101
|
Squitti R, Salustri C, Siotto M, Ventriglia M, Vernieri F, Lupoi D, Cassetta E, Rossini PM. Ceruloplasmin/Transferrin ratio changes in Alzheimer's disease. Int J Alzheimers Dis 2010; 2011:231595. [PMID: 21234401 PMCID: PMC3014694 DOI: 10.4061/2011/231595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/22/2010] [Indexed: 11/29/2022] Open
Abstract
The link between iron and Alzheimer's disease (AD) has been mainly investigated with a focus on the local accumulation of this metal in specific areas of the brain that are critical for AD. In the present study, we have instead looked at systemic variations of markers of iron metabolism. We measured serum levels of iron, ceruloplasmin, and transferrin and calculated the transferrin saturation and the ceruloplasmin to transferrin ratio (Cp/Tf). Cp/Tf and transferrin saturation increased in AD patients. Cp/Tf ratios also correlated positively with peroxide levels and negatively with serum iron concentrations. Elevated values of ceruloplasmin, peroxides, and Cp/Tf inversely correlated with MMSE scores. Isolated medial temporal lobe atrophy positively correlated with Cp/Tf and negatively with serum iron. All these findings indicate that the local iron accumulation found in brain areas critical for AD should be viewed in the frame of iron systemic alterations.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Neuroscience, AFaR-Fatebenefratelli Hospital, 00186 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Chouliaras L, Sierksma ASR, Kenis G, Prickaerts J, Lemmens MAM, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, van Leeuwen F, Hof PR, van Os J, Steinbusch HWM, van den Hove DLA, Rutten BPF. Gene-environment interaction research and transgenic mouse models of Alzheimer's disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20953364 PMCID: PMC2952897 DOI: 10.4061/2010/859101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 07/31/2010] [Indexed: 01/08/2023] Open
Abstract
The etiology of the sporadic form of Alzheimer's disease (AD) remains largely unknown. Recent evidence has suggested that gene-environment interactions (GxE) may play a crucial role in its development and progression. Whereas various susceptibility loci have been identified, like the apolipoprotein E4 allele, these cannot fully explain the increasing prevalence of AD observed with aging. In addition to such genetic risk factors, various environmental factors have been proposed to alter the risk of developing AD as well as to affect the rate of cognitive decline in AD patients. Nevertheless, aside from the independent effects of genetic and environmental risk factors, their synergistic participation in increasing the risk of developing AD has been sparsely investigated, even though evidence points towards such a direction. Advances in the genetic manipulation of mice, modeling various aspects of the AD pathology, have provided an excellent tool to dissect the effects of genes, environment, and their interactions. In this paper we present several environmental factors implicated in the etiology of AD that have been tested in transgenic animal models of the disease. The focus lies on the concept of GxE and its importance in a multifactorial disease like AD. Additionally, possible mediating mechanisms and future challenges are discussed.
Collapse
Affiliation(s)
- L Chouliaras
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Mallm JP, Tschäpe JA, Hick M, Filippov MA, Müller UC. Generation of conditional null alleles for APP and APLP2. Genesis 2010; 48:200-6. [PMID: 20140888 DOI: 10.1002/dvg.20601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proteolytical cleavage of the beta-amyloid precursor protein (APP) generates beta-amyloid, which is deposited in the brains of patients suffering from Alzheimer's disease (AD). Despite the well-established key role of APP for AD pathogenesis, the physiological function of APP and its close homologues APLP1 and APLP2 remains poorly understood. Previously, we generated APP(-/-) mice that proved viable, whereas APP(-/-)APLP2(-/-) mice and triple knockouts died shortly after birth, likely due to deficits of neuromuscular synaptic transmission. Here, we generated conditional knockout alleles for both APP and APLP2 in which the promoter and exon1 were flanked by loxP sites. No differences in expression were detectable between wt and floxed alleles, whereas null alleles were obtained upon crossing with Cre-transgenic deleter mice. These mice will now allow for tissue and time-point controlled knockout of both genes.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
104
|
Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010; 186:184-99. [DOI: 10.1016/j.cbi.2010.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/22/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
|
105
|
