101
|
Li H, Jin SY, Son HJ, Seo JH, Jeong GB. Caffeine-induced endothelial cell death and the inhibition of angiogenesis. Anat Cell Biol 2013; 46:57-67. [PMID: 23560237 PMCID: PMC3615613 DOI: 10.5115/acb.2013.46.1.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 12/19/2022] Open
Abstract
Numerous studies have shown that adenosine or adenosine agonists can stimulate angiogenesis. However, the effect of caffeine (a known adenosine receptor antagonist) on angiogenesis has not been previously studied. Accordingly, this study was undertaken to examine the effect of caffeine on angiogenesis and to clarify the mechanism involved. Chick chorioallantoic membrane assays were used to investigate the effect of caffeine on angiogenesis and proliferation assays using human umbilical vein endothelial cells (HUVECs), were used to study its effects on specific aspects of angiogenesis. The expressions of caspase-3 and Bcl-2 were examined by western blotting, immunofluorescence staining was used to identify HUVEC morphological changes, and fluorescence activated cell sorting (FACS) and DAPI staining were used to detect HUVEC apoptosis. Caffeine was found to inhibit blood vessel formation dose-dependently and to inhibit the proliferation of HUVECs time- and dose-dependently. FACS analysis and DAPI staining showed that inhibitory effect of caffeine on HUVEC proliferation was the result of apoptosis and the up-regulation of thrombospondin-1 (TSP-1). Furthermore, TSP-1 levels were down-regulated by NECA but were unaffected by CGS21680, indicating that caffeine regulated TSP-1 expression via adenosine A2B receptor. In addition, caffeine up-regulated caspase-3 and down-regulated Bcl-2 at the protein level. These results suggest that the inhibitory effect of caffeine on angiogenesis is associated, at least in part, with its induction of endothelial cell apoptosis, probably mediated by a caspase-3 dependent mechanism.
Collapse
Affiliation(s)
- Hua Li
- Department of Anatomy, Chungbuk National University Medical School, Cheongju, Korea
| | | | | | | | | |
Collapse
|
102
|
Karmouty-Quintana H, Xia Y, Blackburn MR. Adenosine signaling during acute and chronic disease states. J Mol Med (Berl) 2013; 91:173-81. [PMID: 23340998 DOI: 10.1007/s00109-013-0997-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 12/18/2022]
Abstract
Adenosine is a signaling nucleoside that is produced following tissue injury, particularly injury involving ischemia and hypoxia. The production of extracellular adenosine and its subsequent signaling through adenosine receptors plays an important role in orchestrating injury responses in multiple organs. There are four adenosine receptors that are widely distributed on immune, epithelial, endothelial, neuronal,and stromal cells throughout the body. Interestingly, these receptors are subject to altered regulation following injury. Studies in mouse models and human cells and tissues have identified that the production of adenosine and its subsequent signaling through its receptors plays largely beneficial roles in acute disease states, with the exception of brain injury. In contrast, if elevated adenosine levels are sustained beyond the acute injury phase, adenosine responses can become detrimental by activating pathways that promote tissue injury and fibrosis. Understanding when during the course of disease adenosine signaling is beneficial as opposed to detrimental and defining the mechanisms involved will be critical for the advancement of adenosine-based therapies for acute and chronic diseases. The purpose of this review is to discuss key observations that define the beneficial and detrimental aspects of adenosine signaling during acute and chronic disease states with an emphasis on cellular processes, such as inflammatory cell regulation, vascular barrier function, and tissue fibrosis.
Collapse
Affiliation(s)
- Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Blvd, Suite 6.200, Houston, TX 77030, USA
| | | | | |
Collapse
|
103
|
|
104
|
Abstract
Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs) and the tissue inhibitors of these metalloproteinases (TIMPs). MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.
Collapse
Affiliation(s)
- Jumaat Mohd Yussof Shah
- Discipline of Plastic Surgery, Universiti Teknologi MARA, Jalan Selayang Prima 1, Batu Caves, Selangor, Malaysia
| | | | | | | |
Collapse
|
105
|
Mantell S, Jones R, Trevethick M. Design and application of locally delivered agonists of the adenosine A(2A) receptor. Expert Rev Clin Pharmacol 2012; 3:55-72. [PMID: 22111533 DOI: 10.1586/ecp.09.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The broad spectrum anti-inflammatory actions of adenosine A(2A) receptor agonists are well described. The wide distribution of this receptor, however, suggests that the therapeutic potential of these agents is likely to reside in topical treatments to avoid systemic side effects associated with oral administration. Adenosine A(2A) receptor agonists have been assessed as topical agents: GW328267X (GSK; allergic rhinitis and asthma), UK-432097 (Pfizer; chronic obstructive pulmonary disease [COPD]) and Sonedenoson (MRE0094, King Pharmaceuticals; wound healing). All trials failed to achieve effects against the desired clinical end points. This broad-based review will discuss general principles of chemical design of topically applied agents and potential therapeutic topical applications of current adenosine A(2A) receptor agonists. Potential factors contributing to the lack of efficacy in the above clinical trials will be discussed together with design principles, which may influence efficacy in disease states. Our analysis suggests that adenosine A(2A) receptor agonists have a wide therapeutic potential as topical agents in a wide variety of diseases, such as neutrophil-dependent lung diseases (acute lung injury, exacerbations in asthma and COPD), allergic rhinitis, glaucoma and wound repair. Factors that will influence topical activity include formulation, tissue retention, compound potency, receptor kinetics and pharmacokinetics.
Collapse
Affiliation(s)
- Simon Mantell
- PC 675, Pfizer Global R&D, Sandwich, Kent, CT13 9NJ, UK.
| | | | | |
Collapse
|
106
|
Perez-Aso M, Chiriboga L, Cronstein BN. Pharmacological blockade of adenosine A2A receptors diminishes scarring. FASEB J 2012; 26:4254-63. [PMID: 22767233 DOI: 10.1096/fj.12-209627] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine A2A receptor (A2AR) stimulation promotes wound healing and is required for the development of fibrosis in murine models of scleroderma and cirrhosis. Nonetheless, the role of A2AR in the formation of scars following skin trauma has not been explored. Here, we examined the effect of pharmacological blockade of A2AR, with the selective adenosine A2AR-antagonist ZM241385 (2.5 mg/ml), in a murine model of scarring that mimics human scarring. We found that application of the selective adenosine A2AR antagonist ZM241385 decreased scar size and enhanced the tensile strength of the scar. Within the scar itself, collagen alignment and composition (marked reduction in collagen 3), but not periostin, biglycan, or fibronectin accumulation, was improved by application of ZM241385. Moreover, A2AR blockade reduced the number of myofibroblasts and angiogenesis but not macrophage infiltration in the scar. Taken together, our work strongly suggests that pharmacological A2AR blockade can be used to diminish scarring while improving the collagen composition and tensile strength of the healed wound.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, 550 First Ave., MSB255, New York, NY 10016, USA
| | | | | |
Collapse
|
107
|
Burnstock G, Knight GE, Greig AV. Purinergic Signaling in Healthy and Diseased Skin. J Invest Dermatol 2012; 132:526-46. [DOI: 10.1038/jid.2011.344] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
108
|
Animal models of cutaneous and hepatic fibrosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:371-409. [PMID: 22137437 DOI: 10.1016/b978-0-12-394596-9.00011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrosis occurs as a part of normal wound healing. However, excessive or dysregulated fibrosis can lead to severe organ dysfunction and is a feature of a variety of diseases. Due to its insidious onset, fibrosis tends to go undetected in its early stages. This is in part why these diseases remain so poorly understood. Animal models have provided a means to examine these early stages and to isolate and understand the effect of perturbations in signaling pathways, chemokines, and cytokines. Here, we summarize recent progress in the understanding of the molecular pathogenesis of fibrosis, both its initiation and its maintenance phases, from animal models of fibrosis in the skin and liver. Due to these organs' properties, modeling fibrosis in them poses unique challenges. Elegant solutions have therefore been developed for modeling fibrosis in each, and now, great potential for animal models to contribute to our understanding appears scientifically imminent.
