101
|
Pereira CS, Hünenberger PH. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J Phys Chem B 2007; 110:15572-81. [PMID: 16884281 DOI: 10.1021/jp060789l] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations are used to investigate the interaction of the sugars trehalose, maltose, and glucose with a phospholipid bilayer at atomic resolution. Simulations of the bilayer in the absence or in the presence of sugar (2 molal concentration for the disaccharides, 4 molal for the monosaccharide) are carried out at 325 and 475 K. At 325 K, the three sugars are found to interact directly with the lipid headgroups through hydrogen bonds, replacing water at about one-fifth to one-quarter of the hydrogen-bonding sites provided by the membrane. Because of its small size and of the reduced topological constraints imposed on the hydroxyl group locations and orientations, glucose interacts more tightly (at identical effective hydroxyl group concentration) with the lipid headgroups when compared to the disaccharides. At high temperature, the three sugars are able to prevent the thermal disruption of the bilayer. This protective effect is correlated with a significant increase in the number of sugar-headgroups hydrogen bonds. For the disaccharides, this change is predominantly due to an increase in the number of sugar molecules bridging three or more lipid molecules. For glucose, it is primarily due to an increase in the number of sugar molecules bound to one or bridging two lipid molecules.
Collapse
Affiliation(s)
- Cristina S Pereira
- Laboratory of Physical Chemistry, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
102
|
Abstract
Trehalose is a disaccharide of glucose that is found at high concentrations in a wide variety of organisms that naturally survive drying in nature. Many years ago we reported that this molecule has the remarkable ability to stabilize membranes and proteins in the dry state. A mechanism for the stabilization rapidly emerged, and it was sufficiently attractive that a myth grew up about trehalose as a universal protectant and chemical chaperone. Many of the claims in this regard can be explained by what is now known about the physical properties of this interesting sugar. It is emerging that these properties may make it unusually useful in stabilizing intact cells in the dry state.
Collapse
Affiliation(s)
- John H Crowe
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| |
Collapse
|
103
|
Róg T, Vattulainen I, Bunker A, Karttunen M. Glycolipid Membranes through Atomistic Simulations: Effect of Glucose and Galactose Head Groups on Lipid Bilayer Properties. J Phys Chem B 2007; 111:10146-54. [PMID: 17676793 DOI: 10.1021/jp0730895] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Though glycolipids are involved in a multitude of cellular functions, the understanding of their atom-scale properties in lipid membranes has remained very limited due to the lack of atomistic simulations. In this work, we employ extensive simulations to characterize one-component membranes comprised of glycoglycerolipids, focusing on two common glyco head groups, namely glucose and galactose. The properties of these two glycoglycerolipid bilayers are compared in a systematic manner with membranes consisting of phosphatidylcholine (PC) or phosphatidylethanolamine (PE) lipids, whose structures aside from the head group are identical with those of the two glycolipids. We find that the glycolipid systems are characterized by a substantial number of hydrogen bonds in the head group region, leading to membrane packing that is stronger than in a PC but less significant than that in a PE bilayer. The role played by the glyco head group is especially evident in the electrostatic membrane potential, which is particularly large in the glycolipid membranes. For the same reason, the interfacial forces near glycolipid bilayers are significantly different from those found in PC and PE bilayers, affecting, e.g., the ordering of water close to the membrane. These effects are particularly important for the case of galactose, an important component in thylacoids.
Collapse
Affiliation(s)
- Tomasz Róg
- Biophysics and Statistical Mechanics Group, Laboratory of Computational Engineering, Helsinki University of Technology, Espoo, Finland
| | | | | | | |
Collapse
|
104
|
Lerbret A, Bordat P, Affouard F, Descamps M, Migliardo F. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J Phys Chem B 2007; 109:11046-57. [PMID: 16852346 DOI: 10.1021/jp0468657] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural properties resulting from the reciprocal influence between water and three well-known homologous disaccharides, namely, trehalose, maltose, and sucrose, in aqueous solutions have been investigated in the 4-66 wt % concentration range by means of molecular dynamics computer simulations. Hydration numbers clearly show that trehalose binds to a larger number of water molecules than do maltose or sucrose, thus affecting the water structure to a deeper extent. Two-dimensional radial distribution functions of trehalose solutions definitely reveal that water is preferentially localized at the hydration sites found in the trehalose dihydrate crystal, this tendency being enhanced when increasing trehalose concentration. Over a rather wide concentration range (4-49 wt %), the fluctuations of the radius of gyration and of the glycosidic dihedral angles of trehalose indicate a higher flexibility with respect to maltose and sucrose. At sugar concentrations between 33 and 66 wt %, the mean sugar cluster size and the number of sugar-sugar hydrogen bonds formed within sugar clusters reveal that trehalose is able to form larger clusters than sucrose but smaller than maltose. These features suggest that trehalose-water mixtures would be more homogeneous than the two others, thus reducing both desiccation stresses and ice formation.
