101
|
Long Q, Yan R, Hu J, Cai D, Mitra B, Kim ES, Marchetti A, Zhang H, Wang S, Liu Y, Huang A, Guo H. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog 2017; 13:e1006784. [PMID: 29287110 PMCID: PMC5747486 DOI: 10.1371/journal.ppat.1006784] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Hepadnavirus covalently closed circular (ccc) DNA is the bona fide viral transcription template, which plays a pivotal role in viral infection and persistence. Upon infection, the non-replicative cccDNA is converted from the incoming and de novo synthesized viral genomic relaxed circular (rc) DNA, presumably through employment of the host cell’s DNA repair mechanisms in the nucleus. The conversion of rcDNA into cccDNA requires preparation of the extremities at the nick/gap regions of rcDNA for strand ligation. After screening 107 cellular DNA repair genes, we herein report that the cellular DNA ligase (LIG) 1 and 3 play a critical role in cccDNA formation. Ligase inhibitors or functional knock down/out of LIG1/3 significantly reduced cccDNA production in an in vitro cccDNA formation assay, and in cccDNA-producing cells without direct effect on viral core DNA replication. In addition, transcomplementation of LIG1/3 in the corresponding knock-out or knock-down cells was able to restore cccDNA formation. Furthermore, LIG4, a component in non-homologous end joining DNA repair apparatus, was found to be responsible for cccDNA formation from the viral double stranded linear (dsl) DNA, but not rcDNA. In conclusion, we demonstrate that hepadnaviruses utilize the whole spectrum of host DNA ligases for cccDNA formation, which sheds light on a coherent molecular pathway of cccDNA biosynthesis, as well as the development of novel antiviral strategies for treatment of hepatitis B. Hepadnavirus cccDNA is the persistent form of viral genome, and in terms of human hepatitis B virus (HBV), cccDNA is the basis for viral rebound after the cessation of therapy, as well as the elusiveness of a cure with current medications. Therefore, the elucidation of molecular mechanism of cccDNA formation will aid HBV research at both basic and medical levels. In this study, we screened a total of 107 cellular DNA repair genes and identified DNA ligase 1 and 3 as key factors for cccDNA formation from viral relaxed (open) circular DNA. In addition, we found that the cellular DNA ligase 4 is responsible for converting viral double-stranded linear DNA into cccDNA. Our study further confirmed the involvement of host DNA repair machinery in cccDNA formation, and may reveal new antiviral targets for treatment of hepatitis B in future.
Collapse
Affiliation(s)
- Quanxin Long
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jieli Hu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elena S. Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander Marchetti
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Soujuan Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ailong Huang
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
102
|
Yin F, Xie Y, Fan H, Zhang J, Guo Z. Mutations in hepatitis B virus polymerase are associated with the postoperative survival of hepatocellular carcinoma patients. PLoS One 2017; 12:e0189730. [PMID: 29287068 PMCID: PMC5747429 DOI: 10.1371/journal.pone.0189730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Proofreading deficiencies of hepatitis B virus polymerase result in frequent DNA mutations in the hepatitis B virus genome. Here, we performed sequencing analysis of the hepatitis B virus polymerase gene to assess its association with the postoperative survival in 92 patients with HBV-related hepatocellular carcinoma by using the Kaplan–Meier method. The 2525, 2733, 2738, 2768, 2946, 3063, 3066, 3109, 31, 529, 735, 939, 1078, 1137, 1383, 1461, 1485, 1544, and 1613 mutation sites were identified as being associated with HCC outcomes by the log-rank test. After adjusting for clinical characteristics by using the Cox hazard model, site 31 (relative risk, 8.929; 95% confidence interval, 3.433–23.22; P = 0.000) in the spacer domain and sites 529 (relative risk, 5.656; 95% confidence interval, 1.599–19.999; P = 0.007) and 1078 (relative risk, 3.442; 95% confidence interval, 1.070–11.068; P = 0.038) in the reverse transcriptase domain of hepatitis B virus polymerase were identified as independent predictors of postoperative survival in hepatitis B virus related hepatocellular carcinoma. The mutations at the 31 (Ser314Pro), 529 (Asp480Asn), and 1078 (Ser663Ala) sites all resulted in amino acid changes in hepatitis B virus polymerase and were associated with shortened life-span. The 31 and 529 sites were located in the overlapping region for the PreS and S genes but did not induce amino acid substitution in these two regions. Our finding of the correlation between hepatitis B virus DNA polymerase mutations and hepatocellular carcinoma survival will help identify the patients subgroup with poor prognosis, and help the clinicians to refine the therapeutic decision individualized.
Collapse
Affiliation(s)
- Fei Yin
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, P.R. China
| | - Haiyan Fan
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jingjing Zhang
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
- * E-mail:
| |
Collapse
|
103
|
Alonso S, Guerra AR, Carreira L, Ferrer JÁ, Gutiérrez ML, Fernandez-Rodriguez CM. Upcoming pharmacological developments in chronic hepatitis B: can we glimpse a cure on the horizon? BMC Gastroenterol 2017; 17:168. [PMID: 29268704 PMCID: PMC5740721 DOI: 10.1186/s12876-017-0726-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 12/12/2017] [Indexed: 02/08/2023] Open
Abstract
Background Hepatitis B virus (HBV) chronic infection affects up to 240 million people in the world and it is a common cause of cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) plays an essential role in HBV persistence and replication. Current pharmacological treatment with nucleos(t)ide analogues (NA) may suppress HBV replication with little or no impact on cccDNA, hence lifelong treatment is required in the vast majority of patients. Clearances of intrahepatic cccDNA and/or HBsAg are critical endpoints for future antiviral therapy in chronic HBV. Recent promising developments targeting different molecular HBV life cycle steps are being pre-clinically tested or have moved forward in early clinical trials. Methods We review the current state of the art of these pharmacological developments, mainly focusing on efficacy and safety results, which are expected to lay the ground for future HBV eradication. An inclusive literature search on new treatments of HBV using the following electronic databases: Pubmed/MEDLINE, AMED, CINAHL and the Cochrane Central Register of Controlled Trials. Full-text manuscripts and abstracts published over the last 12 years, from 2005 to March 2011 were reviewed for relevance and reference lists were crosschecked for additional applicable studies regarding new HBV antiviral treatment. Results HBV entry inhibitors, HBV core inhibitors, HBV cccDNA transcripts RNA interference, HBV cell apoptosis inducers, HBV RNA, viral proteins and DNA knock down agents, HBV release inhibitors, anti-sense nucleosides, exogenous interferon stimulation, interferon response stimulation and HBV therapeutic vaccines were reviewed. Conclusion This review will provide readers with an updated vision of current and foreseeable therapeutic developments in chronic hepatitis B.
Collapse
Affiliation(s)
- Sonia Alonso
- Unit of Gastroenterology, Hospital Universitario Fundación Alcorcón, Av. Budapest-1, 28922, Alcorcon, Madrid, Spain
| | - Adriana-René Guerra
- Unit of Gastroenterology, Hospital Universitario Fundación Alcorcón, Av. Budapest-1, 28922, Alcorcon, Madrid, Spain
| | - Lourdes Carreira
- Unit of Gastroenterology, Hospital Universitario Fundación Alcorcón, Av. Budapest-1, 28922, Alcorcon, Madrid, Spain
| | - Juan-Ángel Ferrer
- Unit of Gastroenterology, Hospital Universitario Fundación Alcorcón, Av. Budapest-1, 28922, Alcorcon, Madrid, Spain
| | - María-Luisa Gutiérrez
- Unit of Gastroenterology, Hospital Universitario Fundación Alcorcón, Av. Budapest-1, 28922, Alcorcon, Madrid, Spain
| | - Conrado M Fernandez-Rodriguez
- Unit of Gastroenterology, Hospital Universitario Fundación Alcorcón, Av. Budapest-1, 28922, Alcorcon, Madrid, Spain.
| |
Collapse
|
104
|
Nishitsuji H, Harada K, Ujino S, Zhang J, Kohara M, Sugiyama M, Mizokami M, Shimotohno K. Investigating the hepatitis B virus life cycle using engineered reporter hepatitis B viruses. Cancer Sci 2017; 109:241-249. [PMID: 29121422 PMCID: PMC5765299 DOI: 10.1111/cas.13440] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) increases the risk of developing fibrosis, cirrhosis or hepatocellular carcinoma. Current therapies are limited to type-I interferons and/or nucleos(t)ide analogues; however, these are only partially effective. The development of novel anti-HBV agents for new treatment strategies has been hampered by the lack of a suitable system that allows the in vitro replication of HBV. Studies of virus infection/replication at the molecular level using wild-type HBV are labor-intensive and time-consuming. To overcome these problems, we previously constructed a recombinant reporter HBV bearing the NanoLuc gene and showed its usefulness in identifying factors that affect HBV proliferation. Because this system mimics the early stage of the HBV life cycle faithfully, we conducted a quantitative analysis of HBV infectivity to several human hepatocyte cell lines as well as the effect of dimethyl sulfoxide and HBV protein X on the early stage of HBV proliferation using this system. Furthermore, we developed a system to produce a reporter HBV expressing a pol gene. These reporter HBV may provide an opportunity to enhance our understanding of the HBV life cycle and aid strategies for the development of new anti-HBV agents.
