101
|
Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:832-43. [PMID: 25449648 DOI: 10.1016/j.bbalip.2014.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are low abundant but essential phospholipids in eukaryotic cells and refer to phosphatidylinositol and its seven polyphospho-derivatives. In this review, we summarize our current knowledge on phosphoinositides in multiple aspects of cell division in animal cells, including mitotic cell rounding, longitudinal cell elongation, cytokinesis furrow ingression, intercellular bridge abscission and post-cytokinesis events. PtdIns(4,5)P₂production plays critical roles in spindle orientation, mitotic cell shape and bridge stability after furrow ingression by recruiting force generator complexes and numerous cytoskeleton binding proteins. Later, PtdIns(4,5)P₂hydrolysis and PtdIns3P production are essential for normal cytokinesis abscission. Finally, emerging functions of PtdIns3P and likely PtdIns(4,5)P₂have recently been reported for midbody remnant clearance after abscission. We describe how the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
102
|
Issman-Zecharya N, Schuldiner O. The PI3K Class III Complex Promotes Axon Pruning by Downregulating a Ptc-Derived Signal via Endosome-Lysosomal Degradation. Dev Cell 2014; 31:461-73. [DOI: 10.1016/j.devcel.2014.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 01/20/2023]
|
103
|
Mir SUR, Schwarze SR, Jin L, Zhang J, Friend W, Miriyala S, St Clair D, Craven RJ. Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy. Autophagy 2014; 9:1566-78. [DOI: 10.4161/auto.25889] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
104
|
McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Yue Z. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 2014; 10:e1004626. [PMID: 25275521 PMCID: PMC4183436 DOI: 10.1371/journal.pgen.1004626] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/25/2014] [Indexed: 01/24/2023] Open
Abstract
Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis.
Collapse
Affiliation(s)
- Nicole C. McKnight
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yun Zhong
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mitchell S. Wold
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shiaoching Gong
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York, United States of America
| | - Greg R. Phillips
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Zhixun Dou
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York, United States of America
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
105
|
Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc Natl Acad Sci U S A 2014; 111:E4194-203. [PMID: 25246579 DOI: 10.1073/pnas.1409323111] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy is an important cellular process that serves as a companion pathway to the ubiquitin-proteasome system to degrade long-lived proteins and organelles to maintain cell homeostasis. Although initially characterized in yeast, autophagy is being realized as an important regulator of development and disease in mammals. Beclin1 (Becn1) is a putative tumor suppressor gene that has been shown to undergo a loss of heterozygosity in 40-75% of human breast, ovarian, and prostate cancers. Because Becn1 is a key regulator of autophagy, we sought to investigate its role in female reproduction by using a conditional knockout approach in mice. We find that pregnant females lacking Becn1 in the ovarian granulosa cell population have a defect in progesterone production and a subsequent preterm labor phenotype. Luteal cells in this model exhibit defective autophagy and a failure to accumulate lipid droplets needed for steroidogenesis. Collectively, we show that Becn1 provides essential functions in the ovary that are essential for mammalian reproduction.
Collapse
|
106
|
Chung YH, Jang Y, Choi B, Song DH, Lee EJ, Kim SM, Song Y, Kang SW, Yoon SY, Chang EJ. Beclin-1 Is Required for RANKL-Induced Osteoclast Differentiation. J Cell Physiol 2014; 229:1963-71. [DOI: 10.1002/jcp.24646] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Yeon-Ho Chung
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Youngsaeng Jang
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Bongkun Choi
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Da-Hyun Song
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Eun-Jin Lee
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Youngsup Song
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Sang-Wook Kang
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Seung-Yong Yoon
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences; University of Ulsan College of Medicine, Asan Medical Center; Seoul Korea
- Department of Anatomy and Cell Biology; Cell Dysfunction Research Center and BMIT, University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
107
|
Maycotte P, Thorburn A. Targeting autophagy in breast cancer. World J Clin Oncol 2014; 5:224-240. [PMID: 25114840 PMCID: PMC4127596 DOI: 10.5306/wjco.v5.i3.224] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/02/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy (referred to as autophagy here) is an intracellular degradation pathway enhanced in response to a variety of stresses and in response to nutrient deprivation. This process provides the cell with nutrients and energy by degrading aggregated and damaged proteins as well as compromised organelles. Since autophagy has been linked to diverse diseases including cancer, it has recently become a very interesting target in breast cancer treatment. Indeed, current clinical trials are trying to use chloroquine or hydroxychloroquine, alone or in combination with other drugs to inhibit autophagy during breast cancer therapy since chemotherapy and radiation, regimens that are used to treat breast cancer, are known to induce autophagy in cancer cells. Importantly, in breast cancer, autophagy has been involved in the development of resistance to chemotherapy and to anti-estrogens. Moreover, a close relationship has recently been described between autophagy and the HER2 receptor. Here, we discuss some of the recent findings relating autophagy and cancer with a particular focus on breast cancer therapy.
Collapse
|
108
|
Lőrincz P, Lakatos Z, Maruzs T, Szatmári Z, Kis V, Sass M. Atg6/UVRAG/Vps34-containing lipid kinase complex is required for receptor downregulation through endolysosomal degradation and epithelial polarity during Drosophila wing development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:851349. [PMID: 25006588 PMCID: PMC4074780 DOI: 10.1155/2014/851349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Atg6 (Beclin 1 in mammals) is a core component of the Vps34 PI3K (III) complex, which promotes multiple vesicle trafficking pathways. Atg6 and Vps34 form two distinct PI3K (III) complexes in yeast and mammalian cells, either with Atg14 or with UVRAG. The functions of these two complexes are not entirely clear, as both Atg14 and UVRAG have been suggested to regulate both endocytosis and autophagy. In this study, we performed a microscopic analysis of UVRAG, Atg14, or Atg6 loss-of-function cells in the developing Drosophila wing. Both autophagy and endocytosis are seriously impaired and defective endolysosomes accumulate upon loss of Atg6. We show that Atg6 is required for the downregulation of Notch and Wingless signaling pathways; thus it is essential for normal wing development. Moreover, the loss of Atg6 impairs cell polarity. Atg14 depletion results in autophagy defects with no effect on endocytosis or cell polarity, while the silencing of UVRAG phenocopies all but the autophagy defect of Atg6 depleted cells. Thus, our results indicate that the UVRAG-containing PI3K (III) complex is required for receptor downregulation through endolysosomal degradation and for the establishment of proper cell polarity in the developing wing, while the Atg14-containing complex is involved in autophagosome formation.
Collapse
Affiliation(s)
- Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Zsolt Lakatos
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Tamás Maruzs
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest 1117, Hungary
| |
Collapse
|
109
|
ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 2014; 16:550-60. [PMID: 24814515 DOI: 10.1038/ncb2959] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
During the final stage of cell division, cytokinesis, the Aurora-B-dependent abscission checkpoint (NoCut) delays membrane abscission to avoid DNA damage and aneuploidy in cells with chromosome segregation defects. This arrest depends on Aurora-B-mediated phosphorylation of CHMP4C, a component of the endosomal sorting complex required for transport (ESCRT) machinery that mediates abscission, but the mechanism remains unknown. Here we describe ANCHR (Abscission/NoCut Checkpoint Regulator; ZFYVE19) as a key regulator of the abscission checkpoint, functioning through the most downstream component of the ESCRT machinery, the ATPase VPS4. In concert with CHMP4C, ANCHR associates with VPS4 at the midbody ring following DNA segregation defects to control abscission timing and prevent multinucleation in an Aurora-B-dependent manner. This association prevents VPS4 relocalization to the abscission zone and is relieved following inactivation of Aurora B to allow abscission. We propose that the abscission checkpoint is mediated by ANCHR and CHMP4C through retention of VPS4 at the midbody ring.
