101
|
Armstrong BD, Hu Z, Abad C, Yamamoto M, Rodriguez WI, Cheng J, Tam J, Gomariz RP, Patterson PH, Waschek JA. Lymphocyte regulation of neuropeptide gene expression after neuronal injury. J Neurosci Res 2003; 74:240-7. [PMID: 14515353 DOI: 10.1002/jnr.10750] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP) are induced strongly in neurons after several types of injury, and exhibit neuroprotective actions in vitro and in vivo. It is thought that changes in expression of neuropeptides and other molecules in injured neurons are mediated by new factors produced in Schwann and immune cells at the injury site, a loss of target-derived factors, or a combination of mediators. To begin to determine the role of the inflammatory mediators, we investigated axotomy-induced changes in VIP and PACAP gene expression in the facial motor nucleus in severe combined immunodeficient (SCID) mice, and in mice with targeted mutations in specific cytokine genes. In normal mice, VIP and PACAP mRNA was induced strongly in facial motor neurons 4 days after axotomy. The increase in PACAP mRNA was blocked selectively in SCID mice, indicating that mechanisms responsible for VIP and PACAP gene induction are not identical. The loss of PACAP gene expression in SCID mice after axotomy was fully reversed by an infusion of normal splenocytes, suggesting that PACAP mRNA induction requires inflammatory mediators. PACAP and VIP mRNA inductions, however, were maintained in mice lacking leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), and in mice lacking both receptors for tumor necrosis factor alpha (TNFalpha). The data suggest that an inflammatory response, most likely involving T lymphocytes, is necessary for the axotomy-induced increase in PACAP but not in VIP. LIF, IL-6, and TNFalpha, however, are not required for this response to injury.
Collapse
Affiliation(s)
- Brian D Armstrong
- Mental Retardation Research Center, Neuropsychiatric Institute, The David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90024-1759, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Cho BP, Sugama S, Shin DH, DeGiorgio LA, Kim SS, Kim YS, Lim SY, Park KC, Volpe BT, Cho S, Joh TH. Microglial phagocytosis of dopamine neurons at early phases of apoptosis. Cell Mol Neurobiol 2003; 23:551-60. [PMID: 14514015 PMCID: PMC11530170 DOI: 10.1023/a:1025024129946] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transection of the medial forebrain bundle caused apoptosis of dopamine neurons in the rat substantia nigra. Immunohistochemical localization of activated microglia and tyrosine hydroxylase in the axotomized substantia nigra showed that activation of microglia was rapid and OX-6 (MHC-II marker)-positive and ED1 (lysosomal phagocytic marker)-positive microglia were apposed to structurally intact tyrosine hydroxylase-positive dopamine neurons, indicating microglial phagocytosis of degenerating dopamine neurons. The occurrence of microglial phagocytosis at early stages of apoptosis may indicate the evolution of apoptosis into an irreversible state. Alternatively, interventions that suppress early activation of microglia might lead to novel mechanisms for neuron protection.
Collapse
Affiliation(s)
- Byung Pil Cho
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Shuei Sugama
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Dong Hoon Shin
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Lorraine A. DeGiorgio
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Sung Soo Kim
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Yoon Seong Kim
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - So Young Lim
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Key Chung Park
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Bruce T. Volpe
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Sunghee Cho
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| | - Tong H. Joh
- The Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College and Graduate School of Medical Sciences of Cornell University, White Plains, New York USA
| |
Collapse
|
103
|
Hagino S, Iseki K, Mori T, Zhang Y, Hikake T, Yokoya S, Takeuchi M, Hasimoto H, Kikuchi S, Wanaka A. Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain. Glia 2003; 42:130-8. [PMID: 12655597 DOI: 10.1002/glia.10207] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The slit family serves as a repellent for growing axons toward correct targets during neural development. A recent report describes slit mRNAs expressed in various brain regions in adult rats. However, their functions in the adult nervous system remain unknown. In the present study, we investigated whether slit mRNAs were expressed in the cryo-injured brain, using in situ hybridization. All slit family members were expressed at the lesion. Slit2 mRNA was the most intensely expressed in the cells surrounding the necrotic tissue. A double-labeling study showed that slit2 mRNA was expressed in the glial fibrillary acidic protein (GFAP)-positive reactive astrocytes. In addition, glypican-1, a heparan sulfate proteoglycan that serves as a high-affinity receptor for Slit protein, was coexpressed with slit2 mRNA in the reactive astrocytes. These findings suggested that slit2 might prevent regenerating axons from entering into the lesion in concert with glypican-1.
