/64- and MVA-transduced moDCs efficiently restimulated IE-1 or pp65-specific T cells but MVA induced a higher amount of cytotoxicity in this cell type. Ad5 and Ad19 induced upregulation of CD86 and HLA-DR in moDCs whereas expression of CD80 and CD83 was largely unaltered. By contrast, MVA transduction led to downregulation of all markers. Taken together, our data demonstrate that Ad19a/64 is a promising vector for the delivery of HCMV immunogens since it transduces dendritic cells with an efficiency that is comparable to MVA, but cytotoxicity and interference with dendritic cell maturation are less pronounced.
Collapse
Affiliation(s)
- Richard Kiener
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Markus Fleischmann
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christiane Schwegler
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center - University of Freiburg, Medical Faculty, University of Freiburg, Hermann-Herder Str 11, 79104, Freiburg, Germany
| | - Christian Thirion
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef- Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
106
|
|
107
|
Uusi-Kerttula H, Davies J, Coughlan L, Hulin-Curtis S, Jones R, Hanna L, Chester JD, Parker AL. Pseudotyped αvβ6 integrin-targeted adenovirus vectors for ovarian cancer therapies. Oncotarget 2017; 7:27926-37. [PMID: 27056886 PMCID: PMC5053699 DOI: 10.18632/oncotarget.8545] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/28/2016] [Indexed: 01/02/2023] Open
Abstract
Encouraging results from recent clinical trials are revitalizing the field of oncolytic virotherapies. Human adenovirus type 5 (HAdV-C5/Ad5) is a common vector for its ease of manipulation, high production titers and capacity to transduce multiple cell types. However, effective clinical applications are hindered by poor tumor-selectivity and vector neutralization. We generated Ad5/kn48 by pseudotyping Ad5 with the fiber knob domain from the less seroprevalent HAdV-D48 (Ad48). The vector was shown to utilize coxsackie and adenovirus receptor (CAR) but not CD46 for cell entry. A 20-amino acid peptide NAVPNLRGDLQVLAQKVART (A20) was inserted into the Ad5. Luc HI loop (Ad5.HI.A20) and Ad5/kn48 DG loop (Ad5/kn48.DG.A20) to target a prognostic cancer cell marker, αvβ6 integrin. Relative to the Ad5.Luc parent vector, Ad5.HI.A20, Ad5.KO1.HI.A20 (KO1, ablated CAR-binding) and Ad5/kn48.DG.A20 showed ~ 160-, 270- and 180-fold increased transduction in BT-20 breast carcinoma cells (αvβ6high). Primary human epithelial ovarian cancer (EOC) cultures derived from clinical ascites provided a useful ex vivo model for intraperitoneal virotherapy. Ad5.HI.A20, Ad5.KO1.HI.A20 and Ad5/kn48.DG.A20 transduction was ~ 70-, 60- and 16-fold increased relative to Ad5.Luc in EOC cells (αvβ6high), respectively. A20 vectors transduced EOC cells at up to ~ 950-fold higher efficiency in the presence of neutralizing ovarian ascites, as compared to Ad5.Luc. Efficient transduction and enhanced cancer-selectivity via a non-native αvβ6-mediated route was demonstrated, even in the presence of pre-existing anti-Ad5 immunity. Consequently, αvβ6-targeted Ad vectors may represent a promising platform for local intraperitoneal treatment of ovarian cancer metastases.
Collapse
Affiliation(s)
- Hanni Uusi-Kerttula
- Department of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - James Davies
- Department of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Lynda Coughlan
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Sarah Hulin-Curtis
- Department of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | | | - John D Chester
- Department of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Velindre Cancer Centre, Cardiff CF14 2TL, UK
| | - Alan L Parker
- Department of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
108
|
Yang WX, Zou XH, Jiang SY, Lu NN, Han M, Zhao JH, Guo XJ, Zhao SC, Lu ZZ. Prevalence of serum neutralizing antibodies to adenovirus type 5 (Ad5) and 41 (Ad41) in children is associated with age and sanitary conditions. Vaccine 2017; 34:5579-5586. [PMID: 27682509 PMCID: PMC7115419 DOI: 10.1016/j.vaccine.2016.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
Serum neutralizing antibodies to Ad5 and Ad41 in adults and children were titrated. Prevalence of NAb in children was associated with age and sanitary conditions. NAb titer distribution pattern was very different between Ad5 an Ad41. Ad41 vectored vaccine candidates might have a bright future.
Neutralizing antibody (NAb) can dampen the immunogenicity of adenovirus (Ad) vector-based vaccine. Vector systems based on human adenovirus type 41 (Ad41) have been constructed and used to develop recombinant vaccines. Here, we attempted to study the seroprevalence of NAbs to Ad5 and Ad41 among children and adults in Qinghai province, China. The positive rates (titer ⩾ 40) of Ad5 and Ad41 NAb in adults from Xining city were 75.7% and 94.7%, respectively. The moderate/high-positive rates (titer ⩾ 160) of NAb were quite close between the two viruses in adults (70.4% for Ad5 and 73.5% for Ad41). Age-dependent increase of NAb seroprevalence was observed for both viruses in children. NAb-positive rate of Ad41 reached 50% at 3.3–4.6 years of age for children from Chengxi district, Xining city, approximately 1.5 years earlier than that of Ad5 did. Interestingly, NAb level was also associated with sanitary conditions among young children. For Ad5, 8–15% children (0.2–3.0 years of age) from city or town, where the sanitations were relatively better, had moderate/high-positive NAb, while the same rate was 62% for children from villages. For Ad41, 22% children from city, 47% from town and 88% from villages possessed moderate/high-positive NAb. The possible influence of NAb titer distributions on the application of Ad41-vectored vaccines was discussed in detail. Our results suggested that children from places with poor sanitations should be included for comprehensive Ad NAb seroprevalence studies, and provided insights to the applications of Ad41 vectors.
Collapse
Affiliation(s)
- Wei-Xiong Yang
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Xiao-Hui Zou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Shuang-Ying Jiang
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Nan-Nan Lu
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Mei Han
- Qinghai Provincial Kangle Hospital, Xining, Qinghai 810006, China
| | - Jian-Hai Zhao
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China
| | - Xiao-Juan Guo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Sheng-Cang Zhao
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China.
| | - Zhuo-Zhuang Lu
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai 810007, China; State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| |
Collapse
|
109
|
Ehrke-Schulz E, Schiwon M, Leitner T, Dávid S, Bergmann T, Liu J, Ehrhardt A. CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Sci Rep 2017; 7:17113. [PMID: 29215041 PMCID: PMC5719366 DOI: 10.1038/s41598-017-17180-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.