Collapse
|
110
|
Tenenboim H, Smirnova J, Willmitzer L, Steup M, Brotman Y. VMP1-deficient Chlamydomonas exhibits severely aberrant cell morphology and disrupted cytokinesis. BMC PLANT BIOLOGY 2014; 14:121. [PMID: 24885763 PMCID: PMC4108031 DOI: 10.1186/1471-2229-14-121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The versatile Vacuole Membrane Protein 1 (VMP1) has been previously investigated in six species. It has been shown to be essential in macroautophagy, where it takes part in autophagy initiation. In addition, VMP1 has been implicated in organellar biogenesis; endo-, exo- and phagocytosis, and protein secretion; apoptosis; and cell adhesion. These roles underly its proven involvement in pancreatitis, diabetes and cancer in humans. RESULTS In this study we analyzed a VMP1 homologue from the green alga Chlamydomonas reinhardtii. CrVMP1 knockdown lines showed severe phenotypes, mainly affecting cell division as well as the morphology of cells and organelles. We also provide several pieces of evidence for its involvement in macroautophagy. CONCLUSION Our study adds a novel role to VMP1's repertoire, namely the regulation of cytokinesis. Though the directness of the observed effects and the mechanisms underlying them remain to be defined, the protein's involvement in macroautophagy in Chlamydomonas, as found by us, suggests that CrVMP1 shares molecular characteristics with its animal and protist counterparts.
Collapse
Affiliation(s)
- Hezi Tenenboim
- Institute of Biochemistry and Biology, Department of Plant Physiology, Universität Potsdam, Potsdam, Germany
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Julia Smirnova
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lothar Willmitzer
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Steup
- Institute of Biochemistry and Biology, Department of Plant Physiology, Universität Potsdam, Potsdam, Germany
| | - Yariv Brotman
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
111
|
How to take autophagy and endocytosis up a notch. BIOMED RESEARCH INTERNATIONAL 2014; 2014:960803. [PMID: 24860831 PMCID: PMC4016896 DOI: 10.1155/2014/960803] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/12/2014] [Indexed: 11/23/2022]
Abstract
The interconnection of the endocytic and autophagosomal trafficking routes has been recognized more than two decades ago with both pathways using a set of identical effector proteins and sharing the same ultimate lysosomal destination. More recent data sheds light onto how other pathways are intertwined into this network, and how degradation via the endosomal/autophagosomal system may affect signaling pathways in multicellular organisms. Here, we briefly review the common features of autophagy and endocytosis and discuss how other players enter this mix with particular respect to the Notch signaling pathway.
Collapse
|
112
|
Abstract
Autophagy is a major intracellular degradative process that delivers cytoplasmic materials to the lysosome for degradation. Since the discovery of autophagy-related (Atg) genes in the 1990s, there has been a proliferation of studies on the physiological and pathological roles of autophagy in a variety of autophagy knockout models. However, direct evidence of the connections between ATG gene dysfunction and human diseases has emerged only recently. There are an increasing number of reports showing that mutations in the ATG genes were identified in various human diseases such as neurodegenerative diseases, infectious diseases, and cancers. Here, we review the major advances in identification of mutations or polymorphisms of the ATG genes in human diseases. Current autophagy-modulating compounds in clinical trials are also summarized.
Collapse
|
113
|
|
114
|
Beclin 1, an Essential Component and Master Regulator of PI3K-III in Health and Disease. CURRENT PATHOBIOLOGY REPORTS 2013; 1:231-238. [PMID: 24729948 DOI: 10.1007/s40139-013-0028-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a cell 'self-digestion' pathway involving the synthesis, trafficking and delivery of autophagosomes to lysosomes for degradation. Beclin 1 is a core component of the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which plays an important role in membrane trafficking and restructuring involved in autophagy, endocytosis, cytokinesis and phagocytosis. To date Beclin 1 has largely been characterized in the context of autophagy; it modulates the lipid kinase activity of PI3K-III catalytic unit VPS34, which generates phosphatidylinositol 3-phosphate (PI(3)P), enabling the recruitment of a number of autophagy proteins involved in the nucleation of the autophagosome. Beclin 1 seems to function as an adaptor for recruiting multiple proteins that modulate VPS34. The recent identification of Beclin 1 protein modifications has shed light on its regulation in autophagy, and the discovery of non-autophagy functions of Beclin 1 has expanded our view of Beclin 1's involvement in tissue homeostasis and human diseases.
Collapse
|
115
|
Vantaggiato C, Crimella C, Airoldi G, Polishchuk R, Bonato S, Brighina E, Scarlato M, Musumeci O, Toscano A, Martinuzzi A, Santorelli FM, Ballabio A, Bresolin N, Clementi E, Bassi MT. Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. ACTA ACUST UNITED AC 2013; 136:3119-39. [PMID: 24030950 DOI: 10.1093/brain/awt227] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hereditary spastic paraparesis type 15 is a recessive complicated form of the disease clinically characterized by slowly progressive spastic paraparesis and mental deterioration with onset between the first and second decade of life. Thinning of corpus callosum is the neuroradiological distinctive sign frequently associated with white matter abnormalities. The causative gene, ZFYVE26, encodes a large protein of 2539 amino acid residues, termed spastizin, containing three recognizable domains: a zinc finger, a leucine zipper and a FYVE domain. Spastizin protein has a diffuse cytoplasmic distribution and co-localizes partially with early endosomes, the endoplasmic reticulum, microtubules and vesicles involved in protein trafficking. In addition, spastizin localizes to the mid-body during the final step of mitosis and contributes to successful cytokinesis. Spastizin interacts with Beclin 1, a protein required for cytokinesis and autophagy, which is the major lysosome-mediated degradation process in the cell. In view of the Beclin 1-spastizin interaction, we investigated the possible role of spastizin in autophagy. We carried out this analysis by using lymphoblast and fibroblast cells derived from four different spastizin mutated patients (p.I508N, p.L243P, p.R1209fsX, p.S1312X) and from control subjects. Of note, the truncating p.R1209fsX and p.S1312X mutations lead to loss of spastizin protein. The results obtained indicate that spastizin interacts with the autophagy related Beclin 1-UVRAG-Rubicon multiprotein complex and is required for autophagosome maturation. In cells lacking spastizin or with mutated forms of the protein, spastizin interaction with Beclin 1 is lost although the formation of the Beclin 1-UVRAG-Rubicon complex can still be observed. However, in these cells we demonstrate an impairment of autophagosome maturation and an accumulation of immature autophagosomes. Autophagy defects with autophagosome accumulation can be observed also in neuronal cells upon spastizin silencing. These results indicate that autophagy is a central process in the pathogenesis of complicated forms of hereditary spastic paraparesis with thin corpus callosum.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- 1 Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
O Farrell F, Rusten TE, Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J 2013; 280:6322-37. [PMID: 23953235 DOI: 10.1111/febs.12486] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
Degradation of cytoplasmic material by autophagy plays a key role in protein homeostasis and metabolic control, as well as in the removal of intracellular protein aggregates, pathogens and damaged organelles. The concept of up- or down-regulating this pathway pharmacologically in neurodegenerative diseases, infections, inflammation and cancer is therefore attractive. Among the key pharmacological targets in regulation of autophagy are the phosphoinositide 3-kinases (PI3Ks), which mediate the phosphorylation of phosphatidylinositol (PtdIns) or PtdIns 4,5-bisphosphate in the 3-position of the (phospho)inositol headgroup. The catalytic products, PtdIns 3-phosphate (PtdIns3P) and PtdIns 3,4,5-trisphosphate [PtdIns(3,4,5)P3 ], respectively, have opposing roles in autophagy. PtdIns3P, the product of class II and III PI3Ks, mediates the recruitment of specific autophagic effectors to the sites of origin of autophagic membranes and thereby plays an essential role in canonical autophagy. By contrast, PtdIns(3,4,5)P3 , the product of class I PI3Ks, triggers the target of rapamycin signalling pathway, which inhibits autophagy. In this review, we discuss the functions of class I, II and III PI3Ks in autophagy and describe the protein effectors of PtdIns3P and PtdIns(3,4,5)P3 that promote or inhibit autophagy, respectively. We also provide examples of how PI3K-mediated control of autophagy is relevant to an understanding of tumour suppression and progression.