Collapse
Affiliation(s)
- Seita Hagino
- Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Yuan Q, Xie Y, So KF, Wu W. Inflammatory response associated with axonal injury to spinal motoneurons in newborn rats. Dev Neurosci 2003; 25:72-8. [PMID: 12876433 DOI: 10.1159/000071470] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 03/12/2003] [Indexed: 11/19/2022] Open
Abstract
Axonal injury in peripheral nerve results in massive motoneuron loss during development. The purpose of this study was to examine the response of phagocytic populations (brain macrophages, BMOs, versus microglia) after different types of axonal lesions (distal axotomy or avulsion) in newborn rats. The morphology, spatial location and activation state of these inflammatory cells were observed. Following spinal root avulsion, BMOs were signaled rapidly and specifically to the location of dying motoneurons in the spinal cord. A large number of BMOs were observed around the avulsed motoneurons on the lesioned side of the spinal cord 1 day following the lesion. These BMOs were large, round, and intensely stained by both antibodies against ED1 and OX-42. The number of BMOs decreased by 3 days and disappeared by 5 days after injury. At the same time, reactive microglia appeared in the lesioned area and rapidly reached the peak level by the 5th day following avulsion. These reactive microglia were medium in size with retracted cellular processes and were also intensely stained by both ED1 and OX-42 antibodies. The number and staining intensity of reactive microglia declined sharply by day 7 after the lesion. In contrast, after distal axotomy only microglia but not BMOs were observed in the lesioned area. These microglial cells were small in size with long and fine-branched processes. They were ED1-negative but OX-42-positive.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | | | | | | |
Collapse
|
105
|
Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 2002. [PMID: 12417648 DOI: 10.1523/jneurosci.22-21-09228.2002] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of microglia commonly occurs in response to a wide variety of pathological stimuli including trauma, axotomy, ischemia, and degeneration in the CNS. In the retina, prolonged or high-intensity exposure to visible light leads to photoreceptor cell apoptosis. In such a light-reared retina, we found that activated microglia invade the degenerating photoreceptor layer and alter expression of neurotrophic factors such as nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), and glial cell line-derived neurotrophic factor (GDNF). Because these neurotrophic factors modulate secondary trophic factor expression in Müller glial cells, microglia-Müller glia cell interaction may contribute to protection of photoreceptors or increase photoreceptor apoptosis. In the present study, we demonstrate the possibility that such functional glia-glia interactions constitute the key mechanism by which microglia-derived NGF, brain-derived neurotrophic factor (BDNF), and CNTF indirectly influence photoreceptor survival, although the receptors for these neurotrophic factors are absent from photoreceptors, by modulating basic fibroblast growth factor (bFGF) and GDNF production and release from Müller glia. These observations suggest that microglia regulate the microglia-Müller glia-photoreceptor network that serves as a trophic factor-controlling system during retinal degeneration.
Collapse
|
106
|
Abstract
Microglia are reactively activated by various environmental stimulations caused by brain injury or disease. Activated microglia exhibit morphological transformation, proliferation, migration, phagocytosis, and the production of bioactive molecules. Various molecules are reported and suggested to activate microglia. Among them, macrophage-colony-stimulating factor (M-CSF) is considered one of the most convincing candidates responsible for maintaining activation properties of microglia. Therefore, the focus of the present study is on intracellular molecular events that arise downstream of M-CSF stimulation. M-CSF activates its receptor, Fms tyrosine kinase, and Fms sequentially activates a number of signaling molecules, including PI3K or phospholipase Cgamma (PLCgamma). Stimulation of continuing signaling cascades results in the activation of a small GTPase, Rac, the key molecule in microglia activation. Rac is known to be activated downstream of receptor tyrosine kinases and to regulate reorganization of the actin cytoskeleton, which profoundly underlies the above-mentioned properties of activated microglia. Iba1, a macrophage/microglia-specific calcium-binding protein, was identified by our group and was shown to be involved in the Rac signaling pathway. Further, we introduce a novel signaling pathway in which Rac is activated, dependent on PLCgamma and Iba1. However, to understand the molecular details of microglia activation, future work is required.
Collapse
Affiliation(s)
- Yoshinori Imai
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo, Japan
| |
Collapse
|
107
|
Proescholdt MG, Chakravarty S, Foster JA, Foti SB, Briley EM, Herkenham M. Intracerebroventricular but not intravenous interleukin-1beta induces widespread vascular-mediated leukocyte infiltration and immune signal mRNA expression followed by brain-wide glial activation. Neuroscience 2002; 112:731-49. [PMID: 12074914 DOI: 10.1016/s0306-4522(02)00048-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin-1beta (IL-1beta) is a pro-inflammatory cytokine that appears in brain and cerebrospinal fluid following peripheral immune challenges and central infections or injury. We examined the consequences of i.c.v. infusion of IL-1beta on mRNA expression of several immune markers and on recruitment of peripheral leukocytes. Awake rats were infused with IL-1beta (100 ng/rat) into the lateral ventricle, and 0.5, 2, 4, 8, 12, or 24 h later, animals were killed and their fresh-frozen brains processed for in situ hybridization and immunohistochemistry. Widespread vascular expression of inhibitory factor kappa(B)alpha (Ikappa(B)alpha, marker of nuclear factor kappa(B)alpha transcriptional activity) and inducible cyclooxygenase (COX-2) mRNAs at 0.5-2 h was credited to movement of IL-1beta along ventricular, subarachnoid, and perivascular pathways to target endothelia that express type 1 IL-1 receptor mRNA. Induction of monocyte chemoattractant protein-1 mRNA and intercellular adhesion molecule-1 (ICAM-1) immunostaining on endothelia began at 0.5-2 h. Leukocytes (neutrophils and monocytes, recognized by morphology and CD45 and ED1 immunostaining) appeared in meninges and blood vessels at 2-4 h and diffusely penetrated the parenchyma at 8-24 h. The leukocytes strongly expressed IL-1beta and inducible nitric oxide synthase mRNAs. Beginning at 4-12 h, astrocytes (glial acidic fibrillary protein mRNA and protein and c-fos mRNA) and microglia (ionized calcium-binding adaptor molecule 1 mRNA and protein) showed widespread activation. Other rats received i.v. IL-1beta (6 microg/kg). Their brains showed induction of Ikappa(B)alpha and COX-2 mRNAs in the vasculature at 2 h but none of the other sequelae. In summary, our data indicate that IL-1beta in the cerebrospinal fluid reaches its target receptors on the endothelia via perivascular volume transmission, up-regulates ICAM-1, and triggers a targeted leukocyte emigration and widespread glial activation stimulated perhaps by pro-inflammatory molecules expressed by leukocytes. The dramatic difference between i.c.v. and i.v. routes of administration underscores the potency of IL-1beta within the brain to dynamically affect the cellular trafficking component of 'immune privilege'.