Collapse
Affiliation(s)
- Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Maren Schiwon
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Theo Leitner
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Stephan Dávid
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Thorsten Bergmann
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Jing Liu
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
110
|
Zhang W, Ehrhardt A. Getting genetic access to natural adenovirus genomes to explore vector diversity. Virus Genes 2017; 53:675-683. [PMID: 28711987 DOI: 10.1007/s11262-017-1487-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 01/20/2023]
Abstract
Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany.
| |
Collapse
|
111
|
Seroprevalence of neutralizing antibodies against adenovirus type 14 and 55 in healthy adults in Southern China. Emerg Microbes Infect 2017; 6:e43. [PMID: 28588291 PMCID: PMC5520307 DOI: 10.1038/emi.2017.29] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 01/06/2023]
Abstract
Re-emerging human adenovirus types 14 (Ad14) and 55 (Ad55) have caused severe respiratory diseases and even deaths during recent outbreaks. However, the seroprevalence of neutralizing antibodies (nAbs) in healthy adults, which may reflect previous circulation and help to predict potential outbreaks, remains unclear. In this study, we established micro-neutralizing (MN) assays on the basis of recombinant Ad14 and Ad55 reporter viruses, and we investigated serum nAbs in healthy blood donors from Southern China. We found that the overall seropositive rates were 24.8% and 22.4% for Ad14 and Ad55 nAbs, respectively. The seropositive rates were low in individuals younger than 20, and they gradually increased with age. Ad55-seropositive individuals tended to have high nAb titers (>1000), while low (72–200) and moderate (201–1000) nAb levels were frequently observed in Ad14-seropositive ones. Surprisingly, the seropositive rates and nAb levels were associated with the blood type but not the gender of the blood donors, with type AB individuals displaying higher seropositive rates and nAb levels. Interestingly, a significant positive correlation was observed between Ad14 and Ad55 seroprevalence, and higher titers of nAbs were detected in double-positive individuals compared to single-positive ones. These results clarified the human humoral immune responses against Ad14 and Ad55 and revealed a low level of herd immunity in some subpopulations, which emphasized the importance of monitoring these two highly virulent adenoviruses and reinforced the development of prophylactic vaccines.
Collapse
|
112
|
Decreased Vector Gene Expression from E2b Gene-Deleted Adenovirus Serotype 5 Vaccines Intensifies Proinflammatory Immune Responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00061-17. [PMID: 28381403 DOI: 10.1128/cvi.00061-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
Recombinant adenovirus serotype 5 (Ad5) vectors are promising vaccine candidates due to their intrinsic immunogenicity and potent transgene expression; however, widespread preexisting Ad5 immunity has been considered a developmental impediment to the use of traditional, or conventional, E1 and E3 gene-deleted Ad5 (Ad5[E1-]) vaccines. Even in the presence of anti-Ad5 immunity, recent murine and human studies have confirmed E2b gene-deleted Ad5 (Ad5[E1-,E2b-]) vaccines to be highly efficacious inducers of transgene-specific memory responses and significantly less toxic options than Ad5[E1-] vaccines. While these findings have been substantially confirmed, the molecular mechanisms underlying the different reactions to these vaccine platforms are unknown. Using cultures of human peripheral blood mononuclear cells (hPBMCs) derived from multiple human donors, we found that Ad5[E1-,E2b-] vaccines trigger higher levels of hPBMC proinflammatory cytokine secretion than Ad5[E1-] vaccines. Interestingly, these responses were generated regardless of the donors' preexisting anti-Ad5 humoral and cell-mediated immune response status. In vitro hPBMC infection with the Ad5[E1-,E2b-] vaccine also provoked greater Th1-dominant gene responses yet smaller amounts of Ad-derived gene expression than Ad5[E1-] vaccines. These results suggest that Ad5[E1-,E2b-] vaccines, in contrast to Ad5[E1-] vaccines, do not promote activities that suppress innate immune signaling, thereby allowing for improved vaccine efficacy and a superior safety profile independently of previous Ad5 immunity.
Collapse
|
113
|
Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, Zhao C, Zeng Z, Shu Y, Wu X, Lei J, Li Y, Zhang W, Yang C, Wu K, Wu Y, Ho S, Athiviraham A, Lee MJ, Wolf JM, Reid RR, He TC. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis 2017; 4:43-63. [PMID: 28944281 PMCID: PMC5609467 DOI: 10.1016/j.gendis.2017.04.001] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.
Collapse
Affiliation(s)
- Cody S. Lee
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Elliot S. Bishop
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Evan M. Farina
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai 264100, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
114
|
Exploring evidence for behavioral risk compensation among participants in an HIV vaccine clinical trial. Vaccine 2017; 35:3558-3563. [PMID: 28533053 DOI: 10.1016/j.vaccine.2017.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND HIV vaccine trial participants may engage in behavioral risk compensation due to a false sense of protection. We conducted an ancillary study of an HIV Vaccine Trials Network (HVTN) vaccine efficacy trial to explore risk compensation among trial participants compared to persons who were willing to participate but ineligible based on previous exposure to the Ad5 virus (Ad5+) across three timepoints. METHODS Participants were drawn from the Atlanta, GA site of the HVTN 505 vaccine trial. From 2011-2013, all persons who met prescreening criteria for the clinical trial and presented for Ad5 antibody testing were invited to participate in the ancillary study. Data were collected from vaccine trial participants (n=51) and Ad5+ participants (n=60) via online surveys across three timepoints: baseline, T2 (after trial participants received 2/4 injections) and T3 (after trial participants received 4/4 injections). Data analyses assessed demographic, psychosocial, and behavioral differences at baseline and changes at each timepoint. RESULTS At baseline, Ad5+ participants were less likely to have some college education (p=0.024) or health insurance (p=0.008), and were more likely to want to participate in the vaccine trial "to feel safer having unprotected sex" (p=0.005). Among vaccine trial participants, unprotected anal sex with a casual partner (p=0.05), HIV transmission worry (p=0.033), and perceived chance of getting HIV (p=0.027), decreased across timepoints. CONCLUSIONS Study findings suggest that persons with previous exposure to Ad5 may be systematically different from their Ad5-negative peers. Unprotected anal sex with a casual partner significantly decreased among HIV vaccine trial participants, as did HIV worry and perceived chance of getting HIV. Findings did not support evidence of risk compensation among HIV vaccine trial participants compared to Ad5+ participants.
Collapse
|
115
|
Tollefson AE, Ying B, Spencer JF, Sagartz JE, Wold WSM, Toth K. Pathology in Permissive Syrian Hamsters after Infection with Species C Human Adenovirus (HAdV-C) Is the Result of Virus Replication: HAdV-C6 Replicates More and Causes More Pathology than HAdV-C5. J Virol 2017; 91:e00284-17. [PMID: 28250128 PMCID: PMC5411597 DOI: 10.1128/jvi.00284-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Syrian hamsters are permissive for the replication of species C human adenoviruses (HAdV-C). The virus replicates to high titers in the liver of these animals after intravenous infection, while respiratory infection results in virus replication in the lung. Here we show that two types belonging to species C, HAdV-C5 and HAdV-C6, replicate to significantly different extents and cause pathology with significantly different severities, with HAdV-C6 replicating better and inducing more severe and more widespread lesions. The virus burdens in the livers of HAdV-C6-infected hamsters are higher than the virus burdens in HAdV-C5-infected ones because more of the permissive hepatocytes get infected. Furthermore, when hamsters are infected intravenously with HAdV-C6, live, infectious virus can be isolated from the lung and the kidney, which is not seen with HAdV-C5. Similarly to mouse models, in hamsters, HAdV-C6 is sequestered by macrophages to a lesser degree than HAdV-C5. Depletion of Kupffer cells from the liver greatly increases the replication of HAdV-C5 in the liver, while it has only a modest effect on the replication of HAdV-C6. Elimination of Kupffer cells also dramatically increases the pathology induced by HAdV-C5. These findings indicate that in hamsters, pathology resulting from intravenous infection with adenoviruses is caused mostly by replication in hepatocytes and not by the abortive infection of Kupffer cells and the following cytokine storm.IMPORTANCE Immunocompromised human patients can develop severe, often lethal adenovirus infections. Respiratory adenovirus infection among military recruits is a serious problem, in some cases requiring hospitalization of the patient. Furthermore, adenovirus-based vectors are frequently used as experimental viral therapeutic agents. Thus, it is imperative that we investigate the pathogenesis of adenoviruses in a permissive animal model. Syrian hamsters are susceptible to infection with certain human adenoviruses, and the pathology accompanying these infections is similar to what is observed with adenovirus-infected human patients. We demonstrate that replication in permissive cells in a susceptible host animal is a major part of the mechanism by which systemic adenovirus infection induces pathology, as opposed to the chiefly immune-mediated pathology observed in nonsusceptible hosts. These findings support the use of compounds inhibiting adenovirus replication as a means to block adenovirus-induced pathology.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
116
|
Tang A, Freed DC, Li F, Meschino S, Prokop M, Bett A, Casimiro D, Wang D, Fu TM. Functionally inactivated dominant viral antigens of human cytomegalovirus delivered in replication incompetent adenovirus type 6 vectors as vaccine candidates. Hum Vaccin Immunother 2017; 13:2763-2771. [PMID: 28494195 PMCID: PMC5718781 DOI: 10.1080/21645515.2017.1308988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
T cell immunity is critical in controlling human cytomegalovirus (HCMV) infection in transplant recipients, and T cells targeting viral immediate early proteins such as IE1, IE2 and pp65 have been speculated to be more effective against reactivation. Here we report efforts to construct replication incompetent adenovirus 6 vectors expressing these viral antigens as vaccine candidates. To reduce the potential liabilities of these viral proteins as vaccine antigens, we introduced mutations to inactivate their reported functions including their nuclear localization signals. The modifications greatly reduced their localization to the nuclei, thus limiting their interactions with cellular proteins important for cell cycle modulation and transactivation. The immunogenicity of modified pp65, IE1 and IE2 vaccines was comparable to their wild-type counterparts in mice and the immunogenicity of the modified antigens was demonstrated in non-human primates.