Collapse
Affiliation(s)
- Fergal O Farrell
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Norway; Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | | | | |
Collapse
|
117
|
Bruhn MA, Pearson RB, Hannan RD, Sheppard KE. AKT-independent PI3-K signaling in cancer - emerging role for SGK3. Cancer Manag Res 2013; 5:281-92. [PMID: 24009430 PMCID: PMC3762672 DOI: 10.2147/cmar.s35178] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3-K) signaling pathway plays an important role in a wide variety of fundamental cellular processes, largely mediated via protein kinase B/v-akt murine thymoma viral oncogene homolog (PKB/AKT) signaling. Given the crucial role of PI3-K/AKT signaling in regulating processes such as cell growth, proliferation, and survival, it is not surprising that components of this pathway are frequently dysregulated in cancer, making the AKT kinase family members important therapeutic targets. The large number of clinical trials currently evaluating PI3-K pathway inhibitors as a therapeutic strategy further emphasizes this. The serum- and glucocorticoid-inducible protein kinase (SGK) family is made up of three isoforms, SGK1, 2, and 3, that are PI3-K-dependent, serine/threonine kinases, with similar substrate specificity to AKT. Consequently, the SGK family also regulates similar cell processes to the AKT kinases, including cell proliferation and survival. Importantly, there is emerging evidence demonstrating that SGK3 plays a critical role in AKT-independent oncogenic signaling. This review will focus on the role of SGK3 as a key effector of AKT-independent PI3-K oncogenic signaling.
Collapse
Affiliation(s)
- Maressa A Bruhn
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia ; School of Biological Sciences, Flinders University, Bedford Park, South Australia, Australia
| | | | | | | |
Collapse
|
118
|
Schink KO, Raiborg C, Stenmark H. Phosphatidylinositol 3-phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling. Bioessays 2013; 35:900-12. [PMID: 23881848 DOI: 10.1002/bies.201300064] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol 3-phosphate (PtdIns3P) is generated on the cytosolic leaflet of cellular membranes, primarily by phosphorylation of phosphatidylinositol by class II and class III phosphatidylinositol 3-kinases. The bulk of this lipid is found on the limiting and intraluminal membranes of endosomes, but it can also be detected in domains of phagosomes, autophagosome precursors, cytokinetic bridges, the plasma membrane and the nucleus. PtdIns3P controls cellular functions through recruitment of specific protein effectors, many of which contain FYVE or PX domains. Cellular processes known to be controlled by PtdIns3P and its effectors include endosomal fusion, sorting and motility, autophagy, cytokinesis, regulated exocytosis and signal transduction. Here we discuss how Ptdins3P is generated on specific cellular membranes, how its localizations and functions can be studied, and how its effectors serve to control cellular functions.
Collapse
Affiliation(s)
- Kay O Schink
- Faculty of Medicine, Centre for Cancer Biomedicine, University of Oslo, Montebello, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | | | | |
Collapse
|
119
|
Han J, Hou W, Lu C, Goldstein LA, Stolz DB, Watkins SC, Rabinowich H. Interaction between Her2 and Beclin-1 proteins underlies a new mechanism of reciprocal regulation. J Biol Chem 2013; 288:20315-25. [PMID: 23703612 PMCID: PMC3711298 DOI: 10.1074/jbc.m113.461350] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
Beclin-1 is a key regulator of autophagy that functions in the context of two phase-specific complexes in the initiation and maturation of autophagosomes. Its known interacting proteins include autophagy effectors, Bcl-2 family members, and organelle membrane anchor proteins. Here we report a newly identified interaction between Beclin-1 and the protein tyrosine kinase receptor Her2. We demonstrate that in Her2-expressing breast carcinoma cells that do not succumb to lapatinib, this Her1/2 inhibitor disrupts the cell surface interaction between Her2 and Beclin-1. The data suggest that the ensuing autophagic response is correlatively associated with the release of Beclin-1 from its complex with Her2 and with the subsequent increase in cytosolic Beclin-1. Upon its interaction with Her2, Beclin-1 up-regulates the phosphorylation levels of Her2 and Akt. The Beclin-1 evolutionarily conserved domain is required both for the interaction of Beclin-1 with Her2 and for the increased Her2 and Akt phosphorylation. These findings shed new light on mechanisms involved in lapatinib-mediated autophagy in Her2-expressing breast carcinoma cell lines and in Beclin-1 signaling in these cells.
Collapse
Affiliation(s)
- Jie Han
- From the Departments of Pathology and
| | - Wen Hou
- From the Departments of Pathology and
| | | | | | - Donna B. Stolz
- Cell Biology and Physiology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Simon C. Watkins
- Cell Biology and Physiology, University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
120
|
Schiel JA, Childs C, Prekeris R. Endocytic transport and cytokinesis: from regulation of the cytoskeleton to midbody inheritance. Trends Cell Biol 2013; 23:319-27. [PMID: 23522622 PMCID: PMC4228945 DOI: 10.1016/j.tcb.2013.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 12/31/2022]
Abstract
Abscission is the last step of cytokinesis that leads to the physical separation of two daughter cells. An emerging picture is that abscission is a complex event that relies on changes in both lipid composition and cytoskeletal dynamics. These subcellular processes lead to the establishment of the abscission site and recruitment of the ESCRT-III protein complex to mediate the final separation event. It has become apparent that endocytic transport to the cleavage furrow during late cytokinesis mediates and coordinates lipid and cytoskeleton dynamics, thus playing a key role in abscission. Furthermore, new evidence suggests that endosomes may have additional roles in post-mitotic cellular events such as midbody inheritance and degradation. Here, we highlight recent findings regarding the function of these endosomes in the regulation of cell division.
Collapse
Affiliation(s)
- John A. Schiel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Carly Childs
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
121
|
Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol 2013; 106-107:33-54. [DOI: 10.1016/j.pneurobio.2013.06.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022]
|
122
|
Disease-relevant proteostasis regulation of cystic fibrosis transmembrane conductance regulator. Cell Death Differ 2013; 20:1101-15. [PMID: 23686137 DOI: 10.1038/cdd.2013.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
Mismanaged protein trafficking by the proteostasis network contributes to several conformational diseases, including cystic fibrosis, the most frequent lethal inherited disease in Caucasians. Proteostasis regulators, as cystamine, enable the beneficial action of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators in ΔF508-CFTR airways beyond drug washout. Here we tested the hypothesis that functional CFTR protein can sustain its own plasma membrane (PM) stability. Depletion or inhibition of wild-type CFTR present in bronchial epithelial cells reduced the availability of the small GTPase Rab5 by causing Rab5 sequestration within the detergent-insoluble protein fraction together with its accumulation in aggresomes. CFTR depletion decreased the recruitment of the Rab5 effector early endosome antigen 1 to endosomes, thus reducing the local generation of phosphatidylinositol-3-phosphate. This diverts recycling of surface proteins, including transferrin receptor and CFTR itself. Inhibiting CFTR function also resulted in its ubiquitination and interaction with SQSTM1/p62 at the PM, favoring its disposal. Addition of cystamine prevented the recycling defect of CFTR by enhancing BECN1 expression and reducing SQSTM1 accumulation. Our results unravel an unexpected link between CFTR protein and function, the latter regulating the levels of CFTR surface expression in a positive feed-forward loop, and highlight CFTR as a pivot of proteostasis in bronchial epithelial cells.
