101
|
Belmont L, Rabbe N, Antoine M, Cathelin D, Guignabert C, Kurie J, Cadranel J, Wislez M. Expression of TLR9 in tumor-infiltrating mononuclear cells enhances angiogenesis and is associated with a worse survival in lung cancer. Int J Cancer 2013; 134:765-77. [PMID: 23913633 DOI: 10.1002/ijc.28413] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 06/23/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate and adaptive immune responses against microbial infection, tissue injury and cancer. Ligands of TLR9 have been developed as therapy in non-small-cell lung carcinoma (NSCLC). However, phase III clinical trials in metastatic NSCLC were negative. Our objective was to determine whether TLR9 affects tumor growth. We generated a mouse model of lung adenocarcinoma (ADC) mutated for K-ras (K-ras(LA1) ), with and without TLR9 inactivation (K-ras(LA1) TLR9(-/-) and K-ras(LA1) TLR9(+/+) , respectively). TLR9 was functionally expressed only in mononuclear cells of K-ras(LA1) TLR9(+/+) mice. These mice had significantly worse survival and a higher tumor burden than K-ras(LA1) TLR9(-/-) mice. Lung tumors were analyzed for 24 cytokines/growth factors using Bio-Plex multiplex bead-based assays. Factor VIII was assessed by immunochemistry. Tumors from K-ras(LA1) TLR9(+/+) mice were characterized by an angiogenic phenotype with higher concentrations of vascular endothelial growth factor (VEGF) and higher microvessel density than from K-ras(LA1) TLR9(-/-) mice. LKR13 cells, an ADC cell line derived from K-ras(LA1) mice, were subcutaneously injected into TLR9(-/-) and TLR9(+/+) mice. Syngeneic tumors regressed in TLR9(-/-) but not in TLR9(+/+) mice. Peripheral blood mononuclear cells from TLR9(-/-) mice released less VEGF than those from TLR9(+/+) mice. In 61 patients with early-stage NSCLC, TLR9 was expressed in mononuclear cells that infiltrated tumors, as assessed by immunochemistry, and contributed to worse survival. Our results suggest that TLR9 expression in mononuclear cells was associated with an angiogenic phenotype and promoted lung cancer progression. These findings may aid clinical development of TLR9 ligands to treat cancers.
Collapse
Affiliation(s)
- Laure Belmont
- Service de Pneumologie, AP-HP, Hôpital Tenon, Paris, France; Equipe de Recherche 2, GRC UPMC-04, Université Paris 6 Pierre et Marie Curie, Service de Pneumologie, Hôpital Tenon, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Sindrilaru A, Scharffetter-Kochanek K. Disclosure of the Culprits: Macrophages-Versatile Regulators of Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:357-368. [PMID: 24587973 DOI: 10.1089/wound.2012.0407] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Indexed: 01/07/2023] Open
Abstract
SIGNIFICANCE Macrophages are invariably present and tightly regulate all phases of adult wound healing, including inflammation, granulation tissue formation, and matrix deposition with the unavoidable outcome of scar formation. In response to environmental cues, macrophages mount a "classical" pro-inflammatory M1 activation as opposed to the "alternative" M2 phenotype, with wound macrophages having long been viewed as M2 macrophages. RECENT ADVANCES Recent studies rather point to large temporal and phenotypic variations of wound macrophages subsets. Therefore, a functional classification of macrophages according to wound-healing phases appears to better meet the in vivo complexity. In an ideal but simplistic scenario grossly reflecting normal wound healing, initial tissue injury induces inflammatory M1-like macrophages, which, upon engulfment of apoptotic neutrophils or in response to other inflammation dampening stimuli, switch toward anti-inflammatory M2-like macrophages and further toward growth factor-producing pro-fibrotic M2a-like macrophages. Although not yet documented for skin wounds, a subset of metalloproteinase-producing fibrolytic M2c-like macrophages may contribute to fibrosis resolution. Recent work identified a diversity of novel macrophage phenotypes associated with normal and pathologic wound healing, most of them ranging out of the M1/M2 paradigm. Iron-overloaded M1-like macrophages represent such a novel phenotypic subset driving the non-healing state of chronic venous leg ulcers. CRITICAL ISSUES Despite growing evidence that macrophage dysfunctions are, at least in part, responsible for pathologic wound healing, including nonhealing wounds and excessive scar formation, these are hardly specifically addressed even by modern therapeutic strategies. FUTURE DIRECTIONS If characterized in sufficient detail, distinct macrophage subsets and their impaired functions provide ideal targets for improving wound healing.
Collapse
Affiliation(s)
- Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | |
Collapse
|
103
|
Dinasarapu AR, Gupta S, Ram Maurya M, Fahy E, Min J, Sud M, Gersten MJ, Glass CK, Subramaniam S. A combined omics study on activated macrophages--enhanced role of STATs in apoptosis, immunity and lipid metabolism. Bioinformatics 2013; 29:2735-43. [PMID: 23981351 DOI: 10.1093/bioinformatics/btt469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Macrophage activation by lipopolysaccharide and adenosine triphosphate (ATP) has been studied extensively because this model system mimics the physiological context of bacterial infection and subsequent inflammatory responses. Previous studies on macrophages elucidated the biological roles of caspase-1 in post-translational activation of interleukin-1β and interleukin-18 in inflammation and apoptosis. However, the results from these studies focused only on a small number of factors. To better understand the host response, we have performed a high-throughput study of Kdo2-lipid A (KLA)-primed macrophages stimulated with ATP. RESULTS The study suggests that treating mouse bone marrow-derived macrophages with KLA and ATP produces 'synergistic' effects that are not seen with treatment of KLA or ATP alone. The synergistic regulation of genes related to immunity, apoptosis and lipid metabolism is observed in a time-dependent manner. The synergistic effects are produced by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and activator protein (AP)-1 through regulation of their target cytokines. The synergistically regulated cytokines then activate signal transducer and activator of transcription (STAT) factors that result in enhanced immunity, apoptosis and lipid metabolism; STAT1 enhances immunity by promoting anti-microbial factors; and STAT3 contributes to downregulation of cell cycle and upregulation of apoptosis. STAT1 and STAT3 also regulate glycerolipid and eicosanoid metabolism, respectively. Further, western blot analysis for STAT1 and STAT3 showed that the changes in transcriptomic levels were consistent with their proteomic levels. In summary, this study shows the synergistic interaction between the toll-like receptor and purinergic receptor signaling during macrophage activation on bacterial infection. AVAILABILITY Time-course data of transcriptomics and lipidomics can be queried or downloaded from http://www.lipidmaps.org. CONTACT shankar@ucsd.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ashok Reddy Dinasarapu
- Department of Bioengineering, San Diego Super Computer Center, Department of Cellular and Molecular Medicine and Department of Chemistry and Biochemistry, University of California San Diego, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Adenosine 2A receptor antagonist prevented and reversed liver fibrosis in a mouse model of ethanol-exacerbated liver fibrosis. PLoS One 2013; 8:e69114. [PMID: 23874883 PMCID: PMC3715448 DOI: 10.1371/journal.pone.0069114] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/06/2013] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The effect of moderate alcohol consumption on liver fibrosis is not well understood, but evidence suggests that adenosine may play a role in mediating the effects of moderate ethanol on tissue injury. Ethanol increases the concentration of adenosine in the liver. Adenosine 2A receptor (A2AR) activation is known to enhance hepatic stellate cell (HSC) activation and A2AR deficient mice are protected from fibrosis in mice. Making use of a novel mouse model of moderate ethanol consumption in which female C57BL/6J mice were allowed continued access to 2% (vol/vol) ethanol (11% calories) or pair-fed control diets for 2 days, 2 weeks or 5 weeks and superimposed with exposure to CCl4, we tested the hypothesis that moderate ethanol consumption increases fibrosis in response to carbon tetrachloride (CCl4) and that treatment of mice with an A2AR antagonist prevents and/or reverses this ethanol-induced increase in liver fibrosis. Neither the expression or activity of CYP2E1, required for bio-activation of CCl4, nor AST and ALT activity in the plasma were affected by ethanol, indicating that moderate ethanol did not increase the direct hepatotoxicity of CCl4. However, ethanol feeding enhanced HSC activation and exacerbated liver fibrosis upon exposure to CCl4. This was associated with an increased sinusoidal angiogenic response in the liver. Treatment with A2AR antagonist both prevented and reversed the ability of ethanol to exacerbate liver fibrosis. CONCLUSION Moderate ethanol consumption exacerbates hepatic fibrosis upon exposure to CCl4. A2AR antagonism may be a potential pharmaceutical intervention to decrease hepatic fibrosis in response to ethanol.