Collapse
Affiliation(s)
- Hironori Nishitsuji
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Keisuke Harada
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Saneyuki Ujino
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Jing Zhang
- Research and Development Center, FUSO Pharmaceutical Industries, Osaka, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masaya Sugiyama
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
105
|
Yang HC, Shih YF, Liu CJ. Viral Factors Affecting the Clinical Outcomes of Chronic Hepatitis B. J Infect Dis 2017; 216:S757-S764. [PMID: 29156050 DOI: 10.1093/infdis/jix461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis B (CHB) exhibits a variety of clinical outcomes, ranging from spontaneous resolution of hepatitis B to severe adverse consequences, including the development of cirrhosis, hepatic failure, and hepatocellular carcinoma. The heterogeneous clinical courses of chronic hepatitis B virus (HBV) infection reflect the complex host-virus interactions, and point to the difficulty and necessity of identifying the patients at risk. With the advance of HBV virology, several viral factors have been found to be associated with the long-term clinical outcomes of CHB patients. Different viral factors probe different aspects of CHB. Integration of these viral factors may help to determine the disease state of patients more accurately, and identify the patients who require timely antiviral therapy to prevent the development of detrimental clinical outcomes. In this article, we will introduce the conventional and emerging viral factors that are associated with clinical outcomes and discuss their utility in a clinical setting.
Collapse
Affiliation(s)
- Hung-Chih Yang
- Department of Microbiology.,Graduate Institute of Clinical Medicine.,Department of Internal Medicine.,Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital
| | - Yi-Fen Shih
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Jen Liu
- Graduate Institute of Clinical Medicine.,Department of Internal Medicine.,Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital
| |
Collapse
|
106
|
Karayiannis P. Hepatitis B virus: virology, molecular biology, life cycle and intrahepatic spread. Hepatol Int 2017; 11:500-508. [PMID: 29098564 DOI: 10.1007/s12072-017-9829-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus is a member of the Hepadnaviridae family and responsible for causing acute and chronic hepatitis in humans. The current estimates of people chronically infected with the virus are put at 250 million worldwide. Immune-mediated liver damage in these individuals may lead to the development of cirrhosis and hepatocellular carcinoma later in life. This review deals with our current understanding of the virology, molecular biology, life cycle and cell-to-cell spread of this very important pathogen, all of which are considered essential for current and future approaches to antiviral treatment.
Collapse
Affiliation(s)
- P Karayiannis
- Medical School, University of Nicosia, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, CY-1700, Nicosia, Cyprus.
| |
Collapse
|
107
|
Dandri M, Petersen J. Mechanism of Hepatitis B Virus Persistence in Hepatocytes and Its Carcinogenic Potential. Clin Infect Dis 2017; 62 Suppl 4:S281-8. [PMID: 27190317 DOI: 10.1093/cid/ciw023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Liver disease associated with persistent infection with hepatitis B virus (HBV) continues to be a major health problem of global impact. Despite the existence of an effective vaccine, at least 240 million people are chronically infected worldwide, and are at risk of developing liver cirrhosis and hepatocellular carcinoma. Although chronic HBV infection is considered the main risk factor for liver cancer development, the molecular mechanisms determining persistence of infection and long-term pathogenesis are not fully elucidated but appear to be multifactorial. Current therapeutic regimens based on the use of polymerase inhibitors can efficiently suppress viral replication but are unable to eradicate the infection. This is due both to the persistence of the HBV genome, which forms a stable minichromosome, the covalently closed circular DNA (cccDNA), in the nucleus of infected hepatocytes, as well as to the inability of the immune system to efficiently counteract chronic HBV infection. In this regard, the unique replication strategies adopted by HBV and viral protein production also appear to contribute to infection persistence by limiting the effectiveness of innate responses. The availability of improved experimental systems and molecular techniques have started to provide new information about the complex network of interactions that HBV establishes within the hepatocyte and that may contribute to disease progression and tumor development. Thus, this review will mostly focus on events involving the hepatocyte: the only target cell where HBV infection and replication take place.
Collapse
Affiliation(s)
- Maura Dandri
- I Department of Internal Medicine, University Medical Center Hamburg-Eppendorf German Center for Infection Research, Hamburg-Lübeck-Borstel site
| | - Joerg Petersen
- IFI Institute for Interdisciplinary Medicine, Asklepios Clinic St Georg, Hamburg, Germany
| |
Collapse
|
108
|
Lauber C, Seitz S, Mattei S, Suh A, Beck J, Herstein J, Börold J, Salzburger W, Kaderali L, Briggs JAG, Bartenschlager R. Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses. Cell Host Microbe 2017; 22:387-399.e6. [PMID: 28867387 PMCID: PMC5604429 DOI: 10.1016/j.chom.2017.07.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis B viruses (HBVs), which are enveloped viruses with reverse-transcribed DNA genomes, constitute the family Hepadnaviridae. An outstanding feature of HBVs is their streamlined genome organization with extensive gene overlap. Remarkably, the ∼1,100 bp open reading frame (ORF) encoding the envelope proteins is fully nested within the ORF of the viral replicase P. Here, we report the discovery of a diversified family of fish viruses, designated nackednaviruses, which lack the envelope protein gene, but otherwise exhibit key characteristics of HBVs including genome replication via protein-primed reverse-transcription and utilization of structurally related capsids. Phylogenetic reconstruction indicates that these two virus families separated more than 400 million years ago before the rise of tetrapods. We show that HBVs are of ancient origin, descending from non-enveloped progenitors in fishes. Their envelope protein gene emerged de novo, leading to a major transition in viral lifestyle, followed by co-evolution with their hosts over geologic eras. Nackednaviruses are non-enveloped fish viruses related to hepadnaviruses Both virus families separated from a common ancestor >400 million years ago The envelope protein gene of hepadnaviruses emerged through two distinct processes Hepadnaviruses mainly co-evolve with hosts while nackednaviruses jump between hosts
Collapse
Affiliation(s)
- Chris Lauber
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Seitz
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany.
| | - Simone Mattei
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 75236 Uppsala, Sweden
| | - Jürgen Beck
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Jennifer Herstein
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jacob Börold
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany
| | | | - Lars Kaderali
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, 01307 Dresden, Germany; Institute for Bioinformatics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ralf Bartenschlager
- University of Heidelberg, Department of Infectious Diseases, Molecular Virology, 69120 Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
109
|
Interference of Apoptosis by Hepatitis B Virus. Viruses 2017; 9:v9080230. [PMID: 28820498 PMCID: PMC5580487 DOI: 10.3390/v9080230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.
Collapse
|
110
|
Few basepairing-independent motifs in the apical half of the avian HBV ε RNA stem-loop determine site-specific initiation of protein-priming. Sci Rep 2017; 7:7120. [PMID: 28769080 PMCID: PMC5541001 DOI: 10.1038/s41598-017-07657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Hepadnaviruses, including human hepatitis B virus (HBV), replicate their tiny DNA genomes by protein-primed reverse transcription of a pregenomic (pg) RNA. Replication initiation as well as pgRNA encapsidation depend on the interaction of the viral polymerase, P protein, with the ε RNA element, featuring a lower and an upper stem, a central bulge, and an apical loop. The bulge, somehow assisted by the loop, acts as template for a P protein-linked DNA oligo that primes full-length minus-strand DNA synthesis. Phylogenetic conservation and earlier mutational studies suggested the highly based-paired ε structure as crucial for productive interaction with P protein. Using the tractable duck HBV (DHBV) model we here interrogated the entire apical DHBV ε (Dε) half for sequence- and structure-dependent determinants of in vitro priming activity, replication, and, in part, in vivo infectivity. This revealed single-strandedness of the bulge, a following G residue plus the loop subsequence GUUGU as the few key determinants for priming and initiation site selection; unexpectedly, they functioned independently of a specific structure context. These data provide new mechanistic insights into avihepadnaviral replication initiation, and they imply a new concept towards a feasible in vitro priming system for human HBV.