Collapse
|
123
|
Nemazanyy I, Blaauw B, Paolini C, Caillaud C, Protasi F, Mueller A, Proikas-Cezanne T, Russell RC, Guan KL, Nishino I, Sandri M, Pende M, Panasyuk G. Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Mol Med 2013; 5:870-90. [PMID: 23630012 PMCID: PMC3779449 DOI: 10.1002/emmm.201202057] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/21/2013] [Accepted: 03/13/2013] [Indexed: 12/27/2022] Open
Abstract
The complex of Vacuolar Protein Sorting 34 and 15 (Vps34 and Vps15) has Class III phosphatidylinositol 3-kinase activity and putative roles in nutrient sensing, mammalian Target Of Rapamycin (mTOR) activation by amino acids, cell growth, vesicular trafficking and autophagy. Contrary to expectations, here we show that Vps15-deficient mouse tissues are competent for LC3-positive autophagosome formation and maintain mTOR activation. However, an impaired lysosomal function in mutant cells is traced by accumulation of adaptor protein p62, LC3 and Lamp2 positive vesicles, which can be reverted to normal levels after ectopic overexpression of Vps15. Mice lacking Vps15 in skeletal muscles, develop a severe myopathy. Distinct from the autophagy deficient Atg7−/− mutants, pathognomonic morphological hallmarks of autophagic vacuolar myopathy (AVM) are observed in Vps15−/− mutants, including elevated creatine kinase plasma levels, accumulation of autophagosomes, glycogen and sarcolemmal features within the fibres. Importantly, Vps34/Vps15 overexpression in myoblasts of Danon AVM disease patients alleviates the glycogen accumulation. Thus, the activity of the Vps34/Vps15 complex is critical in disease conditions such as AVMs, and possibly a variety of other lysosomal storage diseases.
Collapse
|
124
|
Beclin-1 is required for chromosome congression and proper outer kinetochore assembly. EMBO Rep 2013; 14:364-72. [PMID: 23478334 DOI: 10.1038/embor.2013.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/09/2022] Open
Abstract
The functions of Beclin-1 in macroautophagy, tumorigenesis and cytokinesis are thought to be mediated by its association with the PI3K-III complex. Here, we describe a new role for Beclin-1 in mitotic chromosome congression that is independent of the PI3K-III complex and its role in autophagy. Beclin-1 depletion in HeLa cells leads to a significant reduction of the outer kinetochore proteins CENP-E, CENP-F and ZW10, and, consequently, the cells present severe problems in chromosome congression. Beclin-1 associates with kinetochore microtubules and forms discrete foci near the kinetochores of attached chromosomes. We show that Beclin-1 interacts directly with Zwint-1-a component of the KMN (KNL-1/Mis12/Ndc80) complex-which is essential for kinetochore-microtubule interactions. This suggests that Beclin-1 acts downstream of the KMN complex to influence the recruitment of outer kinetochore proteins and promotes accurate kinetochore anchoring to the spindle during mitosis.
Collapse
|
125
|
Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 2013; 12:520-34. [PMID: 23220384 DOI: 10.1016/j.arr.2012.11.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023]
Abstract
Autophagy and apoptosis are crucial cellular housekeeping and tissue survival mechanisms. There is emerging evidence of important crosstalk between apoptosis and autophagy which can be linked to inflammasome activation. Beclin 1 is a platform protein which assembles an interactome consisting of diverse proteins which control the initiation of autophagocytosis and distinct phases in endocytosis. Recent studies have demonstrated that the anti-apoptotic Bcl-2 family members can interact with Beclin 1 and inhibit autophagy. Consequently, impaired autophagy can trigger inflammasome activation. Interestingly, the hallmarks of the ageing process include a decline in autophagy, increased resistance to apoptosis and a low-grade inflammatory phenotype. Age-related stresses, e.g. genotoxic, metabolic and environmental insults, enhance the expression of NF-κB-driven anti-apoptotic Bcl-2 proteins which repress the Beclin 1-dependent autophagy. Suppression of autophagocytosis provokes inflammation including NF-κB activation which further potentiates anti-apoptotic defence. In a context-dependent manner, this feedback defence mechanism can enhance the aging process or provoke tumorigenesis or cellular senescence. We will review the role of Beclin 1 interactome in the crosstalk between apoptosis, autophagy and inflammasomes emphasizing that disturbances in Beclin 1-dependent autophagy can have a crucial impact on the aging process.
Collapse
|
126
|
Shravage BV, Hill JH, Powers CM, Wu L, Baehrecke EH. Atg6 is required for multiple vesicle trafficking pathways and hematopoiesis in Drosophila. Development 2013; 140:1321-9. [PMID: 23406899 DOI: 10.1242/dev.089490] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atg6 (beclin 1 in mammals) is a core component of the Vps34 complex that is required for autophagy. Beclin 1 (Becn1) functions as a tumor suppressor, and Becn1(+/-) tumors in mice possess elevated cell stress and p62 levels, altered NF-κB signaling and genome instability. The tumor suppressor function of Becn1 has been attributed to its role in autophagy, and the potential functions of Atg6/Becn1 in other vesicle trafficking pathways for tumor development have not been considered. Here, we generate Atg6 mutant Drosophila and demonstrate that Atg6 is essential for autophagy, endocytosis and protein secretion. By contrast, the core autophagy gene Atg1 is required for autophagy and protein secretion, but it is not required for endocytosis. Unlike null mutants of other core autophagy genes, all Atg6 mutant animals possess blood cell masses. Atg6 mutants have enlarged lymph glands (the hematopoietic organ in Drosophila), possess elevated blood cell numbers, and the formation of melanotic blood cell masses in these mutants is not suppressed by mutations in either p62 or NFκB genes. Thus, like mammals, altered Atg6 function in flies causes hematopoietic abnormalities and lethality, and our data indicate that this is due to defects in multiple membrane trafficking processes.
Collapse
Affiliation(s)
- Bhupendra V Shravage
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
127
|
Huang S, Jia K, Wang Y, Zhou Z, Levine B. Autophagy genes function in apoptotic cell corpse clearance during C. elegans embryonic development. Autophagy 2012; 9:138-49. [PMID: 23108454 DOI: 10.4161/auto.22352] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Efficient apoptotic corpse clearance is essential for metazoan development and adult tissue homeostasis. Several autophagy proteins have been previously shown to function in apoptotic cell clearance; however, it remains unknown whether autophagy genes are essential for efficient apoptotic corpse clearance in the developing embryo. Here we show that, in Caenorhabditis elegans embryos, loss-of-function mutations in several autophagy genes that act at distinct steps in the autophagy pathway resulted in increased numbers of cell corpses and delayed cell corpse clearance. Further analysis of embryos with a null mutation in bec- 1, the C. elegans ortholog of yeast VPS30/ATG6/mammalian beclin 1 (BECN1), revealed normal phosphatidylserine exposure on dying cells. Moreover, the corpse clearance defects of bec- 1(ok691) embryos were rescued by BEC-1 expression in engulfing cells, and bec- 1(ok691) enhanced corpse clearance defects in nematodes with simultaneous mutations in the engulfment genes, ced- 1, ced- 6 or ced- 12. Together, these data demonstrate that autophagy proteins play an important role in cell corpse clearance during nematode embryonic development, and likely function in parallel to known pathways involved in corpse removal.