Collapse
|
105
|
Abstract
Adenosine, a purine nucleoside generated by the dephosphorylation of adenine nucleotides, is a potent endogenous physiologic and pharmacologic regulator of many functions. Adenosine was first reported to inhibit the inflammatory actions of neutrophils nearly 30 years ago and since then the role of adenosine and its receptors as feedback regulators of inflammation has been well established. Here we review the effects of adenosine, acting at its receptors, on neutrophil and monocyte/macrophage function in inflammation. Moreover, we review the role of adenosine in mediating the anti-inflammatory effects of methotrexate, the anchor drug in the treatment of Rheumatoid Arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, New Jersey Medical School, University of Medicine and Dentistry of New JerseyNewark, NJ, USA
| | - Bruce Cronstein
- Department of Medicine, New York University School of MedicineNew York, NY, USA
| |
Collapse
|
106
|
Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5' upstream promoter. Genes Immun 2013; 14:147-53. [PMID: 23328845 DOI: 10.1038/gene.2012.60] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Non-activated macrophages express low levels of A(2A)Rs and lipopolysaccharides (LPS) upregulates A(2A)R expression in an NF-κB-dependent manner. The murine A(2A)R gene is encoded by three exons, m1, m2 and m3. Exons m2 and m3 are conserved, while m1 encodes the 5' untranslated UTR. Three m1 variants have been defined, m1A, m1B and m1C, with m1C being farthest from the transcriptional start site. LPS upregulates A(2A)Rs in primary murine peritoneal and bone-marrow-derived macrophages and RAW264.7 cells by selectively splicing m1C to m2, through a promoter located upstream of m1C. We have cloned ∼1.6 kb upstream of m1C into pGL4.16(luc2CP/Hygro) promoterless vector. This construct in RAW 264.7 cells responds to LPS, and adenosine receptor agonists augmented LPS responsiveness. The NF-κB inhibitors BAY-11 and triptolide inhibited LPS-dependent induction. Deletion of a key proximal NF-κB site (402-417) abrogated LPS responsiveness, while deletion of distal NF-κB and C/EBPβ sites did not. Site-directed mutagenesis of CREB (309-320), STAT1 (526-531) and AP2 (566-569) sites had little effect on LPS and adenosine receptor agonist responsiveness; however, mutation of a second STAT1 site (582-588) abrogated this responsiveness. Further analysis of this promoter should provide valuable insights into regulation of A(2A)R expression in macrophages in response to inflammatory stimuli.
Collapse
|
107
|
Polverini PJ. Angiogenesis and wound healing: basic discoveries, clinical implications, and therapeutic opportunities. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/etp.12005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
108
|
Sachdev U, Cui X, McEnaney R, Wang T, Benabou K, Tzeng E. TLR2 and TLR4 mediate differential responses to limb ischemia through MyD88-dependent and independent pathways. PLoS One 2012; 7:e50654. [PMID: 23209800 PMCID: PMC3510193 DOI: 10.1371/journal.pone.0050654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Introduction The danger signal HMGB1 is released from ischemic myocytes, and mediates angiogenesis in the setting of hindlimb ischemia. HMGB1 is a ligand for innate immune receptors TLR2 and TLR4. While both TLR2 and TLR4 signal through myeloid differentiation factor 88 (MyD88), TLR4 also uniquely signals through TIR-domain-containing adapter-inducing interferon-β (TRIF). We hypothesize that TLR2 and TLR4 mediate ischemic myocyte regeneration and angiogenesis in a manner that is dependent on MyD88 signaling. Methods Mice deficient in TLR2, TLR4, MyD88 and TRIF underwent femoral artery ligation in the right hindlimb. Laser Doppler perfusion imaging was used to assess the initial degree of ischemia and the extent of perfusion recovery. Muscle regeneration, necrosis and fat replacement at 2 weeks post-ligation were assessed histologically and vascular density was quantified by immunostaining. In vitro, endothelial tube formation was evaluated in matrigel in the setting of TLR2 and TLR4 antagonism. Results While control and TLR4 KO mice demonstrated prominent muscle regeneration, both TLR2 KO and TRIF KO mice exhibited marked necrosis with significant inflammatory cell infiltrate. However, MyD88 KO mice had a minimal response to the ischemic insult with little evidence of injury. This observation could not be explained by differences in perfusion recovery which was similar at two weeks in all the strains of mice. TLR2 KO mice demonstrated abnormal vessel morphology compared to other strains and impaired tube formation in vitro. Discussion TLR2 and TRIF signaling are necessary for muscle regeneration after ischemia while MyD88 may instead mediate muscle injury. The absence of TLR4 did not affect muscle responses to ischemia. TLR4 may mediate inflammatory responses through MyD88 that are exaggerated in the absence of TLR2. Additionally, the actions of TLR4 through TRIF may promote regenerative responses that are required for recovery from muscle ischemia.
Collapse
Affiliation(s)
- Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Xiangdong Cui
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Ryan McEnaney
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Tian Wang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kelly Benabou
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Edith Tzeng
- Surgical Service, Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania, United States of America
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
109
|
Chhabra P, Linden J, Lobo P, Okusa MD, Brayman KL. The immunosuppressive role of adenosine A2A receptors in ischemia reperfusion injury and islet transplantation. Curr Diabetes Rev 2012; 8:419-33. [PMID: 22934547 PMCID: PMC4209001 DOI: 10.2174/157339912803529878] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 02/08/2023]
Abstract
Activation of adenosine A2A receptors (A2AR) reduces inflammation by generally inhibiting the activation of pro-inflammatory cells, decreasing endothelial adhesion molecule expression and reducing the release of proinflammatory cytokine mediators. Numerous preclinical studies using selective A2AR agonists, antagonists, A2AR knockout as well as chimeric mice have suggested the therapeutic potential of A2AR agonists for the treatment of ischemia reperfusion injury (IRI) and autoimmune diseases. This review summarizes the immunosuppressive actions of A2AR agonists in murine IRI models of liver, kidney, heart, lung and CNS, and gives details on the cellular effects of A2AR activation in neutrophils, macrophages, dendritic cells, natural killer cells, NKT cells, T effector cells and CD4+CD25+FoxP3+ T regulatory cells. This is discussed in the context of cytokine mediators involved in inflammatory cascades. Whilst the role of adenosine receptor agonists in various models of autoimmune disease has been well-documented, very little information is available regarding the role of A2AR activation in type 1 diabetes mellitus (T1DM). An overview of the pathogenesis of T1DM as well as early islet graft rejection in the immediate peri-transplantation period offers insight regarding the use of A2AR agonists as a beneficial intervention in clinical islet transplantation, promoting islet graft survival, minimizing early islet loss and reducing the number of islets required for successful transplantation, thereby increasing the availability of this procedure to a greater number of recipients. In summary, the use of A2AR agonists as a clinical intervention in IRI and as an adjunct to clinical immunesuppressive regimen in islet transplantation is highlighted.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, P.O. Box 800709, Charlottesville, VA 22908-0709, USA.
| | | | | | | | | |
Collapse
|
110
|
Sefcik LS, Petrie Aronin CE, Botchwey EA. Engineering vascularized tissues using natural and synthetic small molecules. Organogenesis 2012; 4:215-27. [PMID: 19337401 DOI: 10.4161/org.4.4.6963] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 12/21/2022] Open
Abstract
Vascular growth and remodeling are complex processes that depend on the proper spatial and temporal regulation of many different signaling molecules to form functional vascular networks. The ability to understand and regulate these signals is an important clinical need with the potential to treat a wide variety of disease pathologies. Current approaches have focused largely on the delivery of proteins to promote neovascularization of ischemic tissues, most notably VEGF and FGF. Although great progress has been made in this area, results from clinical trials are disappointing and safer and more effective approaches are required. To this end, biological agents used for therapeutic neovascularization must be explored beyond the current well-investigated classes. This review focuses on potential pathways for novel drug discovery, utilizing small molecule approaches to induce and enhance neovascularization. Specifically, four classes of new and existing molecules are discussed, including transcriptional activators, receptor selective agonists and antagonists, natural product-derived small molecules, and novel synthetic small molecules.
Collapse
Affiliation(s)
- Lauren S Sefcik
- Department of Biomedical Engineering; and Department of Orthopaedic Surgery; University of Virginia; Charlottesville, Virginia USA; Center for Immunity, Inflammation and Regenerative Medicine (CIIR); University of Virginia; Charlottesville, Virginia USA
| | | | | |
Collapse
|
111
|
New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol 2012; 8:522-33. [DOI: 10.1038/nrrheum.2012.106] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
112
|
Hamad EA, Zhu W, Chan TO, Myers V, Gao E, Li X, Zhang J, Song J, Zhang XQ, Cheung JY, Koch W, Feldman AM. Cardioprotection of controlled and cardiac-specific over-expression of A(2A)-adenosine receptor in the pressure overload. PLoS One 2012; 7:e39919. [PMID: 22792196 PMCID: PMC3391213 DOI: 10.1371/journal.pone.0039919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
Adenosine binds to three G protein-coupled receptors (R) located on the cardiomyocyte (A(1)-R, A(2A)-R and A(3)-R) and provides cardiac protection during both ischemic and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress. Because of its ability to increase cardiac contractility and heart rate, we hypothesized that enhanced signaling through A(2A)-R would protect the heart during the stress of transverse aortic constriction (TAC). Using a cardiac-specific and inducible promoter, we selectively over-expressed A(2A)-R in FVB mice. Echocardiograms were obtained at baseline, 2, 4, 8, 12, 14 weeks and hearts were harvested at 14 weeks, when WT mice developed a significant decrease in cardiac function, an increase in end systolic and diastolic dimensions, a higher heart weight to body weight ratio (HW/BW), and marked fibrosis when compared with sham-operated WT. More importantly, these changes were significantly attenuated by over expression of the A(2A)-R. Furthermore, WT mice also demonstrated marked increases in the hypertrophic genes β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF)--changes that are mediated by activation of the transcription factor GATA-4. Levels of the mRNAs encoding β-MHC, ANP, and GATA-4 were significantly lower in myocardium from A(2A)-R TG mice after TAC when compared with WT and sham-operated controls. In addition, three inflammatory factors genes encoding cysteine dioxygenase, complement component 3, and serine peptidase inhibitor, member 3N, were enhanced in WT TAC mice, but their expression was suppressed in A(2A)-R TG mice. A(2A)-R over-expression is protective against pressure-induced heart failure secondary to TAC. These cardioprotective effects are associated with attenuation of GATA-4 expression and inflammatory factors. The A(2A)-R may provide a novel new target for pharmacologic therapy in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Eman A. Hamad
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Weizhong Zhu
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tung O. Chan
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Valerie Myers
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erhe Gao
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xue Li
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Jin Zhang
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Jianliang Song
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xue-Qian Zhang
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph Y. Cheung
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Walter Koch
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Arthur M. Feldman
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
113
|
Weber C, Müller C, Podszuweit A, Montino C, Vollmer J, Forsbach A. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology 2012; 136:64-77. [PMID: 22260507 DOI: 10.1111/j.1365-2567.2012.03559.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Toll-like receptors (TLRs) 3, 7, 8 and 9 stimulate innate immune responses upon recognizing pathogen-derived nucleic acids. TLR3 is located on the cell surface and in cellular endosomes and recognizes double-stranded viral RNA or the synthetic mimic poly rI:rC. Recently, unformulated small interfering RNA (siRNA) has been reported as ligand for surface-expressed murine TLR3. Blockage of TLR3 is achieved by single-stranded DNA. We confirm and expand the observation that poly rI:rC-mediated TLR3 immune activation is blocked in a sequence-, length-, backbone- and CpG-dependent manner. However, human TLR3 is not activated by siRNA, which may be the result of differences in the amino acid composition of the TLR3 loop 1 of mice and humans. Although CD14 was previously described as a co-receptor for murine TLR3 and other nucleic acid-recognizing TLRs, human CD14 acts only as co-receptor to human TLR9, but not TLR3, TLR7 or TLR8. We show that CD14 up-regulates the TLR9 immune response of A, B and C-class oligodeoxynucleotides but down-regulates the phosphoro-diester version of B-class oligodeoxynucleotides.