Collapse
Affiliation(s)
- A Lerbret
- Laboratoire de Dynamique et Structure des Matériaux Moléculaires, UMR CNRS 8024, Université Lille I, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
105
|
Christensen D, Foged C, Rosenkrands I, Nielsen HM, Andersen P, Agger EM. Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2120-9. [PMID: 17555704 DOI: 10.1016/j.bbamem.2007.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 11/15/2022]
Abstract
Disaccharides are well-known reagents to protect biostructures like proteins and phospholipid-based liposomes during freezing and drying. We have investigated the ability of the two disaccharides trehalose and sucrose to stabilize a novel, non-phospholipid-based liposomal adjuvant composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) upon freeze-drying. The liposomes were freeze-dried using a human dose concentration containing 2.5 mg/ml DDA and 0.5 mg/ml TDB with varying concentrations of the two sugars. The influence on particle size upon rehydration was investigated using photon correlation spectroscopy (PCS) and the gel to fluid phase transition was examined by differential scanning calorimetry (DSC). Data revealed that concentrations above 211 mM trehalose protected and preserved DDA/TDB during freeze-drying, and the liposomes were readily rehydrated. Sucrose was less efficient as a stabilizer and had to be used in concentrations above 396 mM in order to obtain the same effect. Immunization of mice with the tuberculosis vaccine candidate Ag85B-ESAT-6 in combination with the trehalose stabilized adjuvant showed that freeze-dried DDA/TDB liposomes retained their ability to stimulate both a strong cell-mediated immune response and an antibody response. These findings show that trehalose at isotonic concentrations protects cationic DDA/TDB-liposomes during freeze-drying. Since this is not the case for liposomes based on DDA solely, we suggest that the protection is facilitated via direct interaction with the headgroup of TDB and a kosmotropic effect, whereas direct interaction with DDA plays a minor role.
Collapse
Affiliation(s)
- Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Adjuvant Research, Artillerivej 5, DK-2300 Copenhagen S, Denmark.
| | | | | | | | | | | |
Collapse
|
106
|
Seo SK, McClintock ML, Wei A. Cryoprotection with L- and meso-trehalose: stereochemical implications. Chembiochem 2007; 7:1959-64. [PMID: 17068838 PMCID: PMC2599921 DOI: 10.1002/cbic.200600322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two unnatural stereoisomers of alpha,alpha-trehalose (L- and meso-trehalose) were synthesized and evaluated as cryoprotectants in order to determine the functional consequences of relative or absolute stereochemistry on their physicochemical properties. Adherent yeast cell cultures were frozen in 10% solutions of D-, L-, and meso-trehalose for periods of 7-28 days, then evaluated by a MTT viability assay. D- and L-trehalose were equally effective in maintaining high rates of cell survival, thus demonstrating the absence of chiral discrimination at the carbohydrate-lipid interface, whereas meso-trehalose was inferior in cryoprotection efficacy. Differential scanning calorimetry revealed a difference in the glass transition temperatures (Tg) of D- and meso-trehalose of nearly 75 degrees C. This can be attributed to differences in conformational behavior, as portrayed by torsional energy maps for rotation about the glycosidic bonds of D- and meso-trehalose. We conclude that the biostabilizing properties of alpha,alpha-trehalose depend on relative stereochemical factors, but are independent of absolute stereochemical configuration.
Collapse
Affiliation(s)
- Seung-Kee Seo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | | | | |
Collapse
|
107
|
A mechanism for the stabilization of the secondary structure of a peptide by liquid ethylene glycol and its aqueous solutions. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2006.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
108
|
Berlinguer F, Leoni GG, Succu S, Mossa F, Galioto M, Madeddu M, Naitana S. Cryopreservation of European Mouflon (Ovis Gmelini Musimon) Semen During the non-Breeding Season is Enhanced by the Use of Trehalose. Reprod Domest Anim 2007; 42:202-7. [PMID: 17348979 DOI: 10.1111/j.1439-0531.2006.00753.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of trehalose on European mouflon spermatozoa cryopreservation during the non-breeding season was tested. Semen was frozen in two different extenders: (a) recommended Tris-based ram extender (CTR); (b) CTR extender supplemented with trehalose 0.147 mm (TRH). Sperm viability and acrosome integrity were assessed using propidium iodide and fluorescein isothiocynate labelled Pisum Sativum agglutinin. Trehalose significantly enhanced sperm viability after thawing compared with CTR extender (62.7% vs 51.8%; p < 0.05), whereas no differences were observed on acrosome integrity (42.9% vs 42.1%). Trehalose influence was also evidenced in the in vitro fertility test performed with sheep oocytes matured in vitro. Both fertilization rates (60.9% TRH vs 43.6% CTR; p < 0.05) and cleavage rates (58% TRH vs 39.8% CTR; p < 0.001) were higher for trehalose frozen semen compared with control extender frozen semen. A higher percentage of zygotes resulting from fertilization with trehalose cryopreserved semen presented the first cleavage earlier if compared with the group fertilized with control semen (48.7% vs 31.5%, respectively; p < 0.01). This result was confirmed by embryo kinetic development. Fertilization with trehalose cryopreserved semen leaded to an higher percentage of blastocysts (40.2% vs 27.8% CTR; p < 0.05), and enhanced in particular the number of blastocysts that developed on the day 6th of culture (28.6% vs 17% CTR; p < 0.05). Our data demonstrated that, during mouflon non-breeding season, trehalose extender enhances spermatozoa viability and its in vitro fertilizing capacity, allowing the production of an higher number of blastocysts.