Collapse
Affiliation(s)
- Shuyi Huang
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
128
|
Echard A. Phosphoinositides and cytokinesis: the "PIP" of the iceberg. Cytoskeleton (Hoboken) 2012; 69:893-912. [PMID: 23012232 DOI: 10.1002/cm.21067] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022]
Abstract
Phosphoinositides [Phosphatidylinositol (PtdIns), phosphatidylinositol 3-monophosphate (PtdIns3P), phosphatidylinositol 4-monophosphate (PtdIns4P), phosphatidylinositol 5-monophosphate (PtdIns5P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2) ), phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2) ), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2) ), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3) )] are lowly abundant acidic lipids found at the cytosolic leaflet of the plasma membrane and intracellular membranes. Initially discovered as precursors of second messengers in signal transduction, phosphoinositides are now known to directly or indirectly control key cellular functions, such as cell polarity, cell migration, cell survival, cytoskeletal dynamics, and vesicular traffic. Phosphoinositides actually play a central role at the interface between membranes and cytoskeletons and contribute to the identity of the cellular compartments by recruiting specific proteins. Increasing evidence indicates that several phosphoinositides, particularly PtdIns(4,5)P(2) , are essential for cytokinesis, notably after furrow ingression. The present knowledge about the specific phosphoinositides and phosphoinositide modifying-enzymes involved in cytokinesis will be first presented. The review of the current data will then show that furrow stability and cytokinesis abscission require that both phosphoinositide production and hydrolysis are regulated in space and time. Finally, I will further discuss recent mechanistic insights on how phosphoinositides regulate membrane trafficking and cytoskeletal remodeling for successful furrow ingression and intercellular bridge abscission. This will highlight unanticipated connections between cytokinesis and enzymes implicated in human diseases, such as the Lowe syndrome.
Collapse
Affiliation(s)
- Arnaud Echard
- Membrane Traffic and Cell Division Lab, Institut Pasteur, 28 rue du Dr Roux 75015 Paris, France; CNRS URA2582, Paris, France.
| |
Collapse
|
129
|
Shull AY, Latham-Schwark A, Ramasamy P, Leskoske K, Oroian D, Birtwistle MR, Buckhaults PJ. Novel somatic mutations to PI3K pathway genes in metastatic melanoma. PLoS One 2012; 7:e43369. [PMID: 22912864 PMCID: PMC3422312 DOI: 10.1371/journal.pone.0043369] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/23/2012] [Indexed: 01/13/2023] Open
Abstract
Background BRAFV600 inhibitors have offered a new gateway for better treatment of metastatic melanoma. However, the overall efficacy of BRAFV600 inhibitors has been lower than expected in clinical trials, and many patients have shown resistance to the drug’s effect. We hypothesized that somatic mutations in the Phosphoinositide 3-Kinase (PI3K) pathway, which promotes proliferation and survival, may coincide with BRAFV600 mutations and contribute to chemotherapeutic resistance. Methods We performed a somatic mutation profiling study using the 454 FLX pyrosequencing platform in order to identify candidate cancer genes within the MAPK and PI3K pathways of melanoma patients. Somatic mutations of theses candidate cancer genes were then confirmed using Sanger sequencing. Results As expected, BRAFV600 mutations were seen in 51% of the melanomas, whereas NRAS mutations were seen in 19% of the melanomas. However, PI3K pathway mutations, though more heterogeneous, were present in 41% of the melanoma, with PTEN being the highest mutated PI3K gene in melanomas (22%). Interestingly, several novel PI3K pathway mutations were discovered in MTOR, IRS4, PIK3R1, PIK3R4, PIK3R5, and NFKB1. PI3K pathway mutations co-occurred with BRAFV600 mutations in 17% of the tumors and co-occurred with 9% of NRAS mutant tumors, implying cooperativity between these pathways in terms of melanoma progression. Conclusions These novel PI3K pathway somatic mutations could provide alternative survival and proliferative pathways for metastatic melanoma cells. They therefore may be potential chemotherapeutic targets for melanoma patients who exhibit resistance to BRAFV600 inhibitors.
Collapse
Affiliation(s)
- Austin Y. Shull
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Alicia Latham-Schwark
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- College of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Poornema Ramasamy
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Kristin Leskoske
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Dora Oroian
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Marc R. Birtwistle
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Phillip J. Buckhaults
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
130
|
Runkle KB, Meyerkord CL, Desai NV, Takahashi Y, Wang HG. Bif-1 suppresses breast cancer cell migration by promoting EGFR endocytic degradation. Cancer Biol Ther 2012; 13:956-66. [PMID: 22785202 DOI: 10.4161/cbt.20951] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dysregulation of EGFR expression and signaling is well documented to contribute to disease progression and metastasis in many types of cancer including breast cancer. EGF-stimulated EGFR activation leads to receptor internalization and endocytic degradation to control EGFR-mediated signaling. This process is frequently deregulated in cancer cells, leading to increased EGFR expression and mitogenic signaling. Here, we demonstrate that Bif-1, a tumor suppressor, plays a role in EGFR endocytic degradation and chemotactic migration in MDA-MB-231 breast cancer cells. Our data reveal that suppression of Bif-1 expression delays EGFR degradation and sustains Erk1/2 activation in response to EGF stimulation. Mechanistically, loss of Bif-1 sequesters internalized EGF in Rab5-positive endosomes and delays EGFR trafficking to lysosomes. Recruitment of Rab7 to EGF-positive vesicles and the activation of Rab7 are impaired in Bif-1 knockdown cells. Additionally, intracellular pH and the localization of acidic vesicles are altered by suppression of Bif-1. Furthermore, inhibition of Bif-1 increases chemotactic cell migration in response to EGF or serum, which correlates with prolonged cytoskeletal reorganization. Importantly, the effect of Bif-1 on EGF-induced cell migration is abolished by gefitinib, an EGFR-specific inhibitor. Taken together, these data suggest a novel function for Bif-1 as a suppressor of breast cancer cell migration by promoting EGFR degradation through the regulation of endosome maturation.
Collapse
Affiliation(s)
- Kristin B Runkle
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | | | | | |
Collapse
|
131
|
Checinska A, Soengas MS. The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy. Pigment Cell Melanoma Res 2012; 24:1116-32. [PMID: 21995431 DOI: 10.1111/j.1755-148x.2011.00927.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
True to their inherent aggressive behavior, melanomas keep impressing the melanoma community with their ability to bypass tumor suppressor mechanisms. Name a pathway with the potential to control cell survival and melanoma cells will likely have it potentiated by multiple genetic or epigenetic alterations. In the context of progression and chemoresistance, large efforts have been dedicated to the identification of protective mechanisms associated with or linked to apoptotic death programs. These studies have guided the design of targeted anticancer strategies. Still, the promise for pro-apoptotic inducers as lead compounds for drug development has yet to come to fruition. It was then a question of time to identify alternative modulators of cell viability. An ideal candidate that is raising great expectations in the oncology field is autophagy, a catabolic process with multiple roles in cell homeostasis. Here we review the incipient literature on autophagy markers in melanocytic lesions. Intriguingly, histopathological studies are unveiling an intrinsic inter- and intratumor variability in the expression of autophagy modulators. Nonetheless, functional studies support a key role of autopaphagy programs in the response to a variety of stress factors. These include adaptive responses to nutrient deprivation, hypoxia and many anticancer agents, among other stimuli. Strategies are being also developed to mobilize the endocytic machinery and shift autolysosomes into death effectors. The opportunities that lie ahead in this field are exciting. Various authophagy mediators are potentially druggable. Moreover, animal models and the development of sophisticated screening methods offer a platform for multilevel academic-industrial collaborations. These efforts are expected to open avenues of research and, hopefully, lead to a more rational approach to melanoma treatment.