Collapse
|
109
|
Glaser T, Cappellari AR, Pillat MM, Iser IC, Wink MR, Battastini AMO, Ulrich H. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal 2011; 8:523-37. [PMID: 22143354 DOI: 10.1007/s11302-011-9282-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022] Open
Abstract
Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.
Collapse
Affiliation(s)
- Talita Glaser
- Departamento de Bioquímica , Instituto de Química, Universidade São Paulo, Av. Prof. Lineu Prestes, 748-Bloco 8S/Room 0858, CEP: 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
110
|
Mediero A, Kara FM, Wilder T, Cronstein BN. Adenosine A(2A) receptor ligation inhibits osteoclast formation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:775-86. [PMID: 22138579 DOI: 10.1016/j.ajpath.2011.10.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/04/2011] [Accepted: 10/11/2011] [Indexed: 01/25/2023]
Abstract
Adenosine is generated in increased concentrations at sites of injury/hypoxia and mediates a variety of physiological and pharmacological effects via G protein-coupled receptors (A(1), A(2A), A(2B), and A(3)). Because all adenosine receptors are expressed on osteoclasts, we determined the role of A(2A) receptor in the regulation of osteoclast differentiation. Differentiation and bone resorption were studied as the macrophage colony-stimulating factor-1-receptor activator of NF-κB ligand formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive cells from primary murine bone marrow-derived precursors. A(2A) receptor and osteoclast marker expression levels were studied by RT-PCR. Cytokine secretion was assayed by enzyme-linked immunosorbent assay. In vivo examination of A(2A) knockout (KO)/control bones was determined by TRAP staining, micro-computed tomography, and electron microscopy. The A(2A) receptor agonist, CGS21680, inhibited osteoclast differentiation and function (half maximal inhibitory concentration, 50 nmol/L), increased the percentage of immature osteoclast precursors, and decreased IL-1β and tumor necrosis factor-α secretion, an effect that was reversed by the A(2A) antagonist, ZM241385. Cathepsin K and osteopontin mRNA expression increased in control and ZM241385-pretreated osteoclasts, and this was blocked by CGS21680. Micro-computed tomography of A(2A)KO mouse femurs showed a significantly decreased bone volume/trabecular bone volume ratio, decreased trabecular number, and increased trabecular space. A(2A)KO femurs showed an increased TRAP-positive osteoclast. Electron microscopy in A(2A)KO femurs showed marked osteoclast membrane folding and increased bone resorption. Thus, adenosine, acting via the A(2A) receptor, inhibits macrophage colony-stimulating factor-1-receptor activator of NF-κB ligand-stimulated osteoclast differentiation and may regulate bone turnover under conditions in which adenosine levels are elevated.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
111
|
Polito F, Bitto A, Galeano M, Irrera N, Marini H, Calò M, Squadrito F, Altavilla D. Polydeoxyribonucleotide restores blood flow in an experimental model of ischemic skin flaps. J Vasc Surg 2011; 55:479-88. [PMID: 22051873 DOI: 10.1016/j.jvs.2011.07.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Ischemia is a major factor contributing to failure of skin flap surgery, which is routinely used for coverage of wounds to prevent infection and to restore form and function. An emerging concept is that adenosine A(2A) receptors can improve tissue oxygenation by stimulating angiogenesis, likely through vascular endothelial growth factor (VEGF). This study assessed the ability of polydeoxyribonucleotide (PDRN) to restore blood flow and improve wound healing, acting through the A(2A) receptor, in a rat model of ischemic skin flaps. METHODS The H-shaped double-flap model was used in male Sprague-Dawley rats. After surgical procedures, the animals were randomized to receive intraperitoneal PDRN (8 mg/kg) or vehicle (NaCl 0.9%). Rats were euthanized 3, 5, and 10 days after skin injury, after the evaluation of skin perfusion by laser Doppler. The wounds underwent histologic analysis and were measured for VEGF messenger RNA and protein expression, hypoxia inducible factor-1-α (HIF-1α), and inducible nitric oxide synthase (iNOS) protein expression, and nitrite content. RESULTS Blood flow markedly increased in blood flow in ischemic flaps treated with PDRN, with a complete recovery starting from day 5 (ischemic flap + vehicle, 1.80 ± 0.25; ischemic flap + PDRN, 2.46 ± 0.25; P < .001). Administration of PDRN enhanced the expression of VEGF (ischemic flap + vehicle, 5.3 ± 0.6; ischemic flap + PDRN, 6.2 ± 0.5; P < .01) at day 5, and iNOS (ischemic flap + vehicle, 3.9 ± 0.6; ischemic flap + PDRN, 5.3 ± 1; P < .01), but reduced HIF-1α expression (ischemic flap + vehicle, 7 ± 1.1; ischemic flap + PDRN, 4.8 ± 0.5; P < .05) at day 3. Histologically, the PDRN-treated group showed complete re-epithelialization and well-formed granulation tissue rich in fibroblasts. CONCLUSIONS These results suggest that PDRN restores blood flow and tissue architecture, probably by modulating HIF-1α and VEGF expression, and may be an effective therapeutic approach in improving healing of ischemic skin flaps.
Collapse
Affiliation(s)
- Francesca Polito
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Physiology and Human Nutrition, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Fernandez ML, Upton Z, Edwards H, Finlayson K, Shooter GK. Elevated uric acid correlates with wound severity. Int Wound J 2011; 9:139-49. [PMID: 21973196 DOI: 10.1111/j.1742-481x.2011.00870.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic venous leg ulcers are a major health issue and represent an often overlooked area of biomedical research. Nevertheless, it is becoming increasingly evident that new approaches to enhance healing outcomes may arise through better understanding the processes involved in the formation of chronic wounds. We have for the first time shown that the terminal purine catabolite uric acid (UA) is elevated in wound fluid (WF) from chronic venous leg ulcers with relative concentrations correlating with wound chronicity. We have also shown a corresponding depletion in UA precursors, including adenosine, with increased wound severity. Further, we have shown that xanthine oxidase, the only enzyme in humans that catalyses the production of UA in conjunction with a burst of free radicals, is active in chronic WF. Taken together, this provides compelling evidence that xanthine oxidase may play a critical role in the formation of chronic wounds by prolonging the inflammatory process.
Collapse
Affiliation(s)
- Melissa L Fernandez
- Tissue Repair and Regeneration Program, Cells and Tissues Domain, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | | | | | | | | |
Collapse
|
113
|
Cronstein BN. Adenosine receptors and fibrosis: a translational review. F1000 BIOLOGY REPORTS 2011; 3:21. [PMID: 22003368 PMCID: PMC3186039 DOI: 10.3410/b3-21] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adenosine—a purine nucleoside generated extracellularly from adenine nucleotides released by cells as a result of direct stimulation, hypoxia, trauma, or metabolic stress—is a well-known physiologic and pharmacologic agent. Recent studies demonstrate that adenosine, acting at its receptors, promotes wound healing by stimulating both angiogenesis and matrix production. Subsequently, adenosine and its receptors have also been found to promote fibrosis (excess matrix production) in the skin, lungs, and liver, but to diminish cardiac fibrosis. A commonly ingested adenosine receptor antagonist, caffeine, blocks the development of hepatic fibrosis, an effect that likely explains the epidemiologic finding that coffee drinking, in a dose-dependent fashion, reduces the likelihood of death from liver disease. Accordingly, adenosine may be a good target for therapies that prevent fibrosis of the lungs, liver, and skin.