Collapse
Affiliation(s)
- F Berlinguer
- Department of Animal Biology, University of Sassari, Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
109
|
van den Bogaart G, Hermans N, Krasnikov V, de Vries AH, Poolman B. On the decrease in lateral mobility of phospholipids by sugars. Biophys J 2007; 92:1598-605. [PMID: 17142271 PMCID: PMC1796821 DOI: 10.1529/biophysj.106.096461] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022] Open
Abstract
Upon cold and drought stress, sucrose and trehalose protect membrane structures from fusion and leakage. Similarly, these sugars protect membrane proteins from inactivation during dehydration. We studied the interactions between sugars and phospholipid membranes in giant unilamellar vesicles with the fluorescent lipid analog 3,3'-dioctadecyloxacarbocyanine perchlorate incorporated. Using fluorescence correlation spectroscopy, it was found that sucrose decreased the lateral mobility of phospholipids in the fully rehydrated, liquid crystalline membrane more than other sugars did, including trehalose. To describe the nature of the difference in the interaction of phospholipids with sucrose and trehalose, atomistic molecular dynamics studies were performed. Simulations up to 100 ns showed that sucrose interacted with more phospholipid headgroups simultaneously than trehalose, resulting in a larger decrease of the lateral mobility. Using coarse-grained molecular dynamics, we show that this increase in interactions can lead to a relatively large decrease in lateral phospholipid mobility.
Collapse
Affiliation(s)
- Geert van den Bogaart
- Biochemistry Department, Ultrafast Laser and Spectroscopy Laboratory, Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
110
|
Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Schoot Uiterkamp AJM, Mark AE. Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:198-206. [PMID: 17125733 DOI: 10.1016/j.bbamem.2006.09.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 09/12/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
The question of why plants release isoprene when heat stressed has been continuously debated for more than half a century. In this work we use molecular dynamics simulation techniques to directly investigate the interaction between isoprene and a model phospholipid membrane in atomic detail. It is found that isoprene partitions preferentially in the center of the membrane and in a dose dependent manner enhances the order within the membrane without significantly changing the dynamical properties of the system. At a concentration of 20 mol% isoprene (16 isoprene molecules per 64 lipid molecules) the effect of the addition of isoprene on the membrane order is equivalent to a reduction in temperature of 10 K, rising to a reduction of 30 K at 43 mol% isoprene. The significance of the work is that it provides for the first time direct evidence that isoprene stabilizes lipid membranes and reduces the likelihood of a phospholipid membrane undergoing a heat induced phase transition. Furthermore it provides a clear mechanistic picture as to why plants specifically utilize isoprene for this purpose.
Collapse
Affiliation(s)
- Magdalena E Siwko
- Laboratory of Lipids and Liposomes, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
111
|
Wu P, Grainger DW. Comparison of hydroxylated print additives on antibody microarray performance. J Proteome Res 2007; 5:2956-65. [PMID: 17081047 PMCID: PMC2528199 DOI: 10.1021/pr060217d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various hydroxylated additives were added to antibody print buffers at different concentrations to stabilize printed antibodies during normal array spot desiccation on commercial polymer-coated microarray slides. Polyvinyl alcohol addition to print buffers produced the most regular spot morphologies, homogeneous intra-spot antibody distribution, uniform fluorescence intensity, and improved analyte capture activity, maintained up to 1 month at 4 degrees C for capturing model analytes, anti-human IL-1beta, IL-4, and TNFalpha, on these microarraying slides.
Collapse
Affiliation(s)
| | - David W. Grainger
- *To whom correspondence should be addressed at current address: Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112-5820 USA, tel: +1 801 581 4532,
| |
Collapse
|
112
|
Curtis JE, Dirama TE, Carri GA, Tobias DJ. Inertial Suppression of Protein Dynamics in a Binary Glycerol−Trehalose Glass. J Phys Chem B 2006; 110:22953-6. [PMID: 17107124 DOI: 10.1021/jp0615499] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The traditional approach used to predict the ability of a glassy matrix to maximally preserve the activity of a protein solute is the glass transition temperature (T(g)) of the glass. Recently it has been shown that the addition of a low T(g) diluent (glycerol) can rigidify the structure of a high T(g) glassy matrix in binary glycerol-trehalose glasses. The optimal density of glycerol in trehalose minimizes the average mean square displacements of non-exchangeable protons in the glass samples. The amount of glycerol added to a trehalose glass coincides with the maximal recovery of biological activity in a separate study using similar binary glass samples. In this study, we use molecular dynamics (MD) simulations to investigate the dynamics of a hydrated protein encased in glycerol, unary trehalose and binary glycerol-trehalose glasses. We have found that we are able to reproduce the rigidification of the glycerol-trehalose glassy matrix and that there is a direct correlation between bulk glass dynamics and the extent of atomic fluctuation of protein atoms. The detailed microscopic picture that emerges is that protein dynamics are suppressed mainly by inertia of the bulk glass and to a lesser extent specific interactions at the protein-solvent interface. Thus, the inertia of the glassy matrix may be an influential factor in the determination of pharmaceutically relevant formulations.