Collapse
Affiliation(s)
- Cordula Weber
- Pfizer Oligonucleotide Therapeutics Unit - Coley Pharmaceutical GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
114
|
Zhou X, Luo L, Dressel W, Shadier G, Krumbiegel D, Schmidtke P, Zepp F, Meyer CU. Cordycepin is an Immunoregulatory Active Ingredient of Cordyceps sinensis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 36:967-80. [DOI: 10.1142/s0192415x08006387] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have reported that cordycepin, an adenosine derivative from the fungus Cordyceps, increased interleukin (IL)-10 expression, decreased IL-2 expression and suppressed T lymphocyte activity. In the present study, we further characterized the regulatory effects of cordycepin on human immune cells. Moreover, a traditional Chinese drug, Cordyceps sinensis (CS) that contains cordycepin, was also investigated. Cytometric Bead Array (CBA) was used to determine the concentrations of IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, TNF-α and IFN-γ in culture of peripheral blood mononuclear cells (PBMCs). The results showed that both cordycepin and CS up-regulated IL-10, IL-1β, IL-6, IL-8 and TNF-α; at the same time, they suppressed phytohemagglutinin (PHA)-induced production of IL-2, IL-4, IL-5, IFN-γ and IL-12. As compared to cordycepin, CS displayed its regulatory effects on IL-2 and IL-10 in a similar dose-dependent manner even with higher efficiency. The binding activity of transcription factors in a human monocytic cell line THP-1 was tested by the trans-AM method, and a higher binding activity of SP1 and SP3 was observed in cordycepin or CS treated cells compared to the control. These results led to the opinion that cordycepin and CS pleiotropically affected the actions of immune cells and cytokine network in a similar fashion. Cordycepin could be an important immunoregulatory active ingredient in Cordyceps sinensis. In addition, CS may contain substances which possess synergism with cordycepin, as CS showed a higher efficiency in the production of IL-10 and IL-2 than cordycepin. However, merits of these effects in pharmacology and clinical medicine have yet to be proven and the precise mechanism of these immune regulatory actions should be researched.
Collapse
Affiliation(s)
- Xiaoxia Zhou
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Liping Luo
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Waike Dressel
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Gulibahaer Shadier
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Doreen Krumbiegel
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Peter Schmidtke
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fred Zepp
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Claudius U. Meyer
- Laboratory for Paediatric Immunology and Infectious Diseases, Children's Hospital, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
115
|
Haskó G, Pacher P. Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 2012; 32:865-9. [PMID: 22423038 PMCID: PMC3387535 DOI: 10.1161/atvbaha.111.226852] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/20/2012] [Indexed: 01/16/2023]
Abstract
Following its release into the extracellular space in response to metabolic disturbances, the endogenous nucleoside adenosine exerts a range of immunomodulatory effects and cells of the mononuclear phagocyte system are among its major targets. Adenosine governs mononuclear phagocyte functions via 4 G-protein-coupled cell membrane receptors, which are denoted A(1), A(2A), A(2B), and A(3) receptors. Adenosine promotes osteoclast differentiation via A(1) receptors and alters monocyte to dendritic cell differentiation through A(2B) receptors. Adenosine downregulates classical macrophage activation mainly through A(2A) receptors. In contrast A(2B) receptor activation upregulates alternative macrophage activation. Adenosine promotes angiogenesis, which is mediated by inducing the production of vascular endothelial growth factor by mononuclear phagocytes through A(2A), A(2B), and A(3) receptors. By regulating mononuclear phagocyte function adenosine dictates the course of inflammatory and vascular diseases and cancer.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, 07103, USA.
| | | |
Collapse
|
116
|
Csóka B, Selmeczy Z, Koscsó B, Németh ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM, Gause WC, Leibovich SJ, Haskó G. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 2012; 26:376-86. [PMID: 21926236 PMCID: PMC3250237 DOI: 10.1096/fj.11-190934] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023]
Abstract
Adenosine has been implicated in suppressing the proinflammatory responses of classically activated macrophages induced by Th1 cytokines. Alternative macrophage activation is induced by the Th2 cytokines interleukin (IL)-4 and IL-13; however, the role of adenosine in governing alternative macrophage activation is unknown. We show here that adenosine treatment of IL-4- or IL-13-activated macrophages augments the expression of alternative macrophage markers arginase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and macrophage galactose-type C-type lectin-1. The stimulatory effect of adenosine required primarily A(2B) receptors because the nonselective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased both arginase activity (EC(50)=261.8 nM) and TIMP-1 production (EC(50)=80.67 nM), and both pharmacologic and genetic blockade of A(2B) receptors prevented the effect of NECA. A(2A) receptors also contributed to the adenosine augmentation of IL-4-induced TIMP-1 release, as both adenosine and NECA were less efficacious in augmenting TIMP-1 release by A(2A) receptor-deficient than control macrophages. Of the transcription factors known to drive alternative macrophage activation, CCAAT-enhancer-binding protein β was required, while cAMP response element-binding protein and signal transducer and activator of transcription 6 were dispensable in mediating the effect of adenosine. We propose that adenosine receptor activation suppresses inflammation and promotes tissue restitution, in part, by promoting alternative macrophage activation.
Collapse
Affiliation(s)
| | | | | | - Zoltán H. Németh
- Department of Surgery
- Department of Surgery, Morristown Memorial Hospital, Morristown, New Jersey, USA
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Peter J. Murray
- Department of Infectious Diseases and
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Diane Kepka-Lenhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | - Sidney M. Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; and
| | | | - S. Joseph Leibovich
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - György Haskó
- Department of Surgery
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
117
|
Suppression of collagen-induced arthritis by intra-articular lentiviral vector-mediated delivery of Toll-like receptor 7 short hairpin RNA gene. Gene Ther 2011; 19:752-60. [PMID: 22089492 DOI: 10.1038/gt.2011.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Knockdown of Toll-like receptors (TLRs) is a novel therapeutic strategy in treating patients with rheumatoid arthritis (RA). We examined the effects of lentiviral vector-mediated delivery of TLR7 short hairpin RNA gene (Lt.shTLR7) on collagen-induced arthritis (CIA). After being immunized on days 0 and 7, Sprague-Dawley rats received intra-articular (i.a.) injection of Lt.shTLR7 or scramble control vector on days 7 and 10. The therapeutic effects were evaluated by measuring ankle circumferences, articular index, and radiographic and histological scores on killing on day 16. Microvessel densities, vascular endothelial growth factor (VEGF) levels, pro-inflammatory cytokine concentrations and T-cell numbers within the synovial tissues were measured. Moreover, VEGF and pro-inflammatory cytokine concentrations in culture supernatants from TLR7-transfected synovial fibroblasts (SFs) stimulated with imiquimod or endogenous ligands were examined. There were significant reduction in ankle circumferences, articular indexes, and radiographic and histological scores. Microvessel densities, VEGF concentrations, interleukin (IL)-1β and IL-6 levels and T-cell densities within synovial tissues were significantly lower. Induction of VEGF, IL-1β and IL-6 production from stimulated SFs was significantly suppressed. Taken together, these data demonstrate the effects of i.a. lentiviral vector-mediated delivery of shTLR7 RNA gene on inhibition of CIA, and implicate the manipulation of TLR7 as a potential therapeutic strategy in RA patients.
Collapse
|
118
|
Scherer EBS, Savio LEB, Vuaden FC, Ferreira AGK, Bogo MR, Bonan CD, Wyse ATS. Chronic mild hyperhomocysteinemia alters ectonucleotidase activities and gene expression of ecto-5'-nucleotidase/CD73 in rat lymphocytes. Mol Cell Biochem 2011; 362:187-94. [PMID: 22045065 DOI: 10.1007/s11010-011-1141-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/22/2011] [Indexed: 12/20/2022]
Abstract
Since mild hyperhomocysteinemia is a risk factor for cardiovascular and cerebral diseases and extracellular nucleotides/nucleosides, which are controlled by the enzymatic action of ectonucleotidases, can induce an immune response, in the present study, we investigated the effect of chronic mild hyperhomocysteinemia on ectonucleotidase activities and expression in lymphocytes from mesenteric lymph nodes and serum of adult rats. For the chronic chemically induced mild hyperhomocysteinemia, Hcy (0.03 μmol/g of body weight) or saline (control) were administered subcutaneously from the 30th to the 60th day of life. Results showed that homocysteine significantly decreased ATP, ADP, and AMP hydrolysis in lymphocytes of adult rats. E-NTPDases transcriptions were not affected, while the ecto-5'-nucleotidase transcription was significantly decreased in mesenteric lymph nodes of hyperhomocysteinemic rats. ATP, ADP, and AMP hydrolysis were not affected by homocysteine in rat serum. Our findings suggest that Hcy in levels similar to considered risk factor to development of vascular diseases modulates the ectonucleotidases, which could lead to a pro-inflammatory status.