Collapse
Affiliation(s)
- Bruce N Cronstein
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine 550 First Avenue, New York, NY 10016 USA
| |
Collapse
|
114
|
Gharibi B, Abraham AA, Ham J, Evans BAJ. Adenosine receptor subtype expression and activation influence the differentiation of mesenchymal stem cells to osteoblasts and adipocytes. J Bone Miner Res 2011; 26:2112-24. [PMID: 21590734 DOI: 10.1002/jbmr.424] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoblasts and adipocytes differentiate from a common precursor cell, the mesenchymal stem cell (MSC). Adenosine is known to signal via four adenosine receptor subtypes, and significantly, recent findings indicate that these may play a role in MSC differentiation. We therefore investigated adenosine receptor expression and activation during the differentiation of MSCs to osteoblasts and adipocytes. The A(2B) R was dominant in MSCs, and its expression and activity were transiently upregulated at early stages of osteoblastic differentiation. Both activation and overexpression of A(2B) R induced the expression of osteoblast-related genes [Runx2 and alkaline phosphatase (ALP)], as well as ALP activity, and stimulation increased osteoblast mineralization. The expression of A(2A) R was upregulated during later stages of osteoblastic differentiation, when its activation stimulated ALP activity. Differentiation of MSCs to adipocytes was accompanied by significant increases in A(1) R and A(2A) R expression, and their activation was associated with increased adipogenesis. Enhanced A(2A) R expression was sufficient to promote expression of adipocyte-related genes (PPARγ and C/EBPα), and its activation resulted in increased adipocytic differentiation and lipid accumulation. In contrast, the A(1) R was involved mainly in lipogenic activity of adipocytes rather than in their differentiation. These results show that adenosine receptors are differentially expressed and involved in lineage-specific differentiation of MSCs. We conclude, therefore, that fruitful strategies for treating diseases associated with an imbalance in the differentiation and function of these lineages should include targeting adenosine receptor signal pathways. Specifically, these research avenues will be useful in preventing or treating conditions with insufficient bone or excessive adipocyte formation.
Collapse
Affiliation(s)
- Borzo Gharibi
- Center for Endocrine and Diabetes Sciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
115
|
Park JA, Pak JJ, Kim J, Lee EY, Lee YJ, Song YW, Lee EB. Adenosine A2A receptor polymorphisms in Korean patients with systemic sclerosis. Int J Immunopathol Pharmacol 2011; 24:505-8. [PMID: 21658325 DOI: 10.1177/039463201102400224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adenosine A2A receptor (ADORA2A) regulates inflammation, promotes tissue repair and collagen production by human dermal fibroblasts. We investigated the genetic polymorphisms of ADORA2A in susceptibility to systemic sclerosis (SSc). We genotyped 142 Korean SSc patients and 150 controls for polymorphisms of -1751A/C (rs5996696) and 1976C/T (rs5751876), to cover the promoter and all exon sequences of ADORA2A in Koreans, using TaqMan fluorogenic 5' nuclease assay and single base primer extension assay. Neither -1751A/C nor 1976C/T polymorphism showed difference in the distribution of alleles or genotypes between patients and controls with allele frequency of 89.9% v 91.0% for -1751A (p=0.64) and 56.5% v 54.0% for 1976C (p=0.55). Our findings suggest that the role of ADORA2A in SSc may not be genetically related.
Collapse
|
116
|
Abstract
Inflammation is paradoxical; it is essential for protection following biological, chemical or physical stimuli, but inappropriate or misdirected inflammation is responsible for tissue injury in a variety of inflammatory diseases. The polarization of immune cells is critical in controlling the stages of inflammatory response. The acute phase of inflammation is characterized by a T-lymphocyte:Th2 cytokine profile and involves a co-ordinated migration of immune cells to the site of injury where production of cytokines and acute-phase proteins brings about healing. However, persistent inflammation can result in inappropriate and prolonged T-lymphocyte:Th1 cytokine-mediated action and reaction of self-molecules, leading to a chronic phase in diseases such as RA (rheumatoid arthritis), Ps (psoriasis) and atherosclerosis. The inflammatory response is also controlled by activated macrophage cells, with classically activated (M1) cells producing a wide variety of pro-inflammatory mediators, while alternatively activated (M2) macrophages participate in anti-inflammatory response. Members of the NR4A subfamily (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) of orphan NRs (nuclear receptors) have emerged as key transcriptional regulators of cytokine and growth factor action in diseases affecting our aging population. As ligand-independent and constitutively active receptors, the activity of these transcription factors is tightly controlled at the level of expression, post-translational modification and subcellular localization. NR4A subfamily members are aberrantly expressed in inflamed human synovial tissue, psoriatic skin, atherosclerotic lesions, lung and colorectal cancer cells. Significantly, prolonged or inappropriate inflammatory responses contribute to the pathogenesis of these diseases. In activated cells, NR4A receptors are rapidly and potently induced, suggesting that these receptors may act as important transcriptional mediators of inflammatory signals. NR4A receptors may contribute to the cellular processes that control inflammation, playing a critical part in the contribution of chronic inflammation or they may have a protective role, where they may mediate pro-resolution responses. Here, we will review the contribution of the NR4A orphan NRs to integration of cytokine signalling in inflammatory disorders.
Collapse
|
117
|
Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1400-12. [DOI: 10.1016/j.bbamem.2010.09.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 01/25/2023]
|
118
|
Warren GL, Hulderman T, Liston A, Simeonova PP. Toll-like and adenosine receptor expression in injured skeletal muscle. Muscle Nerve 2011; 44:85-92. [PMID: 21488059 DOI: 10.1002/mus.22001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Many aspects of skeletal muscle regeneration are now considered to be controlled by the innate immune system, specifically macrophages, but the mechanisms for activation and modulation of the innate immune system during injury are not well understood. METHODS We analyzed the expression of toll-like receptors (TLRs) and adenosine receptors during traumatic skeletal muscle injury. mRNA expression and immunostaining of these receptors were evaluated in mouse skeletal muscle injured by freezing. RESULTS Expression of nearly all mammalian TLRs was induced at 1 and/or 3 days postinjury with a common trend for higher expression at day 3. Injury also elicited a dramatic increase in the expression of adenosine receptors A(2B) and A(3) but not A(1) and A(2A) . CONCLUSIONS Both receptor types may be potential targets for stimulation of skeletal muscle tissue regeneration and functional restoration after injury.
Collapse
Affiliation(s)
- Gordon L Warren
- Division of Physical Therapy, Georgia State University, P.O. Box 4019, Atlanta, Georgia 30302, USA.
| | | | | | | |
Collapse
|
119
|
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 2011; 63:1-34. [PMID: 21303899 PMCID: PMC3061413 DOI: 10.1124/pr.110.003285] [Citation(s) in RCA: 1032] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the 10 years since our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors, no developments have led to major changes in the recommendations. However, there have been so many other developments that an update is needed. The fact that the structure of one of the adenosine receptors has recently been solved has already led to new ways of in silico screening of ligands. The evidence that adenosine receptors can form homo- and heteromultimers has accumulated, but the functional significance of such complexes remains unclear. The availability of mice with genetic modification of all the adenosine receptors has led to a clarification of the functional roles of adenosine, and to excellent means to study the specificity of drugs. There are also interesting associations between disease and structural variants in one or more of the adenosine receptors. Several new selective agonists and antagonists have become available. They provide improved possibilities for receptor classification. There are also developments hinting at the usefulness of allosteric modulators. Many drugs targeting adenosine receptors are in clinical trials, but the established therapeutic use is still very limited.
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
120
|
Lefort EC, Blay J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin Exp Metastasis 2011; 28:337-49. [PMID: 21298326 DOI: 10.1007/s10585-010-9364-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/29/2010] [Indexed: 12/27/2022]
Abstract
There is accumulating evidence that secondary plant metabolites such as flavonoids may have anti-cancer properties, and yet the molecular pathways that lead to alterations in cancer cell behaviour remain unclear. We investigated the possible actions of apigenin, a flavone present in leafy vegetables like parsley, on the levels of CD26 in carcinoma cells. CD26 is a multifunctional cell-surface protein that through its associated dipeptidyl peptidase (DPPIV) and ecto-adenosine deaminase (eADA) enzyme activities is able to suppress pathways involved in tumour metastasis. CD26 is down-regulated in various cancers including colorectal carcinoma. Apigenin substantially up-regulated cell-surface CD26 on HT-29 and HRT-18 human colorectal cancer cells. Levels of CD26 protein, along with its associated DPPIV enzyme activity, capacity to bind eADA, and ability to link cells to fibronectin, were increased with a maximum after 24-48 h. Elevation of CD26 occurred at concentrations that were at least 10-fold less than those shown to affect cell growth, and 100-fold below those that could affect cell viability. Furthermore, the CD26 effect was enhanced when apigenin was paired with chemotherapeutic agents utilized in the treatment of advanced colorectal cancer including irinotecan, 5-fluorouracil and oxaliplatin. For irinotecan, apigenin caused a 4-fold increase in the potency of the drug. These results demonstrate that apigenin can increase the cellular levels of CD26 and its multiple functions, and may oppose the predicted effect of decreased DPPIV and eADA activities on carcinoma cells, which is to facilitate tumour growth and metastasis.