Collapse
|
113
|
Doehlemann G, Berndt P, Hahn M. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. MICROBIOLOGY-SGM 2006; 152:2625-2634. [PMID: 16946258 DOI: 10.1099/mic.0.29044-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To analyse the role of trehalose as stress protectant and carbon storage compound in the grey mould fungus Botrytis cinerea, mutants defective in trehalose-6-phosphate synthase (TPS1) and neutral trehalase (TRE1) were constructed. The Deltatps1 mutant was unable to synthesize trehalose, whereas the Deltatre1 mutant showed elevated trehalose levels compared to the wild-type and was unable to mobilize trehalose during conidial germination. Both mutants showed normal vegetative growth and were not affected in plant pathogenicity. Growth of the Deltatps1 mutant was more heat sensitive compared to the wild-type. Similarly, Deltatps1 conidia showed a shorter survival under heat stress, and their viability at moderate temperatures was strongly reduced. In germinating wild-type conidia, rapid trehalose degradation occurred only when germination was induced in the presence of nutrients. In contrast, little trehalose breakdown was observed during germination on hydrophobic surfaces in water. Here, addition of cAMP to conidia induced trehalose mobilization and accelerated the germination process, probably by activation of TRE1. In accordance with these data, both mutants showed germination defects only in the presence of sugars but not on hydrophobic surfaces in the absence of nutrients. The data indicate that in B. cinerea trehalose serves as a stress protectant, and also as a significant but not essential carbon source for germination when external nutrients are low. In addition, evidence was obtained that trehalose 6-phosphate plays a role as a regulator of glycolysis during germination.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Phytopathologie, Department of Biology, University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Patrick Berndt
- Phytopathologie, Department of Biology, University of Kaiserslautern, 67653 Kaiserslautern, Germany
| | - Matthias Hahn
- Phytopathologie, Department of Biology, University of Kaiserslautern, 67653 Kaiserslautern, Germany
| |
Collapse
|
114
|
Venable RM, Skibinsky A, Pastor RW. Constant surface tension molecular dynamics simulations of lipid bilayers with trehalose. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600615018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
115
|
Pinisetty D, Moldovan D, Devireddy R. The Effect of Methanol on Lipid Bilayers: An Atomistic Investigation. Ann Biomed Eng 2006; 34:1442-51. [PMID: 16897422 DOI: 10.1007/s10439-006-9148-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 05/30/2006] [Indexed: 12/01/2022]
Abstract
The interactions of methanol with lipid bilayers were studied by means of molecular dynamics (MD) simulations. Our MD simulations focus on the effect of approximately 11.3 mol% methanol on two fully hydrated dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylcholine (POPC) lipid bilayers both in the fluid phase and under equilibrium conditions at 323 and 298 K, respectively. The effects of methanol on bilayers structural characteristics were investigated. In both systems the simulations show that the presence of relatively high concentration of methanol leads to a significant increase in the area per lipid. The increase in the area per lipid is accompanied by a corresponding decrease of the bilayer thickness such that the volume occupied per lipid does not change significantly in the presence of methanol. Other properties such as ordering of phospholipid tails and lateral diffusion of the lipids are also affected significantly by the presence of methanol. Consistent with other previously reported MD simulation studies of bilayers in the presence of methanol (albeit at a significantly smaller concentration of 1 mol%) our study shows very few hydrogen bonding formation between lipids and methanol.
Collapse
Affiliation(s)
- D Pinisetty
- Department of Mechanical Engineering, Louisiana State University, 2508 CEBA Bldg., Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
116
|
Hincha DK. High concentrations of the compatible solute glycinebetaine destabilize model membranes under stress conditions. Cryobiology 2006; 53:58-68. [PMID: 16696965 DOI: 10.1016/j.cryobiol.2006.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/16/2006] [Accepted: 03/29/2006] [Indexed: 11/24/2022]
Abstract
Compatible solutes are accumulated by diverse organisms in response to environmental stresses such as drought, salt, or cold. Glycinebetaine (Bet) is such a solute that is accumulated by many plants and microorganisms to high concentrations under stress conditions. It is an osmoprotectant in bacteria and stabilizes both soluble and peripherally membrane-bound proteins in vitro. Here, the effects of Bet on the stability of model lipid membranes are compared to the effects of two other compatible solutes, sucrose and trehalose. Both in the presence of 1M NaCl and during freezing to -20 degrees C, Bet is highly destabilizing to liposomes containing nonbilayer lipids, while the disaccharides are either protective or, in some cases, much less destabilizing. The destabilizing effect of Bet is more pronounced in membranes containing the nonbilayer galactolipid monogalactosyldiacylglycerol from plant chloroplasts than in membranes containing the nonbilayer phospholipid phosphatidylethanolamine. The most dramatic differences between the sugars and Bet were observed in liposomes made from a combination of lipids resembling plant chloroplast thylakoid membranes. Measurements with the dye merocyanine 540 indicate that the water-membrane interface was affected in opposite directions by the presence of high concentrations of sucrose or Bet. The dynamics of the lipids, however, were not differentially affected by the solutes, making direct solute-lipid interactions an unlikely explanation for the different effects on stability. The data offer an explanation, why Bet at high concentrations achieved during exogenous feeding of leaf tissues can be detrimental to cellular stability and survival under stress, while bacterial membranes that contain phosphatidylethanolamine instead of monogalactosyldiacylglycerol, or cyanobacteria that contain highly saturated monogalactosyldiacylglycerol are less susceptible.
Collapse
Affiliation(s)
- Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany.
| |
Collapse
|
117
|
Rangel DEN, Anderson AJ, Roberts DW. Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. J Invertebr Pathol 2006; 93:127-34. [PMID: 16842815 DOI: 10.1016/j.jip.2006.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/24/2006] [Accepted: 05/27/2006] [Indexed: 11/29/2022]
Abstract
Conidia of the insect-pathogenic fungus Metarhizium anisopliae var. anisopliae produced on different growth substrates (culture media or insect cadavers) demonstrate reproducibly altered tolerance to UV-B radiation [Rangel, D.E.N., Braga, G.U.L., Flint, S.D., Anderson, A.J., Roberts, D.W., 2004. Variations in UV-B tolerance and germination speed of M. anisopliae conidia produced on artificial and natural substrates. J. Invertebr. Pathol. 87, 77-83]. In the current study, the fungus was grown on potato dextrose agar with yeast extract (PDAY), on minimal medium [(MM)=Czapek medium without saccharose], or on MM with one of 16 different carbon sources. The conidia produced on these media were exposed to UV-B radiation. Great amplitude in phenotypic plasticity for UV-B tolerance was demonstrated, viz., conidia produced under nutritive stress [MM or MM supplemented with non-preferred carbon sources (e.g., fructose, galactose, lactose etc.)] had at least two times higher tolerance than conidia produced on the rich medium (PDAY). Endogenous trehalose and mannitol accumulated at least two times more in conidia produced on MM (or MM with lactose, a non-preferred carbon source), as compared to conidia from MM plus glucose. High accumulations of these two carbohydrates in fungal spores are known to protect them against a wide range of stresses. Sporulation, however, was most profuse on PDAY, second best on MM plus d-mannose and least on MM or MM containing non-preferred carbon sources. Taken together, the results illustrate that nutritive stress generated by MM or MM plus a non-preferred carbon source greatly improved UV-B tolerance, but reduced conidial yield; while, on the other hand, preferred carbon sources improved conidial yield, but reduced UV-B tolerance.