Collapse
Affiliation(s)
- Aimin Tang
- a MRL, Merck & Co., Inc. , Kenilworth , NJ , USA
| | | | - Fengsheng Li
- a MRL, Merck & Co., Inc. , Kenilworth , NJ , USA
| | | | | | - Andrew Bett
- a MRL, Merck & Co., Inc. , Kenilworth , NJ , USA
| | | | - Dai Wang
- a MRL, Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Tong-Ming Fu
- a MRL, Merck & Co., Inc. , Kenilworth , NJ , USA
| |
Collapse
|
117
|
Kratzer RF, Espenlaub S, Hoffmeister A, Kron MW, Kreppel F. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes. PLoS One 2017; 12:e0176852. [PMID: 28472163 PMCID: PMC5417563 DOI: 10.1371/journal.pone.0176852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/18/2017] [Indexed: 02/08/2023] Open
Abstract
Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Florian Kreppel
- Department of Gene Therapy, Ulm University, Ulm, Germany
- Chair of Biochemistry and Molecular Medicine, Witten/Herdecke University, Faculty of Health/School of Medicine, Center for Biomedical Education and Research (ZBAF), Witten, Germany
- * E-mail:
| |
Collapse
|
118
|
van Tricht E, Geurink L, Backus H, Germano M, Somsen GW, Sänger–van de Griend CE. One single, fast and robust capillary electrophoresis method for the direct quantification of intact adenovirus particles in upstream and downstream processing samples. Talanta 2017; 166:8-14. [DOI: 10.1016/j.talanta.2017.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 12/30/2022]
|
119
|
Li Q, Liu Q, Huang W, Song A, Zhao C, Wu J, Wang Y. Neutralizing antibodies against adenovirus type 2 in normal and HIV-1-infected subjects: Implications for use of Ad2 vectors in vaccines. Hum Vaccin Immunother 2017; 13:1-8. [PMID: 28301274 DOI: 10.1080/21645515.2017.1281487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Pre-existing neutralizing antibodies (NAbs) directed against vaccine vectors have attracted considerable research attention. Therefore, our aim was to establish a high-throughput economical neutralization assay to investigate the epidemiology of adenovirus type 2 (Ad2)-specific immunity in China and developed countries, including in a Chinese Human immunodeficiency virus (HIV)-1-infected population, and to guide the application of Ad2-vectored vaccines. We established a FluoroSpot-based anti-Ad2-virus neutralization assay using a recombinant replication-deficient Ad2 that expresses enhanced green fluorescent protein and standardized the critical parameters, including the choice of cell line, cell concentration, viral infective dose, and incubation time. The sera of 561 healthy individuals from China and developed countries and from 230 HIV-1-infected Chinese individuals were screened with this assay for Nabs against Ad2. The prevalence of anti-Ad2 NAbs was high in both China (92.2%) and developed countries (86.9%). Of the Ad2-seropositive individuals, 64.6% in China and 77.4% in developed countries had high NAb titers (> 810). The frequency of anti-Ad2 NAbs was higher in Anhui (97.5%) than in Beijing (88.7%). Their prevalence differed significantly according to age in Beijing, but not in Anhui Province, but by sex in neither province. Ad2 seroprevalence was as high among HIV-1-infected individuals (88.7%) as among healthy individuals (92.2%) in China. In conclusion, a simple, intuitive, high-throughput, economical fluorescence-based neutralization assay was developed to determine anti-Ad2 NAbs titers. Ad2 exposure was high in both healthy and HIV-1-infected populations in China, so vectors based on Ad2 may be inappropriate for human vaccines.
Collapse
Affiliation(s)
- Qianqian Li
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Qiang Liu
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Weijing Huang
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Aijing Song
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Chenyan Zhao
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Jiajing Wu
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| | - Youchun Wang
- a Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products , National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
120
|
Grobusch MP, Goorhuis A. Safety and immunogenicity of a recombinant adenovirus vector-based Ebola vaccine. Lancet 2017; 389:578-580. [PMID: 28017405 DOI: 10.1016/s0140-6736(16)32619-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Lion Heart Medical Research Unit, Yele, Sierra Leone.
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; Lion Heart Medical Research Unit, Yele, Sierra Leone
| |
Collapse
|
121
|
Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents. Viruses 2017; 9:v9010013. [PMID: 28106842 PMCID: PMC5294982 DOI: 10.3390/v9010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/15/2017] [Indexed: 01/26/2023] Open
Abstract
Cancer is a devastating disease that affects millions of patients every year, and causes an enormous economic burden on the health care system and emotional burden on affected families. The first line of defense against solid tumors is usually extraction of the tumor, when possible, by surgical methods. In cases where solid tumors can not be safely removed, chemotherapy is often the first line of treatment. As metastatic cancers often become vigorously resistant to treatments, the development of novel, more potent and selective anti-cancer strategies is of great importance. Adenovirus (Ad) is the most commonly used virus in cancer clinical trials, however, regardless of the nature of the Ad-based therapeutic, complete responses to treatment remain rare. A number of pre-clinical studies have shown that, for all vector systems, viral spread throughout the tumor mass can be a major limiting factor for complete tumor elimination. By expressing exogenous cell-fusion proteins, many groups have shown improved spread of Ad-based vectors. This review summarizes the research done to examine the potency of Ad vectors expressing fusogenic proteins as anti-cancer therapeutics.