George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, Finkelstein DI. Targeting the progression of Parkinson's disease. Curr Neuropharmacol 2010; 7:9-36. [PMID: 19721815 PMCID: PMC2724666 DOI: 10.2174/157015909787602814] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/15/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023] Open
Abstract
By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
Collapse
Affiliation(s)
- J L George
- The Mental Health Research Institute of Victoria , 155 Oak Street, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
106
|
Mueller C, Magaki S, Schrag M, Ghosh MC, Kirsch WM. Iron regulatory protein 2 is involved in brain copper homeostasis. J Alzheimers Dis 2010; 18:201-10. [PMID: 19584448 DOI: 10.3233/jad-2009-1136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trace metal homeostasis is tightly controlled in the brain, as even a slight dysregulation may severely impact normal brain function. This is especially apparent in Alzheimer's disease, where brain homeostasis of trace metals such as copper and iron is dysregulated. As it is known that iron and copper metabolism are linked, we wanted to investigate if a common mechanism could explain the increase in iron and decrease in copper seen in Alzheimer's disease brain. Amyloid-beta protein precursor (AbetaPP) has been implicated in copper efflux from the brain. Furthermore, it was shown that iron regulatory proteins (IRP), which regulate iron homeostasis, can block AbetaPP mRNA translation. In a correlative study we have therefore compared brain regional copper levels and AbetaPP expression in mice with a targeted deletion of IRP2-/-. Compared with controls, six week old IRP2-/- mice had significantly less brain copper in the parietal cortex, hippocampus, ventral striatum, thalamus, hypothalamus, and whole brain, while AbetaPP was significantly upregulated in the hippocampus (p < 0.05) and showed a trend toward upregulation in the thalamus (p < 0.1). This is the first study to demonstrate that iron regulatory proteins affect brain copper levels, which has significant implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudius Mueller
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | |
Collapse
|
107
|
|
108
|
Shankar GM, Walsh DM. Alzheimer's disease: synaptic dysfunction and Abeta. Mol Neurodegener 2009; 4:48. [PMID: 19930651 PMCID: PMC2788538 DOI: 10.1186/1750-1326-4-48] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 11/23/2009] [Indexed: 01/21/2023] Open
Abstract
Synapse loss is an early and invariant feature of Alzheimer's disease (AD) and there is a strong correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has been proposed that synapse loss underlies the memory impairment evident in the early phase of AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ganesh M Shankar
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | | |
Collapse
|
109
|
Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.05.011] [Citation(s) in RCA: 342] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
110
|
Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 2009; 15:61-76. [DOI: 10.1007/s00775-009-0600-y] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
111
|
Tabaton M, Zhu X, Perry G, Smith MA, Giliberto L. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp Neurol 2009; 221:18-25. [PMID: 19747481 DOI: 10.1016/j.expneurol.2009.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/01/2009] [Accepted: 09/02/2009] [Indexed: 12/28/2022]
Abstract
The effects of amyloid-beta are extremely complex. Current work in the field of Alzheimer disease is focusing on discerning the impact between the physiological signaling effects of soluble low molecular weight amyloid-beta species and the more global cellular damage that could derive from highly concentrated and/or aggregated amyloid. Being able to dissect the specific signaling events, to understand how soluble amyloid-beta induces its own production by up-regulating BACE1 expression, could lead to new tools to interrupt the distinctive feedback cycle with potential therapeutic consequences. Here we describe a positive loop that exists between the secretases that are responsible for the generation of the amyloid-beta component of Alzheimer disease. According to our hypothesis, in familial Alzheimer disease, the primary overproduction of amyloid-beta can induce BACE1 transcription and drive a further increase of amyloid-beta precursor protein processing and resultant amyloid-beta production. In sporadic Alzheimer disease, many factors, among them oxidative stress and inflammation, with consequent induction of presenilins and BACE1, would activate a loop and proceed with the generation of amyloid-beta and its signaling role onto BACE1 transcription. This concept of a signaling effect by and feedback on the amyloid-beta precursor protein will likely shed light on how amyloid-beta generation, oxidative stress, and secretase functions are intimately related in sporadic Alzheimer disease.