Collapse
|
111
|
Molecular characterization of AID-mediated reduction of hepatitis B virus transcripts. Virology 2017; 510:281-288. [PMID: 28779685 DOI: 10.1016/j.virol.2017.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis B virus (HBV) is the major cause of liver cirrhosis and hepatocellular carcinoma. After entering a hepatocyte, HBV forms a nuclear viral episome and produces pregenomic (pg) RNA with a stem-loop structure called an epsilon, which acts to signal encapsidation. We previously demonstrated that TGF-β upregulates activation-induced cytidine deaminase (AID) expression in hepatocytes, which in turn downregulates HBV transcripts by recruiting the RNA exosome complex. The molecular mechanism underlying AID-mediated HBV RNA reduction remains largely unclear. Here we used a pgRNA reporter system having a reporter gene within pgRNA to identify sis- and trans-acting elements in AID-mediated HBV RNA reduction. We found that the epsilon RNA and C-terminus of AID are required for AID-mediated HBV RNA reduction. Importantly, this reduction was reproduced in a hydrodynamic HBV transfection mouse model. The molecular mechanism of AID-mediated HBV RNA reduction is discussed.
Collapse
|
112
|
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a major health burden worldwide; it can cause various degrees of liver damage and is strongly associated with the development of liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms determining HBV persistence are not fully understood, but these appear to be multifactorial and the unique replication strategy employed by HBV enables its maintenance in infected hepatocytes. Both the stability of the HBV genome, which forms a stable minichromosome, the covalently closed circular DNA (cccDNA) in the hepatocyte nucleus, and the inability of the immune system to resolve chronic HBV infection are believed to be key mechanisms of HBV chronicity. Since a true cure of HBV requires clearance of intranuclear cccDNA from infected hepatocytes, understanding the mechanisms involved in cccDNA biogenesis, regulation and stability is mandatory to achieve HBV eradication. This review will summarize the state of knowledge on these mechanisms including the impact of current treatments on the cccDNA stability and activity. We will focus on events challenging cccDNA persistence in dividing hepatocytes.
Collapse
|
113
|
Rab33B Controls Hepatitis B Virus Assembly by Regulating Core Membrane Association and Nucleocapsid Processing. Viruses 2017. [PMID: 28635671 PMCID: PMC5490832 DOI: 10.3390/v9060157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many viruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Using RNA interference (RNAi), we demonstrate that the Golgi/autophagosome-associated Rab33B is required for hepatitis B virus (HBV) propagation in hepatoma cell lines. While Rab33B is dispensable for the secretion of HBV subviral envelope particles, its knockdown reduced the virus yield to 20% and inhibited nucleocapsid (NC) formation and/or NC trafficking. The overexpression of a GDP-restricted Rab33B mutant phenocopied the effect of deficit Rab33B, indicating that Rab33B-specific effector proteins may be involved. Moreover, we found that HBV replication enhanced Rab33B expression. By analyzing HBV infection cycle steps, we identified a hitherto unknown membrane targeting module in the highly basic C-terminal domain of the NC-forming core protein. Rab33B inactivation reduced core membrane association, suggesting that membrane platforms participate in HBV assembly reactions. Biochemical and immunofluorescence analyses provided further hints that the viral core, rather than the envelope, is the main target for Rab33B intervention. Rab33B-deficiency reduced core protein levels without affecting viral transcription and hampered core/NC sorting to envelope-positive, intracellular compartments. Together, these results indicate that Rab33B is an important player in intracellular HBV trafficking events, guiding core transport to NC assembly sites and/or NC transport to budding sites.
Collapse
|
114
|
Abstract
Hepatitis B virus (HBV) is the smallest partially double-stranded DNA virus known to infect humans. Worldwide, more than 50% of hepatocellular carcinoma (HCC) cases are related to chronic Hepatitis B. Development of HCC from normal liver cells is characterized by changes in cell surface N-glycans, which can promote the invasive behavior of tumor cells, leading ultimately to the progression of cancer. However, little is understood about the cell surface N-glycans of HBV-infected liver cells. We try to address this by taking advantage of the HepAD38 cell line, which can replicate HBV in the absence of tetracycline [tet(-)] in growth medium. In the presence of tetracycline [tet(+)], this cell line is free from the virus due to the repression of pregenomic (pg) RNA synthesis. In culture medium without tetracycline, cells express viral pgRNA and start to secrete virions into the supernatant. Here we studied the expression of glycosyltransferases and the cell surface N-glycan composition of tet(+) and tet(-) HepAD38. Among the glycosyltransferases upregulated by the expression of HBV were GnT-II, GnT-IVa, ST6Gal1, and GnT-V, whereas GnT-I, GnT-III, β4GalT1, and FUT8 were downregulated. About one-third of the total cell surface N-glycans found on tet(-)HepAD38 were sialylated. As for tet(+)HepAD38, sialylation was 6% lower compared to the tet(-) cells. Neither treatment changed the cell surface N-glycans expression of the total complex type or the total fucosylated type, which were about 50% or 60%, respectively. Our results showed that the expression of HBV triggers higher sialylation in HepAD38 cells. Altogether, the results show that HBV expression triggered the alteration of the cell surface N-glycosylation pattern and the expression levels of glycosyltransferases of HepAD38 cells.
Collapse
|
115
|
Patel N, White SJ, Thompson RF, Bingham R, Weiß EU, Maskell DP, Zlotnick A, Dykeman E, Tuma R, Twarock R, Ranson NA, Stockley PG. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat Microbiol 2017; 2:17098. [PMID: 28628133 PMCID: PMC5495169 DOI: 10.1038/nmicrobiol.2017.98] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Formation of the hepatitis B virus nucleocapsid is an essential step in the viral lifecycle, but its assembly is not fully understood. We report the discovery of sequence-specific interactions between the viral pre-genome and the hepatitis B core protein that play roles in defining the nucleocapsid assembly pathway. Using RNA SELEX and bioinformatics, we identified multiple regions in the pre-genomic RNA with high affinity for core protein dimers. These RNAs form stem-loops with a conserved loop motif that trigger sequence-specific assembly of virus-like particles (VLPs) at much higher fidelity and yield than in the absence of RNA. The RNA oligos do not interact with preformed RNA-free VLPs, so their effects must occur during particle assembly. Asymmetric cryo-electron microscopy reconstruction of the T = 4 VLPs assembled in the presence of one of the RNAs reveals a unique internal feature connected to the main core protein shell via lobes of density. Biophysical assays suggest that this is a complex involving several RNA oligos interacting with the C-terminal arginine-rich domains of core protein. These core protein-RNA contacts may play one or more roles in regulating the organization of the pre-genome during nucleocapsid assembly, facilitating subsequent reverse transcription and acting as a nucleation complex for nucleocapsid assembly.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Bingham
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Zlotnick
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eric Dykeman
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
116
|
Valaydon ZS, Locarnini SA. The virological aspects of hepatitis B. Best Pract Res Clin Gastroenterol 2017; 31:257-264. [PMID: 28774407 DOI: 10.1016/j.bpg.2017.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
Human hepatitis B virus (HBV) is a hepatotropic virus that is responsible for a significant burden of disease, causing liver disease and hepatocellular carcinoma. It is a small DNA virus with a replication strategy that is similar to that of a retrovirus. HBV is prone to mutagenesis and under the influence of diverse selection pressures, has evolved into a pool of quasispecies, genotypes and mutants, which confers a significant survival advantage. The genome is small, circular, and compact but has a complex replication strategy. The viral life cycle involves the formation of a covalently closed circular DNA (cccDNA), which is organized into a minichromosome that is the template for the synthesis of viral mRNA. HBV DNA (double-stranded linear form) can also integrate into the host genome, ensuring lifelong persistence of the virus. To date, despite great advances in therapeutics, once HBV is chronically established, it is incurable. This is by virtue of many aspects of its virological structure and viral life cycle. In this review, we aim to discuss important aspects of the virology of HBV with a focus on clinical implications.
Collapse
Affiliation(s)
- Zina S Valaydon
- Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Gastroenterology, St. Vincent's Hospital, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia.
| | - Stephen A Locarnini
- Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia
| |
Collapse
|
117
|
Schreiner S, Nassal M. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation-and Beyond? Viruses 2017; 9:v9050125. [PMID: 28531167 PMCID: PMC5454437 DOI: 10.3390/v9050125] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, D-85764 Munich, Germany.
| | - Michael Nassal
- Dept. of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany.
| |
Collapse
|
118
|
Flatt JW, Greber UF. Viral mechanisms for docking and delivering at nuclear pore complexes. Semin Cell Dev Biol 2017; 68:59-71. [PMID: 28506891 DOI: 10.1016/j.semcdb.2017.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Some viruses possess the remarkable ability to transport their genomes across nuclear pore complexes (NPCs) for replication inside the host cell's intact nuclear compartment. Viral mechanisms for crossing the restrictive NPC passageway are highly complex and astonishingly diverse, requiring in each case stepwise interaction between incoming virus particles and components of the nuclear transport machinery. Exactly how a large viral genome loaded with accessory proteins is able to pass through the relatively narrow central channel of the NPC without causing catastrophic structural damage is not yet fully understood. It appears likely, however, that the overall structure of the NPC changes in response to the cargo. Translocation may result in nucleic acids being misdelivered to the cytoplasm. Here we consider in detail the diverse strategies that viruses have evolved to target and subvert NPCs during infection. For decades, this process has both captivated and confounded researchers in the fields of virology, cell biology, and structural biology.