Collapse
|
118
|
Pereira CS, Kony D, Baron R, Müller M, van Gunsteren WF, Hünenberger PH. Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. Biophys J 2006; 90:4337-44. [PMID: 16581848 PMCID: PMC1471844 DOI: 10.1529/biophysj.106.081539] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 03/15/2006] [Indexed: 11/18/2022] Open
Abstract
Explicit-solvent molecular dynamics simulations (50 ns, 300 K) of the eight reducing glucose disaccharides (kojibiose, sophorose, nigerose, laminarabiose, maltose, cellobiose, isomaltose, and gentiobiose) have been carried out using the GROMOS 45A4 force field (including a recently reoptimized carbohydrate parameter set), to investigate and compare their conformational preferences, intramolecular hydrogen-bonding patterns, torsional dynamics, and configurational entropies. The calculated average values of the glycosidic torsional angles agree well with available experimental data, providing validation for the force field and simulation methodology employed in this study. These simulations show in particular that: 1) (1-->6)-linked disaccharides are characterized by an increased flexibility, the absence of any persistent intramolecular hydrogen bond and a significantly higher configurational entropy (compared to the other disaccharides); 2) cellobiose presents a highly persistent interresidue hydrogen bond and a significantly lower configurational entropy (compared to the other disaccharides); 3) persistent hydrogen bonds are observed for all disaccharides (except (1-->6)-linked) and typically involve a hydrogen donor in the reducing residue and an acceptor in the nonreducing one; 4) the probability distributions associated with the glycosidic dihedral angles and psi are essentially unimodal for all disaccharides, and full rotation around these angles occurs at most once or twice for (never for psi) on the 50-ns timescale; and 5) the timescales associated with torsional transitions (except around and psi) range from approximately 30 ps (rotation of hydroxyl groups) to the nanosecond range (rotation of the lactol and hydroxymethyl groups, and around the omega-glycosidic dihedral angle in (1-->6)-linked disaccharides).
Collapse
|
119
|
Giuffrida S, Cottone G, Cordone L. Role of solvent on protein-matrix coupling in MbCO embedded in water-saccharide systems: a Fourier transform infrared spectroscopy study. Biophys J 2006; 91:968-80. [PMID: 16714349 PMCID: PMC1563748 DOI: 10.1529/biophysj.106.081927] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embedding protein in sugar systems of low water content enables one to investigate the protein dynamic-structure function in matrixes whose rigidity is modulated by varying the content of residual water. Accordingly, studying the dynamics and structure thermal evolution of a protein in sugar systems of different hydration constitutes a tool for disentangling solvent rigidity from temperature effects. Furthermore, studies performed using different sugars may give information on how the detailed composition of the surrounding solvent affects the internal protein dynamics and structural evolution. In this work, we compare Fourier transform infrared spectroscopy measurements (300-20 K) on MbCO embedded in trehalose, sucrose, maltose, raffinose, and glucose matrixes of different water content. At all the water contents investigated, the protein-solvent coupling was tighter in trehalose than in the other sugars, thus suggesting a molecular basis for the trehalose peculiarity. These results are in line with the observation that protein-matrix phase separation takes place in lysozyme-lactose, whereas it is absent in lysozyme-trehalose systems; indeed, these behaviors may respectively be due to the lack or presence of suitable water-mediated hydrogen-bond networks, which match the protein surface to the surroundings. The above processes might be at the basis of pattern recognition in crowded living systems; indeed, hydration shells structural and dynamic matching is first needed for successful come together of interacting biomolecules.
Collapse
Affiliation(s)
- Sergio Giuffrida
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo and CNISM, I-90123 Palermo, Italy
| | | | | |
Collapse
|
120
|
Pedersen UR, Leidy C, Westh P, Peters GH. The effect of calcium on the properties of charged phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:573-82. [PMID: 16730642 DOI: 10.1016/j.bbamem.2006.03.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 03/08/2006] [Accepted: 03/14/2006] [Indexed: 11/28/2022]
Abstract
We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosphatidyl-serine (DMPS) bilayers as well as a protonated di-myristoyl-phosphatidyl-serine (DMPSH) bilayer. We were particularly interested in calcium ions due to their important role in biological systems. Simulations performed in the presence of calcium ions (DMPG, DMPS) or sodium ions (DMPS) were run for 45-60 ns. Simulation results for DMPG are compared with fluorescence measurements. The average areas per molecule were 47.4+/-0.5 A2 (DMPG with calcium), 47.3+/-0.5 A2 (DMPS with calcium), 51.3+/-1.0 A2 (DMPS with sodium) and 45.3+/-0.5 A2 (DMPSH). The structure of the negatively charged lipids is significantly affected by the counterions, where calcium ions have a more pronounced effect than sodium ions. Calcium ions were found to be tightly bound to the anionic groups of the lipid molecules and as such appear to constitute an integral part of the membrane interface on nanoseconds time scales. In contrast to sodium ions, calcium ions are localised in a narrow (approximately 10 A) band around the phosphate group. The interaction of calcium with the lipid molecules enhances the molecular packing of the PG and PS lipids. This observation is in good agreement with emission spectra of the membrane partitioning probe Laurdan in DMPG multilamellar vesicles that indicate an increase in the ordering of the DMPG bilayer due to the presence of calcium. Our results indicate that calcium ions, which often function as a second messengers in living cells have a pronounced effect on membrane structures, which may have implications during signal transduction events.
