101
|
Baker DJ, Jin F, Jeganathan KB, van Deursen JM. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 2009; 16:475-86. [PMID: 19962666 PMCID: PMC2842992 DOI: 10.1016/j.ccr.2009.10.023] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/22/2009] [Accepted: 10/16/2009] [Indexed: 12/22/2022]
Abstract
Genetic alterations that promote chromosome missegregation have been proposed to drive tumorigenesis through loss of whole chromosomes containing key tumor suppressor genes. To test this unproven idea, we bred Bub1 mutant mice that inaccurately segregate their chromosomes onto p53(+/-), Apc(Min/+), Rb(+/-), or Pten(+/-) backgrounds. Bub1 insufficiency predisposed p53(+/-) mice to thymic lymphomas and Apc(Min/+) mice to colonic tumors. These tumors consistently lacked the nonmutated tumor suppressor allele but had gained a copy of the mutant allele. In contrast, Bub1 insufficiency had no impact on tumorigenesis in Rb(+/-) mice and inhibited prostatic intraepithelial neoplasia formation in Pten(+/-) mice. Thus, Bub1 insufficiency can drive tumor formation through tumor suppressor gene loss of heterozygosity, but only in restricted genetic and cellular contexts.
Collapse
Affiliation(s)
- Darren J. Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Fang Jin
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Molecular Biology and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
- Address correspondence to Jan van Deursen Mayo Clinic, 200 First Street SW, Rochester, MN 55905 Tel: 507-284-2524
| |
Collapse
|
102
|
Jiang M, Fernandez S, Jerome WG, He Y, Yu X, Cai H, Boone B, Yi Y, Magnuson MA, Roy-Burman P, Matusik RJ, Shappell SB, Hayward SW. Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ 2009; 17:469-81. [PMID: 19834493 PMCID: PMC2821953 DOI: 10.1038/cdd.2009.148] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) regulates the interface between cellular lipid metabolism, redox status and organelle differentiation. Conditional prostatic epithelial knockout of PPARgamma in mice resulted in focal hyperplasia which developed into mouse prostatic intraepithelial neoplasia (mPIN). The grade of PIN became more severe with time. Electron microscopy (EM) showed accumulated secondary lysosomes containing cellular organelles and debris suggestive of autophagy. Consistent with this analysis the autophagy marker LC-3 was found to be upregulated in areas of PIN in PPARgamma KO tissues. We selectively knocked down PPARgamma2 isoform in wild-type mouse prostatic epithelial cells and examined the consequences of this in a tissue recombination model. Histopathologically grafted tissues resembled the conditional PPARgamma KO mouse prostates. EM studies of PPARgamma- and PPARgamma2-deficient epithelial cells in vitro were suggestive of autophagy, consistent with the prostatic tissue analysis. This was confirmed by examining expression of beclin-1 and LC-3. Gene expression profiling in PPARgamma-/gamma2-deficient cells indicated a major dysregulation of cell cycle control and metabolic signaling networks related to peroxisomal and lysosomal maturation, lipid oxidation and degradation. The putative autophagic phenotypes of PPARgamma-deficient cells could be rescued by re-expression of either gamma1 or gamma2 isoform. We conclude that disruption of PPARgamma signaling results in autophagy and oxidative stress during mPIN pathogenesis.
Collapse
Affiliation(s)
- M Jiang
- Department of Urologic Surgery, A-1302 MCN, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY, McNally B, Lin L, Zhou P, Zuo T, Cooney KA, Liu Y, Zheng P. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 2009; 16:336-46. [PMID: 19800578 PMCID: PMC2758294 DOI: 10.1016/j.ccr.2009.08.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/08/2009] [Accepted: 08/17/2009] [Indexed: 11/23/2022]
Abstract
Despite clear epidemiological and genetic evidence for X-linked prostate cancer risk, all prostate cancer genes identified are autosomal. Here, we report somatic inactivating mutations and deletion of the X-linked FOXP3 gene residing at Xp11.23 in human prostate cancer. Lineage-specific ablation of FoxP3 in the mouse prostate epithelial cells leads to prostate hyperplasia and prostate intraepithelial neoplasia. In both normal and malignant prostate tissues, FOXP3 is both necessary and sufficient to transcriptionally repress cMYC, the most commonly overexpressed oncogene in prostate cancer as well as among the aggregates of other cancers. FOXP3 is an X-linked prostate tumor suppressor in the male. Because the male has only one X chromosome, our data represent a paradigm of "single genetic hit" inactivation-mediated carcinogenesis.
Collapse
Affiliation(s)
- Lizhong Wang
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Runhua Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Weiquan Li
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Chong Chen
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Hiroto Katoh
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Guo-Yun Chen
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Beth McNally
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Lin Lin
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Penghui Zhou
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Tao Zuo
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH
| | - Kathleen A. Cooney
- Department of Internal Medicine, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Yang Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
- Department of Internal Medicine, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| | - Pan Zheng
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan School of Medicine and Cancer Center, Ann Arbor, MI 48109
| |
Collapse
|
104
|
Khor TO, Yu S, Barve A, Hao X, Hong JL, Lin W, Foster B, Huang MT, Newmark HL, Kong AN. Dietary feeding of dibenzoylmethane inhibits prostate cancer in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2009; 69:7096-102. [PMID: 19706764 DOI: 10.1158/0008-5472.can-09-0597] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dibenzoylmethane (DBM), a minor beta-diketone constituent of licorice, has been shown to exhibit antineoplastic effects in prostate cancer cell lines by induction of cell cycle arrest and regulation of androgen receptor expression. In the present study, we investigated the in vitro and in vivo efficacy of DBM using TRAMP-C1 cell lines and TRAMP mice. DBM was found to arrest TRAMP-C1 cells at G(2)-M phase of cell cycle and suppressed phosphorylated retinoblastoma, cyclin D1, and cyclin A. Importantly, DBM was found to be equally effective in suppression of prostate tumor progression in TRAMP mice. At 8 or 12 weeks of age, mice were fed control or 1% DBM-supplemented diets until 24 weeks of age. Our results show that DBM-fed groups had a lower incidence of palpable tumor and high-grade prostatic intraepithelial neoplasia. Subsequent mechanistic studies show that the expression of phosphorylated retinoblastoma, c-myc, cyclin D1, cyclin A, phosphorylated Akt, phosphorylated PDK-1, and phosphorylated S6 was significantly reduced by DBM. Our findings suggest that DBM blocks the growth and progression of prostate cancer in TRAMP mice via modulation of tumor cell cycle regulation and therefore merits its consideration for future clinical intervention of human prostate cancer.
Collapse
Affiliation(s)
- Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Barve A, Khor TO, Nair S, Reuhl K, Suh N, Reddy B, Newmark H, Kong AN. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer 2009; 124:1693-9. [PMID: 19115203 DOI: 10.1002/ijc.24106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma-tocopherol (gamma-T) alone or in combination with alpha-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of gamma-tocopherol-enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% gamma-T-enriched mixed tocopherol diet that contained 20-fold higher levels of gamma-tocopherol, and roughly 3-fold higher levels of alpha-tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT-PCR, immunohistochemistry and western blotting techniques. Treatment with gamma-T-enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV-40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme-oxygenase-1 and phase II detoxifying enzymes. Treatment with gamma-T-enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2-a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with gamma-T-enriched mixed tocopherol diet. Gamma-T-enriched mixed tocopherols significantly up-regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development.