Collapse
Affiliation(s)
- Massimo Tabaton
- Departments of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova, Italy.
| | | | | | | | | |
Collapse
|
112
|
Alzheimer's disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci 2009; 30:346-55. [DOI: 10.1016/j.tips.2009.05.002] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 05/06/2009] [Indexed: 12/20/2022]
|
113
|
Maynard CJ, Cappai R, Volitakis I, Laughton KM, Masters CL, Bush AI, Li QX. Chronic exposure to high levels of zinc or copper has little effect on brain metal homeostasis or Abeta accumulation in transgenic APP-C100 mice. Cell Mol Neurobiol 2009; 29:757-67. [PMID: 19381799 PMCID: PMC11505849 DOI: 10.1007/s10571-009-9401-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 03/29/2009] [Indexed: 11/30/2022]
Abstract
Aberrant metal homeostasis may enhance the formation of reactive oxygen species and Abeta oligomerization and may therefore be a contributing factor in Alzheimer's disease. This study investigated the effect of chronic high intake of dietary Zn or Cu on brain metal levels and the accumulation and solubility of Abeta in vivo, using a transgenic mouse model that over expresses the C-terminal containing Abeta fragment of human amyloid precursor protein but does not develop amyloid deposits. Exposure to chronic high Zn or Cu in the drinking water resulted in only slight elevations of the respective metals in the brain. Total Abeta levels were unchanged although soluble Abeta levels were slightly decreased, without visible plaque formation, enhanced gliosis, antioxidant upregulation or neuronal loss. This study indicates that brain metal levels are only marginally altered by long term oral exposure to extremely high Cu or Zn levels, and that this does not induce Abeta-amyloid formation in human Abeta expressing, amyloid-free mice, although this is sufficient to modulate Abeta solubility in vivo.
Collapse
Affiliation(s)
- Christa J. Maynard
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Oxidation Disorders Laboratory and Alzheimer’s Disease Division, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, VIC 3052 Australia
- Present Address: Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, Von Eulers väg 3, 17177 Stockholm, Sweden
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Oxidation Disorders Laboratory and Alzheimer’s Disease Division, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, VIC 3052 Australia
| | - Irene Volitakis
- Oxidation Disorders Laboratory and Alzheimer’s Disease Division, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, VIC 3052 Australia
| | - Katrina M. Laughton
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Oxidation Disorders Laboratory and Alzheimer’s Disease Division, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, VIC 3052 Australia
| | - Colin L. Masters
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Oxidation Disorders Laboratory and Alzheimer’s Disease Division, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, VIC 3052 Australia
| | - Ashley I. Bush
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Oxidation Disorders Laboratory and Alzheimer’s Disease Division, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, VIC 3052 Australia
- Laboratory for Oxidation Biology, Genetics and Aging Research Unit, and Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129 USA
| | - Qiao-Xin Li
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Oxidation Disorders Laboratory and Alzheimer’s Disease Division, Mental Health Research Institute of Victoria, 155 Oak Street, Parkville, VIC 3052 Australia
| |
Collapse
|
114
|
Price KA, Crouch PJ, Donnelly PS, Masters CL, White AR, Curtain CC. Membrane-targeted strategies for modulating APP and Abeta-mediated toxicity. J Cell Mol Med 2009; 13:249-61. [PMID: 19278455 PMCID: PMC3823352 DOI: 10.1111/j.1582-4934.2008.00642.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD.
Collapse
Affiliation(s)
- Katherine A Price
- Department of Pathology, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
115
|
Treiber C, Quadir MA, Voigt P, Radowski M, Xu S, Munter LM, Bayer TA, Schaefer M, Haag R, Multhaup G. Cellular Copper Import by Nanocarrier Systems, Intracellular Availability, and Effects on Amyloid β Peptide Secretion. Biochemistry 2009; 48:4273-84. [DOI: 10.1021/bi900290c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carina Treiber
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Mohiuddin Abdul Quadir
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Philipp Voigt
- Molekulare Pharmakologie and Zellbiologie, Neurowissenschaftliches Forschungszentrum, Charité-Universitätsmedizin Berlin, D-14195 Berlin, Germany
| | - Michal Radowski
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Shangjie Xu
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Lisa-Marie Munter
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Universität Göttingen, Göttingen, Germany
| | - Michael Schaefer
- Molekulare Pharmakologie and Zellbiologie, Neurowissenschaftliches Forschungszentrum, Charité-Universitätsmedizin Berlin, D-14195 Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| | - Gerd Multhaup
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, D-14195 Berlin, Germany
| |
Collapse
|
116
|
Hawkes CA, Ng V, McLaurin J. Small molecule inhibitors of Aβ-aggregation and neurotoxicity. Drug Dev Res 2009. [DOI: 10.1002/ddr.20290] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
117
|
Abstract
Neurodegenerative diseases remain perplexing and problematic for modern research. Those associated with amyloidogenic proteins have often been lumped together simply because those proteins aggregate. However, research has identified a more logical reason to group some of these diseases together. The associated proteins not only aggregate, but also bind copper. The APP (amyloid precursor protein) binds copper in an N-terminal region. Binding of copper has been suggested to influence generation of beta-amyloid from the protein. PrP (prion protein) binds copper, and this appears to be necessary for its normal function and might also reduce its probability of conversion into an infectious prion. alpha-Synuclein, a protein associated with Parkinson's disease, also binds copper, but, in this case, it potentially increases the rate at which the protein aggregates. The similarities between these proteins, in terms of metal binding, has allowed us to investigate them using similar approaches. In the present review, we discuss some of these approaches.