Collapse
Affiliation(s)
- Ulf R Pedersen
- Department of Life Science and Chemistry, Roskilde University, MEMPHYS-Center for Biomembrane Physics, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
121
|
Leekumjorn S, Sum AK. Molecular investigation of the interactions of trehalose with lipid bilayers of DPPC, DPPE and their mixture. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600586565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
122
|
Ohtake S, Schebor C, de Pablo JJ. Effects of trehalose on the phase behavior of DPPC-cholesterol unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:65-73. [PMID: 16473323 DOI: 10.1016/j.bbamem.2006.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/06/2006] [Accepted: 01/06/2006] [Indexed: 10/25/2022]
Abstract
A systematic study is presented of the effects of trehalose on the physical properties of extruded DPPC-cholesterol unilamellar vesicles. Particular emphasis is placed on examining how the interactions present in the hydrated state translate into those in the dehydrated state. Observations from HSDSC and DSC are used to examine the phase behavior of hydrated and dehydrated vesicles, respectively. The concentration of trehalose inside and outside the vesicles is manipulated, and is shown to affect the relative stability of the membranes. Our results show for the first time that a combination of high inner and low outer trehalose concentration is able to decrease the gel-to-liquid crystalline phase temperature (T(m)), while any other combination will not. Upon dehydration, the T(m) of all lipid mixtures increases. The extent of the increase depends on the trehalose distribution across the bilayer. The T(m) changes in the same direction with trehalose concentration for both freeze-dried and fully hydrated samples, suggesting that the trehalose distribution across the vesicle membrane, as well as the trehalose-phospholipid interaction, is maintained upon lyophilization. The results presented in this work may aid in the formulation of systems to be used in the lyophilization of liposomes for drug delivery applications.
Collapse
Affiliation(s)
- Satoshi Ohtake
- Chemical and Biological Engineering Department, University of Wisconsin, 1415 Engineering Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
123
|
Cacela C, Hincha DK. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophys J 2006; 90:2831-42. [PMID: 16443655 PMCID: PMC1414563 DOI: 10.1529/biophysj.105.074427] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disaccharides such as sucrose and trehalose play an important role in stabilizing cellular structures during dehydration. In fact, most organisms that are able to survive desiccation accumulate high concentrations of sugars in their cells. The mechanisms involved in the stabilization of cellular membranes in the dry state have been investigated using model membranes, such as phosphatidylcholine liposomes. It has been proposed that the lyoprotection of liposomes depends on the depression of the gel to liquid-crystalline phase transition temperature (T(m)) of the dry membranes below ambient and on the prevention of membrane fusion by sugar glass formation, because both lead to leakage of soluble content from the liposomes. Since fusion is prevented at lower sugar/lipid mass ratios than leakage, it has been assumed that more sugar is needed to depress T(m) than to prevent fusion. Here, we show that this is not the case. In air-dried egg phosphatidylcholine liposomes, T(m) is depressed by >60 degrees C at sucrose/lipid mass ratios 10-fold lower than those needed to depress fusion to below 20%. In fact, T(m) is significantly reduced at mass ratios where no bulk sugar glass phase is detectable by Fourier transform infrared spectroscopy or differential scanning calorimetry. A detailed analysis of the interactions of sucrose with the P=O, C=O, and choline groups of the lipid and a comparison to published data on water binding to phospholipids suggests that T(m) is reduced by sucrose through a "water replacement" mechanism. However, the sucrose/lipid mass ratios necessary to prevent leakage exceed those necessary to prevent both phase transitions and membrane fusion. We hypothesize that kinetic phenomena during dehydration and rehydration may be responsible for this discrepancy.
Collapse
Affiliation(s)
- Constança Cacela
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany
| | | |
Collapse
|
124
|
Chapter 6 Effects of Sugars on the Stability and Structure of Lipid Membranes During Drying. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES VOLUME 3 2006. [DOI: 10.1016/s1554-4516(05)03006-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
125
|
Christen M, Hünenberger PH, Bakowies D, Baron R, Bürgi R, Geerke DP, Heinz TN, Kastenholz MA, Kräutler V, Oostenbrink C, Peter C, Trzesniak D, van Gunsteren WF. The GROMOS software for biomolecular simulation: GROMOS05. J Comput Chem 2005; 26:1719-51. [PMID: 16211540 DOI: 10.1002/jcc.20303] [Citation(s) in RCA: 460] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present the latest version of the Groningen Molecular Simulation program package, GROMOS05. It has been developed for the dynamical modelling of (bio)molecules using the methods of molecular dynamics, stochastic dynamics, and energy minimization. An overview of GROMOS05 is given, highlighting features not present in the last major release, GROMOS96. The organization of the program package is outlined and the included analysis package GROMOS++ is described. Finally, some applications illustrating the various available functionalities are presented.