Collapse
Affiliation(s)
- Emilene B S Scherer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
119
|
Ryzhov S, Novitskiy SV, Goldstein AE, Biktasova A, Blackburn MR, Biaggioni I, Dikov MM, Feoktistov I. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:6120-9. [PMID: 22039302 DOI: 10.4049/jimmunol.1101225] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Extracellular adenosine and purine nucleotides are elevated in many pathological situations associated with the expansion of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs). Therefore, we tested whether adenosinergic pathways play a role in MDSC expansion and functions. We found that A(2B) adenosine receptors on hematopoietic cells play an important role in accumulation of intratumoral CD11b(+)Gr1(high) cells in a mouse Lewis lung carcinoma model in vivo and demonstrated that these receptors promote preferential expansion of the granulocytic CD11b(+)Gr1(high) subset of MDSCs in vitro. Flow cytometry analysis of MDSCs generated from mouse hematopoietic progenitor cells revealed that the CD11b(+)Gr-1(high) subset had the highest levels of CD73 (ecto-5'-nucleotidase) expression (Δmean fluorescence intensity [MFI] of 118.5 ± 16.8), followed by CD11b(+)Gr-1(int) (ΔMFI of 57.9 ± 6.8) and CD11b(+)Gr-1(-/low) (ΔMFI of 12.4 ± 1.0) subsets. Even lower levels of CD73 expression were found on Lewis lung carcinoma tumor cells (ΔMFI of 3.2 ± 0.2). The high levels of CD73 expression in granulocytic CD11b(+)Gr-1(high) cells correlated with high levels of ecto-5'-nucleotidase enzymatic activity. We further demonstrated that the ability of granulocytic MDSCs to suppress CD3/CD28-induced T cell proliferation was significantly facilitated in the presence of the ecto-5'-nucleotidase substrate 5'-AMP. We propose that generation of adenosine by CD73 expressed at high levels on granulocytic MDSCs may promote their expansion and facilitate their immunosuppressive activity.
Collapse
Affiliation(s)
- Sergey Ryzhov
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Wuest T, Zheng M, Efstathiou S, Halford WP, Carr DJJ. The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization. PLoS Pathog 2011; 7:e1002278. [PMID: 21998580 PMCID: PMC3188529 DOI: 10.1371/journal.ppat.1002278] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/02/2011] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes. Herpes simplex virus-type 1 is the leading cause of infectious corneal blindness in the industrialized world. Most of the morbidity associated with the virus is due to the host response to episodic reactivation of latent virus. Corneal immunologic privilege is associated with a number of factors including the absence of blood and lymphatic vessels. Conversely, corneal hem (blood)- and lymph-angiogenesis driven by inflammation correlate with the loss of privilege. Neovascularization is a common phenomenon in HSV-1 keratitis that correlates with poor prognosis. We have previously discovered HSV-1 elicits corneal lymphangiogenesis through a unique mechanism involving vascular endothelial growth factor (VEGF)-A independent of that described for other insults including transplantation or bacterial infection. However, the viral-encoded product(s) that elicit host production of VEGF-A is(are) unknown. In this paper, we have identified infected cell protein-4 (ICP4) as the primary virus-encoded product that drives VEGF-A expression. As VEGF-A is involved in driving neovascularization associated with tumor growth and metastasis, proteins that influence transcriptional regulation of VEGF-A may be useful in the development of adjunct therapy for such disparate diseases as cancer and HSV-1 keratitis.
Collapse
MESH Headings
- Animals
- Cell Line
- Eye/pathology
- Eye/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/pathogenicity
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence/methods
- Neovascularization, Pathologic/genetics
- Plasmids
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, DNA
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Todd Wuest
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Min Zheng
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stacey Efstathiou
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - William P. Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Daniel J. J. Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
121
|
Cronstein BN. Adenosine receptors and fibrosis: a translational review. F1000 BIOLOGY REPORTS 2011; 3:21. [PMID: 22003368 PMCID: PMC3186039 DOI: 10.3410/b3-21] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adenosine—a purine nucleoside generated extracellularly from adenine nucleotides released by cells as a result of direct stimulation, hypoxia, trauma, or metabolic stress—is a well-known physiologic and pharmacologic agent. Recent studies demonstrate that adenosine, acting at its receptors, promotes wound healing by stimulating both angiogenesis and matrix production. Subsequently, adenosine and its receptors have also been found to promote fibrosis (excess matrix production) in the skin, lungs, and liver, but to diminish cardiac fibrosis. A commonly ingested adenosine receptor antagonist, caffeine, blocks the development of hepatic fibrosis, an effect that likely explains the epidemiologic finding that coffee drinking, in a dose-dependent fashion, reduces the likelihood of death from liver disease. Accordingly, adenosine may be a good target for therapies that prevent fibrosis of the lungs, liver, and skin.
Collapse
Affiliation(s)
- Bruce N Cronstein
- Department of Medicine, Division of Translational Medicine, NYU School of Medicine 550 First Avenue, New York, NY 10016 USA
| |
Collapse
|
122
|
Ha T, Liu L, Kelley J, Kao R, Williams D, Li C. Toll-like receptors: new players in myocardial ischemia/reperfusion injury. Antioxid Redox Signal 2011; 15:1875-93. [PMID: 21091074 PMCID: PMC3159106 DOI: 10.1089/ars.2010.3723] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune and inflammatory responses have been implicated in myocardial ischemia/reperfusion (I/R) injury. However, the mechanisms by which innate immunity and inflammatory response are involved in myocardial I/R have not been elucidated completely. Recent studies highlight the role of Toll-like receptors (TLRs) in the induction of innate immune and inflammatory responses. Growing evidence has demonstrated that TLRs play a critical role in myocardial I/R injury. Specifically, deficiency of TLR4 protects the myocardium from ischemic injury, whereas modulation of TLR2 induces cardioprotection against ischemic insult. Importantly, cardioprotection induced by modulation of TLRs involves activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, suggesting that there is a crosstalk between TLRs and PI3K/Akt signaling pathways. In addition, TLRs also associate with other coreceptors, such as macrophage scavenger receptors in the recognition of their ligands. TLRs are also involved in the induction of angiogenesis, modulation of stem cell function, and expression of microRNA, which are currently important topic areas in myocardial I/R. Understanding how TLRs contribute to myocardial I/R injury could provide basic scientific knowledge for the development of new therapeutic approaches for the treatment and management of patients with heart attack.
Collapse
Affiliation(s)
- Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have many functions in wounds, including host defence, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound and that the influence of these cells on each stage of repair varies with the specific phenotype. Although the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation or fibrosis under certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of nonhealing and poorly healing wounds. As a result of advances in the understanding of this multifunctional cell, the macrophage continues to be an attractive therapeutic target, both to reduce fibrosis and scarring, and to improve healing of chronic wounds.
Collapse
|
124
|
Power Coombs MR, Belderbos ME, Gallington LC, Bont L, Levy O. Adenosine modulates Toll-like receptor function: basic mechanisms and translational opportunities. Expert Rev Anti Infect Ther 2011; 9:261-9. [PMID: 21342073 DOI: 10.1586/eri.10.158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous purine metabolite whose concentration in human blood plasma rises from nanomolar to micromolar concentrations during the inflammatory process. Leukocytes express seven-transmembrane adenosine receptors whose engagement modulates Toll-like receptor-mediated cytokine responses, in part via modulation of intracellular cyclic adenosine monophosphate. Adenosine analogs are used clinically to treat arrhythmias and apnea of prematurity. Herein, we consider the potential of adenosine analogs as innate immune response modifiers to prevent and/or treat infection.
Collapse
Affiliation(s)
- Melanie R Power Coombs
- Department of Medicine/Infectious Diseases, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
125
|
Haas B, Leonard F, Ernens I, Rodius S, Vausort M, Rolland-Turner M, Devaux Y, Wagner DR. Adenosine reduces cell surface expression of toll-like receptor 4 and inflammation in response to lipopolysaccharide and matrix products. J Cardiovasc Transl Res 2011; 4:790-800. [PMID: 21538184 DOI: 10.1007/s12265-011-9279-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/11/2011] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that Toll-like receptor 4 (TLR4) is not only involved in innate immunity but is also an important mediator of adverse left ventricular remodeling and heart failure following acute myocardial infarction (MI). TLR4 is activated by lipopolysaccharide (LPS) but also by products of matrix degradation such as hyaluronic acid and heparan sulfate. Although cardioprotective properties of adenosine (Ado) have been extensively studied, its potential to interfere with TLR4 activation is unknown. We observed that TLR4 pathway is activated in white blood cells from MI patients. TLR4 mRNA expression correlated with troponin T levels (R (2) = 0.75; P = 0.01) but not with levels of white blood cells and C-reactive protein. Ado downregulated TLR4 expression at the surface of human macrophages (-50%, P < 0.05). Tumor necrosis factor-α production induced by the TLR4 ligands LPS, hyaluronic acid, and heparan sulfate was potently inhibited by Ado (-75% for LPS, P < 0.005). This effect was reproduced by the A2A Ado receptor agonist CGS21680 and the non-selective agonist NECA and was inhibited by the A2A antagonist SCH58261 and the A2A/A2B antagonist ZM241,385. In contrast, Ado induced a 3-fold increase of TLR4 mRNA expression (P = 0.008), revealing the existence of a feedback mechanism to compensate for the loss of TLR4 expression at the cell surface. In conclusion, the TLR4 pathway is activated after MI and correlates with infarct severity but not with the extent of inflammation. Reduction of TLR4 expression by Ado may therefore represent an important strategy to limit remodeling post-MI.