Collapse
Affiliation(s)
- Emilie C Lefort
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
121
|
Rojo LE, Villano CM, Joseph G, Schmidt B, Shulaev V, Shuman JL, Lila MA, Raskin I. Wound-healing properties of nut oil from Pouteria lucuma. J Cosmet Dermatol 2011; 9:185-95. [PMID: 20883291 DOI: 10.1111/j.1473-2165.2010.00509.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cell migration, angiogenesis, inflammation, and extracellular matrix remodeling are key events in wound healing. Natural products, including fatty acids (FAs), can accelerate wound healing by modulating the aforementioned events. AIMS
This study aims to evaluate the effect of lucuma (Pouteria lucuma O Kezte) nut oil (LNO) on fibroblasts migration, angiogenesis, inflammation, bacterial and fungal growth, and wound healing. Methods GC-MS analysis of FAs methyl esters (FAMES) was used for chemical characterization of LNO. In vitro studies were carried out with LNO investigating the induction of cell migration, cytoskeleton remodeling of human fibroblasts, inhibition of LPS-induced nitric oxide production in macrophages, and antibacterial and antifungal effects. Two in vivo studies were carried out to study LNO's effect on angiogenesis and wound healing: (i) tail fin regeneration in transgenic zebrafish larvae expressing enhanced green fluorescent protein (EGFP) in vascular endothelial cells was used to study vessel sprouting and wound healing and (ii) the closure of wounds was evaluated in CD-1 mice after topical applications of LNO-containing formulations. RESULTS Lucuma nut oil is a mixture of FAs, 99.7% of which were characterized. Major components of LNO (w/w) are linoleic acid (38.9%), oleic acid (27.9%), palmitic acid (18.6%), stearic acid (8.9%), and γ linolenic acid (2.9%). In vitro studies showed that LNO significantly promoted migration and vinculin expression in human fibroblasts. LNO decreased LPS-induced nitric oxide production and did not display significant antibacterial or antifungal effects. LNO induced tail fin regeneration in transgenic zebrafish larvae 48 h after tail fin amputation and significantly accelerated cutaneous wound closure in CD-1 mice. CONCLUSIONS Natural FAs from P. lucuma nut promote skin regeneration and, thus, may have applications in medicine and skin care.
Collapse
Affiliation(s)
- Leonel E Rojo
- Rutgers University, Biotech Center, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Airway epithelia are continuously damaged by airborne pollutants, pathogens and allergens, and they rely on intrinsic mechanisms to restore barrier integrity. Epithelial repair is a multi-step process including cell migration into the wounded area, proliferation, differentiation and matrix deposition. Each step requires the secretion of various molecules, including growth factors, integrins and matrix metalloproteinases. Evidence is emerging that purinergic signaling promotes repair in human airway epithelia. An injury induces ATP release, which binds P2Y(2) receptors (P2Y(2)Rs) to initiate protein kinase C (PKC)-dependent oxidative activation of TNFα-converting enzyme (TACE), which then releases the membrane-bound ligands of the epidermal growth factor receptor (EGFR). The P2Y(2)R- and EGFR-dependent signaling cascades converge to induce mediator release, whereas the latter also induces cytoskeletal rearrangement for cell migration and proliferation. Similar roles for purinergic signaling are reported in pulmonary endothelial cells, smooth muscle cells and fibroblasts. In chronic airway diseases, the aberrant regulation of extracellular purines is implicated in the development of airway remodeling by mucus cell metaplasia and hypersecretion, excess collagen deposition, fibrosis and neovascularization. This chapter describes the crosstalk between these signaling cascades and discusses the impact of deregulated purinergic signaling in chronic lung diseases.
Collapse
|
123
|
Feldman AM, Cheksis-Feiner E, Hamad E, Chan T. Adenosine receptor subtypes and the heart failure phenotype: translating lessons from mice to man. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2011; 122:198-214. [PMID: 21686225 PMCID: PMC3116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Adenosine plays an important role in the pathophysiology of heart failure and in myocardial protection during ischemia and reperfusion. The action of adenosine in the heart is mediated by four G-protein-coupled receptors: A(1)-AR and A(3)-AR, which act via Gα(1), and A(2A)-AR and A(2B)-AR, which act via Gα(s). Understanding of cellular signaling pathways triggered by adenosine has been complicated by the availability of only partially specific adenosine agonists/antagonists. Adenosine signaling appears to be at times redundant in receptor function, and cellular signaling pathways for adenosine are multiple, parallel, and interrelated. Data obtained about the specific role of individual adenosine receptors, through the genetic modulation of receptors in murine hearts have provided important information about the role of adenosine receptors in the heart. Here we review existing data and present new results that clarify the function of individual adenosine receptors in the heart and their role in the development of left ventricular dysfunction, and about the downstream signaling systems that are modified by adenosine receptor activation.
Collapse
Affiliation(s)
- Arthur M Feldman
- Jefferson Medical College, Department of Medicine, 1025 Walnut Street, Suite 822, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
124
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
125
|
Abstract
Skin fibrosis occurs in a variety of human diseases, most notably systemic sclerosis (SSc). The end stage of scleroderma in human skin consists of excess collagen deposition in the dermis with loss of adnexal structures and associated adipose tissue. The initiating factors for this process and the early stages are believed to occur through vascular injury and immune dysfunction with a dysregulated inflammatory response. However, because of the insidious onset of the disease, this stage is rarely observed in humans and remains poorly understood. Animal models have provided a means to examine these early stages and to isolate and understand the effect of perturbations in signaling pathways, chemokines, and cytokines. This article summarizes recent progress in the understanding of the molecular pathogenesis of skin fibrosis in SSc from different animal models, both its initiation and its maintenance phases.
Collapse
Affiliation(s)
- Gideon P Smith
- New York University School of Medicine, 550 First Avenue, NBV 16N1, New York, NY 10016, USA.
| | | |
Collapse
|
126
|
Abstract
Methotrexate remains a cornerstone in the treatment of rheumatoid arthritis and other rheumatic diseases. Folate antagonism is known to contribute to the antiproliferative effects that are important in the action of methotrexate against malignant diseases, but concomitant administration of folic or folinic acid does not diminish the anti-inflammatory potential of this agent, which suggests that other mechanisms of action might be operative. Although no single mechanism is sufficient to account for all the anti-inflammatory activities of methotrexate, the release of adenosine from cells has been demonstrated both in vitro and in vivo. Methotrexate might also confer anti-inflammatory properties through the inhibition of polyamines. The biological effects on inflammation associated with adenosine release have provided insight into how methotrexate exerts its effects against inflammatory diseases and at the same time causes some of its well-known adverse effects. These activities contribute to the complex and multifaceted mechanisms that make methotrexate efficacious in the treatment of inflammatory disorders.