Collapse
Affiliation(s)
- M G Proescholdt
- Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, MD 20892-4070, USA
| | | | | | | | | | | |
Collapse
|
108
|
Salimi K, Humpel C. Down-regulation of complement receptor 3 and major histocompatibility complex I and II antigen-like immunoreactivity accompanies ramification in isolated rat microglia. Brain Res 2002; 946:283-9. [PMID: 12137932 DOI: 10.1016/s0006-8993(02)02896-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Isolated primary microglia are highly activated in conventional culture systems. This has restricted studies to the use of late stage measures of activation rather than highly sensitive immunophenotypic and morphological criteria that mark even very early stages of microglial activation in vivo. In the present study, serum-free, serine- and glycine-free medium and poly-L-lysine coated surfaces have been used to demonstrate for the first time isolated rat microglia which (i) downregulate their immunoreactivity for antibodies recognizing complement receptor 3 and major histocompatibility complex antigens while differentiating into ramified cells, and (ii) respond to a subset of modulators with upregulation of complement receptor 3-like immunoreactivity. During 2 weeks of culturing under basal conditions, ramification was accompanied by strong downregulation of OX-42, OX-18 and OX-6 immunoreactivity (antibodies recognizing complement receptor 3 and major histocompatibility complex class I and II antigens, respectively). Ramified cells had lower level immunoreactivity for all three markers than non-ramified cells. High OX-42 immunoreactivity was also associated with morphological signs of activation previously described in vivo. Enhanced OX-42 immunoreactivity was induced by applying either serine and glycine or lipopolysaccharide (LPS) while granulocyte macrophage-colony stimulating factor increased cell number without affecting OX-42 immunoreactivity. LPS induced alterations were apparent within 24 h, were transient, and did not include changes in OX-18 or OX-6 immunoreactivity, cell number or proportion of ramified cells. The results attest to the special efficacy of this culture method for the investigation of the early microglial reaction by use of highly sensitive immunophenotypic criteria.
Collapse
Affiliation(s)
- Kayvon Salimi
- Laboratory of Psychiatry, Clinic of Psychiatry, University Hospital Innsbruck, Anichstr. 35, Austria.
| | | |
Collapse
|
109
|
Iseki K, Hagino S, Mori T, Zhang Y, Yokoya S, Takaki H, Tase C, Murakawa M, Wanaka A. Increased syndecan expression by pleiotrophin and FGF receptor-expressing astrocytes in injured brain tissue. Glia 2002; 39:1-9. [PMID: 12112370 DOI: 10.1002/glia.10078] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Syndecan-1, -2, -3, and -4 are heparan sulfate proteoglycans that are differentially expressed during development and wound repair. To determine whether syndecans are also involved in brain injury, we examined the expression of syndecan core proteins genes in cryo-injured mouse brain, using in situ hybridization. All syndecan mRNA transcripts were similarly expressed in the region surrounding the necrotic tissue, exhibiting peak levels at day 7 after injury. Comparison with cellular markers showed that reactive astrocytes were the primary source of syndecans. Syndecans serve as co-receptors for fibroblast growth factor (FGF) and as a reservoir for another heparin-binding growth factor, pleiotrophin (PTN, or heparin-binding growth-associated molecule. In our model, FGF receptor1 (FGFR1) and PTN mRNA levels were upregulated in reactive astrocytes. The distribution patterns of FGFR1 and PTN overlapped considerably with those of syndecan-1 and -3 mRNAs, respectively. These results suggest that syndecans are expressed primarily in reactive astrocytes, and may provide a supportive environment for regenerating axons in concert with heparin-binding growth factors (e.g., FGF and PTN) in the injured brain.