Collapse
|
122
|
Crank MC, Wilson EMP, Novik L, Enama ME, Hendel CS, Gu W, Nason MC, Bailer RT, Nabel GJ, McDermott AB, Mascola JR, Koup RA, Ledgerwood JE, Graham BS. Safety and Immunogenicity of a rAd35-EnvA Prototype HIV-1 Vaccine in Combination with rAd5-EnvA in Healthy Adults (VRC 012). PLoS One 2016; 11:e0166393. [PMID: 27846256 PMCID: PMC5112788 DOI: 10.1371/journal.pone.0166393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND VRC 012 was a Phase I study of a prototype recombinant adenoviral-vector serotype-35 (rAd35) HIV vaccine, the precursor to two recently published clinical trials, HVTN 077 and 083. On the basis of prior evaluation of multiclade rAd5 HIV vaccines, Envelope A (EnvA) was selected as the standard antigen for a series of prototype HIV vaccines to compare various vaccine platforms. In addition, prior studies of rAd5-vectored vaccines suggested pre-existing human immunity may be a confounding factor in vaccine efficacy. rAd35 is less seroprevalent across human populations and was chosen for testing alone and in combination with a rAd5-EnvA vaccine in the present two-part phase I study. METHODS First, five subjects each received a single injection of 109, 1010, or 1011 particle units (PU) of rAd35-EnvA in an open-label, dose-escalation study. Next, 20 Ad5/Ad35-seronegative subjects were randomized to blinded, heterologous prime-boost schedules combining rAd5-EnvA and rAd35-EnvA with a three month interval. rAd35-EnvA was given at 1010 or 1011 PU to ten subjects each; all rAd5-EnvA injections were 1010 PU. EnvA-specific immunogenicity was assessed four weeks post-injection. Solicited reactogenicity and clinical safety were followed after each injection. RESULTS Vaccinations were well tolerated at all dosages. Antibody responses measured by ELISA were detected at 4 weeks in 30% and 50% of subjects after single doses of 1010 or 1011 PU rAd35, respectively, and in 89% after a single rAd5-EnvA 1010 PU injection. EnvA-specific IFN-γ ELISpot responses were detected at four weeks in 0%, 70%, and 50% of subjects after the respective rAd35-EnvA dosages compared to 89% of subjects after rAd5. T cell responses were higher after a single rAd5-EnvA 1010 PU injection than after a single rAd35-EnvA 1010 PU injection, and humoral responses were low after a single dose of either vector. Of those completing the vaccine schedule, 100% of rAd5-EnvA recipients and 90% of rAd35-EnvA recipients had both T cell and humoral responses after boosting with the heterologous vector. ELISpot response magnitude was similar in both regimens and comparable to a single dose of rAd5. A trend toward more robust CD8 T cell responses using rAd5-EnvA prime and rAd35-EnvA boost was observed. Humoral response magnitude was also similar after either heterologous regimen, but was several fold higher than after a single dose of rAd5. Adverse events (AEs) related to study vaccines were in general mild and limited to one episode of hematuria, Grade two. Activated partial thromboplastin time (aPTT) AEs were consistent with an in vitro effect on the laboratory assay for aPTT due to a transient induction of anti-phospholipid antibody, a phenomenon that has been reported in other adenoviral vector vaccine trials. CONCLUSIONS Limitations of the rAd vaccine vectors, including the complex interactions among pre-existing adenoviral immunity and vaccine-induced immune responses, have prompted investigators to include less seroprevalent vectors such as rAd35-EnvA in prime-boost regimens. The rAd35-EnvA vaccine described here was well tolerated and immunogenic. While it effectively primed and boosted antibody responses when given in a reciprocal prime-boost regimen with rAd5-EnvA using a three-month interval, it did not significantly improve the frequency or magnitude of T cell responses above a single dose of rAd5. The humoral and cellular immunogenicity data reported here may inform future vaccine and study design. TRIAL REGISTRATION ClinicalTrials.gov NCT00479999.
Collapse
Affiliation(s)
- Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eleanor M. P. Wilson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary E. Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cynthia S. Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wenjuan Gu
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, Maryland, 21702, United States of America
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
123
|
Trad MA, Naughton W, Yeung A, Mazlin L, O'sullivan M, Gilroy N, Fisher DA, Stuart RL. Ebola virus disease: An update on current prevention and management strategies. J Clin Virol 2016; 86:5-13. [PMID: 27893999 DOI: 10.1016/j.jcv.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
Ebola virus disease (EVD) is characterised by systemic viral replication, immuno-suppression, abnormal inflammatory responses, large volume fluid and electrolyte losses, and high mortality in under-resourced settings. There are various therapeutic strategies targeting EVD including vaccines utilizing different antigen delivery methods, antibody-based therapies and antiviral drugs. These therapies remain experimental, but received attention following their use particularly in cases treated outside West Africa during the 2014-15 outbreak, in which 20 (80%) out of 25 patients survived. Emerging data from current trials look promising and are undergoing further study, however optimised supportive care remains the key to reducing mortality from EVD.
Collapse
Affiliation(s)
- M A Trad
- Department of Infectious Diseases, Wollongong Hospital, Wollongong, NSW, Australia; Graduate School of Medicine, University of Wollongong, Wollongong, Australia; Medecins Sans Frontieres, Paris, France.
| | - W Naughton
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - A Yeung
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - L Mazlin
- Medecins Sans Frontieres, Brussels, Belgium
| | - M O'sullivan
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW, Australia
| | - N Gilroy
- Centre for Infectious Diseases and Microbiology, Pathology West, Westmead Hospital, NSW, Australia
| | - D A Fisher
- Division of Infectious Diseases, University Medicine Cluster, National University Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - R L Stuart
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia; Department of Medicine, Monash University, Victoria, Australia
| |
Collapse
|
124
|
Abstract
For 40 years ebolaviruses have been responsible for sporadic outbreaks of severe and often fatal hemorrhagic fever in humans and nonhuman primates. In December 2013 an unprecedented Zaire ebolavirus epidemic began in West Africa. Although "patient zero" has finally been reached after 2 years, the virus is again causing disease in the region. Currently there are no licensed vaccines or therapeutic countermeasures against ebolaviruses; however, the epidemic in West Africa has focused attention on the potential vaccine platforms developed over the past 15 years. There has been remarkable progress using a variety of platforms including DNA, subunit, and several viral vector approaches, replicating and non-replicating, which have shown varying degrees of protective efficacy in the "gold-standard" nonhuman primate models for Ebolavirus infections. A number of these vaccine platforms have moved into clinical trials over the past year with the hope of finding an efficacious vaccine to prevent future outbreaks/epidemics of Ebola hemorrhagic fever on the scale of the West African epidemic.
Collapse
Affiliation(s)
- Chad E Mire
- a Galveston National Laboratory, and Department of Microbiology and Immunology , University of Texas Medical Branch , Galveston , TX , USA
| | - Thomas W Geisbert
- a Galveston National Laboratory, and Department of Microbiology and Immunology , University of Texas Medical Branch , Galveston , TX , USA
| | - Heinz Feldmann
- b Laboratory of Virology, Division of Intramural Research , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Andrea Marzi
- b Laboratory of Virology, Division of Intramural Research , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| |
Collapse
|
125
|
Wang Y, Li J, Hu Y, Liang Q, Wei M, Zhu F. Ebola vaccines in clinical trial: The promising candidates. Hum Vaccin Immunother 2016; 13:153-168. [PMID: 27764560 DOI: 10.1080/21645515.2016.1225637] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ebola virus disease (EVD) has become a great threat to humans across the world in recent years. The 2014 Ebola epidemic in West Africa caused numerous deaths and attracted worldwide attentions. Since no specific drugs and treatments against EVD was available, vaccination was considered as the most promising and effective method of controlling this epidemic. So far, 7 vaccine candidates had been developed and evaluated through clinical trials. Among them, the recombinant vesicular stomatitis virus-based vaccine (rVSV-EBOV) is the most promising candidate, which demonstrated a significant protection against EVD in phase III clinical trial. However, several concerns were still associated with the Ebola vaccine candidates, including the safety profile in some particular populations, the immunization schedule for emergency vaccination, and the persistence of the protection. We retrospectively reviewed the current development of Ebola vaccines and discussed issues and challenges remaining to be investigated in the future.