Collapse
|
127
|
Zhou X, Huang Q, An J, Lu R, Qin X, Jiang L, Li Y, Wang J, Chen J, Qu J. Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice. Invest Ophthalmol Vis Sci 2010; 51:4362-70. [PMID: 20484596 DOI: 10.1167/iovs.09-3998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To critically evaluate whether the adenosine A2A receptor (A2AR) plays a role in postnatal refractive development in mice. METHODS Custom-built biometric systems specifically designed for mice were used to assess the development of relative myopia by examining refraction and biometrics in A2AR knockout (KO) mice and wild-type (WT) littermates between postnatal days (P)28 and P56. Ocular dimensions were measured by customized optical coherence tomography (OCT), refractive state by eccentric infrared photorefraction (EIR), and corneal radius of curvature by modified keratometry. Scleral collagen diameter and density were examined by electron microscopy on P35. The effect of A2AR activation on collagen mRNA expression and on soluble collagen production was examined in cultured human scleral fibroblasts by real-time RT-PCR and a collagen assay kit. RESULTS Compared with WT littermates, the A2AR KO mice displayed relative myopia (average difference, 5.1 D between P28 and P35) and associated increases in VC depth and axial length from P28 to P56. Furthermore, the myopic shift in A2AR KO mice was associated with ultrastructural changes in the sclera: Electron microscopy revealed denser collagen fibrils with reduced diameter in A2AR KO compared with WT. Last, A2AR activation induced expression of mRNAs for collagens I, III, and V and increased production of soluble collagen in cultured human scleral fibroblasts. CONCLUSIONS Genetic deletion of the A2AR promotes development of relative myopia with increased axial length and altered scleral collagen fiber structure during postnatal development in mice. Thus, the A2AR may be important in normal refractive development.
Collapse
Affiliation(s)
- Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Adenosine is an endogenous autocoid that regulates a multitude of bodily functions. Its anti-inflammatory actions are well known to rheumatologists since it mediates many of the anti-inflammatory effects of a number of antirheumatic drugs such as methotrexate. However, inflammatory and tissue regenerative responses are intricately linked, with wound healing being a prime example. It has only recently been appreciated that adenosine has a key role in tissue regenerative and fibrotic processes. An understanding of these processes may shed new light on potential therapeutic options in diseases such as scleroderma where tissue fibrosis features prominently.
Collapse
|
129
|
Hara Y, Kuroda N, Inoue K, Sato T. Up-regulation of vascular endothelial growth factor expression by adenosine through adenosine A2 receptors in the rat tongue treated with endotoxin. Arch Oral Biol 2009; 54:932-42. [PMID: 19712927 DOI: 10.1016/j.archoralbio.2009.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 05/12/2009] [Accepted: 07/27/2009] [Indexed: 11/16/2022]
Abstract
The main focus of the present investigation is to evaluate a differential effect of adenosine on the up-regulation of vascular endothelial growth factor (VEGF) expression through adenosine A(2) receptors in the rat tongue treated with endotoxin (lipopolysaccharide: LPS). Angiogenesis in the rat tongue treated with LPS/incomplete Freund's adjuvant (IFA) or endotoxin/IFA/adenosine A(2) receptor (A(2)R) antagonists was examined using immunohistochemistry for LYVE-1, ED1, ED2, OX6, langerin and VEGF, and real-time polymerase chain reaction (PCR) for VEGF. The distributional density of both blood vessels and OX6(+) cells was significantly increased at day 8 after injection of LPS/IFA. The immunoreactive products of VEGF were intensely labelled in the cytoplasm of various antigen presenting cells (APCs) including dendritic cells (DCs) with double-immunofluorescence technique. Increase in VEGF mRNA expression level, the occupancy ratio of blood vessels, and the number of ED1(+), ED2(+), OX6(+), and langerin(+) cells was inhibited in the injured tongue of rats as a consequence of the treatment with A(2)R antagonists. The present results indicate that the LPS-induced adenosine might promote angiogenesis by the up-regulation of VEGF expression in macrophages/DCs through A(2) receptors. This suggests that the synergistic interaction between toll-like receptor (TLR) and A(2) receptor signalling observed in vivo plays an important role in oral mucosal wound healing.
Collapse
Affiliation(s)
- Yaiko Hara
- Department of Anatomy II, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama 230-8501, Japan
| | | | | | | |
Collapse
|
130
|
Nakav S, Kachko L, Vorobiov M, Rogachev B, Chaimovitz C, Zlotnik M, Douvdevani A. Blocking adenosine A2A receptor reduces peritoneal fibrosis in two independent experimental models. Nephrol Dial Transplant 2009; 24:2392-9. [PMID: 19221177 DOI: 10.1093/ndt/gfp041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Long-term peritoneal dialysis (PD) is associated with peritoneal fibrosis and loss of function. It has been shown that activation of the adenosine A(2A) receptor (A(2A)R) promotes tissue repair, wound healing and extracellular matrix (ECM) production. We have previously shown that adenosine is a potent regulator of inflammation in the peritoneum. In the current study, we explored the role of adenosine and the A(2A)R in two experimental models. METHODS Collagen deposition was evaluated in primary peritoneal fibroblasts following treatment with an A(2A)R agonist and antagonist. In addition, peritoneal fibrosis was induced by i.p. injection of either chlorhexidine gluconate for 2 weeks or 4.25% glucose peritoneal dialysis fluid (PDF) for 1 month. The development of fibrosis was compared between wild-type (WT) and WT mice treated with caffeine (an A(2A)R antagonist) in drinking water or between (A(2A)R(+/+)) mice and A(2A)R-deficient mice (A(2A)R(-/-)). RESULTS Adenosine or the A(2A)R agonist CGS21680 stimulated collagen production by peritoneal fibroblasts in vitro and A(2A)R antagonists (ZM241385 and caffeine) blocked this effect. Consistent with these results, caffeine-treated WT or A(2A)R(-/-) mice had reduced submesothelial thickness, collagen deposition and mRNA levels of fibroblast-specific protein (FSP-1) and connective tissue growth factor (CTGF). In addition, treatment with caffeine in vitro and in vivo diminished A(2A)R and A(2B)R mRNA levels induced by CG or PDF while it upregulated A(1)R levels. CONCLUSION Our data suggest that adenosine through its A(2A)R promotes peritoneal fibrosis and therefore should be considered as a target for pharmacological intervention.
Collapse
Affiliation(s)
- Sigal Nakav
- Department of Clinical Biochemistry, Soroka Medical Center and Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
131
|
Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2009; 7:759-70. [PMID: 18758473 DOI: 10.1038/nrd2638] [Citation(s) in RCA: 880] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenosine is a key endogenous molecule that regulates tissue function by activating four G-protein-coupled adenosine receptors: A1, A2A, A2B and A3. Cells of the immune system express these receptors and are responsive to the modulatory effects of adenosine in an inflammatory environment. Animal models of asthma, ischaemia, arthritis, sepsis, inflammatory bowel disease and wound healing have helped to elucidate the regulatory roles of the various adenosine receptors in dictating the development and progression of disease. This recent heightened awareness of the role of adenosine in the control of immune and inflammatory systems has generated excitement regarding the potential use of adenosine-receptor-based therapies in the treatment of infection, autoimmunity, ischaemia and degenerative diseases.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA.
| | | | | | | |
Collapse
|
132
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
133
|
Feoktistov I, Biaggioni I, Cronstein BN. Adenosine receptors in wound healing, fibrosis and angiogenesis. Handb Exp Pharmacol 2009:383-97. [PMID: 19639289 DOI: 10.1007/978-3-540-89615-9_13] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wound healing and tissue repair are critical processes, and adenosine, released from injured or ischemic tissues, plays an important role in promoting wound healing and tissue repair. Recent studies in genetically manipulated mice demonstrate that adenosine receptors are required for appropriate granulation tissue formation and in adequate wound healing. A(2A) and A(2B) adenosine receptors stimulate both of the critical functions in granulation tissue formation (i.e., new matrix production and angiogenesis), and the A(1) adenosine receptor (AR) may also contribute to new vessel formation. The effects of adenosine acting on these receptors is both direct and indirect, as AR activation suppresses antiangiogenic factor production by endothelial cells, promotes endothelial cell proliferation, and stimulates angiogenic factor production by endothelial cells and other cells present in the wound. Similarly, adenosine, acting at its receptors, stimulates collagen matrix formation directly. Like many other biological processes, AR-mediated promotion of tissue repair is critical for appropriate wound healing but may also contribute to pathogenic processes. Excessive tissue repair can lead to problems such as scarring and organ fibrosis and adenosine, and its receptors play a role in pathologic fibrosis as well. Here we review the evidence for the involvement of adenosine and its receptors in wound healing, tissue repair and fibrosis.