Collapse
Affiliation(s)
- Markus Christen
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Skibinsky A, Venable RM, Pastor RW. A molecular dynamics study of the response of lipid bilayers and monolayers to trehalose. Biophys J 2005; 89:4111-21. [PMID: 16183878 PMCID: PMC1366976 DOI: 10.1529/biophysj.105.065953] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 09/15/2005] [Indexed: 11/18/2022] Open
Abstract
Surface tensions evaluated from molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine bilayers and monolayers at surface areas/lipid of 54, 64, and 80 A2 are uniformly lowered 4-8 dyn/cm upon addition of trehalose in a 1:2 trehalose/lipid ratio. Constant surface tension simulations of bilayers yield the complementary result: an increase in surface area consistent with the surface pressure-surface area (pi-A) isotherms. Hydrogen bonding by trehalose, replacement of waters in the headgroup region, and modulation of the dipole potential are all similar in bilayers and monolayers at the same surface area. These results strongly support the assumption that experimental measurements on the interactions of surface active components such as trehalose with monolayers can yield quantitative insight to their effects on bilayers. The simulations also indicate that the 20-30 dyn/cm difference in surface tension of the bilayer leaflet and monolayer arises from differences in the chain regions, not the headgroup/water interfaces.
Collapse
Affiliation(s)
- Anna Skibinsky
- Laboratory of Biophysics, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852-1448, USA
| | | | | |
Collapse
|
127
|
Doxastakis M, Sum AK, de Pablo JJ. Modulating Membrane Properties: The Effect of Trehalose and Cholesterol on a Phospholipid Bilayer. J Phys Chem B 2005; 109:24173-81. [PMID: 16375409 DOI: 10.1021/jp054843u] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protective properties of trehalose on cholesterol-containing lipid dipalmitoylphosphatidylcholine (DPPC) bilayers are studied through molecular simulations. The ability of the disaccharide to interact with the phospholipid headgroups and stabilize the membrane persists even at high cholesterol concentrations and restricts some of the changes to the structure that would otherwise be imposed by cholesterol molecules. Predictions of bilayer properties such as area per lipid, tail ordering, and chain conformation support the notion that the disaccharide decreases the main melting transition in these multicomponent model membranes, which correspond more closely to common biological systems than pure bilayers. Molecular simulations indicate that the membrane dynamics are slowed considerably by the presence of trehalose, indicating that high sugar concentrations would serve to avert possible phase separations that could arise in mixed phospholipid systems. Various time correlation functions suggest that the character of the modifications in lipid dynamics induced by trehalose and cholesterol is different in the hydrophilic and hydrophobic regions of the membrane.
Collapse
Affiliation(s)
- Manolis Doxastakis
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
128
|
Song Y, Guallar V, Baker NA. Molecular dynamics simulations of salicylate effects on the micro- and mesoscopic properties of a dipalmitoylphosphatidylcholine bilayer. Biochemistry 2005; 44:13425-38. [PMID: 16216066 PMCID: PMC2435121 DOI: 10.1021/bi0506829] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Salicylate, an amphiphilic molecule and a popular member of the nonsteroidal anti-inflammatory drug family, is known to affect hearing through reduction of the electromechanical coupling in the outer hair cells of the ear. This reduction of electromotility by salicylate has been widely studied, but the molecular mechanism of the phenomenon is still unknown. In this study, we investigated one aspect of salicylate's action, namely the perturbation of electrical and mechanical membrane properties by salicylate in the absence of cytoskeletal or membrane-bound motor proteins such as prestin. In particular, we simulated the interaction of salicylate with a dipalmitoylphosphatidylcholine (DPPC) bilayer via atomically detailed molecular dynamics simulations to observe the effect of salicylate on the microscopic and mesoscopic properties of the bilayer. The results demonstrate that salicylate interacts with the bilayer by associating at the water-DPPC interface in a nearly perpendicular orientation and penetrating more deeply into the bilayer than either sodium or chloride. This association has several affects on the membrane properties. First, binding of salicylate to the membrane displaces chloride from the bilayer-water interface. Second, salicylate influences the electrostatic potential and dielectric properties of the bilayer, with significant changes at the water-lipid bilayer interface. Third, salicylate association results in structural changes, including decreased headgroup area per lipid and increased lipid tail order. However, salicylate does not significantly alter the mechanical properties of the DPPC bilayer; bulk compressibility, area compressibility, and bending modulus were only perturbed by small, statistically insignificant amounts by the presence of salicylate. The observations from these simulations are in qualitative agreement with experimental data and support the conclusion that salicylate influences the electrical but not the mechanical properties of DPPC membranes.