Collapse
Affiliation(s)
- Justin W Flatt
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
119
|
Liu Y, Nie H, Mao R, Mitra B, Cai D, Yan R, Guo JT, Block TM, Mechti N, Guo H. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog 2017; 13:e1006296. [PMID: 28399146 PMCID: PMC5388505 DOI: 10.1371/journal.ppat.1006296] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general. HBV is a DNA virus but replicates its DNA via retrotranscription of a viral RNA pregenome. ISG20, an antiviral RNase induced by interferons, inhibits the replication of many RNA viruses but the underlying molecular antiviral mechanism remains elusive. Since all the known viruses, except for prions, have RNA products in their life cycles, ISG20 can be a broad spectrum antiviral protein; but in order to distinguish viral RNA from host RNA, ISG20 may have evolved to recognize virus-specific signals as its antiviral target. We demonstrated herein that ISG20 selectively binds to a unique stem-loop structure called epsilon (ε) in all HBV RNA species and degrades viral RNA to inhibit HBV replication. Because ε is the HBV pregenomic RNA packaging signal and reverse transcription priming site, the binding of ISG20 to ε, even in the absence of ribonuclease activity, results in antiviral effect to prevent DNA replication due to preventing viral polymerase binding to pgRNA. We also determined the structure and sequence requirements of ε RNA and ISG20 protein for ISG20-ε binding and antiviral activity. Such information will aid the function study of ISG20 against viral pathogens in host innate defense, and ISG20 has potentials to be developed into a therapeutic agent for viral diseases including hepatitis B.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hui Nie
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Nadir Mechti
- CNRS, UMR5235, DIMNP, University of Montpellier 2, Montpellier, France
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
120
|
Chakraborty D, Ghosh S. The epsilon motif of hepatitis B virusRNAexhibits a potassium‐dependent ribonucleolytic activity. FEBS J 2017; 284:1184-1203. [DOI: 10.1111/febs.14050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/21/2017] [Accepted: 02/22/2017] [Indexed: 12/01/2022]
|
121
|
Locatelli M, Testoni B. [Analysis of intrahepatic virological events associated to chronic hepatitis B infection]. Med Sci (Paris) 2017; 33:92-95. [PMID: 28120764 DOI: 10.1051/medsci/20173301017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maëlle Locatelli
- Inserm U1052, 151, cours Albert Thomas, 69003 Lyon, France - Centre de recherche en cancérologie de Lyon (CRCL), 151, cours Albert Thomas, 69003 Lyon, France - Université de Lyon, UMR-S1052, UCBL, 151, cours Albert Thomas, 69003 Lyon, France
| | - Barbara Testoni
- Inserm U1052, 151, cours Albert Thomas, 69003 Lyon, France - Centre de recherche en cancérologie de Lyon (CRCL), 151, cours Albert Thomas, 69003 Lyon, France - Université de Lyon, UMR-S1052, UCBL, 151, cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
122
|
Wang HB, Wang QY, Yuan Q, Shan XY, Fu GH. Alanine aminotransferase is more sensitive to the decrease in hepatitis B virus-DNA load than other liver markers in chronic hepatitis B patients. J Clin Lab Anal 2017; 31. [PMID: 28116822 DOI: 10.1002/jcla.22141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/14/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND A direct correlation between hepatitis B virus DNA (HBV-DNA) and liver markers has not been identified in chronic hepatitis B (CHB) patients. However, the effect of HBV-DNA changes on liver markers remains unclear. We explored the association between decreased HBV-DNA and liver makers in CHB patients. METHODS Chronic hepatitis B patients who visited Jinhua Central Hospital twice were selected for analysis. Finally, 171 participants with a 1-log reduction in HBV-DNA between the two visits were enrolled as the case group, and 158 participants with no significant changes in HBV-DNA were enrolled as the control group. RESULTS There was no significant correlation between HBV-DNA and liver markers (P>.05). However, in longitudinal analysis, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transpeptidase (GGT) were significantly different between the two tests (P<.05) in the case group. Conversely, there was no significant difference in the control group. When HBV-DNA decreased >26 times, ALT was reduced by half or more. A similar trend was observed with a decrease of >63 times for AST and a decrease of >76 times for GGT. CONCLUSIONS A large change in HBV-DNA can lead to a significant variation in liver markers. In particular, ALT was more sensitive than other liver markers to a reduction in HBV-DNA.
Collapse
Affiliation(s)
- Hua-Bin Wang
- Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, China
| | | | - Qing Yuan
- Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, China
| | - Xiao-Yun Shan
- Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, China
| | - Guan-Hua Fu
- Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, China
| |
Collapse
|
123
|
Lomonosova E, Tavis JE. In Vitro Enzymatic and Cell Culture-Based Assays for Measuring Activity of HBV RNaseH Inhibitors. Methods Mol Biol 2017; 1540:179-192. [PMID: 27975316 PMCID: PMC10591453 DOI: 10.1007/978-1-4939-6700-1_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
HBV is a small, enveloped DNA virus that replicates by reverse transcription via an RNA intermediate. Current anti-HBV treatment regiments that include interferon α and nucleos(t)ide analogs have insufficient efficiency, are of long duration and can be accompanied by systemic side effects. Though HBV RNaseH is essential for viral replication, it is unexploited as a drug target against HBV. RNaseH inhibitors that actively block viral replication would represent an important addition to the potential new drugs for treating HBV infection. Here we describe two methods to measure the activity of RNaseH inhibitors. DNA oligonucleotide-directed RNA cleavage assay allows low-throughput screening of compounds for potential anti-HBV RNaseH activity in vitro. Analysis of preferential inhibition of plus-polarity DNA strand synthesis by HBV RNaseH inhibitors in a cell culture model of HBV replication can be used to validate the efficiency of these compounds to block viral replication.
Collapse
Affiliation(s)
- Elena Lomonosova
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., Saint Louis, MO, 63104, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University Liver Center, Saint Louis University School of Medicine, 1100 S. Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
124
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2016; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
125
|
Li Y, Wu Y, Zheng X, Cong J, Liu Y, Li J, Sun R, Tian ZG, Wei HM. Cytoplasm-Translocated Ku70/80 Complex Sensing of HBV DNA Induces Hepatitis-Associated Chemokine Secretion. Front Immunol 2016; 7:569. [PMID: 27994596 PMCID: PMC5136554 DOI: 10.3389/fimmu.2016.00569] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a serious disease, mainly due to its severe pathological consequences, which are difficult to cure using current therapies. When the immune system responds to hepatocytes experiencing rapid HBV replication, effector cells (such as HBV-specific CD8+ T cells, NK cells, NKT cells, and other subtypes of immune cells) infiltrate the liver and cause hepatitis. However, the precise recruitment of these cells remains unclear. In the present study, we found that the cytoplasm-translocated Ku70/80 complex in liver-derived cells sensed cytosolic HBV DNA and promoted hepatitis-associated chemokine secretion. Upon sensing HBV DNA, DNA-dependent protein kinase catalytic subunit and PARP1 were assembled. Then, IRF1 was activated and translocated into the nucleus, which upregulated CCL3 and CCL5 expression. Because CCR5, a major chemokine receptor for CCL3 and CCL5, is known to be critical in hepatitis B, Ku70/80 sensing of HBV DNA likely plays a critical role in immune cell recruitment in response to HBV infection.