Collapse
Affiliation(s)
- Benjamin Haas
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, 120 route d'Arlon 1150, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Warren GL, Hulderman T, Liston A, Simeonova PP. Toll-like and adenosine receptor expression in injured skeletal muscle. Muscle Nerve 2011; 44:85-92. [PMID: 21488059 DOI: 10.1002/mus.22001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Many aspects of skeletal muscle regeneration are now considered to be controlled by the innate immune system, specifically macrophages, but the mechanisms for activation and modulation of the innate immune system during injury are not well understood. METHODS We analyzed the expression of toll-like receptors (TLRs) and adenosine receptors during traumatic skeletal muscle injury. mRNA expression and immunostaining of these receptors were evaluated in mouse skeletal muscle injured by freezing. RESULTS Expression of nearly all mammalian TLRs was induced at 1 and/or 3 days postinjury with a common trend for higher expression at day 3. Injury also elicited a dramatic increase in the expression of adenosine receptors A(2B) and A(3) but not A(1) and A(2A) . CONCLUSIONS Both receptor types may be potential targets for stimulation of skeletal muscle tissue regeneration and functional restoration after injury.
Collapse
Affiliation(s)
- Gordon L Warren
- Division of Physical Therapy, Georgia State University, P.O. Box 4019, Atlanta, Georgia 30302, USA.
| | | | | | | |
Collapse
|
127
|
Ruiz-García A, Monsalve E, Novellasdemunt L, Navarro-Sabaté A, Manzano A, Rivero S, Castrillo A, Casado M, Laborda J, Bartrons R, Díaz-Guerra MJM. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem 2011; 286:19247-58. [PMID: 21464136 DOI: 10.1074/jbc.m110.190298] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Macrophages activated through Toll receptor triggering increase the expression of the A(2A) and A(2B) adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A(2A) and A(2B) receptors, we demonstrate that the A(2A) receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A(2B) receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A(2) receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages.
Collapse
Affiliation(s)
- Almudena Ruiz-García
- Facultad de Medicina, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Oliveira CJF, Sá-Nunes A, Francischetti IMB, Carregaro V, Anatriello E, Silva JS, Santos IKFDM, Ribeiro JMC, Ferreira BR. Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J Biol Chem 2011; 286:10960-9. [PMID: 21270122 DOI: 10.1074/jbc.m110.205047] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-α while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of ∼110 pmol/μl) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) ∼100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.
Collapse
Affiliation(s)
- Carlo José F Oliveira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Nhu QM, Shirey KA, Pennini ME, Stiltz J, Vogel SN. Proteinase-activated receptor 2 activation promotes an anti-inflammatory and alternatively activated phenotype in LPS-stimulated murine macrophages. Innate Immun 2011; 18:193-203. [PMID: 21239455 DOI: 10.1177/1753425910395044] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Proteinase-activated receptor 2 (PAR(2)), a 7-transmembrane G protein-coupled receptor, contributes to inflammation either positively or negatively in different experimental systems. Previously, we reported that concurrent activation of PAR(2) and TLRs in human lung and colonic epithelial cells resulted in a synergistic increase in NF-κB-mediated gene expression, but a down-regulation of IRF-3-mediated gene expression. In this study, the effect of PAR(2) activation on LPS-induced TLR4 signaling was examined in primary murine macrophages. The PAR(2) activation of wild-type macrophages enhanced LPS-induced expression of the anti-inflammatory cytokine, IL-10, while suppressing gene expression of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12. Similar PAR(2)-mediated effects on LPS-stimulated IL-10 and IL-12 mRNA were also observed in vivo. In contrast, PAR 2-/- macrophages exhibited diminished LPS-induced IL-10 mRNA and protein expression and downstream STAT3 activation, but increased KC mRNA and protein. PAR(2) activation also enhanced both rIL-4- and LPS-induced secretion of IL-4 and IL-13, and mRNA expression of alternatively activated macrophage (AA-M) markers, e.g. arginase-1, mannose receptor, Ym-1. Thus, in the context of a potent inflammatory stimulus like LPS, PAR(2) activation acts to re-establish tissue homeostasis by dampening the production of inflammatory mediators and causing the differentiation of macrophages that may contribute to the development of a Th2 response.
Collapse
Affiliation(s)
- Quan M Nhu
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
130
|
de Groot D, Hoefer IE, Grundmann S, Schoneveld A, Haverslag RT, van Keulen JK, Bot PT, Timmers L, Piek JJ, Pasterkamp G, de Kleijn DP. Arteriogenesis requires toll-like receptor 2 and 4 expression in bone-marrow derived cells. J Mol Cell Cardiol 2011; 50:25-32. [DOI: 10.1016/j.yjmcc.2010.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 12/14/2022]
|
131
|
Vuaden FC, Savio LEB, Bastos CMA, Bogo MR, Bonan CD. Adenosine A(2A) receptor agonist (CGS-21680) prevents endotoxin-induced effects on nucleotidase activities in mouse lymphocytes. Eur J Pharmacol 2010; 651:212-7. [PMID: 21114987 DOI: 10.1016/j.ejphar.2010.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 10/20/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022]
Abstract
Adenosine 5'-triphosphate (ATP) released during inflammation presents proinflammatory properties. Adenosine, produced by catabolism of ATP, is an anti-inflammatory compound. Considering the role of ATP and adenosine in inflammation and the importance of ectonucleotidases in the maintenance of their extracellular levels, we investigated the effect of a selective agonist of the adenosine A(2A) receptor (CGS-21680) on ectonucleotidase activities and gene expression patterns in lymphocytes from mice submitted to an endotoxemia model. Animals were injected intraperitoneally with 12mg/kg Lipopolyssacharide (LPS) and/or 0.5mg/kg CGS-21680 or saline. Nucleotidase activities were determined in lymphocytes from mesenteric lymph nodes and analysis of ectonucleotidase expression was carried out by a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Exposure to endotoxemia promoted an increase in nucleotide hydrolysis. When CGS-21680 was administered concomitantly with LPS, this increase was prevented for ATP, adenosine 5'-monophosphate (AMP), and p-Nitrophenyl thymidine 5'-monophosphate (p-Nph-5'-TMP) hydrolysis. However, when CGS-21680 was administered 24h after LPS injection, the increase was not reversed. The expression pattern of ectonucleotidases was not altered between LPS and LPS plus CGS-21680 groups, indicating that the transcriptional control was not involved on the effect exerted for CGS-21680. These results showed an enhancement of extracellular nucleotide catabolism in lymphocytes after induction of endotoxemia, which was prevented, but not reversed by CGS-21680 administration. These findings suggest that the control of nucleotide and nucleoside levels exerted by CGS-21680 could contribute to the modulation of the inflammatory process promoted by adenosine A(2A) agonists.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
132
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
133
|
Sato T, Yamamoto M, Shimosato T, Klinman DM. Accelerated wound healing mediated by activation of Toll-like receptor 9. Wound Repair Regen 2010; 18:586-93. [PMID: 20946144 PMCID: PMC3010290 DOI: 10.1111/j.1524-475x.2010.00632.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wound healing is mediated through complex interactions between circulating immune cells and local epithelial and endothelial cells. Elements of the innate immune system are triggered when Toll-like receptors (TLR) are stimulated by their cognate ligands, and previous studies suggest that such interactions can accelerate wound healing. This work examines the effect of treating excisional skin biopsies with immunostimulatory CpG oligodeoxynucleotides (ODN) that trigger via TLR9. Results indicate that CpG (but not control) ODN accelerate wound closure and reduce the total wound area exposed over time by >40% (p<0.01). TLR9 knockout mice, a strain unresponsive to the immunomodulatory effects of CpG stimulation, are unresponsive to ODN treatment and exhibit a general delay in healing when compared with wild-type mice. CpG ODN administration promoted the influx of macrophages to the wound site and increased the production of vascular endothelial growth factor, expediting neovascularization of the wound bed (p<0.01 for both parameters). Stimulation via TLR9 thus represents a novel strategy to accelerate wound healing.
Collapse
Affiliation(s)
- Takashi Sato
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Masaki Yamamoto
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Takeshi Shimosato
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| | - Dennis M. Klinman
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
134
|
Wu WK, Llewellyn OPC, Bates DO, Nicholson LB, Dick AD. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. Immunobiology 2010; 215:796-803. [PMID: 20692534 DOI: 10.1016/j.imbio.2010.05.025] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/20/2010] [Indexed: 01/08/2023]
Abstract
Vascular endothelial growth factor A (VEGF) is critical for vascular remodelling during tissue repair subsequent to inflammation or injury, but under pathological conditions, VEGF induces tissue damaging angiogenesis. Macrophages generate VEGF that supports angiogenesis, when they adapt to their environment and respond with a co-ordinated set of signals to promote or resolve inflammation. Depending on the stimulus, the phenotype of macrophage activation is broadly classified into M1 (NOS2(+)) and M2 (arginase-1(+)). In recent studies, IL-10, an anti-inflammatory cytokine that suppresses the M1 phenotype, has been shown to dampen the angiogenic switch and subsequent neovascularisation. However, as we show here, these effects are context dependent. In this study, we have demonstrated that IL-10 inhibits M1 bone marrow-derived macrophages (BMDMs) VEGF, stimulated by LPS/CGS21680 (adenosine A2A receptor agonist), but does not prevent VEGF production from M2 macrophages stimulated with prostaglandin E2 (PGE2). Furthermore, we show that hypoxic-conditioned BMDM generated VEGF was maintained in the presence of IL-10, but was suppressed when concomitantly stimulated with IFN-gamma. Finally, LPS/PGE2 generated an arginase-1(+) M2 macrophage that in addition to generating VEGF produced significant quantities of IL-10. Under these conditions, neither in IL-10 deficient macrophages nor following IL-10 neutralization was VEGF production affected. Our results indicate IL-10 suppressed M1 but not M2 derived VEGF, and that activation signals determined the influence of IL-10 on VEGF production. Consequently, therapies to suppress macrophage activation that as a result generate IL-10, or utilising IL-10 as a potential anti-angiogenic therapy, may result in a paradoxical support of neovascularisation and thus on-going tissue damage or aberrant repair.