Collapse
Affiliation(s)
- Yuhua Song
- Dept. of Biochemistry and Molecular Biophysics, Center for Computational Biology, Washington Univ. St. Louis. E-mail:
| | - Victor Guallar
- Dept. of Biochemistry and Molecular Biophysics, Center for Computational Biology, Washington Univ. St. Louis. E-mail:
| | - Nathan A. Baker
- * To whom correspondence should be addressed. Dept. of Biochemistry and Molecular Biophysics, Center for Computational Biology, Washington Univ. St. Louis. 700 S. Euclid Ave., Campus Box 8036, St. Louis, MO 63110. Phone: (314) 362-2040, Fax: (314) 362-0234, E-mail: , Web: http://agave.wustl.edu/
| |
Collapse
|
129
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
130
|
Chiantia S, Giannola LI, Cordone L. Lipid phase transition in saccharide-coated cholate-containing liposomes: coupling to the surrounding matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4108-4116. [PMID: 15835981 DOI: 10.1021/la046974c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We performed FTIR measurements on cholate-containing liposomes (CCL) embedded in saccharide (trehalose or sucrose) matrixes with different contents of residual water. We obtained information on the CCL phase transition following the thermal evolution (310-70 K) of the IR spectrum of the carbonyl moieties of phospholipids in the frequency range 4225-4550 cm(-1). Furthermore, we simultaneously followed the thermal evolution of the water association band, which gave information on the behavior of the surrounding water-saccharide matrix. The analysis revealed a small sub-band of the water association band present in CCL but not in cholate-free liposomes, the thermal evolution of which is tightly coupled to that of the spectrum of the carbonyl moieties of phospholipids. We suggest that this band arises from water molecules, which are inserted within the lipidic structure, in the region located at the border between the hydrophilic and the hydrophobic moieties of phospholipids in the presence of cholic acid. Such water molecules could be responsible for the peculiar flexibility and hydrophilicity of CCL. Following Giuffrida et al. (J. Phys. Chem. B 2003, 107, 13211-13217), we also performed a Spectra Distance analysis, which enabled us to detect an overall liposomes-matrix structural coupling.
Collapse
Affiliation(s)
- Salvatore Chiantia
- Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| | | | | |
Collapse
|
131
|
Nogueira CES, Ruggiero JR, Sist P, Cescutti P, Urbani R, Rizzo R. Conformational features of cepacian: the exopolysaccharide produced by clinical strains of Burkholderia cepacia. Carbohydr Res 2005; 340:1025-37. [PMID: 15780267 DOI: 10.1016/j.carres.2004.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
Conformational energy calculations and molecular dynamics investigations, both in water and in dimethyl sulfoxide, were carried out on the exopolysaccharide cepacian produced by the majority of the clinical strains of Burkholderia cepacia, an opportunistic pathogen causing serious lung infection in patients affected by cystic fibrosis, The investigation was aimed at defining the structural and conformational features, which might be relevant for clarification of the structure-function relationships of the polymer. The molecular dynamics calculations were carried out by Ramachandran-type energy plots of the disaccharides that constitute the polymer repeating unit. The dynamics of an oligomer composed of three repeating units were investigated in water and in Me2SO, a non-aggregating solvent. Analysis of the time persistence of hydrogen bonds showed the presence of a large number of favourable interactions in water, which were less evident in Me2SO. The calculations on the cepacian chain indicated that polymer conformational features in water were affected by the lateral chains, but were also largely dictated by the presence of solvent. Moreover, the large number of intra-chain hydrogen bonds in water disappeared in Me2SO solution, increasing the average dimension of the polymer chains.
Collapse
|
132
|
Abstract
A new parameter set (referred to as 45A4) is developed for the explicit-solvent simulation of hexopyranose-based carbohydrates. This set is compatible with the most recent version of the GROMOS force field for proteins, nucleic acids, and lipids, and the SPC water model. The parametrization procedure relies on: (1) reassigning the atomic partial charges based on a fit to the quantum-mechanical electrostatic potential around a trisaccharide; (2) refining the torsional potential parameters associated with the rotations of the hydroxymethyl, hydroxyl, and anomeric alkoxy groups by fitting to corresponding quantum-mechanical profiles for hexopyranosides; (3) adapting the torsional potential parameters determining the ring conformation so as to stabilize the (experimentally predominant) (4)C(1) chair conformation. The other (van der Waals and nontorsional covalent) parameters and the rules for third and excluded neighbors are taken directly from the most recent version of the GROMOS force field (except for one additional exclusion). The new set is general enough to define parameters for any (unbranched) hexopyranose-based mono-, di-, oligo- or polysaccharide. In the present article, this force field is validated for a limited set of monosaccharides (alpha- and beta-D-glucose, alpha- and beta-D-galactose) and disaccharides (trehalose, maltose, and cellobiose) in solution, by comparing the results of simulations to available experimental data. More extensive validation will be the scope of a forthcoming article. (c) 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1400-1412, 2005.
Collapse
Affiliation(s)
- Roberto D Lins
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
133
|
Dickey AN, Faller R. Investigating interactions of biomembranes and alcohols: A multiscale approach. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/polb.20392] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
134
|
Doeven MK, Folgering JHA, Krasnikov V, Geertsma ER, van den Bogaart G, Poolman B. Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 2004; 88:1134-42. [PMID: 15574707 PMCID: PMC1305118 DOI: 10.1529/biophysj.104.053413] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GUVs have been widely used for studies on lipid mobility, membrane dynamics and lipid domain (raft) formation, using single molecule techniques like fluorescence correlation spectroscopy. Reports on membrane protein dynamics in these types of model membranes are by far less advanced due to the difficulty of incorporating proteins into GUVs in a functional state. We have used sucrose to prevent four distinct membrane protein(s) (complexes) from inactivating during the dehydration step of the GUV-formation process. The amount of sucrose was optimized such that the proteins retained 100% biological activity, and many proteo-GUVs were obtained. Although GUVs could be formed by hydration of lipid mixtures composed of neutral and anionic lipids, an alternate current electric field was required for GUV formation from neutral lipids. Distribution, lateral mobility, and function of an ATP-binding cassette transport system, an ion-linked transporter, and a mechanosensitive channel in GUVs were determined by confocal imaging, fluorescence correlation spectroscopy, patch-clamp measurements, and biochemical techniques. In addition, we show that sucrose slows down the lateral mobility of fluorescent lipid analogs, possibly due to hydrogen-bonding with the lipid headgroups, leading to larger complexes with reduced mobility.
Collapse
Affiliation(s)
- Mark K Doeven
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute and Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|