Collapse
Affiliation(s)
- Young Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yang Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Jingjing Cong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Rui Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Zhigang G Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| | - Haiming M Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, China; University of Science and Technology of China, Hefei, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
| |
Collapse
|
126
|
Kinoshita W, Ogura N, Watashi K, Wakita T. Host factor PRPF31 is involved in cccDNA production in HBV-replicating cells. Biochem Biophys Res Commun 2016; 482:638-644. [PMID: 27864147 DOI: 10.1016/j.bbrc.2016.11.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in chronic HBV infection and replication, and is an important factor for HBV surface antigen loss indicating the endpoint of HBV treatment. However, there is a known problem that current anti-HBV drugs, including interferons and nucleos(t)ide analogues, reduce HBV replication but have a little or no effect on reducing cccDNA. Therefore, the development of new therapeutic agents is necessary to eradicate cccDNA. In this study, we identified pre-mRNA processing factor 31 (PRPF31) by siRNA screening as a factor associated with cccDNA. PRPF31 knockdown by siRNA decreased cccDNA formation without serious cytotoxicity. In rescue experiments, expression of siRNA-resistant PRPF31 recovered cccDNA formation. PRPF31 knockdown did not affect HBV core protein and HBV core DNA levels in HBV-replicating cells. Chromatin immunoprecipitation and immunoprecipitation assays revealed an association between PRPF31 and cccDNA. Furthermore, co-overexpression of PRPF31 and HBx enhanced cccDNA formation in HepAD38 cells. Taken together, the present findings suggest that the interaction between PRPF31 and HBx may be a novel target for anti-HBV treatment.
Collapse
Affiliation(s)
- Wataru Kinoshita
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan.
| | - Naoki Ogura
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
127
|
Bengsch B, Chang KM. Evolution in Our Understanding of Hepatitis B Virus Virology and Immunology. Clin Liver Dis 2016; 20:629-644. [PMID: 27742004 DOI: 10.1016/j.cld.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatitis B virus (HBV) infection is a major global health challenge. HBV can cause significant morbidity and mortality by establishing acute and chronic hepatitis. Approximately 250 million people worldwide are chronically infected, and more than 2 billion people have been exposed to HBV. Since the discovery of HBV, the advances in our understanding of HBV virology and immunology have translated into effective vaccines and therapies for HBV infection. Although current therapies successfully suppress viral replication but rarely succeed in viral eradication, recent discoveries in HBV virology and immunology provide exciting rationales for novel treatment strategies aiming at HBV cure.
Collapse
Affiliation(s)
- Bertram Bengsch
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 331 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kyong-Mi Chang
- Medical Research, Philadelphia Corporal Michael J. Crescenz VA Medical Center (CMC VAMC), A424, University and Woodland Avenue, Philadelphia, PA 19104, USA; Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
128
|
Li B, Sun S, Li M, Cheng X, Li H, Kang F, Kang J, Dörnbrack K, Nassal M, Sun D. Suppression of hepatitis B virus antigen production and replication by wild-type HBV dependently replicating HBV shRNA vectors in vitro and in vivo. Antiviral Res 2016; 134:117-129. [PMID: 27591142 DOI: 10.1016/j.antiviral.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/07/2016] [Accepted: 08/07/2016] [Indexed: 02/08/2023]
Abstract
Chronic infection with hepatitis B virus (HBV), a small DNA virus that replicates by reverse transcription of a pregenomic (pg) RNA precursor, greatly increases the risk for terminal liver disease. RNA interference (RNAi) based therapy approaches have shown potential to overcome the limited efficacy of current treatments. However, synthetic siRNAs as well as small hairpin (sh) RNAs expressed from non-integrating vectors require repeated applications; integrating vectors suffer from safety concerns. We pursue a new concept by which HBV itself is engineered into a conditionally replicating, wild-type HBV dependent anti-HBV shRNA vector. Beyond sharing HBV's hepatocyte tropism, such a vector would be self-renewing, but only as long as wild-type HBV is present. Here, we realized several important aspects of this concept. We identified two distinct regions in the 3.2 kb HBV genome which tolerate replacement by shRNA expression cassettes without compromising reverse transcription when complemented in vitro by HBV helper constructs or by wild-type HBV; a representative HBV shRNA vector was infectious in cell culture. The vector-encoded shRNAs were active, including on HBV as target. A dual anti-HBV shRNA vector delivered into HBV transgenic mice, which are not susceptible to HBV infection, by a chimeric adenovirus-HBV shuttle reduced serum hepatitis B surface antigen (HBsAg) up to ∼4-fold, and virus particles up to ∼20-fold. Importantly, a fraction of the circulating particles contained vector-derived DNA, indicating successful complementation in vivo. These data encourage further investigations to prove antiviral efficacy and the predicted self-limiting vector spread in a small animal HBV infection model.
Collapse
Affiliation(s)
- Baosheng Li
- Chinese PLA Medical School, Chinese PLA General Hospital, 100853, Beijing, PR China; The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Shuo Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; Troop 66220 of PLA, Xingtai, Hebei Province, 054000, PR China
| | - Minran Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China; The Fourth Department of the Fifth Hospital, Shijiazhuang City, 050017, PR China
| | - Xin Cheng
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Haijun Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Fubiao Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Jiwen Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China
| | - Katharina Dörnbrack
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany
| | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106, Freiburg, Germany.
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, 050082, PR China.
| |
Collapse
|
129
|
Abstract
Hepatitis B virus is one of the smallest human pathogens, encoded by a 3,200-bp genome with only four open reading frames. Yet the virus shows a remarkable diversity in structural features, often with the same proteins adopting several conformations. In part, this is the parsimony of viruses, where a minimal number of proteins perform a wide variety of functions. However, a more important theme is that weak interactions between components as well as components with multiple conformations that have similar stabilities lead to a highly dynamic system. In hepatitis B virus, this is manifested as a virion where the envelope proteins have multiple structures, the envelope-capsid interaction is irregular, and the capsid is a dynamic compartment that actively participates in metabolism of the encapsidated genome and carries regulated signals for intracellular trafficking.
Collapse
Affiliation(s)
| | - Adam Zlotnick
- Department of Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
130
|
Morikawa K, Suda G, Sakamoto N. Viral life cycle of hepatitis B virus: Host factors and druggable targets. Hepatol Res 2016; 46:871-7. [PMID: 26776362 DOI: 10.1111/hepr.12650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Kenichi Morikawa
- Division of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan.,Division of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Goki Suda
- Division of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Division of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
131
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
132
|
Kim H, Lee SA, Kim BJ. X region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol 2016; 22:5467-5478. [PMID: 27350725 PMCID: PMC4917607 DOI: 10.3748/wjg.v22.i24.5467] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health problem, with more than 240 million people chronically infected worldwide and potentially 650000 deaths per year due to advanced liver diseases including liver cirrhosis and hepatocellular carcinoma (HCC). HBV-X protein (HBx) contributes to the biology and pathogenesis of HBV via stimulating virus replication or altering host gene expression related to HCC. The HBV X region contains only 465 bp encoding the 16.5 kDa HBx protein, which also contains several critical cis-elements such as enhancer II, the core promoter and the microRNA-binding region. Thus, mutations in this region may affect not only the HBx open reading frame but also the overlapped cis-elements. Recently, several types of HBx mutations significantly associated with clinical severity have been described, although the functional mechanism in most of these cases remains unsolved. This review article will mainly focus on the HBx mutations proven to be significantly related to clinical severity via epidemiological studies.
Collapse
|
133
|
Radreau P, Porcherot M, Ramiére C, Mouzannar K, Lotteau V, André P. Reciprocal regulation of farnesoid X receptor α activity and hepatitis B virus replication in differentiated HepaRG cells and primary human hepatocytes. FASEB J 2016; 30:3146-54. [DOI: 10.1096/fj.201500134] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Pauline Radreau
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- EnyoPharma Lyon France
| | - Marine Porcherot
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- EnyoPharma Lyon France
| | - Christophe Ramiére
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- Laboratoire de VirologieHôpital de la Croix–RousseHospices Civils de Lyon Lyon France
| | - Karim Mouzannar
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
| | - Vincent Lotteau
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
| | - Patrice André
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- Laboratoire de VirologieHôpital de la Croix–RousseHospices Civils de Lyon Lyon France
| |
Collapse
|
134
|
The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely. Sci Rep 2016; 6:25552. [PMID: 27174254 PMCID: PMC4865889 DOI: 10.1038/srep25552] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
HBV covalently closed circular DNA (cccDNA) is drug-resistant and responsible for viral persistence. To facilitate the development of anti-cccDNA drugs, we developed a minicircle DNA vector (MC)-based technology to produce large quantity of recombined cccDNA (rcccDNA) resembling closely to its wild-type counterpart both in structure and function. The rcccDNA differed to the wild-type cccDNA (wtcccDNA) only in that it carried an extra 36-bp DNA recombinant product attR upstream of the preC/C gene. Using a procedure similar to standard plasmid production, milligrams of rcccDNA can be generated in common laboratories conveniently. The rcccDNA demonstrated many essential biological features of wtcccDNA, including: (1) undergoing nucleation upon nucleus entry; (2) serving as template for production of all HBV RNAs and proteins; (3) deriving virions capable of infecting tree shrew, and subsequently producing viral mRNAs, proteins, rcccDNA and infectious virions. As an example to develop anti-cccDNA drugs, we used the Crispr/Cas9 system to provide clear-cut evidence that rcccDNA was cleaved by this DNA editing tool in vitro. In summary, we have developed a convenient technology to produce large quantity of rcccDNA as a surrogate of wtcccDNA for investigating HBV biology and developing treatment to eradicate this most wide-spreading virus.