Collapse
Affiliation(s)
- Igor Feoktistov
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN 37232-6300, USA.
| | | | | |
Collapse
|
134
|
Katebi M, Soleimani M, Cronstein BN. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol 2008; 85:438-44. [PMID: 19056861 DOI: 10.1189/jlb.0908520] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) play a role in wound healing and tissue repair and may also be useful for organ regeneration. As we have demonstrated previously that A(2A) adenosine receptors (A(2A)R) promote tissue repair and wound healing by stimulating local repair mechanisms and enhancing accumulation of endothelial progenitor cells, we investigated whether A(2A)R activation modulates BM-MSC proliferation and differentiation. BM-MSCs were isolated and cultured from A(2A)-deficient and ecto-5'nucleotidase (CD73)-deficient female mice; the MSCs were identified and quantified by a CFU-fibroblast (CFU-F) assay. Procollagen alpha2 type I expression was determined by Western blotting and immunocytochemistry. MSC-specific markers were examined in primary cells and third-passage cells by cytofluorography. PCR and real time-PCR were used to quantitate adenosine receptor and CD73 expression. There were significantly fewer CFU-Fs in cultures of BM-MSCs from A(2A)R knockout (KO) mice or BM-MSCs treated with the A(2A)R antagonist ZM241385, 1 microM. Similarly, there were significantly fewer procollagen alpha2 type I-positive MSCs in cultures from A(2A)R KO and antagonist-treated cultures as well. In late passage cells, there were significantly fewer MSCs from A(2A) KO mice expressing CD90, CD105, and procollagen type I (P<0.05 for all; n=3). These findings indicate that adenosine and adenosine A(2A)R play a critical role in promoting the proliferation and differentiation of mouse BM-MSCs.
Collapse
Affiliation(s)
- Majid Katebi
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
135
|
St Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol 2008; 218:35-44. [PMID: 18767039 DOI: 10.1002/jcp.21579] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is a metabolite generated and released from cells, particularly under injury or stress. It elicits protective or damaging responses via signaling through the adenosine receptors, including the adenylyl cyclase inhibitory A(1) and A(3), and the adenylyl cyclase stimulatory A(2A) and A(2B). Multiple adenosine receptor types, including stimulatory and inhibitory, can be found in the same cell, suggesting that a careful balance of adenosine receptor expression in a particular cell is necessary for a specific adenosine-induced response. This balance could be controlled by differential expression of the adenosine receptor genes under different stimuli. Here, we have reviewed an array of studies that have characterized basal or induced expression of the adenosine receptors and common as well as distinct mechanisms of effect, in hopes that ongoing studies on this topic will further elucidate detailed mechanisms of adenosine receptor regulation, leading to potential therapeutic applications.
Collapse
Affiliation(s)
- Cynthia St Hilaire
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
136
|
Katebi M, Fernandez P, Chan ESL, Cronstein BN. Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. Inflammation 2008; 31:299-303. [PMID: 18709547 DOI: 10.1007/s10753-008-9078-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral blood fibrocytes are a newly identified circulating leukocyte subpopulation that migrates into injured tissue where it may display fibroblast-like properties and participate in wound healing and fibrosis of skin and other organs. Previous studies in our lab demonstrated that A(2A) receptor-deficient and A(2A) antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis, thus the aim of this study was to determine whether the adenosine A(2A) receptor regulates recruitment of fibrocytes to the dermis in this bleomycin-induced model of dermal fibrosis. Sections of skin from normal mice and bleomycin-treated wild type, A(2A) knockout and A(2A) antagonist-treated mice were stained for Procollagen alpha2 Type I and CD34 and the double stained cells, fibrocytes, were counted in the tissue sections. There were more fibrocytes in the dermis of bleomycin-treated mice than normal mice and the increase was abrogated by deletion or blockade of adenosine A(2A) receptors. Because fibrocytes play a central role in tissue fibrosis these results suggest that diminished adenosine A(2A) receptor-mediated recruitment of fibrocytes into tissue may play a role in the pathogenesis of fibrosing diseases of the skin. Moreover, these results provide further evidence that adenosine A(2A) receptors may represent a new target for the treatment of such fibrosing diseases as scleroderma or nephrogenic fibrosing dermopathy.
Collapse
Affiliation(s)
- Majid Katebi
- Division of Clinical Pharmacology, Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | | | | | | |
Collapse
|
137
|
Shen X, Nagai N, Murata M, Nishimura D, Sugi M, Munekata M. Development of salmon milt DNA/salmon collagen composite for wound dressing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:3473-3479. [PMID: 18592347 DOI: 10.1007/s10856-008-3512-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
This study aims to develop a novel wound dressing comprising salmon milt DNA (sDNA) and salmon collagen (SC). The sDNA/SC composites were prepared by incubating a mixture of an acidic SC solution, an sDNA solution, and a collagen fibrillogenesis inducing buffer (pH 6.8) containing a crosslinking agent (water-soluble carbodiimide) for gelation, and a subsequent ventilation-drying process to give sDNA/SC films. The conjugation between sDNA and SC were confirmed by sDNA-elution assay and fluorescence microscopy. The sDNA/SC films with various doses of sDNA (sDNA/SC weight ratios of 1:5, 1:10, and 1:20) were used for in vitro cell cultures to evaluate their growth potentials of normal human dermal fibroblasts (NHDF) and normal human epidermal keratinocytes (NHEK). It was found that NHDF proliferation was increased by sDNA conjugation, whereas NHEK proliferation was dose-dependently inhibited. In light of the in vitro results, the appropriate dose of sDNA for in vivo study was determined to be the ratio of 1:10. For the implantation in full-thickness skin defects in rat dorsal region, the sDNA/SC films were reinforced by incorporating them on a porous SC sponge, because the sDNA/SC films exhibited early contraction and inadequate morphologic stability when implanted in vivo. The regenerated tissue in the sDNA/SC sponge group showed similar morphology to native dermis, while the SC sponge group without sDNA showed epithelial overgrowth, indicating that additional sDNA could reduce epidermal overgrowth. Furthermore, blood capillary formation was significantly enhanced in the sDNA/SC sponge group when compared to the SC sponge group. In conclusion, the results suggest that the sDNA/SC composite could be a potential wound dressing for clinical applications.
Collapse
Affiliation(s)
- XuanRi Shen
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Sapporo, Hokkaido, 060-8628, Japan.
| | | | | | | | | | | |
Collapse
|
138
|
|
139
|
Valls MD, Cronstein BN, Montesinos MC. Adenosine receptor agonists for promotion of dermal wound healing. Biochem Pharmacol 2008; 77:1117-24. [PMID: 19041853 DOI: 10.1016/j.bcp.2008.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/26/2022]
Abstract
Wound healing is a dynamic and complex process that involves a well-coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of chronic poorly healing wounds. Recent studies have demonstrated that A(2A) adenosine receptor agonists promote wound healing in normal and diabetic animals and one such agonist, Sonedenoson, is currently being evaluated as a prospective new therapy of diabetic foot ulcers. We will review the mechanisms by which adenosine receptor activation affects the function of the cells and tissues that participate in wound healing, emphasizing the potential beneficial impact of adenosine receptor agonists in diabetic impaired healing.