Collapse
|
118
|
Kitazawa M, Cheng D, Laferla FM. Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem 2009; 108:1550-60. [PMID: 19183260 DOI: 10.1111/j.1471-4159.2009.05901.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Excess copper exposure is thought to be linked to the development of Alzheimer's disease (AD) neuropathology. However, the mechanism by which copper affects the CNS remains unclear. To investigate the effect of chronic copper exposure on both beta-amyloid and tau pathologies, we treated young triple transgenic (3xTg-AD) mice with 250 ppm copper-containing water for a period of 3 or 9 months. Copper exposure resulted in altered amyloid precursor protein processing; increased accumulation of the amyloid precursor protein and its proteolytic product, C99 fragment, along with increased generation of amyloid-beta peptides and oligomers. These changes were found to be mediated via up-regulation of BACE1 as significant increases in BACE1 levels and deposits were detected around plaques in mice following copper exposure. Furthermore, tau pathology within hippocampal neurons was exacerbated in copper-exposed 3xTg-AD group. Increased tau phosphorylation was closely correlated with aberrant cdk5/p25 activation, suggesting a role for this kinase in the development of copper-induced tau pathology. Taken together, our data suggest that chronic copper exposure accelerates not only amyloid pathology but also tau pathology in a mouse model of AD.
Collapse
Affiliation(s)
- Masashi Kitazawa
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA.
| | | | | |
Collapse
|
119
|
Minogue AM, Stubbs AK, Frigerio CS, Boland B, Fadeeva JV, Tang J, Selkoe DJ, Walsh DM. gamma-secretase processing of APLP1 leads to the production of a p3-like peptide that does not aggregate and is not toxic to neurons. Brain Res 2009; 1262:89-99. [PMID: 19401174 DOI: 10.1016/j.brainres.2009.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 11/17/2022]
Abstract
The amyloid precursor-like protein-1 (APLP1) is a member of a protein family that includes the Alzheimer's disease-associated amyloid precursor protein (APP). While much is known about the proteolytic processing of APP, fewer details are available about APLP1. Using Chinese hamster ovarian cells stably transfected with human APLP1 and a novel juxtamembrane anti-APLP1 antibody, we demonstrate the detection of a secreted approximately 3.5 kDa APLP1-derived peptide (ALP-1). The production of this peptide is abolished by inhibition of gamma-secretase, but not beta-secretase, suggesting that ALP-1 is analogous to the p3 fragment produced from APP. However, unlike p3 or Abeta, ALP-1 shows no obvious propensity for aggregation and is not toxic to neuronal cells. Moreover, using two distinct experimental paradigms, we demonstrate that neither cell-derived nor chemically synthesized ALP-1 influences the oligomerization or aggregation of Abeta.