Collapse
Affiliation(s)
- Wei-Kang Wu
- Department of Clinical Sciences South Bristol, University of Bristol, University Walk, Bristol, UK
| | | | | | | | | |
Collapse
|
135
|
Himer L, Csóka B, Selmeczy Z, Koscsó B, Pócza T, Pacher P, Németh ZH, Deitch EA, Vizi ES, Cronstein BN, Haskó G. Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J 2010; 24:2631-40. [PMID: 20371613 DOI: 10.1096/fj.10-155192] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation-induced cell death (AICD) is initiated by T-cell receptor (TCR) restimulation of already activated and expanded peripheral T cells and is mediated through Fas/Fas ligand (FasL) interactions. Adenosine is a purine nucleoside signaling molecule, and its immunomodulatory effects are mediated by 4 G-protein-coupled receptors: A(1), A(2A), A(2B), and A(3). In this study, we investigated the role of A(2A) receptors in regulating CD4(+) T lymphocyte AICD. Our results showed that the selective A(2A) receptor agonist CGS21680 (EC(50)=15.2-32.6 nM) rescued mouse CD4(+) hybridomas and human Jurkat cells from AICD and that this effect was reversed by the selective A(2A) receptor antagonist ZM241385 (EC(50)=2.3 nM). CGS21680 decreased phosphatidylserine exposure on the membrane, as well as the cleavage of caspase-3, caspase-8 and poly(ADP-ribose) polymerase indicating that A(2A) receptor stimulation blocks the extrinsic apoptotic pathway. In addition, CGS21680 attenuated both Fas and FasL mRNA expression. This decrease in FasL expression was associated with decreased activation of the transcription factor systems NF-kappaB, NF-ATp, early growth response (Egr)-1, and Egr-3. The antiapoptotic effect of A(2A) receptor stimulation was mediated by protein kinase A. Together, these results demonstrate that A(2A) receptor activation suppresses the AICD of peripheral T cells.
Collapse
Affiliation(s)
- Leonóra Himer
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Granata F, Frattini A, Loffredo S, Staiano RI, Petraroli A, Ribatti D, Oslund R, Gelb MH, Lambeau G, Marone G, Triggiani M. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. THE JOURNAL OF IMMUNOLOGY 2010; 184:5232-41. [PMID: 20357262 DOI: 10.4049/jimmunol.0902501] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Angiogenesis and lymphangiogenesis mediated by vascular endothelial growth factors (VEGFs) are main features of chronic inflammation and tumors. Secreted phospholipases A(2) (sPLA(2)s) are overexpressed in inflammatory lung diseases and cancer and they activate inflammatory cells by enzymatic and receptor-mediated mechanisms. We investigated the effect of sPLA(2)s on the production of VEGFs from human macrophages purified from the lung tissue of patients undergoing thoracic surgery. Primary macrophages express VEGF-A, VEGF-B, VEGF-C, and VEGF-D at both mRNA and protein level. Two human sPLA(2)s (group IIA and group X) induced the expression and release of VEGF-A and VEGF-C from macrophages. Enzymatically-inactive sPLA(2)s were as effective as the active enzymes in inducing VEGF production. Me-Indoxam and RO092906A, two compounds that block receptor-mediated effects of sPLA(2)s, inhibited group X-induced release of VEGF-A. Inhibition of the MAPK p38 by SB203580 also reduced sPLA(2)-induced release of VEGF-A. Supernatants of group X-activated macrophages induced an angiogenic response in chorioallantoic membranes that was inhibited by Me-Indoxam. Stimulation of macrophages with group X sPLA(2) in the presence of adenosine analogs induced a synergistic increase of VEGF-A release and inhibited TNF-alpha production through a cooperation between A(2A) and A(3) receptors. These results demonstrate that sPLA(2)s induce production of VEGF-A and VEGF-C in human macrophages by a receptor-mediated mechanism independent from sPLA(2) catalytic activity. Thus, sPLA(2)s may play an important role in inflammatory and/or neoplastic angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Francescopaolo Granata
- Division of Clinical Immunology and Allergy and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Katsargyris A, Theocharis SE, Tsiodras S, Giaginis K, Bastounis E, Klonaris C. Enhanced TLR4 endothelial cell immunohistochemical expression in symptomatic carotid atherosclerotic plaques. Expert Opin Ther Targets 2010; 14:1-10. [PMID: 20001205 DOI: 10.1517/14728220903401294] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND PURPOSE Toll-like receptor-4 (TLR4) has been linked to the pathogenesis of atherosclerosis. Carotid atheroma endothelial cells (ECs) express TLR4, nevertheless correlations with cerebrovascular symptomatology, epidemiological and clinical variables remain unresolved. METHODS Carotid atherosclerotic plaques were obtained by standard carotid endarterectomy from 157 patients with carotid artery disease (84 asymptomatic - Group A, 73 symptomatic - Group B). TLR4 expression was detected by immunohistochemistry and TLR4 positivity, overexpression and intensity of immunostaining in ECs were correlated with cerebrovascular symptomatology, epidemiological and clinical variables. RESULTS A significant association was found between TLR4 positivity in ECs and the occurrence of any cerebrovascular event (overall response (OR): 2.85, 95% CI 1.33 - 6.11, p = 0.009). TLR4 overexpression and staining intensity in ECs were both significantly enhanced in symptomatic patients (p < 0.0001 and p = 0.003, respectively). These associations were stronger for the occurrence of a major cerebrovascular accident (CVA) compared with a transient ischemic attack (TIA) or amaurosis fugax. TLR4 expression in ECs was less prominent in statin users (OR: 0.25, 95%CI 0.1 - 0.58, p = 0.001], while it was enhanced in restenotic plaques compared with primary atherosclerotic lesions (p = 0.012). CONCLUSIONS TLR4 expression in ECs of carotid atheroma was enhanced in symptomatic patients with most commonly 'unstable' - 'more prone to rupture' carotid plaques.
Collapse
Affiliation(s)
- Athanasios Katsargyris
- National and Kapodistrian University of Athens, School of Medicine, LAIKON Hospital, Vascular Division, 1st Department of Surgery, Goudi, GR11527, Athens, Greece
| | | | | | | | | | | |
Collapse
|
138
|
Ernens I, Léonard F, Vausort M, Rolland-Turner M, Devaux Y, Wagner DR. Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochem Biophys Res Commun 2010; 392:351-6. [PMID: 20067761 DOI: 10.1016/j.bbrc.2010.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 11/28/2022]
Abstract
It is known from animal models that the cardioprotective nucleoside adenosine stimulates angiogenesis mainly through up-regulation of vascular endothelial growth factor (VEGF). Since macrophages infiltrate the heart after infarction and because adenosine receptors behave differently across species, we evaluated the effect of adenosine on VEGF in human macrophages. Adenosine dose-dependently up-regulated VEGF expression and secretion by macrophages from healthy volunteers. VEGF production was also increased by blockade of extracellular adenosine uptake with dipyridamole. This effect was exacerbated by the toll-like receptor-4 ligands heparan sulfate, hyaluronic acid and lipopolysaccharide, and was associated with an increase of hypoxia inducible factor-1alpha expression, the main transcriptional inducer of VEGF in hypoxic conditions. The agonist of the adenosine A2A receptor CGS21680 reproduced the increase of VEGF and the antagonist SCH58261 blunted it. In conclusion, these results provide evidence that activation of adenosine A2A receptor stimulates VEGF production in human macrophages. This study suggests that adenosine is a unique pro-angiogenic molecule that may be used to stimulate cardiac repair.