Collapse
Affiliation(s)
- Yuxiao Wang
- a School of Public Health; Southeast University , Nanjing , PR China
| | - Jingxin Li
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Yuemei Hu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Qi Liang
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| | - Mingwei Wei
- c School of Public Health, Nanjing Medical University , Nanjing , PR China
| | - Fengcai Zhu
- b Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , PR China
| |
Collapse
|
126
|
Rojas LA, Condezo GN, Moreno R, Fajardo CA, Arias-Badia M, San Martín C, Alemany R. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J Control Release 2016; 237:78-88. [DOI: 10.1016/j.jconrel.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/28/2022]
|
127
|
Martins KA, Jahrling PB, Bavari S, Kuhn JH. Ebola virus disease candidate vaccines under evaluation in clinical trials. Expert Rev Vaccines 2016; 15:1101-12. [PMID: 27160784 PMCID: PMC5026048 DOI: 10.1080/14760584.2016.1187566] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Filoviruses are the etiological agents of two human illnesses: Ebola virus disease and Marburg virus disease. Until 2013, medical countermeasure development against these afflictions was limited to only a few research institutes worldwide as both infections were considered exotic due to very low case numbers. Together with the high case-fatality rate of both diseases, evaluation of any candidate countermeasure in properly controlled clinical trials seemed impossible. However, in 2013, Ebola virus was identified as the etiological agent of a large disease outbreak in Western Africa including almost 30,000 infections and more than 11,000 deaths, including case exportations to Europe and North America. These large case numbers resulted in medical countermeasure development against Ebola virus disease becoming a global public-health priority. This review summarizes the status quo of candidate vaccines against Ebola virus disease, with a focus on those that are currently under evaluation in clinical trials.
Collapse
Affiliation(s)
- Karen A. Martins
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
128
|
Krutzke L, Prill JM, Engler T, Schmidt CQ, Xu Z, Byrnes AP, Simmet T, Kreppel F. Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: Preventing vector clearance and preserving infectivity. J Control Release 2016; 235:379-392. [PMID: 27302248 DOI: 10.1016/j.jconrel.2016.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
Abstract
The biodistribution of adenovirus type 5 (Ad5) vector particles is heavily influenced by interaction of the particles with plasma proteins, including coagulation factor X (FX), which binds specifically to the major Ad5 capsid protein hexon. FX mediates hepatocyte transduction by intravenously-injected Ad5 vectors and shields vector particles from neutralization by natural antibodies and complement. In mice, mutant Ad5 vectors that are ablated for FX-binding become detargeted from hepatocytes, which is desirable for certain applications, but unfortunately such FX-nonbinding vectors also become sensitive to neutralization by mouse plasma proteins. To improve the properties of Ad5 vectors for systemic delivery, we developed a strategy to replace the natural FX shield by a site-specific chemical polyethylene glycol shield. Coupling of polyethylene glycol to a specific site in hexon hypervariable region 1 yielded vector particles that were protected from neutralization by natural antibodies and complement although they were unable to bind FX. These vector particles evaded macrophages in vitro and showed significantly improved pharmacokinetics and hepatocyte transduction in vivo. Thus, site-specific shielding of Ad5 vectors with polyethylene glycol rendered vectors FX-independent and greatly improved their properties for systemic gene therapy.
Collapse
Affiliation(s)
- L Krutzke
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - J M Prill
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - T Engler
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - C Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Z Xu
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - A P Byrnes
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - T Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - F Kreppel
- Department of Gene Therapy, Ulm University, Ulm, Germany.
| |
Collapse
|
129
|
Baden LR, Karita E, Mutua G, Bekker LG, Gray G, Page-Shipp L, Walsh SR, Nyombayire J, Anzala O, Roux S, Laher F, Innes C, Seaman MS, Cohen YZ, Peter L, Frahm N, McElrath MJ, Hayes P, Swann E, Grunenberg N, Grazia-Pau M, Weijtens M, Sadoff J, Dally L, Lombardo A, Gilmour J, Cox J, Dolin R, Fast P, Barouch DH, Laufer DS. Assessment of the Safety and Immunogenicity of 2 Novel Vaccine Platforms for HIV-1 Prevention: A Randomized Trial. Ann Intern Med 2016; 164:313-22. [PMID: 26833336 PMCID: PMC5034222 DOI: 10.7326/m15-0880] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A prophylactic HIV-1 vaccine is a global health priority. OBJECTIVE To assess a novel vaccine platform as a prophylactic HIV-1 regimen. DESIGN Randomized, double-blind, placebo-controlled trial. Both participants and study personnel were blinded to treatment allocation. (ClinicalTrials.gov: NCT01215149). SETTING United States, East Africa, and South Africa. PATIENTS Healthy adults without HIV infection. INTERVENTION 2 HIV-1 vaccines (adenovirus serotype 26 with an HIV-1 envelope A insert [Ad26.EnvA] and adenovirus serotype 35 with an HIV-1 envelope A insert [Ad35.Env], both administered at a dose of 5 × 1010 viral particles) in homologous and heterologous combinations. MEASUREMENTS Safety and immunogenicity and the effect of baseline vector immunity. RESULTS 217 participants received at least 1 vaccination, and 210 (>96%) completed follow-up. No vaccine-associated serious adverse events occurred. All regimens were generally well-tolerated. All regimens elicited humoral and cellular immune responses in nearly all participants. Preexisting Ad26- or Ad35-neutralizing antibody titers had no effect on vaccine safety and little effect on immunogenicity. In both homologous and heterologous regimens, the second vaccination significantly increased EnvA antibody titers (approximately 20-fold from the median enzyme-linked immunosorbent assay titers of 30-300 to 3000). The heterologous regimen of Ad26-Ad35 elicited significantly higher EnvA antibody titers than Ad35-Ad26. T-cell responses were modest and lower in East Africa than in South Africa and the United States. LIMITATIONS Because the 2 envelope inserts were not identical, the boosting responses were complex to interpret. Durability of the immune responses elicited beyond 1 year is unknown. CONCLUSION Both vaccines elicited significant immune responses in all populations. Baseline vector immunity did not significantly affect responses. Second vaccinations in all regimens significantly boosted EnvA antibody titers, although vaccine order in the heterologous regimen had a modest effect on the immune response. PRIMARY FUNDING SOURCE International AIDS Vaccine Initiative, National Institutes of Health, Ragon Institute, Crucell Holland.