Collapse
Affiliation(s)
- Ken Iseki
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Ferzaz B, Brault E, Bourliaud G, Robert JP, Poughon G, Claustre Y, Marguet F, Liere P, Schumacher M, Nowicki JP, Fournier J, Marabout B, Sevrin M, George P, Soubrie P, Benavides J, Scatton B. SSR180575 (7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide), a peripheral benzodiazepine receptor ligand, promotes neuronal survival and repair. J Pharmacol Exp Ther 2002; 301:1067-78. [PMID: 12023539 DOI: 10.1124/jpet.301.3.1067] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we have investigated the potential neuroprotective effects of a novel peripheral benzodiazepine binding site (PBR) ligand, 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575), in models of central and peripheral neurodegeneration in vivo and its effect on steroid concentrations in plasma and nervous tissue. SSR180575 shows high affinity (IC(50), 2.5-3.5 nM) and selectivity for the rat and human PBR and potently inhibits the in vivo binding of [(3)H]alpidem to PBR in the rat brain and spleen after oral or i.p. administration (ID(50), 0.1-0.3 mg/kg). In an experimental model of motoneuron degeneration induced by facial nerve axotomy in the immature rat, SSR180575 given i.p. or orally for 8 days rescued facial motoneurons, increasing their survival by 40 to 72% at 6 and 10 mg/kg p.o. b.i.d. Moreover, in this model, SSR180575 (10 mg/kg p.o. b.i.d.) increased by 87% the number of motoneurons immunoreactive to peripherin, a type III intermediate filament, whose expression is up-regulated during nerve regeneration. SSR180575 also improved functional recovery in acrylamide-induced neuropathy in the rat when given therapeutically at 2.5 to 10 mg/kg/day p.o. Furthermore, SSR180575 (3 mg/kg i.p. b.i.d.) accelerated functional recovery of the blink reflex after local injury of the facial nerve in the rat. SSR180575 increased pregnenolone accumulation in the brain and sciatic nerve (+100% at 3 mg/kg i.p.), suggesting that its neuroprotective effects are steroid-mediated. These results indicate that PBR ligands (e.g., SSR180575) promote neuronal survival and repair in axotomy and neuropathy models and have potential for the treatment of neurodegenerative diseases (e.g., peripheral neuropathies or amyotrophic lateral sclerosis).
Collapse
Affiliation(s)
- Badia Ferzaz
- Discovery Research, Central Nervous System Research Department, Sanofi-Synthélabo Recherche, 31 avenue P. Vaillant-Couturier, 92225 Bagneux Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
The allograft inflammatory factor-1 (AIF-1) is a 17 kDa interferon-gamma-inducible Ca(2+)-binding EF-hand protein that is encoded within the HLA class III genomic region. Three proteins are probably identical with AIF-1 termed Iba1 (ionized Ca(2+)-binding adapter), MRF-1 (microglia response factor) and daintain. Considerable but not complete sequence identity with AIF-1 has been described for IRT-1 (interferon-responsive transcript), BART-1 (balloon angioplasty-responsive transcript), and other, yet unassigned alternatively spliced variants. In this review, genomic and functional characteristics of AIF-1-related proteins are summarized and a common nomenclature is proposed.
Collapse
Affiliation(s)
- Martin H Deininger
- Institute of Brain Research, University of Tübingen, Calwer Str. 3, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
112
|
Abstract
An understanding of microglial functions during normal CNS development is prerequisite for understanding developmental neurotoxicology. This review provides a brief summary of previous work regarding the origin of microglia and addresses differences and similarities between microglia and brain macrophages. Current concepts and ideas which implicate microglia in diverse developmental processes, such as apoptosis, axon growth, and vasculogenesis are discussed. The study of reactive microgliosis may prove useful in the histopathological analysis of neurotoxicant-induced brain damage during development.
Collapse
Affiliation(s)
- W J Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville 32611, USA.
| |
Collapse
|
113
|
Flügel A, Bradl M, Kreutzberg GW, Graeber MB. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 2001; 66:74-82. [PMID: 11599003 DOI: 10.1002/jnr.1198] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrophages in the brain can have a triple source. They may originate from recently blood-derived precursors, from the largely resident perivascular cell population (perivascular macrophages and related cells), and from intrinsic parenchymal as well as perivascular microglia. Although continuous exchange of part of the perivascular cell population with bone marrow-derived precursors is now accepted, the turnover of adult parenchymal microglia has remained enigmatic. Using bone-marrow chimeras carrying an unexpressed marker gene and carbon labeling of peripheral monocyte/macrophages in a combined model of facial nerve axotomy and transfer experimental autoimmune encephalitis, we demonstrate for the first time that there is an easy to induce exchange between parenchymal central nervous system (CNS) microglia and the macrophage precursor cell pool of the bone marrow. Furthermore, very low level infiltration of the CNS parenchyma by recently bone marrow-derived microglia could be observed after simple peripheral nerve axotomy that is followed by neuronal regeneration. Thus, microglial cells can be considered wanderers between the peripheral immune system and the CNS where they may act as a "Trojan horse" in infections. The fact that recently bone marrow-derived parenchymal microglia fully integrate into a regenerating brain nucleus' architecture encourages entirely new approaches for delivering genes into the adult CNS.