Collapse
Affiliation(s)
- Isabelle Ernens
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, Luxembourg
| | | | | | | | | | | |
Collapse
|
139
|
Greco N, Laughlin MJ. Umbilical cord blood stem cells for myocardial repair and regeneration. Methods Mol Biol 2010; 660:29-52. [PMID: 20680811 DOI: 10.1007/978-1-60761-705-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease remains a major cause of morbidity and mortality with substantial economic cost. There remains a need for therapeutic improvement for patients refractory to revascularization and those who redevelop occlusions following revascularization. Early evidence linked age-associated reductions in the levels of circulating marrow-derived hematopoietic stem cells (HSC), characterized by expression of early HSC markers CD133 and CD34, with the occurrence of cardiovascular events and associated death. Heart tissue has the endogenous ability to regenerate through the activation of resident cardiac stem cells or through recruitment of a stem cell population from other tissues, such as bone marrow. A number of clinical trials have utilized patient-derived autologous bone marrow-derived cells or whole BM uncultured mononuclear cells (MNC) infused or injected locally to augment angiogenesis. In most cases of treating animal models with human cells, the frequency of stem cell engraftment, the subsequent number of newly generated cardiomyocytes and vascular cells, and the augmentation of endogenous microvascular collateralization, either by deposition, transdifferentiation, and/or by cell fusion, appear to be too low to explain the significant cardiac improvement. Initially, it was hypothesized that cell therapy may work by cell replacement mechanisms, but recent evidence suggests alternatively that cell therapy works by providing trophic support to the injured tissues. An alternative hypothesis is that the transplanted stem cells release soluble cytokines and growth factors (i.e., paracrine factors) that function in a paracrine fashion, contributing to cardiac repair and regeneration by inducing cytoprotection and neovascularization. Another hypothesis which may also be operative is that cell therapy may mediate endogenous regeneration by the activation of resident cardiac stem cell. Well-established clinical trials have used cord blood for the treatment of hematological malignances (e.g., leukemia, lymphoma, myeloma) and nonmalignancies (e.g., in born errors of metabolism, sickle cells anemia, autoimmune diseases), but further advances in other areas of regenerative medicine (e.g., cardiac repair) will directly benefit with the use of cord blood. These clinical outcomes demonstrate that effector cells may be delivered by an allogeneic approach, where strict tissue matching may not be necessary and treatment may be achieved by making use of the trophic support capability of cell therapy and not by a cell replacement mechanism.
Collapse
Affiliation(s)
- Nicholas Greco
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
140
|
Wuest TR, Carr DJJ. VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. ACTA ACUST UNITED AC 2009; 207:101-15. [PMID: 20026662 PMCID: PMC2812544 DOI: 10.1084/jem.20091385] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammatory lymphangiogenesis plays a crucial role in the development of inflammation and transplant rejection. The mechanisms of inflammatory lymphangiogenesis during bacterial infection, toll-like receptor ligand administration, and wound healing are well characterized and depend on ligands for the vascular endothelial grow factor receptor (VEGFR) 3 that are produced by infiltrating macrophages. But inflammatory lymphangiogenesis in nonlymphoid tissues during chronic viral infection is unstudied. Herpes simplex virus 1 (HSV-1) infection of the cornea is a leading cause of blindness and depends on aberrant host immune responses to antigen within the normally immunologically privileged cornea. We report that corneal HSV-1 infection drives lymphangiogenesis and that corneal lymphatics persist past the resolution of infection. The mechanism of HSV-1–induced lymphangiogenesis was distinct from the described mechanisms of inflammatory lymphangiogenesis. HSV-1–elicited lymphangiogenesis was strictly dependent on VEGF-A/VEGFR-2 signaling but not on VEGFR-3 ligands. Macrophages played no role in the induction of lymphangiogenesis and were not a detectable source of VEGF-A. Rather, using VEGF-A reporter transgenic mice, we have identified infected epithelial cells as the primary source of VEGF-A during HSV-1 infection. Our results indicate that HSV-1 directly induces vascularization of the cornea through up-regulation of VEGF-A expression.
Collapse
Affiliation(s)
- Todd R Wuest
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
141
|
Grinberg S, Hasko G, Wu D, Leibovich SJ. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2439-53. [PMID: 19850892 DOI: 10.2353/ajpath.2009.090290] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toll-like receptor (TLR) 2, 4, 7, and 9 agonists, together with adenosine A(2A) receptor (A(2A)R) agonists, switch macrophages from an inflammatory (M1) to an angiogenic (M2-like) phenotype. This switch involves induction of A(2A)Rs by TLR agonists, down-regulation of tumor necrosis factor alpha (TNFalpha) and interleukin-12, and up-regulation of vascular endothelial growth factor (VEGF) and interleukin-10 expression. We show here that the TLR4 agonist lipopolysaccharide (LPS) induces rapid and specific post-transcriptional down-regulation of phospholipase C(PLC)beta1 and beta2 expression in macrophages by de-stabilizing their mRNAs. The PLCbeta inhibitor U73122 down-regulates TNFalpha expression by macrophages, and in the presence of A(2A)R agonists, up-regulates VEGF, mimicking the synergistic action of LPS with A(2A)R agonists. Selective down-regulation of PLCbeta2, but not PLCbeta1, using small-interfering RNA resulted in increased VEGF expression in response to A(2A)R agonists, but did not suppress TNFalpha expression. Macrophages from PLCbeta2(-/-) mice also expressed increased VEGF in response to A(2A)R agonists. LPS-mediated suppression of PLCbeta1 and beta2 is MyD88-dependent. In a model of endotoxic shock, LPS (35 microg/mouse, i.p.) suppressed PLCbeta1 and beta2 expression in spleen, liver, and lung of wild-type but not MyD88(-/-) mice. These studies indicate that LPS suppresses PLCbeta1 and beta2 expression in macrophages in vitro and in several tissues in vivo. These results suggest that suppression of PLCbeta2 plays an important role in switching M1 macrophages into an M2-like state.
Collapse
Affiliation(s)
- Stan Grinberg
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
142
|
Hara Y, Kuroda N, Inoue K, Sato T. Up-regulation of vascular endothelial growth factor expression by adenosine through adenosine A2 receptors in the rat tongue treated with endotoxin. Arch Oral Biol 2009; 54:932-42. [PMID: 19712927 DOI: 10.1016/j.archoralbio.2009.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 05/12/2009] [Accepted: 07/27/2009] [Indexed: 11/16/2022]
Abstract
The main focus of the present investigation is to evaluate a differential effect of adenosine on the up-regulation of vascular endothelial growth factor (VEGF) expression through adenosine A(2) receptors in the rat tongue treated with endotoxin (lipopolysaccharide: LPS). Angiogenesis in the rat tongue treated with LPS/incomplete Freund's adjuvant (IFA) or endotoxin/IFA/adenosine A(2) receptor (A(2)R) antagonists was examined using immunohistochemistry for LYVE-1, ED1, ED2, OX6, langerin and VEGF, and real-time polymerase chain reaction (PCR) for VEGF. The distributional density of both blood vessels and OX6(+) cells was significantly increased at day 8 after injection of LPS/IFA. The immunoreactive products of VEGF were intensely labelled in the cytoplasm of various antigen presenting cells (APCs) including dendritic cells (DCs) with double-immunofluorescence technique. Increase in VEGF mRNA expression level, the occupancy ratio of blood vessels, and the number of ED1(+), ED2(+), OX6(+), and langerin(+) cells was inhibited in the injured tongue of rats as a consequence of the treatment with A(2)R antagonists. The present results indicate that the LPS-induced adenosine might promote angiogenesis by the up-regulation of VEGF expression in macrophages/DCs through A(2) receptors. This suggests that the synergistic interaction between toll-like receptor (TLR) and A(2) receptor signalling observed in vivo plays an important role in oral mucosal wound healing.
Collapse
Affiliation(s)
- Yaiko Hara
- Department of Anatomy II, Tsurumi University School of Dental Medicine, Tsurumi-ku, Yokohama 230-8501, Japan
| | | | | | | |
Collapse
|
143
|
Zhou Y, Schneider DJ, Blackburn MR. Adenosine signaling and the regulation of chronic lung disease. Pharmacol Ther 2009; 123:105-16. [PMID: 19426761 PMCID: PMC2743314 DOI: 10.1016/j.pharmthera.2009.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 12/20/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A(2A)R and A(2B)R has promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A(1)R, A(2B)R and A(3)R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of these signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases.
Collapse
MESH Headings
- Acute Disease
- Adenosine/metabolism
- Adenosine Deaminase/genetics
- Adenosine Deaminase/physiology
- Animals
- Chronic Disease
- Disease Models, Animal
- Humans
- Lung Diseases, Interstitial/drug therapy
- Lung Diseases, Interstitial/immunology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/pathology
- Lung Diseases, Obstructive/drug therapy
- Lung Diseases, Obstructive/immunology
- Lung Diseases, Obstructive/metabolism
- Lung Diseases, Obstructive/pathology
- Purinergic P1 Receptor Agonists
- Purinergic P1 Receptor Antagonists
- Receptors, Purinergic P1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin St., Houston, Texas, 77030
| | - Daniel J. Schneider
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin St., Houston, Texas, 77030
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin St., Houston, Texas, 77030
| |
Collapse
|
144
|
van der Putten C, Zuiderwijk-Sick EA, van Straalen L, de Geus ED, Boven LA, Kondova I, IJzerman AP, Bajramovic JJ. Differential expression of adenosine A3 receptors controls adenosine A2A receptor-mediated inhibition of TLR responses in microglia. THE JOURNAL OF IMMUNOLOGY 2009; 182:7603-12. [PMID: 19494284 DOI: 10.4049/jimmunol.0803383] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microglia activation is a prominent feature in many neuroinflammatory disorders. Unrestrained activation can generate a chronic inflammatory environment that might lead to neurodegeneration and autoimmunity. Extracellular adenosine modulates cellular activation through adenosine receptor (ADORA)-mediated signaling. There are four ADORA subtypes that can either increase (A(2A) and A(2B) receptors) or decrease (A(1) and A(3) receptors) intracellular cyclic AMP levels. The expression pattern of the subtypes thus orchestrates the cellular response to extracellular adenosine. We have investigated the expression of ADORA subtypes in unstimulated and TLR-activated primary rhesus monkey microglia. Activation induced an up-regulation of A(2A) and a down-regulation of A(3) receptor (A(3)R) levels. The altered ADORA-expression pattern sensitized microglia to A(2A) receptor (A(2A)R)-mediated inhibition of subsequent TLR-induced cytokine responses. By using combinations of subtype-specific agonists and antagonists, we revealed that in unstimulated microglia, A(2A)R-mediated inhibitory signaling was effectively counteracted by A(3)R-mediated signaling. In activated microglia, the decrease in A(3)R-mediated signaling sensitized them to A(2A)R-mediated inhibitory signaling. We report a differential, activation state-specific expression of ADORA in microglia and uncover a role for A(3)R as dynamically regulated suppressors of A(2A)R-mediated inhibition of TLR-induced responses. This would suggest exploration of combinations of A(2A)R agonists and A(3)R antagonists to dampen microglial activation during chronic neuroinflammatory conditions.