Collapse
Affiliation(s)
- Aedín M Minogue
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Brown DR. Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans 2009:4069-76. [DOI: 10.1039/b822135a] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
121
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
122
|
Effect of copper intake on CSF parameters in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial. J Neural Transm (Vienna) 2008; 115:1651-9. [PMID: 18972062 DOI: 10.1007/s00702-008-0136-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/05/2008] [Indexed: 12/20/2022]
Abstract
A plethora of reports suggest that copper (Cu) homeostasis is disturbed in Alzheimer's disease (AD). In the present report we evaluated the efficacy of oral Cu supplementation on CSF biomarkers for AD. In a prospective, randomized, double-blind, placebo-controlled phase 2 clinical trial (12 months long) patients with mild AD received either Cu-(II)-orotate-dihydrate (verum group; 8 mg Cu daily) or placebo (placebo group). The primary outcome measures in CSF were Abeta42, Tau and Phospho-Tau. The clinical trial demonstrates that long-term oral intake of 8 mg Cu can be excluded as a risk factor for AD based on CSF biomarker analysis. Cu intake had no effect on the progression of Tau and Phospho-Tau levels in CSF. While Abeta42 levels declined by 30% in the placebo group (P = 0.001), they decreased only by 10% (P = 0.04) in the verum group. Since decreased CSF Abeta42 is a diagnostic marker for AD, this observation may indicate that Cu treatment had a positive effect on a relevant AD biomarker. Using mini-mental state examination (MMSE) and Alzheimer disease assessment scale-cognitive subscale (ADAS-cog) we have previously demonstrated that there are no Cu treatment effects on cognitive performance, however. Finally, CSF Abeta42 levels declined significantly in both groups within 12 months supporting the notion that CSF Abeta42 may be valid not only for diagnostic but also for prognostic purposes in AD.
Collapse
|
123
|
Kessler H, Bayer TA, Bach D, Schneider-Axmann T, Supprian T, Herrmann W, Haber M, Multhaup G, Falkai P, Pajonk FG. Intake of copper has no effect on cognition in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial. J Neural Transm (Vienna) 2008; 115:1181-7. [PMID: 18587525 PMCID: PMC2516533 DOI: 10.1007/s00702-008-0080-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 06/05/2008] [Indexed: 01/21/2023]
Abstract
Disturbed copper (Cu) homeostasis may be associated with the pathological processes in Alzheimer's disease (AD). In the present report, we evaluated the efficacy of oral Cu supplementation in the treatment of AD in a prospective, randomized, double-blind, placebo-controlled phase 2 clinical trial in patients with mild AD for 12 months. Sixty-eight subjects were randomized. The treatment was well-tolerated. There were however no significant differences in primary outcome measures (Alzheimer's Disease Assessment Scale, Cognitive subscale, Mini Mental Status Examination) between the verum [Cu-(II)-orotate-dihydrate; 8 mg Cu daily] and the placebo group. Despite a number of findings supporting the hypothesis of environmental Cu modulating AD, our results demonstrate that oral Cu intake has neither a detrimental nor a promoting effect on the progression of AD.
Collapse
Affiliation(s)
- Holger Kessler
- Department of Psychiatry and Psychotherapy, Saarland University Hospital, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Intracellular copper deficiency increases amyloid-beta secretion by diverse mechanisms. Biochem J 2008; 412:141-52. [PMID: 18248325 DOI: 10.1042/bj20080103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Alzheimer's disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Abeta (amyloid beta-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Abeta. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)alpha into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPbeta and produced more amyloidogenic beta-cleaved APP C-termini (C99). The level of Abeta secreted from copper-deficient fibroblasts was however regulated and limited by alpha-secretase cleavage. APP can be processed by both alpha- and beta-secretase, as copper-deficient fibroblasts secreted sAPPbeta exclusively, but produced primarily alpha-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Abeta secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Abeta secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimer's disease.
Collapse
|
125
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1558] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
126
|
Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G. Benefits from dietary polyphenols for brain aging and Alzheimer's disease. Neurochem Res 2008; 33:2390-400. [PMID: 18415677 DOI: 10.1007/s11064-008-9696-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/01/2008] [Indexed: 12/17/2022]
Abstract
Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies. Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols, the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still unanswered. Most of all, the capacity of the majority of these compounds to cross the blood-brain barrier and reach brain is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol and catechins on Alzheimer's disease.
Collapse
Affiliation(s)
- L Rossi
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 1, 00133, Rome, Italy.