Collapse
Affiliation(s)
- Agnieszka Checinska
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | |
Collapse
|
132
|
Abrahamsen H, Stenmark H, Platta HW. Ubiquitination and phosphorylation of Beclin 1 and its binding partners: Tuning class III phosphatidylinositol 3-kinase activity and tumor suppression. FEBS Lett 2012; 586:1584-91. [PMID: 22673570 DOI: 10.1016/j.febslet.2012.04.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 12/19/2022]
Abstract
The class III phosphatidylinositol 3-kinase (PI3K-III) complex and its phosphorylated lipid product phosphatidylinositol 3-phosphate (PtdIns3P) control the three topologically related membrane-involution processes autophagy, endocytosis, and cytokinesis. The activity of the catalytic unit of PI3K-III complex, the Vacuolar sorting protein 34 (VPS34), depends on the membrane targeting unit Vacuolar sorting protein 15 (VPS15), and the tumor suppressor protein Beclin 1. It is established that the overall activity of VPS34 is positively regulated by Beclin 1, whose positive influence is further controlled through the association with a set of Beclin1 interacting components, which stimulate or inhibit VPS34. The interaction between Beclin 1 and Beclin 1-associated components are controllable and is regulated by phosphorylation in a context-dependent manner. Here, we focus on an emerging concept whereby the activity of the PI3K-III complex is controlled by ubiquitination of Beclin 1 or Beclin 1-associated molecules. In summary, at least three different ubiquitin ligases can affect the positive regulatory function of Beclin 1 towards VPS34, suggesting that ubiquitination is an important and physiologically relevant event in tuning the tumor suppressor function of Beclin 1.
Collapse
Affiliation(s)
- Hilde Abrahamsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0310 Oslo, Norway.
| | | | | |
Collapse
|
133
|
Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One 2012; 7:e35324. [PMID: 22509406 PMCID: PMC3324553 DOI: 10.1371/journal.pone.0035324] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/12/2012] [Indexed: 12/11/2022] Open
Abstract
Background Propofol exerts protective effects on neuronal cells, in part through the inhibition of programmed cell death. Autophagic cell death is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. We therefore studied whether propofol could attenuate the formation of autophagosomes, and if so, whether the inhibition of autophagic cell death mediates the neuroprotective effects observed with propofol. Methodology/Principal Findings The cell model was established by depriving the cells of oxygen and glucose (OGD) for 6 hours, and the rat model of ischemia was introduced by a transient two-vessel occlusion for 10 minutes. Transmission electron microscopy (TEM) revealed that the formation of autophagosomes and autolysosomes in both neuronal PC12 cells and pyramidal rat hippocampal neurons after respective OGD and ischemia/reperfusion (I/R) insults. A western blot analysis revealed that the autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 (LC3-II), Beclin-1 and class III PI3K, were also increased accordingly, but cytoprotective Bcl-2 protein was decreased. The negative effects of OGD and I/R, including the formation of autophagosomes and autolysosomes, the increase in LC3-II, Beclin-1 and class III PI3K expression and the decline in Bcl-2 production were all inhibited by propofol and specific inhibitors of autophagy, such as 3-methyladenine (3-MA), LY294002 and Bafilomycin A1 (Baf),. Furthermore, in vitro OGD cultures and in vivo I/R rats showed an increase in cell survival following the administration of propofol, as assessed by an MTT assay or histochemical analyses. Conclusions/Significance Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of propofol that benefit the nervous system.
Collapse
Affiliation(s)
- Derong Cui
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Li Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Aihua Qi
- Department of Postgraduate School, Soochow University, Suzhou, China
| | - Quanhong Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| |
Collapse
|
134
|
Ma C, Wang N, Detre C, Wang G, O'Keeffe M, Terhorst C. Receptor signaling lymphocyte-activation molecule family 1 (Slamf1) regulates membrane fusion and NADPH oxidase 2 (NOX2) activity by recruiting a Beclin-1/Vps34/ultraviolet radiation resistance-associated gene (UVRAG) complex. J Biol Chem 2012; 287:18359-65. [PMID: 22493499 DOI: 10.1074/jbc.m112.367060] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis is a pivotal process by which macrophages eliminate microorganisms upon recognition by pathogen sensors. Surprisingly, the self-ligand cell surface receptor Slamf1 functions not only as a co-stimulatory molecule but also as a microbial sensor of several Gram-negative bacteria. Upon entering the phagosome of macrophages Slamf1 induces production of phosphatidylinositol 3-phosphate, which positively regulates the activity of the NOX2 enzyme and phagolysosomal maturation. Here, we report that in Escherichia coli-containing phagosomes of mouse macrophages, Slamf1 interacts with the class III PI3K Vps34 in a complex with Beclin-1 and UVRAG. Upon phagocytosis of bacteria the NOX2 activity was reduced in macrophages isolated from Beclin-1(+/-) mice compared with wild-type mice. This Slamf1/Beclin-1/Vps34/UVRAG protein complex is formed in intracellular membrane compartments as it is found without inducing phagocytosis in macrophages, human chronic lymphocytic leukemia cells, and transfectant HEK293 cells. Elimination of its cytoplasmic tail abolished the interaction of Slamf1 with the complex, but deletion or mutation of the two ITAM motifs did not. Both the BD and CCD domains of Beclin-1 were required for efficient binding to Slamf1. Because Slamf1 did not interact with Atg14L or Rubicon, which can also form a complex with Vps34 and Beclin-1, we conclude that Slamf1 recruits a subset of Vps34-associated proteins, which is involved in membrane fusion and NOX2 regulation.
Collapse
Affiliation(s)
- Chunyan Ma
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
135
|
WU P, XU CM. Advances in Relationship Between Class Ⅲ PI3K Complex and Autophagy*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
136
|
Abstract
Beclin 1, a subunit of the class III phosphatidylinositol 3-kinase complex, is a tumour suppressor with a central role in endocytic trafficking, cytokinesis and the cross-regulation between autophagy and apoptosis. Interestingly, not only reduced expression but also overexpression of Beclin 1 is correlated with cancer development and metastasis. Thus it seems necessary for the cell to balance the protein levels of Beclin 1. In the present study we describe a regulatory link between Beclin 1 and the ubiquitin ligase Nedd4 (neural-precursor-cell-expressed developmentally down-regulated 4). We establish Nedd4 as a novel binding partner of Beclin 1 and demonstrate that Nedd4 polyubiquitinates Beclin 1 with Lys11- and Lys63-linked chains. Importantly, Nedd4 expression controls the stability of Beclin 1, and depletion of the Beclin 1-interacting protein VPS34 causes Nedd4-mediated proteasomal degradation of Beclin 1 via Lys11-linked polyubiquitin chains. Beclin 1 is thus the first tumour suppressor reported to be controlled by Lys11-linked polyubiquitination.