Collapse
|
145
|
Ramanathan M, Luo W, Csóka B, Haskó G, Lukashev D, Sitkovsky MV, Leibovich SJ. Differential regulation of HIF-1alpha isoforms in murine macrophages by TLR4 and adenosine A(2A) receptor agonists. J Leukoc Biol 2009; 86:681-9. [PMID: 19477908 DOI: 10.1189/jlb.0109021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adenosine A(2A)R and TLR agonists synergize to induce an "angiogenic switch" in macrophages, down-regulating TNF-alpha and up-regulating VEGF expression. This switch involves transcriptional regulation of VEGF by HIF-1, transcriptional induction of HIF-1alpha by LPS (TLR4 agonist), and A(2A)R-dependent post-transcriptional regulation of HIF-1alpha stability. Murine HIF-1alpha is expressed as two mRNA isoforms: HIF-1alphaI.1 and -I.2, which contain alternative first exons and promoters. HIF-1alphaI.2 is expressed ubiquitously, and HIF-1alphaI.1 is tissue-specific. We investigated the regulation of these isoforms in macrophages by TLR4 and A(2A)R agonists. HIF-1alphaI.1 is induced strongly compared with HIF-1alphaI.2 upon costimulation with LPS and A(2A)R agonists (NECA or CGS21680). In unstimulated cells, the I.1 isoform constituted approximately 4% of HIF-1alpha transcripts; in LPS and NECA- or CGS21680-treated macrophages, this level was approximately 15%, indicating a substantial contribution of HIF-1alphaI.1 to total HIF-1alpha expression. The promoters of both isoforms were induced by LPS but not enhanced further by NECA, suggesting A(2A)R-mediated post-transcriptional regulation. LPS/NECA-induced expression of HIF-1alphaI.1 was down-regulated by Bay 11-7085 (NF-kappaB inhibitor) and ZM241385 (A(2A)R antagonist). Although VEGF and IL-10 expression by HIF-1alphaI.1-/- macrophages was equivalent to that of wild-type macrophages, TNF-alpha, MIP-1alpha, IL-6, IL-12p40, and IL-1beta expression was significantly greater, suggesting a role for HIF-1alphaI.1 in modulating expression of these cytokines. A(2A)R expression in unstimulated macrophages was low but was induced rapidly by LPS in a NF-kappaB-dependent manner. LPS-induced expression of A(2A)Rs and HIF-1alpha and A(2A)R-dependent HIF-1alpha mRNA and protein stabilization provide mechanisms for the synergistic effects of LPS and A(2A)R agonists on macrophage VEGF expression.
Collapse
Affiliation(s)
- Madhuri Ramanathan
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol 2009; 616:7-15. [PMID: 19464286 DOI: 10.1016/j.ejphar.2009.05.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 05/02/2009] [Accepted: 05/14/2009] [Indexed: 12/13/2022]
Abstract
Adenosine is a purine nucleoside, which is produced inside the body under metabolic stress like hypoxic conditions, acute or chronic inflammatory tissue insults. The synthesis of adenosine involves the catabolism of adenine nucleotides (ATP, ADP and AMP) by the action of extracellular ectonucleotidases i.e. CD39 or nucleoside triphosphate dephosphorylase (NTPD) and CD73 or 5'-ectonucleotidase. Once adenosine is released in the extracellular environment, it binds to different types of adenosine (i.e. adenosine A(1), A(2A), A(2B) and A(3) receptors) receptors expressed on various innate immune cells [Neutrophils, macrophages, mast cells, dendritic cells and natural killer cells]. Thus, depending on the type of adenosine receptor to which it binds, adenosine modulates innate immune response during various inflammatory conditions [i.e. chronic (cancer, asthma) as well as acute (sepsis, acute lung injury) inflammatory diseases]. This review summarizes the effect of adenosine on innate immunity and the use of adenosine receptor specific agonists or antagonists in various immunologic disorders (asthma, cancer, HIV-1 infection) as future immunomodulatory therapeutics.
Collapse
|
147
|
Wang H, Zhang W, Zhu C, Bucher C, Blazar BR, Zhang C, Chen JF, Linden J, Wu C, Huo Y. Inactivation of the adenosine A2A receptor protects apolipoprotein E-deficient mice from atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29:1046-52. [PMID: 19407243 DOI: 10.1161/atvbaha.109.188839] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall. The A(2A) receptor (A(2A)R) plays a central role in many antiinflammatory effects of adenosine. However, the role of A(2A)R in atherosclerosis is not clear. METHODS AND RESULTS The knockout of A(2A)R in apolipoprotein E-deficient (Apoe(-/-)/A(2A)R(-/-)) mice led to an increase in body weight and levels of blood cholesterol and proinflammatory cytokines, as well as the inflammation status of atherosclerotic lesions. Unexpectedly, Apoe(-/-)/A(2A)R(-/-) mice developed smaller lesions, as did chimeric Apoe(-/-) mice lacking A(2A)R in bone marrow-derived cells (BMDCs). The lesions of those mice exhibited a low density of foam cells and the homing ability of A(2A)R-deficient monocytes did not change. Increased foam cell apoptosis was detected in atherosclerotic lesions of Apoe(-/-)/A(2A)R(-/-) mice. In the absence of A(2A)R, macrophages incubated with oxidized LDL or in vivo-formed foam cells also exhibited increased apoptosis. A(2A)R deficiency in foam cells resulted in an increase in p38 mitogen-activated protein kinase (MAPK) activity. Inhibition of p38 phosphorylation abrogated the increased apoptosis of A(2A)R-deficient foam cells. CONCLUSIONS Inactivation of A(2A)R, especially in BMDCs, inhibits the formation of atherosclerotic leisons, suggesting that A(2A)R inactivation may be useful for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Eming SA, Hammerschmidt M, Krieg T, Roers A. Interrelation of immunity and tissue repair or regeneration. Semin Cell Dev Biol 2009; 20:517-27. [PMID: 19393325 DOI: 10.1016/j.semcdb.2009.04.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 12/16/2022]
Abstract
Although tremendous progress has been achieved in understanding the molecular basis of tissue repair and regeneration in diverse model organisms, the tendency of mammals for imperfect healing and scarring rather than regeneration remains unexplained. Moreover, conditions of impaired wound healing, e.g. non-healing skin ulcers associated with diabetes mellitus or vascular disease, as well as excessive scarring, represent major clinical and socio-economical problems. The development of innovative strategies to improve tissue repair and regeneration is therefore an important task that requires a more thorough understanding of the underlying molecular and cellular mechanisms. There is substantial evidence in different model organisms that the immune system is of primary importance in determining the quality of the repair response, including the extent of scarring, and the restoration of organ structure and function. Findings in diverse species support a correlation between the loss of regeneration capacity and maturation of immune competence. However, in recent years, there is increasing evidence on conditions where the immune response promotes repair and ensures local tissue protection. Hence, the relationship between repair and the immune response is complex and there is evidence for both negative and positive roles. We present an overview on recent evidence that highlights the immune system to be key to efficient repair or its failure. First, we summarize studies in different model systems that reveal both promoting and impeding roles of the immune system on the regeneration and repair capacity. This part is followed by a delineation of diverse inflammatory cell types, selected peptide growth factors and their receptors as well as signaling pathways controlling inflammation during tissue repair. Finally, we report on new mechanistic insights on how these inflammatory pathways impair healing under pathological conditions and discuss therapeutic implications.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, Germany.
| | | | | | | |
Collapse
|
149
|
Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2009; 7:759-70. [PMID: 18758473 DOI: 10.1038/nrd2638] [Citation(s) in RCA: 905] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenosine is a key endogenous molecule that regulates tissue function by activating four G-protein-coupled adenosine receptors: A1, A2A, A2B and A3. Cells of the immune system express these receptors and are responsive to the modulatory effects of adenosine in an inflammatory environment. Animal models of asthma, ischaemia, arthritis, sepsis, inflammatory bowel disease and wound healing have helped to elucidate the regulatory roles of the various adenosine receptors in dictating the development and progression of disease. This recent heightened awareness of the role of adenosine in the control of immune and inflammatory systems has generated excitement regarding the potential use of adenosine-receptor-based therapies in the treatment of infection, autoimmunity, ischaemia and degenerative diseases.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA.
| | | | | | | |
Collapse
|
150
|
Abstract
Extracellular adenosine is produced in a coordinated manner from cells following cellular challenge or tissue injury. Once produced, it serves as an autocrine- and paracrine-signaling molecule through its interactions with seven-membrane-spanning G-protein-coupled adenosine receptors. These signaling pathways have widespread physiological and pathophysiological functions. Immune cells express adenosine receptors and respond to adenosine or adenosine agonists in diverse manners. Extensive in vitro and in vivo studies have identified potent anti-inflammatory functions for all of the adenosine receptors on many different inflammatory cells and in various inflammatory disease processes. In addition, specific proinflammatory functions have also been ascribed to adenosine receptor activation. The potent effects of adenosine signaling on the regulation of inflammation suggest that targeting specific adenosine receptor activation or inactivation using selective agonists and antagonists could have important therapeutic implications in numerous diseases. This review is designed to summarize the current status of adenosine receptor signaling in various inflammatory cells and in models of inflammation, with an emphasis on the advancement of adenosine-based therapeutics to treat inflammatory disorders.
Collapse
Affiliation(s)
- Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|