Collapse
Affiliation(s)
- María D Valls
- Department de Farmacologia, Universitat de València, Burjassot, Spain
| | | | | |
Collapse
|
140
|
Galeano M, Bitto A, Altavilla D, Minutoli L, Polito F, Calò M, Lo Cascio P, Stagno d'Alcontres F, Squadrito F. Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse. Wound Repair Regen 2008; 16:208-17. [PMID: 18318806 DOI: 10.1111/j.1524-475x.2008.00361.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Healing of diabetic wounds still remains a critical medical problem. Polydeoxyribonucleotide (PDRN), a compound having a mixture of deoxyribonucleotide polymers, stimulates the A2 purinergic receptor with no toxic or adverse effect. We studied the effects of PDRN in diabetes-related healing defect using an incisional skin-wound model produced on the back of female diabetic mice (db+/db+) and their normal littermates (db+/+m). Animals were treated daily for 12 days with PDRN (8 mg/kg/ip) or its vehicle (100 muL 0.9%NaCl). Mice were killed 3, 6, and 12 days after skin injury to measure vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, to assay angiogenesis and tissue remodeling through histological evaluation, and to study CD31, Angiopoietin-1 and Transglutaminase-II. Furthermore, we measured wound breaking strength at day 12. PDRN injection in diabetic mice resulted in an increased VEGF message (vehicle=1.0+/-0.2 n-fold vs. beta-actin; PDRN=1.5+/-0.09 n-fold vs. beta-actin) and protein wound content on day 6 (vehicle=0.3+/-0.07 pg/wound; PDRN=0.9+/-0.1 pg/wound). PDRN injection improved the impaired wound healing and increased the wound-breaking strength in diabetic mice. PDRN also caused a marked increase in CD31 immunostaining and induced Transglutaminase-II and Angiopoietin-1 expression. Furthermore, the concomitant administration of 3,7-dimethyl-1-propargilxanthine, a selective adenosine A2A receptor antagonist, abolished PDRN positive effects on healing. However, 3,7-dimethyl-1-propargilxanthine alone did not affect wound healing in both diabetic mice and normal littermates. These results suggest that PDRN might be useful in wound disorders associated with diabetes.
Collapse
|
141
|
Polydeoxyribonucleotide improves angiogenesis and wound healing in experimental thermal injury. Crit Care Med 2008; 36:1594-602. [PMID: 18434887 DOI: 10.1097/ccm.0b013e318170ab5c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Polydeoxyribonucleotide contains a mixture of nucleotides and interacts with adenosine receptors, stimulating vascular endothelial growth factor expression and wound healing. The purpose of this study was to investigate the effect of polydeoxyribonucleotide on experimental burn wounds. DESIGN Randomized experiment. SETTING Research laboratory at a university hospital. SUBJECTS Thermal injury in mice. INTERVENTIONS Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second-degree burn. Animals were randomized to receive either polydeoxyribonucleotide (8 mg/kg/day intraperitoneally for 14 days) or its vehicle alone (0.9% NaCl solution at 100 microL/day intraperitoneally). On days 7 and 14 the animals were killed. Blood was collected for tumor necrosis factor-alpha measurement; burn areas were used for histologic and immunohistochemical examination, for the evaluation of vascular endothelial growth factor and nitric oxide synthases by Western blot, and for the determination of wound nitric oxide products. MEASUREMENTS AND MAIN RESULTS Polydeoxyribonucleotide increased burn wound re-epithelialization and reduced the time to final wound closure. Polydeoxyribonucleotide improved healing of burn wound through increased epithelial proliferation and maturation of the extracellular matrix as confirmed by fibronectin and laminin immunostaining. Polydeoxyribonucleotide also improved neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of platelet-endothelial cell adhesion molecule-1. Furthermore, polydeoxyribonucleotide blunted serum tumor necrosis factor-alpha and enhanced inducible nitric oxide synthase and vascular endothelial growth factor expression and the wound content of nitric oxide products. CONCLUSIONS Our study suggests that polydeoxyribonucleotide may be an effective therapeutic approach to improve clinical outcomes after thermal injury.
Collapse
|
142
|
Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 2008; 153 Suppl 1:S457-64. [PMID: 18311159 DOI: 10.1038/bjp.2008.23] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The intensity and duration of host responses are determined by protective mechanisms that control tissue injury by dampening down inflammation. Adenosine generation and consequent effects, mediated via A2A adenosine receptors (A2AR) on effector cells, play a critical role in the pathophysiological modulation of these responses in vivo. Adenosine is both released by hypoxic cells/tissues and is also generated from extracellular nucleotides by ecto-enzymes e.g. CD39 (ENTPD1) and CD73 that are expressed by the vasculature and immune cells, in particular by T regulatory cell. In general, these adenosinergic mechanisms minimize the extent of collateral damage to host tissues during the course of inflammatory reactions. However, induction of suppressive pathways might also cause escape of pathogens and permit dissemination. In addition, adenosinergic responses may inhibit immune responses while enhancing vascular angiogenic responses to malignant cells that promote tumor growth. Novel drugs that block A2AR-adenosinergic effects and/or adenosine generation have the potential to boost pathogen destruction and to selectively destroy malignant tissues. In the latter instance, future treatment modalities might include novel 'anti-adenosinergic' approaches that augment immune clearance of malignant cells and block permissive angiogenesis. This review addresses several possible pharmacological modalities to block adenosinergic pathways and speculates on their future application together with impacts on human disease.
Collapse
|
143
|
|
144
|
|
145
|
Macedo L, Pinhal-Enfield G, Alshits V, Elson G, Cronstein BN, Leibovich SJ. Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1774-88. [PMID: 17974599 DOI: 10.2353/ajpath.2007.061048] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synergy between Toll-like receptor (TLR) and adenosine A2A receptor (A2AR) signaling switches macrophages from production of inflammatory cytokines such as tumor necrosis factor-alpha to production of the angiogenic growth factor vascular endothelial growth factor (VEGF). We show in this study that this switch critically requires signaling through MyD88, IRAK4, and TRAF6. Macrophages from mice lacking MyD88 (MyD88(-/-)) or IRAK4 (IRAK4(-/-)) lacked responsiveness to TLR agonists and did not respond to A2AR agonists by expressing VEGF. Suppression of TRAF6 expression with siRNA in RAW264.7 macrophages also blocked their response to TLR and A2AR agonists. Excisional skin wounds in MyD88(-/-) mice healed at a markedly slower rate than wounds in wild-type MyD88(+/+) mice, showing delayed contraction, decreased and delayed granulation tissue formation, and reduced new blood vessel density. Although macrophages accumulated to higher levels in MyD88(-/-) wounds than in controls, expression of VEGF and HIF1-alpha mRNAs was elevated in MyD88(+/+) wounds. CGS21680, an A2AR agonist, promoted repair in MyD88(+/+) wounds and stimulated angiogenesis but had no significant effect on healing of MyD88(-/-) wounds. These results suggest that the synergistic interaction between TLR and A(2A)R signaling observed in vitro that switches macrophages from an inflammatory to an angiogenic phenotype also plays a role in wound healing in vivo.
Collapse
Affiliation(s)
- Lisa Macedo
- Department of Cell Biology and Molecular Medicine, The Cardiovascular Research Institute, New Jersey Medical School, UMDNJ, 185 South Orange Ave., Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
146
|
Frantz S, Ertl G, Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. ACTA ACUST UNITED AC 2007; 4:444-54. [PMID: 17653117 DOI: 10.1038/ncpcardio0938] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 05/09/2007] [Indexed: 12/16/2022]
Abstract
The innate immune system detects highly conserved, relatively invariant structural motifs of pathogens. Toll-like receptors (TLRs) have been identified as the primary innate immune receptors. TLRs distinguish between different patterns of pathogens and activate a rapid innate immune response; however, TLRs can also be activated by host-derived molecules. In addition to being expressed in immune cells, TLRs are expressed in other tissues, such as those of the cardiovascular system. TLRs could, therefore, be a key link between cardiovascular disease development and the immune system. Indeed, evidence that TLR activation contributes to the development and progression of atherosclerosis, cardiac dysfunction in sepsis, and congestive heart failure, is convincing. Although much has been learned about TLR activation in cellular components of the cardiovascular system, the role individual TLR family members have in the pathophysiology of cardiovascular diseases and hence in clinical practice remains to be defined. Here we review the rapid progress that has been made in this field, which has improved our understanding of vascular as well as myocardial TLR function in basic and clinical science.