Collapse
Affiliation(s)
- Avantika Barve
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Couto SS, Cao M, Duarte PC, Banach-Petrosky W, Wang S, Romanienko P, Wu H, Cardiff RD, Abate-Shen C, Cunha GR. Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. Differentiation 2008; 77:103-11. [PMID: 19281769 DOI: 10.1016/j.diff.2008.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor suppressor gene PTEN is important in the initiation and progression of human prostate carcinoma, whereas the role of TP53 remains controversial. Since Pten/Trp53 double conditional knockout mice show earlier onset and fast progression of prostate cancer when compared to Pten knockout mice, we asked whether heterozygosity of these two tumor suppressor genes was sufficient to accelerate prostatic tumorigenesis. To answer this question we examined prostatic lesion progression of Pten/Trp53 double heterozygous mice and a series of controls such as Pten heterozygous, Pten conditional knockout, Trp53 heterozygous and Trp53 knockout mice. Tissue recombination of adult prostatic epithelium coupled with embryonic rat seminal vesicle mesenchyme was used as a tool to stimulate prostatic epithelial proliferation. In our study, high-grade prostatic intraepithelial neoplasia (PIN) was found with high frequency at 8 weeks post-tissue recombination transplantation. PIN lesions in Pten/Trp53 double heterozygous mice were more severe than those seen in Pten heterozygous alone. Furthermore, morphologic features attributable to Pten or Trp53 loss appeared to be enhanced in double heterozygous tissues. LOH analysis of Pten and Trp53 in genomic DNA collected from high-grade PIN lesions in Pten heterozygous and Pten/Trp53 double heterozygous mice showed an intact wild-type allele for both genes in all samples examined. In conclusion, simultaneous heterozygosity of Pten and Trp53 accelerates prostatic tumorigenesis in this mouse model of prostate cancer independently of loss of heterozygosity of either gene.
Collapse
Affiliation(s)
- Suzana S Couto
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abate-Shen C, Shen MM, Gelmann E. Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation 2008; 76:717-27. [PMID: 18557759 DOI: 10.1111/j.1432-0436.2008.00292.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several tissue-specific regulatory genes have been found to play essential roles in both organogenesis and carcinogenesis. In the prostate, the Nkx3.1 homeobox gene plays an important role in normal differentiation of the prostatic epithelium while its loss of function is an initiating event in prostate carcinogenesis in both mouse models and human patients. Thus, the Nkx3.1 homeobox gene provides a paradigm for understanding the relationship between normal differentiation and cancer, as well as studying the roles of homeobox genes in these processes. Here, we review recent findings concerning the roles of Nkx3.1 in development and discuss how its normal function is disrupted in processes of early prostate carcinogenesis.
Collapse
Affiliation(s)
- Cory Abate-Shen
- Department of Urology, Columbia University, College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| | | | | |
Collapse
|
108
|
Murine prostate cancer inhibition by dietary phytochemicals--curcumin and phenyethylisothiocyanate. Pharm Res 2008; 25:2181-9. [PMID: 18437538 DOI: 10.1007/s11095-008-9574-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE Prior studies from our laboratory have demonstrated the efficacy of a combined treatment of low doses of dietary agents curcumin and phenylethylisothiocyanate in effectively suppressing prostate cancer in vitro in human prostate cancer PC3 cells as well as in vivo in immunodeficient mice implanted with PC3 cells. Hence, this study was undertaken to examine the potential chemopreventive properties of the two agents against transgenic adenocarcinoma of the mouse prostate. MATERIALS AND METHODS The efficacy of AIN-76A diet supplemented with 2% curcumin or 0.05% PEITC or a combination of 1% curcumin and 0.025% PEITC for periods of 10 and 16 weeks was tested against adenocarcinoma of the mouse prostate. Immunohistochemistry and Western blot analysis were used to examine the expression of proliferation and apoptotic biomarkers. All statistical tests were two-sided. RESULTS Supplementing AIN-76A diet with dietary phytochemicals curcumin or PEITC either alone or in combination, significantly decreased incidence of prostate tumor formation (P = 0.0064). Immunohistochemistry revealed a significant inhibition of high-grade PIN (P = 0.0006, 0.000069, 0.00029 for a treatment period of 10 weeks and P = 0.02582, 0.022179, 0.0317 for a treatment period of 16 weeks) along with decreased proliferation and increased apoptotic index in the curcumin, PEITC or curcumin and PEITC treated animals, respectively. Furthermore, Western blot analysis revealed that downregulation of the Akt signaling pathway may in part play a role in decreasing cell proliferation ultimately retarding prostate tumor formation. CONCLUSION Our data lucidly evidence the chemopreventive merits of dietary phytochemicals curcumin and PEITC in suppressing prostate adenocarcinoma.
Collapse
|
109
|
Zhang Y, Zhang J, Lin Y, Lan Y, Lin C, Xuan JW, Shen MM, McKeehan WL, Greenberg NM, Wang F. Role of epithelial cell fibroblast growth factor receptor substrate 2alpha in prostate development, regeneration and tumorigenesis. Development 2008; 135:775-84. [PMID: 18184727 DOI: 10.1242/dev.009910] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fibroblast growth factor (FGF) regulates a broad spectrum of biological activities by activation of transmembrane FGF receptor (FGFR) tyrosine kinases and their coupled intracellular signaling pathways. FGF receptor substrate 2alpha (FRS2alpha) is an FGFR interactive adaptor protein that links multiple signaling pathways to the activated FGFR kinase. We previously showed that FGFR2 in the prostate epithelium is important for branching morphogenesis and for the acquisition of the androgen responsiveness. Here we show in mice that FRS2alpha is uniformly expressed in the epithelial cells of developing prostates, whereas it is expressed only in basal cells of the mature prostate epithelium. However, expression of FRS2alpha was apparent in luminal epithelial cells of regenerating prostates and prostate tumors. To investigate FRS2alpha function in the prostate, the Frs2alpha alleles were ablated specifically in the prostatic epithelial precursor cells during prostate development. Similar to the ablation of Fgfr2, ablation of Frs2alpha disrupted MAP kinase activation, impaired prostatic ductal branching morphogenesis and compromised cell proliferation. Unlike the Fgfr2 ablation, disrupting Frs2alpha had no effect on the response of the prostate to androgens. More importantly, ablation of Frs2alpha inhibited prostatic tumorigenesis induced by oncogenic viral proteins. The results suggest that FRS2alpha-mediated signals in prostate epithelial cells promote branching morphogenesis and proliferation, and that aberrant activation of FRS2-linked pathways might promote tumorigenesis. Thus, the prostate-specific Frs2alpha(cn) mice provide a useful animal model for scrutinizing the molecular mechanisms underlying prostatic development and tumorigenesis.