Collapse
Affiliation(s)
- A Flügel
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | | | | | | |
Collapse
|
114
|
Schwab JM, Frei E, Klusman I, Schnell L, Schwab ME, Schluesener HJ. AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats. J Neuroimmunol 2001; 119:214-22. [PMID: 11585624 DOI: 10.1016/s0165-5728(01)00375-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microglial cells are among the first and dominant cell types to respond to CNS injury. Following calcium influx, microglial activation leads to a variety of cellular responses, such as proliferation and release of cytotoxic and neurotrophic mediators. Allograft inflammatory factor-1, AIF-1 is a highly conserved EF-handed, putative calcium binding peptide, associated with microglia activation in the brain. Here, we have analyzed the expression of AIF-1 following spinal cord injury at the lesion site and at remote brain regions. Following spinal cord injury, AIF-1+ cells accumulated in parenchymal pan-necrotic areas and perivascular Virchow-Robin spaces. Subsequent to culmination at day 3--a situation characterized by infiltrating blood borne macrophages and microglia activation--AIF-1+ cell numbers decreased until day 7. In remote areas of Wallerian degeneration and delayed neuronal death, a more discrete and delayed activation pattern of AIF-1+ microglia/macrophages reaching maximum levels at day 14 was observed. There was a considerable match between AIF-1+ cells and PCNA (proliferating cell nuclear antigen) or Ki-67+ labeled cells. AIF-1 expression preceded the expression of ED1, thus indicating a pre-phagocytic role. It appears that AIF-1+ microglia/macrophages are among the earliest cells to respond to spinal cord injury. Our results suggest a role of AIF-1 in the initiation of the early microglial response leading to activation and proliferation essential for the acute response to CNS injury. AIF-1 might modulate microgliosis influencing the efficacy of tissue debris removal, myelin degradation, recruitment of oligodendrocytes and re-organisation of the CNS architecture.
Collapse
Affiliation(s)
- J M Schwab
- Institute of Brain Research, University of Tuebingen, Medical School, Calwer Str. 3, D-72076, Tuebingen, Germany.
| | | | | | | | | | | |
Collapse
|
115
|
Ling EA, Ng YK, Wu CH, Kaur C. Microglia: its development and role as a neuropathology sensor. PROGRESS IN BRAIN RESEARCH 2001; 132:61-79. [PMID: 11545023 DOI: 10.1016/s0079-6123(01)32066-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- E A Ling
- Department of Anatomy, Faculty of Medicine, National University of Singapore, MD 10, 4 Medical Drive, Singapore 117597, Singapore.
| | | | | | | |
Collapse
|
116
|
Anthony DC, Blond D, Dempster R, Perry VH. Chemokine targets in acute brain injury and disease. PROGRESS IN BRAIN RESEARCH 2001; 132:507-24. [PMID: 11545015 DOI: 10.1016/s0079-6123(01)32099-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- D C Anthony
- CNS Inflammation Group, Centre for Neuroscience at Southampton, University of Southampton, Biomedical Sciences Building, Southampton SO16 7PX, UK.
| | | | | | | |
Collapse
|
117
|
Nakajima K, Honda S, Tohyama Y, Imai Y, Kohsaka S, Kurihara T. Neurotrophin secretion from cultured microglia. J Neurosci Res 2001; 65:322-31. [PMID: 11494368 DOI: 10.1002/jnr.1157] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because microglia have been suggested to produce neurotrophins, we tested this ability in vitro. Rat primary microglia were found to constitutively secrete a limited amount of brain-derived neurotrophic factor (BDNF), but nerve growth factor (NGF) and neurotrophin-3 (NT-3) were undetectable in the conditioned medium. Stimulation of the cells with lipopolysaccharide (LPS) increased BDNF secretion, and induced NGF secretion. As a first step to examine this regulation system, the association of protein kinase C (PKC) was pharmacologically analyzed. A PKC activator, phorbol-12-myristate-13-acetate, enhanced the secretion of BDNF. Pre-treatment of microglia with a PKC inhibitor, bisindolylmaleimide, suppressed LPS-stimulated BDNF secretion as well as the constitutive one. These results suggest that the PKC signaling cascade is closely associated with BDNF secretion. Among PKC isoforms, PKCalpha probably plays a role in BDNF secretion, based on the results of experiments using a specific PKC activator, 1-oleoyl-2-acetyl-sn-glycerol, and a specific PKC inhibitor, Gö 6976, and by immunoblotting. Taken together, these findings suggest that the secretion of BDNF from microglia is regulated through PKCalpha-associated signal transduction mechanism.
Collapse
Affiliation(s)
- K Nakajima
- Institute of Life Science, Soka University, 1-236, Tangi-machi, Hachioji, Tokyo 192-8577.
| | | | | | | | | | | |
Collapse
|
118
|
Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001. [PMID: 11245682 DOI: 10.1523/jneurosci.21-06-01975.2001] [Citation(s) in RCA: 428] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The initial microglial responses that occur after brain injury and in various neurological diseases are characterized by microglial accumulation in the affected sites of brain that results from the migration and proliferation of these cells. The early-phase signal responsible for this accumulation is likely to be transduced by rapidly diffusible factors. In this study, the possibility of ATP released from injured neurons and nerve terminals affecting cell motility was determined in rat primary cultured microglia. Extracellular ATP and ADP induced membrane ruffling and markedly enhanced chemokinesis in Boyden chamber assay. Further analyses using the Dunn chemotaxis chamber assay, which allows direct observation of cell movement, revealed that both ATP and ADP induced chemotaxis of microglia. The elimination of extracellular calcium or treatment with pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, suramin, or adenosine-3'-phosphate-5'-phosphosulfate did not inhibit ATP- or ADP-induced membrane ruffling, whereas AR-C69931MX or pertussis toxin treatments clearly did so. As an intracellular signaling molecule underlying these phenomena, the small G-protein Rac was activated by ATP and ADP stimulation, and its activation was also inhibited by pretreatment with pertussis toxin. These results strongly suggest that membrane ruffling and chemotaxis of microglia induced by ATP or ADP are mediated by G(i/o)-coupled P2Y receptors.