Collapse
|
135
|
Design, synthesis, molecular docking studies and anti-HBV activity of phenylpropanoid derivatives. Chem Biol Interact 2016; 251:1-9. [DOI: 10.1016/j.cbi.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/20/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
|
136
|
Hepatitis B Virus Capsids Have Diverse Structural Responses to Small-Molecule Ligands Bound to the Heteroaryldihydropyrimidine Pocket. J Virol 2016; 90:3994-4004. [PMID: 26842475 PMCID: PMC4810570 DOI: 10.1128/jvi.03058-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/27/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Though the hepatitis B virus (HBV) core protein is an important participant in many aspects of the viral life cycle, its best-characterized activity is self-assembly into 240-monomer capsids. Small molecules that target core protein (core protein allosteric modulators [CpAMs]) represent a promising antiviral strategy. To better understand the structural basis of the CpAM mechanism, we determined the crystal structure of the HBV capsid in complex with HAP18. HAP18 accelerates assembly, increases protein-protein association more than 100-fold, and induces assembly of nonicosahedral macrostructures. In a preformed capsid, HAP18 is found at quasiequivalent subunit-subunit interfaces. In a detailed comparison to the two other extant CpAM structures, we find that the HAP18-capsid structure presents a paradox. Whereas the two other structures expanded the capsid diameter by up to 10 Å, HAP18 caused only minor changes in quaternary structure and actually decreased the capsid diameter by ∼3 Å. These results indicate that CpAMs do not have a single allosteric effect on capsid structure. We suggest that HBV capsids present an ensemble of states that can be trapped by CpAMs, indicating a more complex basis for antiviral drug design. IMPORTANCE Hepatitis B virus core protein has multiple roles in the viral life cycle-assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions-making it an attractive antiviral target. Core protein allosteric modulators (CpAMs) are an experimental class of antivirals that bind core protein. The most recognized CpAM activity is that they accelerate core protein assembly and strengthen interactions between subunits. In this study, we observe that the CpAM-binding pocket has multiple conformations. We compare structures of capsids cocrystallized with different CpAMs and find that they also affect quaternary structure in different ways. These results suggest that the capsid "breathes" and is trapped in different states by the drug and crystallization. Understanding that the capsid is a moving target will aid drug design and improve our understanding of HBV interaction with its environment.
Collapse
|
137
|
Qiao Y, Han X, Guan G, Wu N, Sun J, Pak V, Liang G. TGF-β triggers HBV cccDNA degradation through AID-dependent deamination. FEBS Lett 2016; 590:419-27. [PMID: 26867650 DOI: 10.1002/1873-3468.12058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/18/2015] [Accepted: 10/23/2015] [Indexed: 01/05/2023]
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is a viral center molecule for HBV infection and persistence. However, the cellular restriction factors of HBV cccDNA are not well understood. Here, we show that TGF-β can induce nuclear viral cccDNA degradation and hypermutation via activation-induced cytidine deaminase (AID) deamination activity in hepatocytes. This suppression by TGF-β is abrogated when AID or the activity of uracil-DNA glycosylase (UNG) is absent, which indicates that AID deamination and the UNG-mediated excision of uracil act in concert to degrade viral cccDNA. Moreover, the HBV core protein promotes the interaction between AID and viral cccDNA. Overall, our results indicate a novel molecular mechanism that allows cytokine TGF-β to restrict viral nuclear cccDNA in innate immunity, thereby suggesting a novel method for potentially eliminating cccDNA.
Collapse
Affiliation(s)
- Ying Qiao
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of the National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Na Wu
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jianbo Sun
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Vladimir Pak
- Department of Medicine, Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Guoxin Liang
- Key Laboratory of AIDS Immunology of the National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
138
|
Hayes CN, Zhang Y, Makokha GN, Hasan MZ, Omokoko MD, Chayama K. Early events in hepatitis B virus infection: From the cell surface to the nucleus. J Gastroenterol Hepatol 2016; 31:302-9. [PMID: 26414381 DOI: 10.1111/jgh.13175] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
While most adults are able to clear acute hepatitis B virus (HBV) infection, chronic HBV infection is recalcitrant to current therapy because of the persistence of covalently closed circular DNA in the nucleus. Complete clearance of the virus in these patients is rare, and long-term therapy with interferon and/or nucleoside analogues may be required in an attempt to suppress viral replication and prevent progressive liver damage. The difficulty of establishing HBV infection in cell culture and experimental organisms has hindered efforts to elucidate details of the HBV life cycle, but it has also revealed the importance of the cellular microenvironment required for HBV binding and entry. Recent studies have demonstrated an essential role of sodium-taurocholate cotransporting polypeptide as a functional receptor in HBV infection, which has facilitated the development of novel infection systems and opened the way for more detailed understanding of the early steps of HBV infection as well as a potential new therapeutic target. However, many gaps remain in understanding of how HBV recognizes and attaches to hepatocytes prior to binding to sodium-taurocholate cotransporting polypeptide, as well as events that are triggered after binding, including entry into the cell, intracellular transport, and passage through the nuclear pore complex. This review summarizes current knowledge of the initial stages of HBV infection leading to the establishment of covalently closed circular DNA in the nucleus.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yizhou Zhang
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Md Zobaer Hasan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Magot D Omokoko
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
139
|
Pierson EE, Keifer DZ, Kukreja AA, Wang JCY, Zlotnick A, Jarrold MF. Charge Detection Mass Spectrometry Identifies Preferred Non-Icosahedral Polymorphs in the Self-Assembly of Woodchuck Hepatitis Virus Capsids. J Mol Biol 2016; 428:292-300. [PMID: 26151485 PMCID: PMC5653371 DOI: 10.1016/j.jmb.2015.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 02/03/2023]
Abstract
Woodchuck hepatitis virus (WHV) is prone to aberrant assembly in vitro and can form a broad distribution of oversized particles. Characterizing aberrant assembly products is challenging because they are both large and heterogeneous. In this work, charge detection mass spectrometry (CDMS) is used to measure the distribution of WHV assembly products. CDMS is a single-particle technique where the masses of individual ions are determined from simultaneous measurement of each ion's charge and m/z (mass-to-charge) ratio. Under relatively aggressive, assembly promoting conditions, roughly half of the WHV assembly products are T=4 capsids composed of exactly 120 dimers while the other half are a broad distribution of larger species that extends to beyond 210 dimers. There are prominent peaks at around 132 dimers and at 150 dimers. In part, the 150 dimer complex can be attributed to elongating a T=4 capsid along its 5-fold axis by adding a ring of hexamers. However, most of the other features cannot be explained by existing models for hexameric defects. Cryo-electron microscopy provides evidence of elongated capsids. However, image analysis reveals that many of them are not closed but have "spiral-like" morphologies. The CDMS data indicate that oversized capsids have a preference for growth by addition of 3 or 4 dimers, probably by completion of hexameric vertices.
Collapse
Affiliation(s)
- Elizabeth E Pierson
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David Z Keifer
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Alexander A Kukreja
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Joseph C-Y Wang
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Adam Zlotnick
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Martin F Jarrold
- Department of Chemistry and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
140
|
Hepatocyte Factor JMJD5 Regulates Hepatitis B Virus Replication through Interaction with HBx. J Virol 2016; 90:3530-42. [PMID: 26792738 DOI: 10.1128/jvi.02776-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) is a causative agent for chronic liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBx protein encoded by the HBV genome plays crucial roles not only in pathogenesis but also in replication of HBV. Although HBx has been shown to bind to a number of host proteins, the molecular mechanisms by which HBx regulates HBV replication are largely unknown. In this study, we identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner of HBx interacting in the cytoplasm. DNA microarray analysis revealed that JMJD5-knockout (JMJD5KO) Huh7 cells exhibited a significant reduction in the expression of transcriptional factors involved in hepatocyte differentiation, such as HNF4A, CEBPA, and FOXA3. We found that hydroxylase activity of JMJD5 participates in the regulation of these transcriptional factors. Moreover, JMJD5KO Huh7 cells exhibited a severe reduction in HBV replication, and complementation of HBx expression failed to rescue replication of a mutant HBV deficient in HBx, suggesting that JMJD5 participates in HBV replication through an interaction with HBx. We also found that replacing Gly(135) with Glu in JMJD5 abrogates binding with HBx and replication of HBV. Moreover, the hydroxylase activity of JMJD5 was crucial for HBV replication. Collectively, these results suggest that direct interaction of JMJD5 with HBx facilitates HBV replication through the hydroxylase activity of JMJD5. IMPORTANCE HBx protein encoded by hepatitis B virus (HBV) plays important roles in pathogenesis and replication of HBV. We identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner to HBx. JMJD5 was shown to regulate several transcriptional factors to maintain hepatocyte function. Although HBx had been shown to support HBV replication, deficiency of JMJD5 abolished contribution of HBx in HBV replication, suggesting that HBx-mediated HBV replication is largely dependent on JMJD5. We showed that hydroxylase activity of JMJD5 in the C terminus region is crucial for expression of HNF4A and replication of HBV. Furthermore, a mutant JMJD5 with Gly(135) replaced by Glu failed to interact with HBx and to rescue the replication of HBV in JMJD5-knockout cells. Taken together, our data suggest that interaction of JMJD5 with HBx facilitates HBV replication through the hydroxylase activity of JMJD5.