Collapse
Affiliation(s)
- Yongyou Zhang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
The American Medical Association and the American Veterinary Medical Association have recently approved resolutions supporting 'One Medicine' or 'One Health' that bridge the two professions. The concept is far from novel. Rudolf Virchow, the Father of Modern Pathology, and Sir William Osler, the Father of Modern Medicine, were outspoken advocates of the concept. The concept in its modern iteration was re-articulated in the 1984 edition of Calvin Schwabe's 'Veterinary Medicine and Human Health.' The veterinary and medical pathology professions are steeped in a rich history of 'One Medicine,' but they have paradoxically parted ways, leaving the discipline of pathology poorly positioned to contribute to contemporary science. The time has come for not only scientists but also all pathologists to recognize the value in comparative pathology, the consequences of ignoring the opportunity and, most importantly, the necessity of preparing future generations to meet the challenge inherent in the renewed momentum for 'One Medicine.' The impending glut of new genetically engineered mice creates an urgent need for prepared investigators and pathologists.
Collapse
|
111
|
Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD, Cunha GR, Balmain A. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:236-46. [PMID: 18156212 DOI: 10.2353/ajpath.2008.070602] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The transgenic adenocarcinoma of mouse prostate (TRAMP) model is widely used in prostate cancer research because of rapid tumor onset and progression. The transgenic mouse is on a C57BL/6 (B6) background and expresses SV40 T-antigen under the probasin promoter. The strong genetic component of susceptibility to prostate cancer in humans prompted us to investigate the effect of mouse strain background (FVB and B6) on incidence, progression, and pathology of prostate cancer in this model. Because TRAMP lesions are unique but differ from conventional prostatic intraepithelial neoplasia because the epithelium and stroma are affected diffusely, we designated them as "atypical hyperplasia of Tag." Although the incidence and severity of atypical hyperplasia of Tag is similar, FVB-TRAMP mice live significantly shorter lives than B6-TRAMP mice because of the rapid development and progression of neuroendocrine carcinomas. This is associated with an increased frequency of neuroendocrine precursor lesions in young TRAMP mice, detectable at 4 weeks after birth. These lesions show properties of bipotential stem cells and co-express markers of epithelial (E-cadherin) and neuroendocrine (synaptophysin) lineages, as well as the transcription factors Foxa1 and Foxa2. Transplantation studies using TRAMP prostatic ducts suggested that neuroendocrine carcinomas arise independently from atypical hyperplasias or other epithelial lesions. Adenocarcinomas were not seen in our cohort. Thus, neuroendocrine carcinomas are the principal malignancy in this model and may develop from bipotential progenitor cells at an early stage of prostate tumorigenesis.
Collapse
Affiliation(s)
- Teresa Chiaverotti
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Gao H, Ouyang X, Banach-Petrosky WA, Shen MM, Abate-Shen C. Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice. Cancer Res 2007; 66:7929-33. [PMID: 16912166 DOI: 10.1158/0008-5472.can-06-1637] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although androgen deprivation therapy is a widely used treatment for patients with advanced prostate cancer, it ultimately results in the emergence of a hormone-refractory disease that is invariably fatal. To provide insights into the genesis of this disease, we have employed an in vivo model to investigate how and when prostate epithelial cells can acquire the ability to survive and proliferate in the absence of androgens. In particular, we have been studying the evolution of androgen independence in Nkx3.1; Pten mutant mice, which develop prostatic intraepithelial neoplasia and adenocarcinoma as a consequence of aging, as well as androgen-independent phenotypes following castration. We now find that the prostate epithelial cells from these Nkx3.1; Pten mutant mice are capable of surviving and proliferating in the absence of androgens and that they develop androgen-independent phenotypes well before they display overt prostatic intraepithelial neoplasia or cancer phenotypes. Our findings in this mouse model show that acquisition of androgen independence can be uncoupled from overt cancer progression and raise the possibility that hormone-refractory disease can arise at early stages of prostate carcinogenesis.
Collapse
Affiliation(s)
- Hui Gao
- Center for Advanced Biotechnology and Medicine, The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
113
|
Banach-Petrosky W, Jessen WJ, Ouyang X, Gao H, Rao J, Quinn J, Aronow BJ, Abate-Shen C. Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Res 2007; 67:9089-96. [PMID: 17909013 DOI: 10.1158/0008-5472.can-07-2887] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this report, we have investigated the relationship between androgen levels and prostate tumorigenesis in Nkx3.1; Pten mutant mice, a genetically engineered mouse model of human prostate cancer. By experimentally manipulating serum levels of testosterone in these mice for an extended period (i.e., 7 months), we have found that prolonged exposure of Nkx3.1; Pten mutant mice to androgen levels that are 10-fold lower than normal (the "Low-T" group) resulted in a marked acceleration of prostate tumorigenesis compared with those exposed to androgen levels within the reference range (the "Normal-T" group). We found that prostate tumors from the Low-T mutant mice share a similar gene expression profile as androgen-independent prostate tumors from these mutant mice, which includes the deregulated expression of several genes that are up-regulated in human hormone-refractory prostate cancer, such as Vav3 and Runx1. We propose that exposure to reduced androgens may promote prostate tumorigenesis by selecting for molecular events that promote more aggressive, hormone-refractory tumors.
Collapse
Affiliation(s)
- Whitney Banach-Petrosky
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Casimiro M, Rodriguez O, Pootrakul L, Aventian M, Lushina N, Cromelin C, Ferzli G, Johnson K, Fricke S, Diba F, Kallakury B, Ohanyerenwa C, Chen M, Ostrowski M, Hung MC, Rabbani SA, Datar R, Cote R, Pestell R, Albanese C. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo. Cancer Res 2007; 67:4364-72. [PMID: 17483350 DOI: 10.1158/0008-5472.can-06-1898] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor tyrosine kinase ErbB-2 plays an important role in the regulation of growth factor-induced signal transduction cascades in the epithelium, and ErbB-2 is frequently overexpressed in epithelial tumors. Our previous studies on clinical prostate cancer specimens indicated that ErbB-2 expression was increased in patients undergoing hormone ablation therapy. We had also shown that the critical cell cycle regulatory gene cyclin D1 and its promoter were targets of proliferative signaling in prostate cancer cell lines, and that cyclin D1 was required for ErbB-2-induced mammary tumorigenesis. In the current studies, we found that increased ErbB-2 membrane expression correlated with increased nuclear cyclin D1 staining in clinical prostate cancer specimens, and that expression of ErbB-2 was capable of inducing cell cycle progression in human prostate cancer cell lines. We further showed that ErbB-2 induced the cyclin D1 promoter in DU145 cells, and that small interfering RNA knockdown of cyclin D1 protein levels blocked a significant proportion of the heregulin-induced cell cycle progression in LNCaP cells. Probasin promoter-targeted expression of an activated ErbB-2 isoform induced cyclin D1 expression in the mouse prostate, commensurate with prostate intraepithelial neoplasia. Together, these in vitro and in vivo studies identify cyclin D1 as a critical downstream target of ErbB-2 in the prostate epithelium, both of which are possible therapeutic targets for cancer intervention. Furthermore, our novel mouse model provides a useful platform for ongoing in vivo investigations of ErbB-2 signaling in the prostate epithelium.