Collapse
|
119
|
Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 2001; 32:1208-15. [PMID: 11340235 DOI: 10.1161/01.str.32.5.1208] [Citation(s) in RCA: 469] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Iba1 is a novel calcium-binding protein and is specifically expressed in microglia in the brain. It has been suggested that Iba1 plays an important role in regulation of the function of microglia. In the present study we examined time-dependent Iba1 expression after transient middle cerebral artery occlusion and characterized microglial activation in various brain regions. METHODS Rat middle cerebral artery occlusion was induced by the intraluminal filament technique. After 1.5 hours of transient ischemia, Iba1 expression was examined by immunohistochemical and immunoblot analyses. The microglial activation in association with ischemic severity was characterized by double immunostaining with other specific markers. RESULTS In the peri-ischemic area, heavily Iba1 immunoreactive cells rapidly appeared at 3.5 hours after reperfusion. Immunoreactivity was further increased and peaked at 7 days. In the ischemic core, round Iba1-positive cells, which may be blood-borne monocytes, appeared from 24 hours and reached a peak at 4 to 7 days. Double immunostaining revealed that activated microglia in the peri-ischemic area upregulated Iba1 expression but were negative for the macrophage marker ED1. ED1-positive cells were clearly restricted to the ischemic core. CONCLUSIONS These findings suggest the following: (1) Iba1 expression may be associated with microglial activation in ischemic brain, and Iba1 immunostaining can be useful to evaluate the pathophysiological roles of activated microglia in ischemic injury. (2) Expression of ED1 antigen is strictly restricted to severe ischemic damage, whereas activated microglia in the peri-ischemic area showed Iba1 upregulation without ED1. Therefore, microglia may exhibit difference of antigenicity in the severity of ischemic brain injury.
Collapse
Affiliation(s)
- D Ito
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
120
|
Melzer P, Savchenko V, McKanna JA. Microglia, astrocytes, and macrophages react differentially to central and peripheral lesions in the developing and mature rat whisker-to-barrel pathway: a study using immunohistochemistry for lipocortin1, phosphotyrosine, s100 beta, and mannose receptors. Exp Neurol 2001; 168:63-77. [PMID: 11170721 DOI: 10.1006/exnr.2000.7554] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult and neonatal rats were subjected to transection of the left infraorbital nerve or ablation of the left parietal cortex. The ensuing glial reaction in the whisker-to-barrel pathway was studied with immunohistochemistry for Lipocortin1- (LC1+), phosphotyrosine- (PY+), S100 beta- (S100 beta+), and mannose receptor- (MR+) immunoreactive microglia, astrocytes, and macrophages. Four days after infraorbital nerve transection in adult rats, LC1+ and PY+ microglia were prominently increased in the trigeminal sensory brain-stem nuclei on the deafferented side compared with the intact side. Changes were negligible at the second synapse of the pathway, i.e., the thalamic ventroposterior medial nucleus. Cortical ablation in adults led to an increase in microglia in the ipsilateral ventroposterior medial nucleus that reciprocally connects with the ablated cortex. Moreover, microglial reactions occurred in the contralateral trigeminal sensory brain-stem nuclei in which corticofugal projections from the ablated cortex terminate. S100 beta+ astrocytes, in contrast, appeared unaltered after both types of lesion in adults. In neonates, LC1+, PY+, and S100 beta+ cells did not have the adult morphology of microglia or astrocytes. Four days after nerve transection, LC1+ and PY+ cells were sparse and remained unchanged. In contrast, S100 beta+ cells substantially increased in the deafferented trigeminal brain-stem nuclei. Four days after cortical ablation in neonates, LC1+, PY+, and S100 beta+ cells had accumulated in the deprived thalamus. In contrast to adults, many of these cells were MR+ macrophages. In the deprived brain-stem, only S100 beta+ cells increased and none were macrophages. Therefore, macrophages do not appear to stem from microglia, and neonatal LC1+, PY+, and S100 beta+ cells may possess functions different from those in adults.