Collapse
Affiliation(s)
- Lindsey R. Baden
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Etienne Karita
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Gaudensia Mutua
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Linda-Gail Bekker
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Glenda Gray
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Liesl Page-Shipp
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Stephen R. Walsh
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Julien Nyombayire
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Omu Anzala
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Surita Roux
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Fatima Laher
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Craig Innes
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Michael S. Seaman
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Yehuda Z. Cohen
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Lauren Peter
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Nicole Frahm
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - M. Juliana McElrath
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Peter Hayes
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Edith Swann
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Nicole Grunenberg
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Maria Grazia-Pau
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Mo Weijtens
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Jerry Sadoff
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Len Dally
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Angela Lombardo
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Jill Gilmour
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Josephine Cox
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Raphael Dolin
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Patricia Fast
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Dan H. Barouch
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | - Dagna S. Laufer
- From Brigham and Women's Hospital, Harvard Medical School, and Beth Israel Deaconess Medical Center, Boston, Massachusetts; Projet San Francisco, Kigali, Rwanda; Kenya AIDS Vaccine Initiative and University of Nairobi, Nairobi, Kenya; Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa; Perinatal HIV Research Unit, Soweto, South Africa; Aurum Institute for Health Research, Klerksdorp, South Africa
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Fred Hutchinson Cancer Research Center and HIV Vaccine Trials Network, Seattle, Washington; International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom; National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; Janssen Pharmaceuticals Infectious Diseases and Vaccines (formerly Crucell Holland), Leiden, the Netherlands
- EMMES Corporation, Rockville, Maryland; International AIDS Vaccine Initiative, New York, New York; and Global BioSolutions, Craigieburn, Victoria, Australia
| | | |
Collapse
|
130
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
Many nonhuman adenoviruses (AdVs) of simian, bovine, porcine, canine, ovine, murine, and fowl origin are being developed as gene delivery systems for recombinant vaccines and gene therapy applications. In addition to circumventing preexisting human AdV (HAdV) immunity, nonhuman AdV vectors utilize coxsackievirus-adenovirus receptor or other receptors for vector internalization, thereby expanding the range of cell types that can be targeted. Nonhuman AdV vectors also provide excellent platforms for veterinary vaccines. A specific nonhuman AdV vector when used in its species of origin could provide an excellent animal model for evaluating the vector efficacy and pathogenesis. These vectors are useful in prime–boost approaches with other AdV vectors or with other gene delivery systems including DNA immunization and viral or bacterial vectors. When multiple vector inoculations are required, nonhuman AdV vectors could supplement HAdV or other viral vectors.
Collapse
|
132
|
Adenovirus Specific Pre-Immunity Induced by Natural Route of Infection Does Not Impair Transduction by Adenoviral Vaccine Vectors in Mice. PLoS One 2015; 10:e0145260. [PMID: 26679149 PMCID: PMC4682971 DOI: 10.1371/journal.pone.0145260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels.
Collapse
|
133
|
Uusi-Kerttula H, Hulin-Curtis S, Davies J, Parker AL. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses 2015; 7:6009-42. [PMID: 26610547 PMCID: PMC4664994 DOI: 10.3390/v7112923] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies.
Collapse
Affiliation(s)
- Hanni Uusi-Kerttula
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Sarah Hulin-Curtis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - James Davies
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Alan L Parker
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
134
|
Ma Q, Tian X, Jiang Z, Huang J, Liu Q, Lu X, Luo Q, Zhou R. Neutralizing epitopes mapping of human adenovirus type 14 hexon. Vaccine 2015; 33:6659-65. [PMID: 26546264 DOI: 10.1016/j.vaccine.2015.10.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022]
Abstract
Human adenoviruses 14 (HAdV-14) caused several clusters of acute respiratory disease (ARD) outbreaks in both civilian and military settings. The identification of the neutralizing epitopes of HAdV-14 is important for the surveillance and control of infection. Since the previous studies had indicated that the adenoviruses neutralizing epitopes were likely to be exposed on the surface of the hexon, four epitope peptides, A14R1 (residues 141-157), A14R2 (residues 181-189), A14R4 (residues 252-260) and A14R7 (residues 430-442) were predicted and mapped onto the 3D structures of hexon by homology modeling approach. Then the four peptides were synthesized, and all the four putative epitopes were identified as neutralizing epitopes by enzyme-linked immunosorbent assay (ELISA) and neutralization tests (NT). Finally we incorporated the four epitopes into human adenoviruses 3 (HAdV-3) vectors using the "antigen capsid-incorporation" strategy, and two chimeric adenoviruses, A14R2A3 and A14R4A3, were successfully obtained which displayed A14R2 and A14R4 respectively on the hexon surface of HAdV-3 virions. Further analysis showed that the two chimeric viruses antiserum could neutralize both HAdV-14 and HAdV-3 infection. The neutralization titers of anti-A14R4A3 group were significantly higher than the anti-KLH-A14R4 group (P=0.0442). These findings have important implications for the development of peptide-based broadly protective HAdV-14 and HAdV-3 bivalent vaccine.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China; Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China; Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Zaixue Jiang
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Junfeng Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qian Liu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Xiaomei Lu
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Qingming Luo
- Dongguan Institute of Pediatrics, Dongguan Children's Hospital, Dongguan 523325, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
135
|
Rosa DS, Ribeiro SP, Fonseca SG, Almeida RR, Santana VC, Apostólico JDS, Kalil J, Cunha-Neto E. Multiple Approaches for Increasing the Immunogenicity of an Epitope-Based Anti-HIV Vaccine. AIDS Res Hum Retroviruses 2015; 31:1077-88. [PMID: 26149745 DOI: 10.1089/aid.2015.0101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of a highly effective vaccine against the human immunodeficiency virus (HIV) will likely be based on rational vaccine design, since traditional vaccine approaches have failed so far. In recent years, an understanding of what type of immune response is protective against infection and/or disease facilitated vaccine design. T cell-based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. In this context, CD4(+) T cells play a direct cytotoxic role and are also important for the generation and maintenance of functional CD8(+) T and B cell responses. The use of MHC-binding algorithms has allowed the identification of novel CD4(+) T cell epitopes that could be used in vaccine design, the so-called epitope-driven vaccine design. Epitope-based vaccines have the ability to focus the immune response on highly antigenic, conserved epitopes that are fully recognized by the target population. We have recently mapped a set of conserved multiple HLA-DR-binding HIV-1 CD4 epitopes and observed interferon (IFN)-γ-producing CD4(+) T cells when we tested these peptides in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals. We then designed multiepitopic DNA vaccines that induced broad and polyfunctional T cell responses in immunized mice. In this review we will focus on alternative strategies to increase the immunogenicity of an epitope-based vaccine against HIV infection.
Collapse
Affiliation(s)
- Daniela Santoro Rosa
- Departament of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Susan Pereira Ribeiro
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Rafael Ribeiro Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Vinicius Canato Santana
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Institute for Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Juliana de Souza Apostólico
- Departament of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
| | - Jorge Kalil
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Institute for Investigation in Immunology-INCT, São Paulo, Brazil
- Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
136
|
Intranasal immunisation with recombinant adenovirus vaccines protects against a lethal challenge with pneumonia virus of mice. Vaccine 2015; 33:6641-9. [PMID: 26529077 PMCID: PMC7125973 DOI: 10.1016/j.vaccine.2015.10.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023]
Abstract
Pneumonia virus of mice (PVM) infection of BALB/c mice induces bronchiolitis leading to a fatal pneumonia in a dose-dependent manner, closely paralleling the development of severe disease during human respiratory syncytial virus infection in man, and is thus a recognised model in which to study the pathogenesis of pneumoviruses. This model system was used to investigate delivery of the internal structural proteins of PVM as a potential vaccination strategy to protect against pneumovirus disease. Replication-deficient recombinant human adenovirus serotype 5 (rAd5) vectors were constructed that expressed the M or N gene of PVM pathogenic strain J3666. Intranasal delivery of these rAd5 vectors gave protection against a lethal challenge dose of PVM in three different mouse strains, and protection lasted for at least 20 weeks post-immunisation. Whilst the PVM-specific antibody response in such animals was weak and inconsistent, rAd5N primed a strong PVM-specific CD8+ T cell response and, to a lesser extent, a CD4+ T cell response. These findings suggest that T-cell responses may be more important than serum IgG in the observed protection induced by rAd5N.
Collapse
|
137
|
Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1166-75. [PMID: 26376928 PMCID: PMC4622110 DOI: 10.1128/cvi.00510-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/28/2022]
Abstract
Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors.