Collapse
|
141
|
Brahmania M, Feld J, Arif A, Janssen HLA. New therapeutic agents for chronic hepatitis B. THE LANCET. INFECTIOUS DISEASES 2016; 16:e10-21. [PMID: 26795693 DOI: 10.1016/s1473-3099(15)00436-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/13/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
The treatment goal for chronic hepatitis B is true eradication of the hepatitis B virus, but this is rarely achieved with first-line treatment regimens because of an inability to disrupt covalently closed circular DNA and an inadequate host immune response. Therefore, new antiviral agents are needed to target various stages of the hepatitis B virus lifecycle and modulation of the immune system. This Review provides a summary of available regimens with their strengths and limitations, and highlights future therapeutic strategies to target the virus and host immune response. These new agents can hopefully lead to a finite duration of treatment, and provide a functional and durable cure for chronic hepatitis B infection.
Collapse
Affiliation(s)
- Mayur Brahmania
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jordan Feld
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ambreen Arif
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Diseases, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Department of Gastroenterology and Hepatology, Erasmus Medical Center University Hospital, Rotterdam, Netherlands.
| |
Collapse
|
142
|
Guerrieri F, Belloni L, Pediconi N, Levrero M. Pathobiology of Hepatitis B Virus-Induced Carcinogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-22330-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
143
|
Cheng X, Guan W, Sun S, Li B, Li H, Kang F, Kang J, Yang D, Nassal M, Sun D. Stable Human Hepatoma Cell Lines for Efficient Regulated Expression of Nucleoside/Nucleotide Analog Resistant and Vaccine Escape Hepatitis B Virus Variants and Woolly Monkey Hepatitis B Virus. PLoS One 2015; 10:e0145746. [PMID: 26699621 PMCID: PMC4689378 DOI: 10.1371/journal.pone.0145746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) causes acute and chronic hepatitis B (CHB). Due to its error-prone replication via reverse transcription, HBV can rapidly evolve variants that escape vaccination and/or become resistant to CHB treatment with nucleoside/nucleotide analogs (NAs). This is particularly problematic for the first generation NAs lamivudine and adefovir. Though now superseded by more potent NAs, both are still widely used. Furthermore, resistance against the older NAs can contribute to cross-resistance against more advanced NAs. For lack of feasible HBV infection systems, the biology of such variants is not well understood. From the recent discovery of Na+-taurocholate cotransporting polypeptide (NTCP) as an HBV receptor new in vitro infection systems are emerging, yet access to the required large amounts of virions, in particular variants, remains a limiting factor. Stably HBV producing cell lines address both issues by allowing to study intracellular viral replication and as a permanent source of defined virions. Accordingly, we generated a panel of new tetracycline regulated TetOFF HepG2 hepatoma cell lines which produce six lamivudine and adefovir resistance-associated and two vaccine escape variants of HBV as well as the model virus woolly monkey HBV (WMHBV). The cell line-borne viruses reproduced the expected NA resistance profiles and all were equally sensitive against a non-NA drug. The new cell lines should be valuable to investigate under standardized conditions HBV resistance and cross-resistance. With titers of secreted virions reaching >3x107 viral genome equivalents per ml they should also facilitate exploitation of the new in vitro infection systems.
Collapse
Affiliation(s)
- Xin Cheng
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Weiwei Guan
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Shuo Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
- Troop 66220 of PLA, Xingtai of Hebei Province, PR China
| | - Baosheng Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Haijun Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Fubiao Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Jiwen Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Michael Nassal
- Department of Internal Medicine II / Molecular Biology, University Hospital Freiburg, Freiburg, Germany
- * E-mail: (MN); (SD)
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
- * E-mail: (MN); (SD)
| |
Collapse
|
144
|
Hernández S, Jiménez G, Alarcón V, Prieto C, Muñoz F, Riquelme C, Venegas M, Brahm J, Loyola A, Villanueva RA. Replication of a chronic hepatitis B virus genotype F1b construct. Arch Virol 2015; 161:583-94. [PMID: 26620585 DOI: 10.1007/s00705-015-2702-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Genotype F is one of the less-studied genotypes of human hepatitis B virus, although it is widely distributed in regions of Central and South American. Our previous studies have shown that HBV genotype F is prevalent in Chile, and phylogenetic analysis of its full-length sequence amplified from the sera of chronically infected patients identified it as HBV subgenotype F1b. We have previously reported the full-length sequence of a HBV molecular clone obtained from a patient chronically infected with genotype F1b. In this report, we established a system to study HBV replication based on hepatoma cell lines transfected with full-length monomers of the HBV genome. Culture supernatants were analyzed after transfection and found to contain both HBsAg and HBeAg viral antigens. Consistently, fractionated cell extracts revealed the presence of viral replication, with both cytoplasmic and nuclear DNA intermediates. Analysis of HBV-transfected cells by indirect immunofluorescence or immunoelectron microscopy revealed the expression of viral antigens and cytoplasmic viral particles, respectively. To test the functionality of the ongoing viral replication further at the level of chromatinized cccDNA, transfected cells were treated with a histone deacetylase inhibitor, and this resulted in increased viral replication. This correlated with changes posttranslational modifications of histones at viral promoters. Thus, the development of this viral replication system for HBV genotype F will facilitate studies on the regulation of viral replication and the identification of new antiviral drugs.
Collapse
Affiliation(s)
- Sergio Hernández
- Laboratorio de Virus Hepatitis, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda República 217, 2do piso, 8370146, Santiago, Chile
| | - Gustavo Jiménez
- Laboratorio de Virus Hepatitis, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda República 217, 2do piso, 8370146, Santiago, Chile
| | - Valentina Alarcón
- Laboratorio de Epigenética y Cromatina, Fundación Ciencia and Vida, 7780272, Santiago, Chile
| | - Cristian Prieto
- Laboratorio de Virus Hepatitis, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda República 217, 2do piso, 8370146, Santiago, Chile
| | - Francisca Muñoz
- Laboratorio de Epigenética y Cromatina, Fundación Ciencia and Vida, 7780272, Santiago, Chile
| | - Constanza Riquelme
- Laboratorio de Virus Hepatitis, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda República 217, 2do piso, 8370146, Santiago, Chile
| | - Mauricio Venegas
- Sección de Gastroenterología, Hospital Clínico Universidad de Chile, 8380456, Santiago, Chile
| | - Javier Brahm
- Sección de Gastroenterología, Hospital Clínico Universidad de Chile, 8380456, Santiago, Chile
| | - Alejandra Loyola
- Laboratorio de Epigenética y Cromatina, Fundación Ciencia and Vida, 7780272, Santiago, Chile.,Universidad San Sebastián, 7510157, Santiago, Chile
| | - Rodrigo A Villanueva
- Laboratorio de Virus Hepatitis, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda República 217, 2do piso, 8370146, Santiago, Chile.
| |
Collapse
|
145
|
Ndeboko B, Lemamy GJ, Nielsen PE, Cova L. Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B. Int J Mol Sci 2015; 16:28230-41. [PMID: 26633356 PMCID: PMC4691041 DOI: 10.3390/ijms161226094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers, such as chitosan (CS), appear of particular interest as nonviral vectors due to their capacity to facilitate cellular delivery of bioactive cargoes including peptide nucleic acids (PNAs) or DNA vaccines. We have investigated the ability of a PNA conjugated to different CPPs to inhibit the replication of duck hepatitis B virus (DHBV), a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip) alone, in the absence of its PNA cargo, was able to drastically inhibit late stages of DHBV replication. In the mouse model, conjugation of HBV DNA vaccine to modified CS (Man-CS-Phe) improved cellular and humoral responses to plasmid-encoded antigen. Moreover, other systems for gene delivery were investigated including CPP-modified CS and cationic nanoparticles. The results showed that these nonviral vectors considerably increased plasmid DNA uptake and expression. Collectively promising results obtained in preclinical studies suggest the usefulness of these safe delivery systems for the development of novel therapeutics against chronic hepatitis B.