Collapse
Affiliation(s)
- Mathew Casimiro
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Cardiff RD, Anver MR, Boivin GP, Bosenberg MW, Maronpot RR, Molinolo AA, Nikitin AY, Rehg JE, Thomas GV, Russell RG, Ward JM. Precancer in mice: animal models used to understand, prevent, and treat human precancers. Toxicol Pathol 2007; 34:699-707. [PMID: 17074738 DOI: 10.1080/01926230600930129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We present a status report from the NCI Mouse Models of Human Cancers Consortium (MMHCC) Precancers Workshop held November 8 and 9, 2004. An expert panel, the Mouse Models Group (MMG) evaluated the status of mouse models of precancer emphasizing genetically engineered mouse models, especially of lining epithelium and their utilitarian value to human carcinogenesis. An outline of the background for the panel's considerations is provided with examples of past and current precancerous lesions in mice. The experimental use of oncogenic viruses and chemical carcinogens in mice led to operational definitions of initiation, promotion, and preneoplasia Preneoplastic and precancerous lesions are found in these models. In this precancer concept, most preneoplastic lesions are considered as potentially precancerous or at least an earlier stage in cancer development than typical pre-invasive epithelial lesions, which are often seen in these mouse models. Genetically engineered mice, used to test the oncogenicity of individual genes, develop precancers that are initiated by defined molecular and histopathologic changes. The mouse can be used to isolate and study precancers in detail, thereby providing a level of biological understanding not readily available in clinical disease. These studies suggest that genetically engineered mice are very useful preclinical models for chemoprevention and therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinogens
- Carcinoma in Situ/chemically induced
- Carcinoma in Situ/genetics
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Colonic Neoplasms/chemically induced
- Colonic Neoplasms/genetics
- Drug Screening Assays, Antitumor
- Epithelial Cells/pathology
- Humans
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mice
- Mice, Transgenic
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
- Oncogenes/genetics
- Oncogenic Viruses/genetics
- Precancerous Conditions/chemically induced
- Precancerous Conditions/drug therapy
- Precancerous Conditions/genetics
- Precancerous Conditions/prevention & control
- Skin Neoplasms/chemically induced
- Skin Neoplasms/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/pathology
Collapse
Affiliation(s)
- Robert D Cardiff
- The UCD Center for Comparative Medicine, University of California, Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Borowsky AD, Dingley KH, Ubick E, Turteltaub KW, Cardiff RD, Devere-White R. Inflammation and atrophy precede prostatic neoplasia in a PhIP-induced rat model. Neoplasia 2006; 8:708-15. [PMID: 16984728 PMCID: PMC1584295 DOI: 10.1593/neo.06373] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) has been implicated as a major mutagenic heterocyclic amine in the human diet and is carcinogenic in the rat prostate. To validate PhIP-induced rat prostatic neoplasia as a model of human prostate cancer progression, we sought to study the earliest histologic and morphologic changes in the prostate and to follow progressive changes over time. We fed sixty-seven 5-week-old male Fischer F344 rats with PhIP (400 ppm) or control diets for 20 weeks, and then sacrificed animals for histomorphologic examination at the ages of 25, 45, and 65 weeks. Animals treated with PhIP showed significantly more inflammation (P = .002, > .001, and .016 for 25, 45, and 65 weeks, respectively) and atrophy (P = .003, > .001, and .006 for 25, 45, and 65 weeks, respectively) in their prostate glands relative to controls. Prostatic intraepithelial neoplasia (PIN) occurred only in PhIP-treated rats. PIN lesions arose in areas of glandular atrophy, most often in the ventral prostate. Atypical cells in areas of atrophy show loss of glutathione S-transferase pi immunostaining preceding the development of PIN. None of the animals in this study developed invasive carcinomas, differing from those in previous reports. Overall, these findings suggest that the pathogenesis of prostatic neoplasia in the PhIP-treated rat prostate proceeds from inflammation to postinflammatory proliferative atrophy to PIN.
Collapse
|
117
|
Banach-Petrosky W, Ouyang X, Gao H, Nader K, Ji Y, Suh N, DiPaola RS, Abate-Shen C. Vitamin D inhibits the formation of prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice. Clin Cancer Res 2006; 12:5895-901. [PMID: 17020998 DOI: 10.1158/1078-0432.ccr-06-1039] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epidemiologic studies have shown that reduced levels of vitamin D represent a major risk factor for prostate cancer. In this report, we have examined the efficacy of 1alpha,25-dihydroxyvitamin D(3) (1,25 D(3)) as a chemopreventive agent using Nkx3.1; Pten mutant mice, which recapitulate stages of prostate carcinogenesis from prostate intraepithelial neoplasia (PIN) to adenocarcinoma. EXPERIMENTAL DESIGN 1,25 D(3) (or vehicle) was delivered continuously to Nkx3.1; Pten mutant or control mice for a 4-month period beginning before (precancerous cohort) or after (cancerous cohort) these mice developed PIN. At the conclusion of the study, the mice were analyzed for the occurrence of PIN and/or cancer phenotypes by histologic analyses and immunostaining using known markers of cancer progression in these mice. RESULTS We found that sustained delivery of 1,25 D(3) to the Nkx3.1; Pten mutant mice resulted in a significant reduction in the formation of PIN while having no apparent effect on the control mice. Furthermore, 1,25 D(3) was maximally effective when delivered before, rather than subsequent to, the initial occurrence of PIN. We further show that this 1,25 D(3)-mediated inhibition of PIN was coincident with up-regulation of vitamin D receptor expression in the prostatic epithelium of the mutant mice, as well as in CASP prostate epithelial cell lines developed from these mice, while having no effect on androgen receptor expression or androgen receptor signaling. CONCLUSION Our findings show the value of chemoprevention studies using Nkx3.1; Pten mutant mice, particularly for evaluating the efficacy and underlying mechanisms of potential agents and to gain insights about the optimal timing of their delivery. In particular, our study predicts that vitamin D may have differential effects during early-stage versus late-stage disease and that it is more likely to be beneficial if delivered either before the overt manifestation of clinically detectable disease or during the earliest disease stages, rather than in advanced disease. Thus, our findings support the assessment of vitamin D analogues for chemoprevention in clinical trials targeting patients with early-stage disease and also establish molecular markers that can be used in such trials to determine biological activity and to optimize further clinical trials.