Collapse
Affiliation(s)
- Stefan Frantz
- Universität Würzburg, Medizinische Klinik und Poliklinik I, Herzkreislauf-Zentrum, Würzburg, Germany.
| | | | | |
Collapse
|
147
|
Clark AN, Youkey R, Liu X, Jia L, Blatt R, Day YJ, Sullivan GW, Linden J, Tucker AL. A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ Res 2007; 101:1130-8. [PMID: 17901362 DOI: 10.1161/circresaha.107.150110] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine is a proangiogenic purine nucleoside released from ischemic and hypoxic tissues. Of the 4 adenosine receptor (AR) subtypes (A1, A2A, A2B, and A3), the A2 and A3 have been previously linked to the modulation of angiogenesis. We used the chicken chorioallantoic membrane (CAM) model to determine whether A1 AR activation affects angiogenesis. We cloned and pharmacologically characterized chicken AR subtypes to evaluate the selectivity of various agonists and antagonists. Application of the A1 AR-selective agonist N6-cyclopentyladenosine (CPA; 100 nmol/L) to the CAM resulted in a 40% increase in blood vessel number (P<0.01), which was blocked by the A1 AR-selective antagonist C8-(N-methylisopropyl)-amino-N6-(5'-endohydroxy)-endonorbornan-2-yl-9-methyladenine (WRC-0571; 1 micromol/L). Selective A2A AR agonists did not stimulate angiogenesis in the CAM. In an ex vivo rat aortic ring model of angiogenesis that includes cocultured endothelial cells, fibroblasts, and smooth muscle cells, 50 nmol/L CPA did not directly stimulate capillary formation; however, medium from human mononuclear cells pretreated with CPA, but not vehicle, increased capillary formation by 48% (P<0.05). This effect was blocked by WRC-0571 (1.5 micromol/L) or anti-VEGF antibody (1 microg/mL). CPA (5 nmol/L) stimulated a 1.7-fold increase in VEGF release from the mononuclear cells. This is the first study to show that A1 AR activation induces angiogenesis. Stimulation of A2 ARs on endothelial cells results in proliferation and tube formation, and A2 and A3 ARs on inflammatory cells modulate release of angiogenic factors. We conclude that adenosine promotes a coordinated angiogenic response through its interactions with multiple receptors on multiple cell types.
Collapse
Affiliation(s)
- Adam N Clark
- Department of Internal Medicine, Cardiovascular Division, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Che J, Chan ESL, Cronstein BN. Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 2007; 72:1626-36. [PMID: 17872970 DOI: 10.1124/mol.107.038760] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prior studies indicate that adenosine and the adenosine A2A receptor play a role in hepatic fibrosis by a mechanism that has been proposed to involve direct stimulation of hepatic stellate cells (HSCs). The objective of this study was to determine whether primary hepatic stellate cells produce collagen in response to adenosine (via activation of adenosine A2A receptors) and to further determine the signaling mechanisms involved in adenosine A2A receptor-mediated promotion of collagen production. Cultured primary HSCs increase their collagen production after stimulation of the adenosine A2A receptor in a dose-dependent fashion. Likewise, LX-2 cells, a human HSC line, increases expression of procollagen alphaI and procollagen alphaIII mRNA and their translational proteins, collagen type I and type III, in response to pharmacological stimulation of adenosine A2A receptors. Based on the use of pharmacological inhibitors of signal transduction, adenosine A2A receptor-mediated stimulation of procollagen alphaI mRNA and collagen type I collagen expression were regulated by signal transduction involving protein kinase A, src, and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (erk), but surprisingly, adenosine A2A receptor-mediated stimulation of procollagen alphaIII mRNA and collagen type III protein expression depend on the activation of p38 mitogen-activated protein kinase (MAPK), findings confirmed by small interfering RNA-mediated knockdown of src, erk1, erk2, and p38 MAPK. These results indicate that adenosine A2A receptors signal for increased collagen production by multiple signaling pathways. These results provide strong evidence in support of the hypothesis that adenosine receptors promote hepatic fibrosis, at least in part, via direct stimulation of collagen expression and that signaling for collagen production proceeds via multiple pathways.
Collapse
Affiliation(s)
- Jiantu Che
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
149
|
Montesinos MC, Takedachi M, Thompson LF, Wilder TF, Fernández P, Cronstein BN. The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5'-nucleotidase: findings in a study of ecto-5'-nucleotidase gene-deficient mice. ACTA ACUST UNITED AC 2007; 56:1440-5. [PMID: 17469101 DOI: 10.1002/art.22643] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Evidence from in vitro, in vivo, and clinical studies indicates that adenosine mediates, at least in part, the antiinflammatory effects of methotrexate (MTX), although the biochemical events involved have not been fully elucidated. This study was undertaken to investigate whether MTX exerts antiinflammatory effects in mice that lack ecto-5'-nucleotidase (ecto-5'-NT) (CD73) and are unable to convert AMP to adenosine extracellularly, in order to determine whether adenosine is generated intracellularly and transported into the extracellular space or is generated from the extracellular dephosphorylation of AMP to adenosine. METHODS Male CD73 gene-deficient mice and age-matched wild-type mice received intraperitoneal injections of saline or MTX (1 mg/kg/week) for 5 weeks. Air pouches were induced on the back by subcutaneous injection of air; 6 days later, inflammation was induced by injection of carrageenan. RESULTS Fewer leukocytes, but higher levels of tumor necrosis factor alpha (TNFalpha), accumulated in the air pouches of vehicle-treated CD73-deficient mice compared with those of wild-type mice. As expected, MTX treatment reduced the number of leukocytes and TNFalpha levels in the exudates and increased exudate adenosine concentrations in wild-type mice. In contrast, MTX did not reduce exudate leukocyte counts or TNFalpha levels or increase exudate adenosine levels in CD73-deficient mice. CONCLUSION These results demonstrate that the antiinflammatory actions of MTX are mediated, at least in part, by increased release of adenine nucleotides that are hydrolyzed extracellularly to adenosine via an ecto-5'-NT-dependent pathway.
Collapse
|
150
|
Peart JN, Headrick JP. Adenosinergic cardioprotection: Multiple receptors, multiple pathways. Pharmacol Ther 2007; 114:208-21. [PMID: 17408751 DOI: 10.1016/j.pharmthera.2007.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/18/2022]
Abstract
Adenosine, formed primarily via hydrolysis of 5'-AMP, has been historically dubbed a "retaliatory" metabolite due to enhanced local release and beneficial actions during cellular/metabolic stress. From a cardiovascular perspective, evidence indicates the adenosinergic system is essential in mediation of intrinsic protection (e.g., pre- and postconditioning) and determining myocardial resistance to insult. Modulation of adenosine and its receptors thus remains a promising, though as yet not well-realized, approach to amelioration of injury in ischemic-reperfused myocardium. Adenosine exerts effects through A(1), A(2A), A(2B), and A(3) adenosine receptor subtypes (A(1)AR, A(2A)AR, A(2B)AR, and A(3)AR), which are all expressed in myocardial and vascular cells, and couple to G proteins to trigger a range of responses (generally, but not always, beneficial). Adenosine can also enhance tolerance to injurious stimuli via receptor-independent metabolic effects. Given adenosines contribution to preconditioning, it is no surprise that postreceptor signaling typically mimics that associated with preconditioning. This involves activation/translocation of PKC, PI3 kinase, and MAPKs, with ultimate effects at the level of mitochondrial targets-the mitochondrial K(ATP) channel and/or the mitochondrial permeability transition pore (mPTP). Nonetheless, differences in cytoprotective signaling and actions of the different adenosine receptor subtypes have been recently revealed. Our understanding of adenosinergic cytoprotection continues to evolve, with roles for the A(2) subtypes emerging, together with evidence of essential receptor "cross-talk" in mediation of protection. This review focuses on current research into adenosine-mediated cardioprotection, highlighting recent findings which, together with a wealth of prior knowledge, may ultimately facilitate adenosinergic approaches to clinical cardiac protection.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Center, Griffith University, PMB 50 Gold Coast Mail Center, QLD, 4217, Australia.
| | | |
Collapse
|