Collapse
Affiliation(s)
- P Melzer
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
121
|
Dijkstra S, Geisert EE JR, Gispen WH, Bär PR, Joosten EA. Up-regulation of CD81 (target of the antiproliferative antibody; TAPA) by reactive microglia and astrocytes after spinal cord injury in the rat. J Comp Neurol 2000; 428:266-77. [PMID: 11064366 DOI: 10.1002/1096-9861(20001211)428:2<266::aid-cne6>3.0.co;2-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined the expression of CD81 (also known as TAPA, or target of the antiproliferative antibody) after traumatic spinal cord injury in the rat. CD81, a member of the tetraspanin family of proteins, is thought to be involved in reactive gliosis. This is based on the antiproliferative and antiadhesive effects of antibodies against CD81 on cultured astrocytes, as well as its up-regulation after penetrating brain injury. CD81 expression following dorsal hemisection of the spinal cord was determined immunohistochemically at time points ranging from 1 day to 2 months postlesion (p.l.). In the unlesioned cord a low background level of CD81 was observed, with the exception of the ependyma of the central canal and the pia mater, which were strongly CD81-positive. One day p.l., CD81 was diffusely up-regulated in the spinal cord parenchyma surrounding the lesion site. From 3 days onward, intensely CD81-positive round cells entered the lesion site, completely filling it by 7 days p.l. Staining with the microglial markers OX-42 and Iba1 revealed that these cells were reactive microglia/macrophages. At this time, no significant CD81 expression by GFAP-positive reactive astrocytes was noted. From the second week onward, CD81 was gradually down-regulated; i.e., its spatial distribution became more restricted. The CD81-positive microglia/macrophages disappeared from the lesion site, leaving behind large cavities. After 2 months, astrocytes that formed the wall of these cavities were strongly CD81-positive. In addition, CD81 was present on reactive astrocytes in the dorsal funiculus distal from the lesion in degenerated white matter tracts. In conclusion, the spatiotemporal expression pattern of CD81 by reactive microglia and astrocytes indicates that CD81 is involved in the glial response to spinal cord injury.
Collapse
Affiliation(s)
- S Dijkstra
- Department of Experimental Neurology, RMI for Neurosciences, University Medical Centre, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
122
|
Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci 2000; 113 ( Pt 17):3073-84. [PMID: 10934045 DOI: 10.1242/jcs.113.17.3073] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ionized calcium binding adaptor molecule 1, Iba1, is an EF hand calcium binding protein whose expression is restricted to macrophages/microglia. In this study, Iba1 was shown to colocalize with F-actin in membrane ruffles induced by macrophage colony-stimulating factor and in phagocytic cups formed during zymosan phagocytosis. Expression of mutant Iba1 carrying either N- or C-terminal deletions or carrying a substitution in the calcium binding domain, suppressed the membrane ruffling and the phagocytosis. These results indicate that Iba1 is a key molecule in membrane ruffling and the phagocytosis of macrophages/microglia. Furthermore, Iba1 colocalized with a small GTPase Rac in the membrane ruffles and the phagocytic cups. The Iba1 mutants also suppressed membrane ruffling induced by dominant active Rac1V12, but do not affect microspikes by Cdc42V12 and stress fibers by RhoAV14. These observations suggest that Iba1 is involved in Rac and calcium signaling pathways.
Collapse
Affiliation(s)
- K Ohsawa
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
123
|
Cuadros MA, Martin D, Pérez-Mendoza D, Navascués J, Clarke PG. Response of macrophage/microglial cells to experimental neuronal degeneration in the avian isthmo-optic nucleus during development. J Comp Neurol 2000; 423:659-69. [PMID: 10880995 DOI: 10.1002/1096-9861(20000807)423:4<659::aid-cne10>3.0.co;2-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Blockade of the retrograde axonal transport of isthmo-optic nucleus (ION) neurons in the avian embryo results in their massive degeneration. We used this system to investigate the response of macrophage/microglial cells to neuronal degeneration in the embryonic brain. Colchicine was injected into the right eye of quail or chick embryos at a time when the survival of ION neurons depends on retrograde trophic support from the retina, and the chronology of the subsequent macrophage/microglial response in the ION was analyzed. This response was restricted to the ION contralateral to the injected eye; no modifications of the normal state were observed in the surrounding parenchyma or in the opposite ION, used as control. The response was first detected 18 hours after the colchicine injection (18 hours pi), when an increase of the macrophage/microglial cell number was evident. The number of these cells in the affected ION increased, peaking at 40-48 hours pi. At later survival times, macrophage/microglial cells were progressively less abundant in the affected ION, which gradually diminished in size. At 120 hours pi the only remnant of the ION was a small cluster of macrophage/microglial cells, surrounded by a clear area with scarce nonmicroglial cells, in the region formerly occupied by the ION. This study reveals that a strong macrophage/microglial response occurs in the embryonic brain in response to neuronal degeneration but that these cells do not trigger the neuronal death, as they only appear after pyknotic fragments are already observable.