Collapse
|
118
|
Cardiff RD, Gregg JP, Miller JW, Axelrod DE, Borowsky AD. Histopathology as a predictive biomarker: strengths and limitations. J Nutr 2006; 136:2673S-5S. [PMID: 16988145 DOI: 10.1093/jn/136.10.2673s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert D Cardiff
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis CA 95616, USA.
| | | | | | | | | |
Collapse
|
119
|
Sen M, McHugh K, Hutzley J, Philips BJ, Dhir R, Parwani AV, Kelavkar UP. Orthotopic expression of human 15-lipoxygenase (LO)-1 in the dorsolateral prostate of normal wild-type C57BL/6 mouse causes PIN-like lesions. Prostaglandins Other Lipid Mediat 2006; 81:1-13. [PMID: 16997127 DOI: 10.1016/j.prostaglandins.2006.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/23/2006] [Accepted: 05/23/2006] [Indexed: 11/28/2022]
Abstract
The lipid-peroxidating enzyme, 15-lipoxygenase (LO)-1 and its metabolite, 13-S-hydroxyoctadecadienoic acid (13-S-HODE), likely contribute to prostate tumorigenesis. Thus, this study evaluated adenovirus-mediated overexpression of 15-LO-1 on normal mouse prostate. Adenovirus expressing either human 15-LO-1 tagged with green fluorescent protein (GFP) or GFP alone was orthotopically injected into the dorsolateral prostates of C57BL/6 mice, three times over the course of 60 days. On day 90, pathological changes in prostate tissue were assessed by hematoxylin and eosin (H&E) staining. Expression of the proliferation marker Ki-67 was evaluated by immunohistochemistry and expression of angiogenesis markers were analyzed by an antibody array. Based on the latter study, immunoprecipitation analysis was used to measure the effect of 13-S-HODE, with or without conditioned media, on fibroblast growth factor-a and b (FGF-a and FGF-b) expression in human PrEC (normal prostate epithelial), PrSMC (normal prostate smooth muscle) and PrSC (normal prostate stromal) lines. Expression of viral 15-LO-1-GFP, but not GFP alone, resulted in the development of a prostate intraepithelial neoplasia (PIN)-like phenotype with increased expression of Ki-67. Aberrant 15-LO-1 expression also induced the angiogenic markers FGF-a and FGF-b. Human PrEC, PrSMC and PrSC lines demonstrated an increase in FGF-b expression upon stimulation with 13-S-HODE, which was further increased by the addition of conditioned media from the epithelial or smooth muscle cells. Using adenoviral mediated 15-LO-1 gene delivery, this study suggests that aberrant 15-LO-1 overexpression in normal prostate can trigger events leading to prostate epithelial and stromal cell proliferation. Thus, our findings demonstrate the effectiveness of this viral system for 15-LO-1 expression studies in tissues.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Urology, University of Pittsburgh and Cancer Institute, PA 15232, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Chen ML, Xu PZ, Peng XD, Chen WS, Guzman G, Yang X, Di Cristofano A, Pandolfi PP, Hay N. The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. Genes Dev 2006; 20:1569-74. [PMID: 16778075 PMCID: PMC1482477 DOI: 10.1101/gad.1395006] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tumor suppressor PTEN is frequently inactivated in human cancers. A major downstream effector of PTEN is Akt, which is hyperactivated via PTEN inactivation. It is not known, however, whether diminished Akt activity is sufficient to inhibit tumorigenesis initiated by Pten deficiency. Here we showed that the deficiency of Akt1 is sufficient to dramatically inhibit tumor development in Pten+/- mice. Akt1 deficiency had a profound effect on endometrium and prostate neoplasia, two types of human cancer, in which PTEN is frequently mutated, and also affected thyroid and adrenal medulla tumors and intestinal polyps. Even haplodeficiency of Akt1 was sufficient to markedly attenuate the development of high-grade prostate intraepithelial neoplasia (PIN) and endometrial carcinoma. These results have significant implications for cancer therapy.
Collapse
Affiliation(s)
- Mei-Ling Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Huizen IV, Wu G, Moussa M, Chin JL, Fenster A, Lacefield JC, Sakai H, Greenberg NM, Xuan JW. Establishment of a serum tumor marker for preclinical trials of mouse prostate cancer models. Clin Cancer Res 2006; 11:7911-9. [PMID: 16278416 DOI: 10.1158/1078-0432.ccr-05-0953] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current prostate cancer research in both basic and preclinical trial studies employ genetically engineered mouse models. However, unlike in human prostate cancer patients, rodents have no counterpart of prostatic-specific antigen (PSA) for monitoring prostate cancer initiation and progression. In this study, we established a mouse serum tumor marker from a mouse homologue of human prostate secretory protein of 94 amino acids (PSP94). Immunohistochemistry studies on different histologic grades from both transgenic and knock-in mouse prostate cancer models showed the down-regulation of tissue PSP94 expression (P < 0.001), the same as for PSA and PSP94 in humans. The presence of mouse serum PSP94 was shown by affinity column and immunoprecipitation purification using a polyclonal mouse PSP94 antibody. A competitive ELISA protocol was established to quantify serum PSP94 levels with a sensitivity of 1 ng/mL. Quantified serum levels of mouse PSP94 ranged from 49.84 ng/mL in wild-type mice to 113.86, 400.45, and 930.90 ng/mL in mouse prostatic intraepithelial neoplasia with microinvasion, well differentiated, moderately differentiated, and poorly differentiated prostate cancer genetically engineered prostate cancer mice, respectively (P < 0.01, n = 68). This increase in serum PSP94 is also well correlated with age and tumor weight. Through longitudinal monitoring of serum PSP94 levels of castrated mice (androgen ablation therapy), we found a correlation between responsiveness/refractory prostate tissues and serum PSP94 levels. The utility of mouse serum PSP94 as a marker in hormone therapy was further confirmed by three-dimensional ultrasound imaging. The establishment of the first rodent prostate cancer serum biomarker will greatly facilitate both basic and preclinical research on human prostate cancer.
Collapse
Affiliation(s)
- Isaac Van Huizen
- Department of Surgery, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Chen BY, Lin DPC, Liu JY, Chang H, Huang PH, Chen YL, Chang HH. A mouse prostate cancer model induced by Hedgehog overexpression. J Biomed Sci 2005; 13:373-84. [PMID: 16374524 DOI: 10.1007/s11373-005-9050-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022] Open
Abstract
Hedgehog is a regulatory protein during embryonic development and its abnormal activation in adult tissues has been implicated in tumorigenesis within sites where epithelial-mesenchymal interactions take place. In the prostate, Hedgehog signaling activation was observed during advanced cancer progression and metastasis, but whether Hedgehog overexpression can initiate prostate tumorigenesis remains unknown. We introduced a Hedgehog-expressing vector by intra-prostate injection and electroporation to address the effects of Hedgehog overexpression. The manipulation caused lesions with characteristic prostatic intraepithelial neoplasia or even prostatic cancer (CaP) phenotypes within 30 days, with Hedgehog overexpression demonstrated by immunohistochemistry and Western blot detections. The tumorigenic phenotypes were confirmed by discontinuity of basal cell marker p63, mix-up of CK-8/CK-18 positive epithelial cells in the stoma as well as absence of alpha-SMA positive fibro-muscular sheath. Comparable Hedgehog overexpression was found in human CaP specimen. Thus, Hedgehog overexpression induced prostate tumorigenesis starting from the normal status. Furthermore, a mouse prostate cancer model induced by Hedgehog overexpression was established and may be used for testing novel therapeutical approaches targeting at Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Bo-Yie Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
123
|
Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res 2005; 65:6773-9. [PMID: 16061659 DOI: 10.1158/0008-5472.can-05-1948] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the significance of oxidative damage for carcinogenesis, the molecular mechanisms that lead to increased susceptibility of tissues to oxidative stress are not well-understood. We now report a link between loss of protection against oxidative damage and loss-of-function of Nkx3.1, a homeobox gene that is known to be required for prostatic epithelial differentiation and suppression of prostate cancer. Using gene expression profiling, we find that Nkx3.1 mutant mice display deregulated expression of several antioxidant and prooxidant enzymes, including glutathione peroxidase 2 and 3 (GPx2 and GPx3), peroxiredoxin 6 (Prdx6), and sulfyhydryl oxidase Q6 (Qscn6). Moreover, the formation of prostatic intraepithelial neoplasia in these mutant mice is associated with increased oxidative damage of DNA, as evident by increased levels of 8-hydroxy-2'-deoxyguanosine. We further show that progression to prostate adenocarcinoma, as occurs in compound mutant mice lacking Nkx3.1 as well as the Pten tumor suppressor, is correlated with a further deregulation of antioxidants, including superoxide dismutase enzymes, and more profound accumulations of oxidative damage to DNA and protein, the latter manifested by increased levels of 4-hydroxynonenal. We propose that the essential role of Nkx3.1 in maintaining the terminally differentiated state of the prostate epithelium provides protection against oxidative damage and, thereby, suppression of prostate cancer. Thus, our findings provide a molecular link between a gene whose inactivation is known to be involved in prostate carcinogenesis, namely Nkx3.1, and oxidative damage of the prostatic epithelium.