Collapse
|
137
|
Starr T, Child R, Wehrly TD, Hansen B, Hwang S, López-Otin C, Virgin HW, Celli J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012; 11:33-45. [PMID: 22264511 PMCID: PMC3266535 DOI: 10.1016/j.chom.2011.12.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/26/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022]
Abstract
Autophagy is a cellular degradation process that can capture and eliminate intracellular microbes by delivering them to lysosomes for destruction. However, pathogens have evolved mechanisms to subvert this process. The intracellular bacterium Brucella abortus ensures its survival by forming the Brucella-containing vacuole (BCV), which traffics from the endocytic compartment to the endoplasmic reticulum (ER), where the bacterium proliferates. We show that Brucella replication in the ER is followed by BCV conversion into a compartment with autophagic features (aBCV). While Brucella trafficking to the ER was unaffected in autophagy-deficient cells, aBCV formation required the autophagy-initiation proteins ULK1, Beclin 1, and ATG14L and PI3-kinase activity. However, aBCV formation was independent of the autophagy-elongation proteins ATG5, ATG16L1, ATG4B, ATG7, and LC3B. Furthermore, aBCVs were required to complete the intracellular Brucella lifecycle and for cell-to-cell spreading, demonstrating that Brucella selectively co-opts autophagy-initiation complexes to subvert host clearance and promote infection.
Collapse
Affiliation(s)
- Tregei Starr
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Robert Child
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Tara D. Wehrly
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Bryan Hansen
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Seungmin Hwang
- Department of Pathology and Immunology and Midwest Regional Center of Excellence for Biodefense and Emerging infectious Diseases Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Carlos López-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Herbert W. Virgin
- Department of Pathology and Immunology and Midwest Regional Center of Excellence for Biodefense and Emerging infectious Diseases Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jean Celli
- Laboratory of Intracellular Parasites National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
138
|
Wang WY, Zhang L, Xing S, Ma Z, Liu J, Gu H, Qin G, Qu LJ. Arabidopsis AtVPS15 plays essential roles in pollen germination possibly by interacting with AtVPS34. J Genet Genomics 2012; 39:81-92. [PMID: 22361507 DOI: 10.1016/j.jgg.2012.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
VPS15 protein is a component of the phosphatidylinositol 3-kinase complex which plays a pivotal role in the development of yeast and mammalian cells. The knowledge about the function of its homologue in plants remains limited. Here we report that AtVPS15, a homologue of yeast VPS15p in Arabidopsis, plays an essential role in pollen germination. Homozygous T-DNA insertion mutants of AtVPS15 could not be obtained from the progenies of self-pollinated heterozygous mutants. Reciprocal crosses between atvps15 mutants and wild-type Arabidopsis revealed that the T-DNA insertion was not able to be transmitted by male gametophytes. DAPI staining, Alexander's stain and scanning electron microscopic analysis showed that atvps15 heterozygous plants produced pollen grains that were morphologically indistinguishable from wild-type pollen, whereas in vitro germination experiments revealed that germination of the pollen grains was defective. GUS staining analysis of transgenic plants expressing the GUS reporter gene driven by the AtVPS15 promoter showed that AtVPS15 was mainly expressed in pollen grains. Finally, DUALmembrane yeast two-hybrid analysis demonstrated that AtVPS15 might interact directly with AtVPS34. These results suggest that AtVPS15 is very important for pollen germination, possibly through modulation of the activity of PI3-kinase.
Collapse
Affiliation(s)
- Wei-Ying Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Neto H, Gould GW. The regulation of abscission by multi-protein complexes. J Cell Sci 2011; 124:3199-207. [DOI: 10.1242/jcs.083949] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The terminal stage of cytokinesis – a process termed abscission – is the severing of the thin intercellular bridge that connects the two daughter cells. Recent work provides new insight into the mechanism by which this microtubule-dense membrane bridge is resolved, and highlights important roles for multi-protein assemblies in different facets of abscission. These include the endosomal sorting complex required for transport (ESCRT), which appears to have a decisive role in the final scission event, and vesicle tethering complexes, which potentially act at an earlier stage, and might serve to prepare the abscission site. Here, we review recent studies of the structure, function and regulation of these complexes as related to abscission. We focus largely on studies of cytokinesis in mammalian cells. However, cell division in other systems, such as plants and Archae, is also considered, reflecting the mechanistic conservation of membrane-scission processes during cell division.
Collapse
Affiliation(s)
- Hélia Neto
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gwyn W. Gould
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
140
|
Abstract
All cells complete cell division by the process of cytokinesis. At the end of mitosis, eukaryotic cells accurately mark the site of division between the replicated genetic material and assemble a contractile ring comprised of myosin II, actin filaments and other proteins, which is attached to the plasma membrane. The myosin-actin interaction drives constriction of the contractile ring, forming a cleavage furrow (the so-called 'purse-string' model of cytokinesis). After furrowing is completed, the cells remain attached by a thin cytoplasmic bridge, filled with two anti-parallel arrays of microtubules with their plus-ends interdigitating in the midbody region. The cell then assembles the abscission machinery required for cleavage of the intercellular bridge, and so forms two genetically identical daughter cells. We now know much of the molecular detail of cytokinesis, including a list of potential genes/proteins involved, analysis of the function of some of these proteins, and the temporal order of their arrival at the cleavage site. Such studies reveal that membrane trafficking and/or remodelling appears to play crucial roles in both furrowing and abscission. In the present review, we assess studies of vesicular trafficking during cytokinesis, discuss the role of the lipid components of the plasma membrane and endosomes and their role in cytokinesis, and describe some novel molecules implicated in cytokinesis. The present review covers experiments performed mainly on tissue culture cells. We will end by considering how this mechanistic insight may be related to cytokinesis in other systems, and how other forms of cytokinesis may utilize similar aspects of the same machinery.
Collapse
|
141
|
Wong ASL, Cheung ZH, Ip NY. Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1490-7. [PMID: 21787863 DOI: 10.1016/j.bbadis.2011.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/27/2011] [Accepted: 07/08/2011] [Indexed: 01/01/2023]
Abstract
Macroautophagy maintains cellular homeostasis through targeting cytoplasmic contents and organelles into autophagosomes for degradation. This process begins with the assembly of protein complexes on isolation membrane to initiate the formation of autophagosome, followed by its nucleation, elongation and maturation. Fusion of autophagosomes with lysosomes then leads to degradation of the cargo. In the past decade, significant advances have been made on the identification of molecular players that are implicated in various stages of macroautophagy. Post-translational modifications of macroautophagy regulators have also been demonstrated to be critical for the selective targeting of cytoplasmic contents into autophagosomes. In addition, recent demonstration of distinct macroautophagy regulators has led to the identification of different subtypes of macroautophagy. Since deregulation of macroautophagy is implicated in diseases including neurodegenerative disorders, cancers and inflammatory disorders, understanding the molecular machinery of macroautophagy is crucial for elucidating the mechanisms by which macroautophagy is deregulated in these diseases, thereby revealing new potential therapeutic targets and strategies. Here we summarize current knowledge on the regulation of mammalian macroautophagy machineries and their disease-associated deregulation.
Collapse
Affiliation(s)
- Alan S L Wong
- Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Meuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kawloon, Hongkong, China
| | | | | |
Collapse
|
142
|
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25:795-800. [PMID: 21498569 DOI: 10.1101/gad.2016211] [Citation(s) in RCA: 1039] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is a major pathway for degradation of cytoplasmic proteins and organelles, and has been implicated in tumor suppression. Here, we report that mice with systemic mosaic deletion of Atg5 and liver-specific Atg7⁻/⁻ mice develop benign liver adenomas. These tumor cells originate autophagy-deficient hepatocytes and show mitochondrial swelling, p62 accumulation, and oxidative stress and genomic damage responses. The size of the Atg7⁻/⁻ liver tumors is reduced by simultaneous deletion of p62. These results suggest that autophagy is important for the suppression of spontaneous tumorigenesis through a cell-intrinsic mechanism, particularly in the liver, and that p62 accumulation contributes to tumor progression.