Collapse
Affiliation(s)
- M A Cuadros
- Departamento de Biologia Celular, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
124
|
Streit WJ, Hurley SD, McGraw TS, Semple-Rowland SL. Comparative evaluation of cytokine profiles and reactive gliosis supports a critical role for interleukin-6 in neuron-glia signaling during regeneration. J Neurosci Res 2000; 61:10-20. [PMID: 10861795 DOI: 10.1002/1097-4547(20000701)61:1<10::aid-jnr2>3.0.co;2-e] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using reverse transcription polymerase chain reaction (RT-PCR), we have studied the temporal expression of interleukin-1beta (IL-1beta), interleukin-6 (IL-6), transforming growth factor-beta 1 (TGF-beta 1), and tumor necrosis factor-alpha (TNF-alpha) mRNAs in three axotomy paradigms with distinct functional outcomes. Axotomy of adult rat facial motoneurons results in neuronal regeneration, axotomy of neonatal facial motoneurons results in neuronal apoptosis, and axotomy of rubrospinal neurons results in neuronal atrophy. Our RT-PCR findings show that a significant and sustained upregulation of IL-6 mRNA is associated uniquely with the regeneration of adult facial motoneurons. Histochemical studies using IL-6 immunohistochemistry show intense IL-6 immunoreactivity in axotomized adult facial motoneurons. Assessment of reactive glial changes with astroglial and microglial markers reveals that the reactive gliosis following adult facial nerve axotomy is more intense than that observed in either of the other two paradigms. Exposure of cultured microglial cells to IL-6 stimulates microglial proliferation in a dose-dependent manner. Cultured microglia also show expression of IL-6 receptor mRNA, as determined by RT-PCR. Our findings support the idea that reactive gliosis is required for neuron regeneration to occur, and more specifically, they suggest that neuron-derived IL-6 serves as a signalling molecule that induces microglial proliferation during motoneuron regeneration.
Collapse
Affiliation(s)
- W J Streit
- Department of Neuroscience, University of Florida College of Medicine and Brain Institute, Gainesville 32611, Florida, USA.
| | | | | | | |
Collapse
|
125
|
López-Redondo F, Nakajima K, Honda S, Kohsaka S. Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:429-35. [PMID: 10762723 DOI: 10.1016/s0169-328x(00)00022-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glutamate transporters play an important role in the re-uptake of glutamate after its release from glutamatergic synapses. So far five of such transporters subtypes have been cloned from rodent and human brains. The densities of glutamate transporters are recognised to be developmentally regulated, but the role of glutamate transporters in the mechanisms underlying the occurrence of neuronal traumatic injury has not been widely studied. In the present study quantitative Western blotting and immunohistochemical technique were employed to study the expression of GLT-1/EAAT2 in the facial nuclei of adult rats following unilateral facial nerve axotomy. The total content of GLT-1 protein decreased in the ipsilateral axotomised rat facial nucleus. However, activated microglia surrounding motoneurons showed high expression of GLT-1 after facial nerve axotomy. Parallel studies revealed that primary cultured microglial cells also showed GLT-1-immunoreactivity. To our knowledge, this is the first direct demonstration of the expression of GLT-1 protein in activated microglial cells, suggesting a neuroprotective role of microglia against glutamate excitotoxicity following nerve axotomy.
Collapse
Affiliation(s)
- F López-Redondo
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1, Ogawahigashi, Kodaira, Tokyo, Japan
| | | | | | | |
Collapse
|
126
|
Wang JY, Shum AY, Chao CC, Kuo JS, Wang JY. Production of macrophage inflammatory protein-2 following hypoxia/reoxygenation in glial cells. Glia 2000. [DOI: 10.1002/1098-1136(200011)32:2<155::aid-glia50>3.0.co;2-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
127
|
Inoue H, Sawada M, Ryo A, Tanahashi H, Wakatsuki T, Hada A, Kondoh N, Nakagaki K, Takahashi K, Suzumura A, Yamamoto M, Tabira T. Serial analysis of gene expression in a microglial cell line. Glia 1999; 28:265-71. [PMID: 10559785 DOI: 10.1002/(sici)1098-1136(199912)28:3<265::aid-glia10>3.0.co;2-f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We used the serial analysis of gene expression (SAGE) method to systematically analyze transcripts present in a microglial cell line. Over 10,000 SAGE tags were sequenced, and shown to represent 6,013 unique transcripts. Among the diverse transcripts that had not been previously detected in microglia were those for cytokines such as endothelial monocyte-activating polypeptide I (EMAP I), and for cell surface antigens, including adhesion molecules such as CD9, CD53, CD107a, CD147, CD162 and mast cell high affinity IgE receptor. In addition, we detected transcripts that were characteristic of hematopoietic cells or mesodermal structures, such as E3 protein, A1, EN-7, B94, and ufo. Furthermore, the profile contained a transcript, Hn1, that is important in hematopoietic cells and neurological development (Tang et al. Mamm Genome 8:695-696, 1997), suggesting the probable neural differentiation of microglia from the hematopoietic system in development. Messenger RNA expression of these genes was confirmed by RT-PCR in primary cultures of microglia. Significantly, this is the first systematic profiling of the genes expressed in a microglial cell line. The identification and further characterization of the genes described here should provide potential new targets for the study of microglial biology.
Collapse
Affiliation(s)
- H Inoue
- Division of Demyelinating Disease and Aging, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Ziaja M, Janeczko K. Spatiotemporal patterns of microglial proliferation in rat brain injured at the postmitotic stage of postnatal development. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<379::aid-jnr3>3.0.co;2-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
129
|
Zhou X, Rodriguez WI, Casillas RA, Ma V, Tam J, Hu Z, Lelievre V, Chao A, Waschek JA. Axotomy-induced changes in pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP receptor gene expression in the adult rat facial motor nucleus. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990915)57:6<953::aid-jnr21>3.0.co;2-r] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|