Collapse
Affiliation(s)
- Xuesong Ouyang
- Center for Advanced Biotechnology and Medicine, The Cancer Institute of New Jersey, Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5638, USA
| | | | | | | |
Collapse
|
124
|
Knockout models of prostate carcinogenesis. Prostate Cancer 2005. [DOI: 10.1201/b14450-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
125
|
Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M, Lee H, Shih WJ, Cardiff RD, Shen MM, Abate-Shen C. A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci U S A 2004; 101:17204-9. [PMID: 15569926 PMCID: PMC535400 DOI: 10.1073/pnas.0407693101] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In human prostate cancer, the frequent down-regulation of p27(kip1) protein expression is correlated with poor clinical outcome, yet p27(kip1) rarely undergoes mutational inactivation. Here, we investigate the consequences of reducing or eliminating p27(kip1) function for prostate carcinogenesis in the context of a mouse modeling lacking the Nkx3.1 homeobox gene and the Pten tumor suppressor. Unexpectedly, we find that triple mutant mice heterozygous for a p27(kip1) null allele (Nkx3.1(+/- or -/-); Pten(+/-); p27(+/-)) display enhanced prostate carcinogenesis, whereas mice that are homozygous null for p27(kip1) (Nkx3.1(+/- or -/-); Pten(+/-); p27(-/-)) show inhibition of cancer progression. Expression profiling reveals that Cyclin D1 is highly up-regulated in compound p27(kip1) heterozygotes, but is down-regulated in the compound p27(kip1) homozygous mutants. Using RNA interference in prostate cancer cell lines with distinct p27(kip1) gene doses, we show that prostate tumorigenicity depends on levels of p27(kip1) and that the consequences of p27(kip1) gene dosage can be attributed, in part, to altered levels of Cyclin D1. Our findings suggest that p27(kip1) possesses dosage-sensitive positive as well as negative modulatory roles in prostate cancer progression.
Collapse
Affiliation(s)
- Hui Gao
- Center for Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Maddison LA, Sutherland BW, Barrios RJ, Greenberg NM. Conditional deletion of Rb causes early stage prostate cancer. Cancer Res 2004; 64:6018-25. [PMID: 15342382 DOI: 10.1158/0008-5472.can-03-2509] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer remains the second leading cause of cancer-related death for men in the United States. Mutations in tumor suppressor genes including retinoblastoma (Rb), p53, and PTEN have been linked to the development of prostate cancer in man and mouse models, and loss of heterozygosity of the Rb locus has been observed in up to 60% of clinical cases. In this study we demonstrate that conditional somatic deletion of even a single Rb allele in the epithelial cells of the mouse prostate causes focal hyperplasia, thereby establishing a causal relationship between Rb loss and development of early stage prostate cancer. As a consequence of Rb ablation we observed increased expression of E2F target genes and a concomitant increase in proliferation in the epithelial compartment. However, by 52 weeks of age these lesions had not become malignant and represent an early stage of the disease. Nevertheless, the multifocal nature of the phenotype in the mice closely resembled multifocality of clinical disease. Taken together, our data demonstrated that loss of pRB-mediated cell cycle control directly caused the initiation of proliferative prostate disease but was insufficient to cause malignancy. Establishment of this early initiation model will aid efforts to thoroughly characterize early prostate disease as well as the elucidation of molecular mechanisms that cooperate with Rb loss to facilitate progression and metastasis.
Collapse
Affiliation(s)
- Lisette A Maddison
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
127
|
Elgavish A, Wood PA, Pinkert CA, Eltoum IE, Cartee T, Wilbanks J, Mentor-Marcel R, Tian L, Scroggins SE. Transgenic mouse with human mutant p53 expression in the prostate epithelium. Prostate 2004; 61:26-34. [PMID: 15287091 DOI: 10.1002/pros.20071] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Apoptosis is disrupted in prostate tumor cells, conferring a survival advantage. p53 is a nuclear protein believed to regulate cancer progression, in part by inducing apoptosis. To test this possibility in future studies, the objective of the present study was to generate a transgenic mouse model expressing mutant p53 in the prostate (PR). METHODS Transgene incorporation was tested using Southern analysis. Expression of mutant p53 protein was examined using immunofluorescence microscopy. Apoptosis in the PR was evaluated using the Tunnel method. RESULTS A construct, consisting of the rat probasin promoter and a mutant human p53 fragment, was prepared and used to generate transgenic mice. rPB-mutant p53 transgene incorporation, as well as nuclear accumulation of mutant human p53 protein, was demonstrated. Prostatic intraepithelial neoplasia (PIN) III and IV were found in PR of 52-week old transgenic mice, whereas no pathological changes were found in the other organs examined. PR ability to undergo apoptosis following castration was reduced in rPB-mutant p53 mice as compared to non transgenic littermates. CONCLUSIONS Transgenic rPB-mutant p53 mice accumulate mutant p53 protein in PR, resulting in neoplastic lesions and reduced apoptotic potential in the PR. Breeding rPB-mutant p53 mice with mice expressing an oncogene in their PR will be useful in examining interactions of multiple genes that result in progression of slow growing prostate tumors expressing oncogenes alone to metastatic cancer.
Collapse
Affiliation(s)
- Ada Elgavish
- Department of Genetics, Kaul Building 624, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Shen MM, Abate-Shen C. Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev Dyn 2004; 228:767-78. [PMID: 14648854 DOI: 10.1002/dvdy.10397] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although it is often presumed that the molecular pathways that underlie normal organogenesis are similar to those perturbed during carcinogenesis, few examples exist of tissue-specific regulatory genes that play central roles in both processes. In the case of the prostate gland, molecular genetic analyses have demonstrated that the Nkx3.1 homeobox gene plays an important role in normal differentiation of the prostatic epithelium and that its loss of function is an initiating event in prostate carcinogenesis. Thus, the Nkx3.1 homeobox gene provides a paradigm for understanding the relationship between normal differentiation and cancer, as well as a model for studying the roles of homeobox genes in these processes. Here, we review recent findings concerning the biological as well as biochemical function of this central regulator of prostate development and carcinogenesis.