Collapse
Affiliation(s)
- Akito Takamura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Coppola D, Helm J, Ghayouri M, Malafa MP, Wang HG. Down-regulation of Bax-interacting factor 1 in human pancreatic ductal adenocarcinoma. Pancreas 2011; 40:433-7. [PMID: 21283040 PMCID: PMC3063470 DOI: 10.1097/mpa.0b013e318205eb03] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Bax-interacting factor 1 (Bif-1) protein plays a critical role in apoptosis, mitochondrial morphogenesis, and autophagy, and its loss promotes tumorigenesis. The role of Bif-1 in pancreatic cancer has not been studied. METHODS We determined Bif-1 expression in 82 human pancreatic ductal adenocarcinomas (PDCs) and in 82 nonmalignant pancreatic specimens (NMPs), using immunohistochemistry and tissue microarray. Bif-1 immunostain was semiquantitatively scored on a scale of 0 to 9. RESULTS Bif-1 scores in NMP were either 6 or 9, with lower scores in only 19 (23.2%) of 82 NMPs. Low Bif-1 expression (score <6) was found in 37 (45.1%) of 82 PDCs, a proportion significantly greater than that found in NMP (P = 0.005). The expression of Bif-1 was twice as likely to be low in PDC as in NMP (relative risk = 1.95, 95% confidence interval, 1.23-3.09). Kaplan-Meier survival estimates showed no difference in survival between patients with low and high Bif-1 expression (P = 0.21, log-rank test). CONCLUSIONS The expression of Bif-1 is downregulated in a subset of PDC. This novel finding is in agreement with the tumor suppressor function of Bif-1. The lack of association between Bif-1 expression and patient survival may be best explained by the complexity of carcinogenesis.
Collapse
Affiliation(s)
- Domenico Coppola
- Department of Anatomic Pathology, University of South Florida, Tampa, FL, USA.
| | | | | | | | | |
Collapse
|
144
|
Sagona AP, Nezis IP, Bache KG, Haglund K, Bakken AC, Skotheim RI, Stenmark H. A tumor-associated mutation of FYVE-CENT prevents its interaction with Beclin 1 and interferes with cytokinesis. PLoS One 2011; 6:e17086. [PMID: 21455500 PMCID: PMC3063775 DOI: 10.1371/journal.pone.0017086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/17/2011] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor activity of Beclin 1 (BECN1), a subunit of class III phosphatidylinositol 3-kinase complex, has been attributed to its regulation of apoptosis and autophagy. Here, we identify FYVE-CENT (ZFYVE26), a phosphatidylinositol 3-phosphate binding protein important for cytokinesis, as a novel interacting protein of Beclin 1. A mutation in FYVE-CENT (R1945Q) associated with breast cancer abolished the interaction between FYVE-CENT and Beclin 1, and reduced the localization of these proteins at the intercellular bridge during cytokinesis. Breast cancer cells containing the FYVE-CENT R1945Q mutation displayed a significant increase in cytokinetic profiles and bi - multinuclear phenotype. Both Beclin 1 and FYVE-CENT were found to be downregulated in advanced breast cancers. These findings suggest a positive feedback loop for recruitment of FYVE-CENT and Beclin 1 to the intercellular bridge during cytokinesis, and reveal a novel potential tumor suppressor mechanism for Beclin 1.
Collapse
Affiliation(s)
- Antonia P. Sagona
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ioannis P. Nezis
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristi G. Bache
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Cathrine Bakken
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
145
|
Abstract
Macroautophagy and chaperone-mediated autophagy (CMA) are the two main mammalian lysosomal proteolytic systems. In macroautophagy, double-membrane structures engulf organelles and other intracellular constituents through a highly regulated process that involves the formation of autophagic vacuoles and their fusion with lysosomes. In CMA, selected proteins are targeted through a nonvesicular pathway to a transport complex at the lysosomal membrane, through which they are threaded into the lysosomes and degraded. Autophagy is important in development, differentiation, cellular remodelling and survival during nutrient starvation. Increasing evidence suggests that autophagic dysregulation causes accumulation of abnormal proteins or damaged organelles, which is a characteristic of chronic neurodegenerative conditions, such as Parkinson disease (PD). Evidence from post-mortem material, transgenic mice, and animal and cellular models of PD suggests that both major autophagic pathways are malfunctioning. Numerous connections exist between proteins genetically linked to autosomal dominant PD, in particular α-synuclein and LRRK2, and autophagic pathways. However, proteins involved in recessive PD, such as PINK1 and Parkin (PINK2), function in the process of mitophagy, whereby damaged mitochondria are selectively engulfed by macroautophagy. This wealth of new data suggests that both autophagic pathways are potential targets for therapeutic intervention in PD and other related neurodegenerative conditions.
Collapse
|
146
|
Stenmark H. The Sir Hans Krebs Lecture. How a lipid mediates tumour suppression. Delivered on 29 June 2010 at the 35th FEBS Congress in Gothenburg, Sweden. FEBS J 2010; 277:4837-48. [PMID: 20977678 PMCID: PMC3015057 DOI: 10.1111/j.1742-4658.2010.07900.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorylated derivatives of the membrane lipid phosphatidylinositol (PtdIns), known as phosphoinositides (PIs), regulate membrane-proximal cellular processes by recruiting specific protein effectors involved in cell signalling, membrane trafficking and cytoskeletal dynamics. Two PIs that are generated through the activities of distinct PI 3-kinases (PI3Ks) are of special interest in cancer research. PtdIns(3,4,5)P₃, generated by class I PI3Ks, functions as tumour promotor by recruiting effectors involved in cell survival, proliferation, growth and motility. Conversely, there is evidence that PtdIns3P, generated by class III PI3K, functions in tumour suppression. Three subunits of the class III PI3K complex (Beclin 1, UVRAG and BIF-1) have been independently identified as tumour suppressors in mice and humans, and their mechanism of action in this context has been proposed to entail activation of autophagy, a catabolic pathway that is considered to mediate tumour suppression by scavenging damaged organelles that would otherwise cause DNA instability through the production of reactive oxygen species. Recent studies have revealed two additional functions of PtdIns3P that might contribute to its tumour suppressor activity. The first involves endosomal sorting and lysosomal downregulation of mitogenic receptors. The second involves regulation of cytokinesis, which is the final stage of cell division. Further elucidation of the mechanisms of tumour suppression mediated by class III PI3K and PtdIns3P will identify novel Achilles' heels of the cell's defence against tumourigenesis and will be useful in the search for prognostic and diagnostic biomarkers in cancer.
Collapse
Affiliation(s)
- Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
147
|
Nezis IP, Sagona AP, Schink KO, Stenmark H. Divide and ProsPer: the emerging role of PtdIns3P in cytokinesis. Trends Cell Biol 2010; 20:642-9. [PMID: 20880709 DOI: 10.1016/j.tcb.2010.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/06/2010] [Accepted: 08/20/2010] [Indexed: 11/16/2022]
Abstract
Cytokinesis is the final step of cell division whereby the dividing cells separate physically. Failure of this process has been proposed to cause tumourigenesis. Several specific lipids are essential for cytokinesis, and recent evidence has revealed that phosphatidylinositol 3-phosphate (PtdIns3P) - a well-known regulator of endosomal trafficking, receptor signaling, nutrient sensing and autophagy - plays an evolutionarily conserved role during cytokinesis. The emerging picture is that PtdIns3P and its regulators and effectors constitute a novel regulatory mechanism for cytokinesis. Elucidating the role of PtdIns3P in cytokinesis might contribute to insight into mechanisms of tumour development and suppression.
Collapse
Affiliation(s)
- Ioannis P Nezis
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
| | | | | | | |
Collapse
|