Collapse
|
138
|
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother 2015; 10:2875-84. [PMID: 25483662 PMCID: PMC5443060 DOI: 10.4161/hv.29594] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.
Collapse
|
139
|
Voss JD, Atkinson RL, Dhurandhar NV. Role of adenoviruses in obesity. Rev Med Virol 2015; 25:379-87. [PMID: 26352001 DOI: 10.1002/rmv.1852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Five human adenovirus subtypes, Ad5, Ad9, Ad31, Ad36, and Ad37, and a non-human adenovirus, SMAM1, are linked to increased adiposity in vitro or in vivo. Experimental infection with Ad5, Ad36, and Ad37 produced excess adiposity or weight gain in animals. Ad9 and Ad31 increase fat storage in tissue culture but are not associated with animal or human obesity. Ad36 is the most extensively studied adipogenic adenovirus and is correlated with some measure of overweight/obesity in humans from multiple countries. The correlation is strongest and most consistent in children, but some studies have been negative in both children and adults. About 30% of overweight/obese children and adults and about 15-20% of lean individuals have Ad36 antibodies in epidemiologic studies. The mechanisms of action of Ad36 are due to the early gene 4, open reading frame 1 (E4-ORF1). Blocking E4-ORF1 with siRNA prevents the effects of Ad36, and transfection of lentivirus with E4-ORF1 reproduces the Ad36 effects. Increased adiposity is caused by stimulation of at least three pathways by Ad36. Cell membrane glucose receptors are increased via the Ras pathway, leading to increased intracellular glucose. Fatty acid synthase is increased, which converts the glucose to fatty acids. Finally, peroxisome proliferator-activated receptor-γ is increased, resulting in differentiation of adult stem cells into adipocytes. CONCLUSIONS several adenoviruses increase adiposity in animals and are associated with obesity in humans. There are critical gaps in the literature needing further investigation including evaluation of other adenovirus subtypes and better research designs to improve the strength of causal inferences.
Collapse
Affiliation(s)
- Jameson D Voss
- Epidemiology Consult Division, United States Air Force School of Aerospace Medicine, Wright-Patterson AFB, OH, USA
| | - Richard L Atkinson
- Virginia Obesity Research Institute, Richmond, VA, USA.,Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
140
|
Ylihärsilä M, Alaranta S, Lahdenperä S, Lahtinen S, Arku B, Hedman K, Soukka T, Waris M. Array-in-well serodiagnostic assay utilizing upconverting phosphor label technology. J Virol Methods 2015; 222:224-30. [DOI: 10.1016/j.jviromet.2015.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
141
|
Dakin RS, Parker AL, Delles C, Nicklin SA, Baker AH. Efficient transduction of primary vascular cells by the rare adenovirus serotype 49 vector. Hum Gene Ther 2015; 26:312-9. [PMID: 25760682 PMCID: PMC4442572 DOI: 10.1089/hum.2015.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 01/16/2023] Open
Abstract
Neointima formation and vascular remodeling through vascular smooth muscle cell migration and proliferation can limit the long-term success of coronary interventions, for example, in coronary artery bypass grafting (CABG). Ex vivo gene therapy has the potential to reduce unnecessary cell proliferation and limit neointima formation in vascular pathologies. To date, the species C adenovirus serotype 5 has been commonly used for preclinical gene therapy; however, its suitability is potentially limited by relatively poor tropism for vascular cells and high levels of preexisting immunity in the population. To avoid these limitations, novel species of adenovirus are being tested; here we investigate the potential of adenovirus 49 (Ad49) for use in gene therapy. Transduction of primary human vascular cells by a range of adenovirus serotypes was assessed; Ad49 demonstrated highest transduction of both vascular smooth muscle and endothelial cells. Gene transfer with Ad49 in vascular smooth muscle and endothelial cells was possible following short exposure times (<1 hr) and with low MOI, which is clinically relevant. Ex vivo delivery to surplus CABG tissue showed efficient gene transfer with Ad49, consistent with the in vitro findings. Luminal infusion of Ad49GFP into intact CABG samples ex vivo resulted in efficient vessel transduction. In addition, no seroprevalence rates to Ad49 were observed in a Scottish cohort of patients from cardiovascular clinics, thus circumventing issues with preexisting immunity. Our results show that Ad49 has tropism for vascular cells in vitro and ex vivo and demonstrate that Ad49 may be an improved vector for local vascular gene therapy compared with current alternatives.
Collapse
Affiliation(s)
- Rachel S. Dakin
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Alan L. Parker
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Stuart A. Nicklin
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew H. Baker
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
142
|
Richardson RT, Atkinson PJ. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther 2015; 15:417-30. [DOI: 10.1517/14712598.2015.1009889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
143
|
The sero-prevalence of anti-adenovirus 5 neutralizing antibodies is independent of a chronic hepatitis B carrier state in China. Arch Virol 2015; 160:1125-30. [PMID: 25616844 PMCID: PMC4369289 DOI: 10.1007/s00705-015-2333-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 12/31/2014] [Indexed: 11/28/2022]
Abstract
We investigated the prevalence of neutralizing antibodies (NA) to human Adenovirus (Ad) 5 both in healthy subjects (HS) and Chronic Hepatitis B (CHB) patients in Shanghai. Detection of anti-Ad5 NA (percentage of detection and titers) was similar between HS and CHB patients. A high percentage of subjects harbored no detectable antibodies (32.2 %) while proportion of subjects displaying very high antibody titers was low (4 %). Neither demographic factors (gender, age, health) nor AST/ALT or HBV circulating DNA titers affected detection of Ad5-specific NA. These observations pave the ground for development of Ad5-based immunotherapeutics aiming at treating CHB patients in China.
Collapse
|
144
|
Dubuisson O, Day RS, Dhurandhar NV. Accurate identification of neutralizing antibodies to adenovirus Ad36, -a putative contributor of obesity in humans. J Diabetes Complications 2015; 29:83-7. [PMID: 25312598 DOI: 10.1016/j.jdiacomp.2014.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND In children and adults, human adenovirus serotype 36 (Ad36) is linked with increased adiposity, and important metabolic alterations. Since this property is not shared by many other human adenovirus serotypes, it is imperative to specifically identify exposure to Ad36. Although serum neutralization assay (SNA) is the gold standard to specifically detect neutralizing antibodies (NA) to Ad36, it requires 2-weeks to complete and considerable training to interpret the results. Whereas, an enzyme-immuno assay (EIA) may provide a quicker and objective determination. OBJECTIVES Evaluate the accuracy of commercially available EIA kits to detect NA to Ad36. Modify SNA to reduce time and increase objectivity. STUDY DESIGN Sera of 15 seropositive or 16 seronegative subjects confirmed by SNA were used to test: 1) reproducibility of SNA to detect Ad36 exposure, by repeating assays twice; 2) an EIA that detects antibodies to all human adenovirus serotypes (NS-EIA) (Abcam-108705); 3) an EIA supposedly specific for Ad36 antibody (Ad36-EIA) (MyBioSource,#MBS705802), and 4) the concordance of SNA with a novel combination of SNA and immune-staining (SN-IS) kit (Cell BioLabs,#VPK-111). RESULTS The SNA showed exact reproducibility. NS-EIA detected adenovirus antibodies in 94% samples, confirming the non-specificity of the assay for Ad36 serotype. All seronegative samples (as determined by SNA) were false positive by Ad36-EIA. In 97% samples, SN-IS showed fidelity with Ad36-antibody status as determined by SNA. CONCLUSIONS The available EIA kits are not specific for detecting NA to Ad36. The modified SNA with immune-staining reduces assay time and increases accuracy of detecting by reducing subjectivity.