Collapse
Affiliation(s)
- Michael M Shen
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Cancer Institute of New Jersey, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
129
|
Kasper S, Smith JA. Genetically modified mice and their use in developing therapeutic strategies for prostate cancer. J Urol 2004; 172:12-9. [PMID: 15201729 DOI: 10.1097/01.ju.0000132122.93436.aa] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE At the National Cancer Institute a comprehensive program has been developed for accelerating prostate cancer research, especially in the area of mouse models for human cancers. This review focuses on transgenic mouse models for elucidating the molecular and cellular processes that lead to prostate cancer initiation, progression and metastasis, and on their suitability for therapeutic and chemopreventive trials. MATERIALS AND METHODS Published data from MEDLINE, http://emice.nci.nih.gov/, our laboratory and other investigators are reviewed. RESULTS Currently no 1 mouse model displays the entire continuum of human prostate cancer initiation, development and metastasis. The loss or over expression of a single gene results primarily in epithelial hyperplasia, prostatic intraepithelial neoplasia or more aggressive localized adenocarcinoma. To date the only models that develop lung, liver and occasionally bone metastasis are those that express SV40 large T antigen. A number of models have been used to investigate the efficacy of androgen deprivation, lovastatin, vitamin D, the anti-inflammatory drug E-7869, genistein and (-)-epigallocatechin-3-gallate as therapeutic or chemopreventive agents. Noninvasive optical imaging technologies facilitate the detection of metastatic lesions and the effects of therapeutic agents on tumor regression. CONCLUSIONS Integrating mouse studies with human clinical trials would ensure that mechanisms that promote prostate cancer are identified and potential therapeutic targets are validated.
Collapse
Affiliation(s)
- Susan Kasper
- Department of Urologic Surgery, Vanderbilt Medical Center, Nashville, Tennessee 37232-2765, USA
| | | |
Collapse
|
130
|
Scherl A, Li JF, Cardiff RD, Schreiber-Agus N. Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate 2004; 59:448-59. [PMID: 15065094 DOI: 10.1002/pros.20020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Activation of the RAS pathway has been implicated in the pathogenesis of many types of human cancers, including prostate cancer. Here we employed a transgenic approach to assess the potential contribution of RAS to prostate carcinogenesis. METHODS Probasin-RAS (Pb-RAS) transgenic mice were generated and shown to express high levels of activated RAS in the prostate lobes. Transgenic prostates were compared to normal controls by histology and immunohistochemistry with relevant markers. RESULTS Pb-RAS transgenic prostates exhibit neoplastic changes including low-grade prostatic intraepithelial neoplasia, and metaplastic changes towards an intestinal goblet cell phenotype. The finding of high levels of the goblet cell-specific peptide Itf/Tff3 in these transgenic prostates is in accordance with recent microarray studies showing that ITF/TFF3 is upregulated in human prostate cancer samples. CONCLUSIONS The Pb-RAS mouse model could be useful for elucidating the early events in prostate carcinogenesis, as well as for studying the mechanisms and potential prostate cancer relevance of intestinal metaplasia.
Collapse
Affiliation(s)
- Alexis Scherl
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, USA
| | | | | | | |
Collapse
|
131
|
Gary B, Azuero R, Mohanty GS, Bell WC, Eltoum IEA, Abdulkadir SA. Interaction of Nkx3.1 and p27kip1 in prostate tumor initiation. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1607-14. [PMID: 15111307 PMCID: PMC1615644 DOI: 10.1016/s0002-9440(10)63719-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2004] [Indexed: 01/16/2023]
Abstract
The homeodomain transcription factor Nkx3.1 and the cyclin-dependent kinase inhibitor p27kip1 have both been implicated in prostate tumor suppression. In addition, both of these molecules demonstrate haploinsufficiency for tumor suppression, in which loss of a single allele is sufficient to lead to the development of preneoplastic or neoplastic lesions. We have generated mice carrying compound mutant alleles of Nkx3.1 and p27 to explore the roles of these factors in prostate tumorigenesis. Our results indicate that Nkx3.1 and p27kip1 cooperate to suppress the proliferation of prostatic epithelial cells and the formation of preneoplastic lesions resembling prostatic intraepithelial neoplasia. Cooperativity was most evident with complete loss of at least one of the two genes because compound heterozygous mice exhibited a prostatic phenotype that was no more severe than that of single heterozygous mutants. Thus Nkx3.1 and p27kip1 regulate prostatic epithelial cell proliferation and tumor initiation by affecting both haploinsufficient and nonhaploinsufficient pathways.
Collapse
Affiliation(s)
- Bernard Gary
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA
| | | | | | | | | | | |
Collapse
|
132
|
Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, Humphrey PA, Sundberg JP, Rozengurt N, Barrios R, Ward JM, Cardiff RD. Prostate Pathology of Genetically Engineered Mice: Definitions and Classification. The Consensus Report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 2004; 64:2270-305. [PMID: 15026373 DOI: 10.1158/0008-5472.can-03-0946] [Citation(s) in RCA: 460] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Pathological Classification of Prostate Lesions in Genetically Engineered Mice (GEM) is the result of a directive from the National Cancer Institute Mouse Models of Human Cancer Consortium Prostate Steering Committee to provide a hierarchical taxonomy of disorders of the mouse prostate to facilitate classification of existing and newly created mouse models and the translation to human prostate pathology. The proposed Bar Harbor Classification system is the culmination of three meetings and workshops attended by various members of the Prostate Pathology Committee of the Mouse Models of Human Cancer Consortium. A 2-day Pathology Workshop was held at The Jackson Laboratory in Bar Harbor, Maine, in October 2001, in which study sets of 93 slides from 22 GEM models were provided to individual panel members. The comparison of mouse and human prostate anatomy and disease demonstrates significant differences and considerable similarities that bear on the interpretation of the origin and natural history of their diseases. The recommended classification of mouse prostate pathology is hierarchical, and includes developmental, inflammatory, benign proliferative, and neoplastic disorders. Among the neoplastic disorders, preinvasive, microinvasive, and poorly differentiated neoplasms received the most attention. Specific criteria were recommended and will be discussed. Transitions between neoplastic states were of particular concern. Preinvasive neoplasias of the mouse prostate were recognized as focal, atypical, and progressive lesions. These lesions were designated as mouse prostatic intraepithelial neoplasia (mPIN). Some atypical lesions were identified in mouse models without evidence of progression to malignancy. The panel recommended that mPIN lesions not be given histological grades, but that mPIN be further classified as to the absence or presence of documented associated progression to invasive carcinoma. Criteria for recognizing microinvasion, for classification of invasive gland-forming adenocarcinomas, and for characterizing poorly differentiated tumors, including neuroendocrine carcinomas, were developed and are discussed. The uniform application of defined terminology is essential for correlating results between different laboratories and models. It is recommended that investigators use the Bar Harbor Classification system when characterizing new GEM models or when conducting experimental interventions that may alter the phenotype or natural history of lesion progression in existing models.