Collapse
Affiliation(s)
- Bénédicte Ndeboko
- Institut National de la Sante et Recherche Medicale (INSERM) U1052, Cancer Research Center of Lyon (CRCL), Lyon 69003, France.
- Département de Biologie Cellulaire and Moléculaire-Génétique, Faculté de Médecine, Université des Sciences de la Santé, Libreville 241, Gabon.
| | - Guy Joseph Lemamy
- Département de Biologie Cellulaire and Moléculaire-Génétique, Faculté de Médecine, Université des Sciences de la Santé, Libreville 241, Gabon.
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Departement of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, the Panum Institute, University of Copenhagen, Copenhagen DK 2200N, Denmark.
| | - Lucyna Cova
- Institut National de la Sante et Recherche Medicale (INSERM) U1052, Cancer Research Center of Lyon (CRCL), Lyon 69003, France.
| |
Collapse
|
146
|
Lampertico P, Maini M, Papatheodoridis G. Optimal management of hepatitis B virus infection - EASL Special Conference. J Hepatol 2015; 63:1238-53. [PMID: 26150256 DOI: 10.1016/j.jhep.2015.06.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 12/13/2022]
Abstract
There have been great strides in the management of chronic hepatitis B virus (HBV) infection, but considerable challenges remain. The European Association for the Study of the Liver (EASL) convened a special conference focusing on all clinical aspects of the management of this disease. Immigration patterns are having a huge effect on the incidence, prevalence and genotype predominance of HBV in many European countries. In recent years there has been significant progress in our understanding of the virology and immunopathology of HBV, particularly the identification of the entry receptor for HBV conferring its hepatotropism, sodium taurocholate co-transporting polypeptide, and a better understanding of the regulation of the covalently closed circular DNA form of HBV - the major barrier to cure. However, more fundamental scientific research is needed. Serum biomarkers and transient elastography offer equivalent performance in the grading of disease stage and progression and monitoring of treatment. Occult HBV infection is often overlooked, but has many important implications for e.g., immuno-suppression, liver transplantation and the progression and severity of liver diseases from other causes. Hepatitis B e antigen positive immunotolerant patients, who are a significant source of horizontal and vertical transmission, are at risk for developing active chronic hepatitis B, but current treatment options are ineffective. Pegylated interferon therapy, given for a finite duration, offers sustained off-treatment responses in a minority of patients. Nucleos(t)ide analogues suppress the virus, improve liver histological lesions, reverse cirrhosis in the majority of cases, and improve survival, but 'cure' cannot be achieved. There is also a pressing need for novel HBV/hepatitis D virus co-infection therapies. Novel therapeutic strategies, e.g. immunomodulation, RNA interference and viral entry inhibition have demonstrated promising early results.
Collapse
Affiliation(s)
- Pietro Lampertico
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Mala Maini
- Division of Infection and Immunity, UCL, London, UK
| | | |
Collapse
|
147
|
Morgnanesi D, Heinrichs EJ, Mele AR, Wilkinson S, Zhou S, Kulp JL. A computational chemistry perspective on the current status and future direction of hepatitis B antiviral drug discovery. Antiviral Res 2015; 123:204-15. [PMID: 26477294 DOI: 10.1016/j.antiviral.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/02/2015] [Accepted: 10/11/2015] [Indexed: 12/11/2022]
Abstract
Computational chemical biology, applied to research on hepatitis B virus (HBV), has two major branches: bioinformatics (statistical models) and first-principle methods (molecular physics). While bioinformatics focuses on statistical tools and biological databases, molecular physics uses mathematics and chemical theory to study the interactions of biomolecules. Three computational techniques most commonly used in HBV research are homology modeling, molecular docking, and molecular dynamics. Homology modeling is a computational simulation to predict protein structure and has been used to construct conformers of the viral polymerase (reverse transcriptase domain and RNase H domain) and the HBV X protein. Molecular docking is used to predict the most likely orientation of a ligand when it is bound to a protein, as well as determining an energy score of the docked conformation. Molecular dynamics is a simulation that analyzes biomolecule motions and determines conformation and stability patterns. All of these modeling techniques have aided in the understanding of resistance mutations on HBV non-nucleos(t)ide reverse-transcriptase inhibitor binding. Finally, bioinformatics can be used to study the DNA and RNA protein sequences of viruses to both analyze drug resistance and to genotype the viral genomes. Overall, with these techniques, and others, computational chemical biology is becoming more and more necessary in hepatitis B research. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- Dante Morgnanesi
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Eric J Heinrichs
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Anthony R Mele
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Sean Wilkinson
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Suzanne Zhou
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - John L Kulp
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA.
| |
Collapse
|
148
|
Cheng Z, Zhi X, Sun G, Guo W, Huang Y, Sun W, Tian X, Zhao F, Hu K. Sodium selenite suppresses hepatitis B virus transcription and replication in human hepatoma cell lines. J Med Virol 2015; 88:653-63. [PMID: 26331371 PMCID: PMC7167125 DOI: 10.1002/jmv.24366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the most serious and prevalent health problems worldwide. Current anti‐HBV medications have a number of drawbacks, such as adverse effects and drug resistance; thus, novel potential anti‐HBV reagents are needed. Selenium (Se) has been shown to be involved in both human immunodeficiency virus and hepatitis C virus infections, but its role in HBV infection remains unclear. To address this, sodium selenite (Na2SeO3) was applied to three HBV cell models: HepG2.2.15 cells, and HuH‐7 cells transfected with either 1.1 or 1.3× HBV plasmids. Cytotoxicity of Na2SeO3 was examined by Cell Counting Kit‐8. Levels of viral antigen expression, transcripts, and encapsidated viral DNA were measured by enzyme‐linked immunosorbent assay, northern blot, and Southern blot, respectively. There was no obvious cytotoxicity in either HepG2.2.15 or HuH‐7 cells with <2.5 µM Na2SeO3. Below this concentration, Na2SeO3 suppressed HBsAg and HBeAg production, HBV transcript level, and amount of genomic DNA in all three tested models, and suppression level was enhanced in line with increases in Na2SeO3 concentration or treatment time. Moreover, the inhibitory effect of Na2SeO3 on HBV replication can be further enhanced by combined treatment with lamivudine, entecavir, or adefovir. Thus, the present study clearly proves that Na2SeO3 suppresses HBV protein expression, transcription, and genome replication in hepatoma cell models in a dose‐ and time‐dependent manner. J. Med. Virol. 88:653–663, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhikui Cheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoguang Zhi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ge Sun
- Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Guo
- Department of Infectious Disease and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Tongji, China
| | - Yayun Huang
- Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| | - Weihua Sun
- Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| | - Xiaohui Tian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kanghong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
149
|
Giersch K, Dandri M. Hepatitis B and Delta Virus: Advances on Studies about Interactions between the Two Viruses and the Infected Hepatocyte. J Clin Transl Hepatol 2015; 3:220-9. [PMID: 26623269 PMCID: PMC4663204 DOI: 10.14218/jcth.2015.00018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022] Open
Abstract
The mechanisms determining persistence of hepatitis B virus (HBV) infection and long-term pathogenesis of HBV-associated liver disease appear to be multifactorial. Although viral replication can be efficiently suppressed by the antiviral treatments currently available, viral clearance is generally not achieved since HBV has developed unique replication strategies, enabling persistence of its genome within the infected hepatocytes. Moreover, no direct antiviral therapy exists for the more than 15 million people worldwide that are also coinfected with the hepatitis delta virus (HDV), a defective virus that needs the HBV envelope proteins for propagation. The limited availability of robust HBV and HDV infection systems has hindered the understanding of the complex network of virus-virus and virus-host interactions that are established in the course of infection and slowed down progress in drug development. Since chronic HBV/HDV coinfection leads to the most severe form of chronic viral hepatitis, elucidation of the molecular mechanisms regulating virus-host interplay and pathogenesis are urgently needed. This article summarizes the current knowledge regarding the interactions among HBV, HDV, and the infected target cell and discusses the dependence of HDV on HBV activity and possible future therapeutic approaches.
Collapse
Affiliation(s)
- Katja Giersch
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel site, Germany
- Correspondence to: Maura Dandri, Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany. Tel: +49-40741052949, Fax: +49-40741057232, E-mail:
| |
Collapse
|
150
|
Selzer L, Kant R, Wang JCY, Bothner B, Zlotnick A. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain. J Biol Chem 2015; 290:28584-28593. [PMID: 26405031 DOI: 10.1074/jbc.m115.678441] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.
Collapse
Affiliation(s)
- Lisa Selzer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Ravi Kant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Joseph C-Y Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
| |
Collapse
|