Collapse
Affiliation(s)
- Olga Dubuisson
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA
| | - Rena Sue Day
- Michael & Susan Dell Center for Healthy Living The University of Texas School of Public Health, Houston, TX 77030 USA
| | - Nikhil V Dhurandhar
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808 USA.
| |
Collapse
|
145
|
Appaiahgari MB, Vrati S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther 2014; 15:337-51. [DOI: 10.1517/14712598.2015.993374] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
146
|
Abstract
UNLABELLED Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. IMPORTANCE Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens.
Collapse
|
147
|
Carozza M, Rodrigues V, Unterfinger Y, Galea S, Coulpier M, Klonjkowski B, Thiaucourt F, Totté P, Richardson J. An adenoviral vector expressing lipoprotein A, a major antigen of Mycoplasma mycoides subspecies mycoides, elicits robust immune responses in mice. Vaccine 2014; 33:141-8. [PMID: 25444801 DOI: 10.1016/j.vaccine.2014.10.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides small colony type (MmmSC), is a devastating respiratory disease of cattle. In sub-Saharan Africa, where CBPP is enzootic, live attenuated vaccines are deployed but afford only short-lived protection. In cattle, recovery from experimental MmmSC infection has been associated with the presence of CD4(+) T lymphocytes that secrete interferon gamma in response to MmmSC, and in particular to the lipoprotein A (LppA) antigen. In an effort to develop a better vaccine against CBPP, a viral vector (Ad5-LppA) that expressed LppA was generated from human adenovirus type 5. The LppA-specific immune responses elicited by the Ad5-LppA vector were evaluated in mice, and compared to those elicited by recombinant LppA formulated with a potent adjuvant. Notably, a single administration of Ad5-LppA, but not recombinant protein, sufficed to elicit a robust LppA-specific humoral response. After a booster administration, both vector and recombinant protein elicited strong LppA-specific humoral and cell-mediated responses. Ex vivo stimulation of splenocytes induced extensive proliferation of CD4(+) T cells for mice immunized with vector or protein, and secretion of T helper 1-associated and proinflammatory cytokines for mice immunized with Ad5-LppA. Our study - by demonstrating the potential of a viral-vectored prototypic vaccine to elicit prompt and robust immune responses against a major antigen of MmmSC - represents a first step in developing a recombinant vaccine against CBPP.
Collapse
Affiliation(s)
- Marlène Carozza
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France; INRA, UMR 1309 CMAEE, Montpellier, France; INRA, UMR 1161 Virologie, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; ANSES, UMR Virologie, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort F-94704, France
| | - Valérie Rodrigues
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France; INRA, UMR 1309 CMAEE, Montpellier, France
| | - Yves Unterfinger
- INRA, UMR 1161 Virologie, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; ANSES, UMR Virologie, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort F-94704, France
| | - Sandra Galea
- INRA, UMR 1161 Virologie, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; ANSES, UMR Virologie, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort F-94704, France
| | - Muriel Coulpier
- INRA, UMR 1161 Virologie, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; ANSES, UMR Virologie, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort F-94704, France
| | - Bernard Klonjkowski
- INRA, UMR 1161 Virologie, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; ANSES, UMR Virologie, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort F-94704, France
| | - François Thiaucourt
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France; INRA, UMR 1309 CMAEE, Montpellier, France
| | - Philippe Totté
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France; INRA, UMR 1309 CMAEE, Montpellier, France
| | - Jennifer Richardson
- INRA, UMR 1161 Virologie, 7 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; ANSES, UMR Virologie, 23 avenue du Général de Gaulle, 94700 Maisons-Alfort, France; Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Maisons-Alfort F-94704, France.
| |
Collapse
|
148
|
Trovato FM, Catalano D, Garozzo A, Martines GF, Pirri C, Trovato GM. ADV36 adipogenic adenovirus in human liver disease. World J Gastroenterol 2014; 20:14706-14716. [PMID: 25356033 PMCID: PMC4209536 DOI: 10.3748/wjg.v20.i40.14706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/03/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023] Open
Abstract
Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment.
Collapse
|
149
|
Abstract
The ultimate solution to the global HIV-1 epidemic will probably require the development of a safe and effective vaccine. Multiple vaccine platforms have been evaluated in preclinical and clinical trials, but given the disappointing results of clinical efficacy studies so far, novel vaccine approaches are needed. In this Opinion article, we discuss the scientific basis and clinical potential of novel adenovirus and cytomegalovirus vaccine vectors for HIV-1 as two contrasting but potentially complementary vector approaches. Both of these vector platforms have demonstrated partial protection against stringent simian immunodeficiency virus challenges in rhesus monkeys using different immunological mechanisms.
Collapse
|
150
|
Baden LR, Walsh SR, Seaman MS, Johnson JA, Tucker RP, Kleinjan JA, Gothing JA, Engelson BA, Carey BR, Oza A, Bajimaya S, Peter L, Bleckwehl C, Abbink P, Pau MG, Weijtens M, Kunchai M, Swann EM, Wolff M, Dolin R, Barouch DH. First-in-human evaluation of a hexon chimeric adenovirus vector expressing HIV-1 Env (IPCAVD 002). J Infect Dis 2014; 210:1052-61. [PMID: 24719474 PMCID: PMC4168302 DOI: 10.1093/infdis/jiu217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We report the first-in-human safety and immunogenicity assessment of a prototype hexon chimeric adenovirus (Ad) serotype 5 (Ad5) vector containing the hexon hypervariable regions of Ad serotype 48 (Ad48) and expressing human immunodeficiency virus (HIV) type 1 EnvA. METHODS Forty-eight Ad5 and Ad48 seronegative, HIV-uninfected subjects were enrolled in a randomized, double-blind, placebo-controlled, dose escalation phase 1 study. Four groups of 12 subjects received 10(9) to 10(11) viral particles (vp) of the Ad5HVR48.EnvA.01 vaccine (n = 10 per group) or placebo (n = 2 per group) at week 0 or weeks 0, 4, and 24. Safety and immunogenicity were assessed. RESULTS Self-limited reactogenicity was observed after the initial immunization in the highest (10(11) vp) dose group. Responses in vaccinees included Ad48 neutralizing antibody (nAb) titers higher than Ad5 nAb titers, EnvA-specific enzyme-linked immunosorbent assay titers, and EnvA-specific enzyme-linked immunospot assay responses, and these responses generally persisted at week 52. At week 28 in the 10(9), 10(10), and 10(11) vp 3-dose groups, geometric mean EnvA enzyme-linked immunosorbent assay titers were 5721, 10 929, and 3420, respectively, and Ad48 nAb titers were a median of 1.7-fold higher than for Ad5. CONCLUSIONS Ad5HVR48.ENVA.01 was safe, well tolerated, and immunogenic at all doses tested. Vector-elicited nAb responses were greater for Ad48 than Ad5, confirming that Ad-specific nAbs in humans are primarily, but not exclusively, directed against the hexon hypervariable regions. Clinical Trials Registration. NCT00695877.
Collapse
Affiliation(s)
- Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women's Hospital
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Stephen R. Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Jennifer A. Johnson
- Division of Infectious Diseases, Brigham and Women's Hospital
- Harvard Medical School, Boston, Massachusetts
| | | | | | - Jon A. Gothing
- Division of Infectious Diseases, Brigham and Women's Hospital
| | | | - Brittany R. Carey
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | - Avinash Oza
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | | | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | - Chelsea Bleckwehl
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
| | | | | | | | - Edith M. Swann
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | - Raphael Dolin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|