Collapse
Affiliation(s)
- Scott B Shappell
- Department of Pathology and Vanderbilt Prostate Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Wang F, McKeehan K, Yu C, Ittmann M, McKeehan WL. Chronic activity of ectopic type 1 fibroblast growth factor receptor tyrosine kinase in prostate epithelium results in hyperplasia accompanied by intraepithelial neoplasia. Prostate 2004; 58:1-12. [PMID: 14673947 DOI: 10.1002/pros.10311] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Ectopic expression of fibroblast growth factor receptor 1 (FGFR1) tyrosine kinase in epithelial cells is associated with progression of prostate cancer. Ectopic expression by transfection of FGFR1 in premalignant epithelial cells from nonmalignant Dunning tumors accelerated time-dependent progression of epithelial cells to malignancy. This study was designed to test the effect of chronic androgen-dependent ectopic activity of FGFR1 in the normal adult mouse epithelium by gene targeting. MATERIALS AND METHODS Constitutively active FGFR1 (caFGFR1) was targeted to prostate epithelial cells using the androgen-dependent probasin (PB) promoter. Prostate tissues of three strains were characterized over a period of 2 years by HE staining, immunohistochemical analyses for cytokeratin and alpha-actin, and rate of androgen-induced regeneration after castration. RESULTS Relative to wildtype littermates, transgenic mice showed increased overall size, hyperplasia in epithelial, and, to a lesser extent, stromal compartments and nuclear atypia in epithelial cells of the prostate with increasing age. Androgen-induced regeneration after castration was enhanced at day 3 by two-fold in mice expressing ectopic caFGFR1. CONCLUSIONS The ectopic presence and chronic activation of FGFR1 in mouse prostate epithelial cells induces progressive prostate intraepithelial neoplasia. These results confirm results suggested by the transplantable Dunning tumor and cell culture models that, in contrast to homeostasis-promoting resident FGFR2, chronic ectopic FGFR1 kinase activity in the epithelium disrupts homeostasis between stroma and epithelium. Although insufficient alone, it may cooperate with other oncogenic changes to promote epithelial cells down the path to malignancy.
Collapse
Affiliation(s)
- Fen Wang
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
134
|
Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM, Dyke TV, Cordon-Cardo C, Pandolfi PP. Pten dose dictates cancer progression in the prostate. PLoS Biol 2003; 1:E59. [PMID: 14691534 PMCID: PMC270016 DOI: 10.1371/journal.pbio.0000059] [Citation(s) in RCA: 546] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2003] [Accepted: 09/24/2003] [Indexed: 11/18/2022] Open
Abstract
Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten mouse mutant series with decreasing Pten activity: Pten(hy/+) > Pten(+/-) > Pten(hy/-) (mutants in which we have rescued the embryonic lethality due to complete Pten inactivation) > Pten prostate conditional knockout (Pten(pc)) mutants. In addition, we have generated and comparatively analyzed two distinct Pten(pc) mutants in which Pten is inactivated focally or throughout the entire prostatic epithelium. We find that the extent of Pten inactivation dictate in an exquisite dose-dependent fashion CaP progression, its incidence, latency, and biology. The dose of Pten affects key downstream targets such as Akt, p27(Kip1), mTOR, and FOXO3. Our results provide conclusive genetic support for the notion that PTEN is haploinsufficient in tumor suppression and that its dose is a key determinant in cancer progression.
Collapse
Affiliation(s)
- Lloyd C Trotman
- 1Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
- 2Department of Pathology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| | - Masaru Niki
- 1Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
- 2Department of Pathology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| | - Zohar A Dotan
- 1Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
- 2Department of Pathology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| | - Jason A Koutcher
- 3Department of Radiology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| | - Antonio Di Cristofano
- 1Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
- 2Department of Pathology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| | - Andrew Xiao
- 4Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel Hill, North CarolinaUnited States of America
| | - Alan S Khoo
- 1Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
- 2Department of Pathology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| | - Pradip Roy-Burman
- 5Departments of Pathology and Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CaliforniaUnited States of America
| | - Norman M Greenberg
- 6Departments of Molecular and Cellular Biology and Urology, Baylor College of MedicineHouston, TexasUnited States of America
| | - Terry Van Dyke
- 4Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel Hill, North CarolinaUnited States of America
| | - Carlos Cordon-Cardo
- 2Department of Pathology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| | - Pier Paolo Pandolfi
- 1Molecular Biology Program, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
- 2Department of Pathology, Memorial Sloan–Kettering Cancer Center, Sloan–Kettering InstituteNew York, New YorkUnited States of America
| |
Collapse
|
135
|
Kindblom J, Dillner K, Sahlin L, Robertson F, Ormandy C, Törnell J, Wennbo H. Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. Endocrinology 2003; 144:2269-78. [PMID: 12746285 DOI: 10.1210/en.2002-0187] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prolactin (PRL) is one of several polypeptide factors known to exert trophic effects on the prostate. We have previously reported a dramatic prostate enlargement with concurrent chronic hyperprolactinemia and elevated serum androgen levels in a PRL transgenic mouse (Mt-PRL) with ubiquitous expression of the transgene. To address the role of local PRL action in the prostate, a new transgenic mouse model (Pb-PRL) was generated using the prostate-specific rat probasin (Pb) minimal promoter to drive expression of the rat PRL gene. Pb-PRL transgenic males developed a significant enlargement of both the dorsolateral and ventral prostate lobes evident from 10 wk of age and increasing with age. Expression of the transgene was restricted to the prostate and detected from 4 wk of age. Low levels of transgenic rat PRL were detectable in the serum of adult Pb-PRL animals. Serum androgen levels were normal. The Pb-PRL prostate displayed significant stromal hyperplasia, ductal dilation, and focal areas of epithelial dysplasia. Quantitative analysis of prostatic tissue cellularity demonstrated a marked increase in the stromal to epithelial ratio in all lobes of Mt-PRL and Pb-PRL transgenic prostates compared with controls. Microdissections demonstrated an increased ductal morphogenesis in dorsolateral and ventral prostate lobes of Mt-PRL prostate vs. Pb-PRL and controls. In conclusion, this study indicates the ability of PRL to promote, directly or indirectly, ductal morphogenesis in the developing prostate and further to induce abnormal growth primarily of the stroma in the adult gland in a setting of normal androgen levels.
Collapse
Affiliation(s)
- Jon Kindblom
- Department of Physiology, Göteborg University, Göteborg 405 30, Sweden.
| | | | | | | | | | | | | |
Collapse
|
136
|
Narla G, Friedman SL, Martignetti JA. Krüppel cripples prostate cancer: KLF6 progress and prospects. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1047-52. [PMID: 12651597 PMCID: PMC1851219 DOI: 10.1016/s0002-9440(10)63901-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Goutham Narla
- From the Division of Liver Diseases* and the Department of Human Genetics,† Mount Sinai School of Medicine, New York, New York
| | - Scott L. Friedman
- From the Division of Liver Diseases* and the Department of Human Genetics,† Mount Sinai School of Medicine, New York, New York
| | - John A. Martignetti
- From the Division of Liver Diseases* and the Department of Human Genetics,† Mount Sinai School of Medicine, New York, New York
| |
Collapse
|