| | | | | | | | | |
Collapse
|
127
|
Squitti R, Quattrocchi CC, Salustri C, Rossini PM. Ceruloplasmin fragmentation is implicated in 'free' copper deregulation of Alzheimer's disease. Prion 2008; 2:23-7. [PMID: 19164917 DOI: 10.4161/pri.2.1.6297] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A dysfunction in copper homeostasis seems to occur in Alzheimer's disease (AD). We recently demonstrated that an excess of non-ceruloplasmin-copper (i.e., 'free' copper) correlates with the main functional and anatomical deficits as well as the cerebrospinal markers of the disease, thus suggesting that copper contributes to AD neurodegeneration. Aim of this study was to investigate the profile of serum ceruloplasmin isoforms immunoreactive protein in relation to copper dysfunction in AD. Twenty-five AD patients and 25 controls were included in the study. All subjects underwent individual measurements of serum ceruloplasmin and copper concentrations, and the amount of 'free' copper was computed for each copper and ceruloplasmin pair. Serum samples were also pooled and analyzed by two dimensional polyacrylamide gel electrophoresis (2-D PAGE) and western blot analysis. The mean concentration of 'free' copper resulted higher in AD patients than in controls. Ceruloplasmin 2-D PAGE western blot analysis of pooled sera showed in the AD samples low-molecular-weight spots in the <50 kDa range that were not detected in controls' pooled sera (p < 0.029). Our data indicate a ceruloplasmin fragmentation in the serum of AD patients, possibly related to 'free' copper deregulation in this disease.
Collapse
Affiliation(s)
- Rosanna Squitti
- AfaR, Department of Neuroscience, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy.
| | | | | | | |
Collapse
|
128
|
Jones LC, Beard JL, Jones BC. Genetic analysis reveals polygenic influences on iron, copper, and zinc in mouse hippocampus with neurobiological implications. Hippocampus 2008; 18:398-410. [DOI: 10.1002/hipo.20399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
129
|
Copper binding to the Alzheimer's disease amyloid precursor protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:269-79. [PMID: 18030462 PMCID: PMC2921068 DOI: 10.1007/s00249-007-0234-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in Aβ production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer’s disease.
Collapse
|
130
|
Macreadie IG. Copper transport and Alzheimer's disease. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:295-300. [PMID: 18004558 DOI: 10.1007/s00249-007-0235-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/17/2007] [Accepted: 10/19/2007] [Indexed: 12/01/2022]
Abstract
This brief review discusses copper transport in humans, with an emphasis on knowledge learned from one of the simplest model organisms, yeast. There is a further focus on copper transport in Alzheimer's Disease (AD). Copper homeostasis is essential for the well-being of all organisms, from bacteria to yeast to humans: survival depends on maintaining the required supply of copper for the many enzymes, dependent on copper for activity, while ensuring that there is no excess free copper, which would cause toxicity. A virtual orchestra of proteins are required to achieve copper homeostasis. For copper uptake, Cu(II) is first reduced to Cu(I) via a membrane-bound reductase. The reduced copper can then be internalised by a copper transporter where it is transferred to copper chaperones for transport and specific delivery to various organelles. Of significance are internal copper transporters, ATP7A and ATP7B, notable for their role in disorders of copper deficiency and toxicity, Menkes and Wilson's disease, respectively. Metallothioneins and Cu/Zn superoxide dismutase can protect against excess copper in cells. It is clear too, increasing age, environmental and lifestyle factors impact on brain copper. Studies on AD suggest an important role for copper in the brain, with some AD therapies focusing on mobilising copper in AD brains. The transport of copper into the brain is complex and involves numerous players, including amyloid precursor protein, A beta peptide and cholesterol.
Collapse
Affiliation(s)
- Ian G Macreadie
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
131
|
Kong GKW, Adams JJ, Cappai R, Parker MW. Structure of Alzheimer's disease amyloid precursor protein copper-binding domain at atomic resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:819-24. [PMID: 17909280 PMCID: PMC2339725 DOI: 10.1107/s1744309107041139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/20/2007] [Indexed: 01/31/2023]
Abstract
Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's disease, as its cleavage generates the Abeta peptide that is toxic to cells. APP is able to bind Cu2+ and reduce it to Cu+ through its copper-binding domain (CuBD). The interaction between Cu2+ and APP leads to a decrease in Abeta production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85 A) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu2+ reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete Abeta production.
Collapse
Affiliation(s)
- Geoffrey Kwai-Wai Kong
- Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Julian J. Adams
- Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Roberto Cappai
- Department of Pathology and Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
- The Mental Health Research Institute of Victoria, Parkville, Victoria 3052, Australia
- Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| | - Michael W. Parker
- Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia
- Bio21 Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
132
|
Walsh DM, Minogue AM, Sala Frigerio C, Fadeeva JV, Wasco W, Selkoe DJ. The APP family of proteins: similarities and differences. Biochem Soc Trans 2007; 35:416-20. [PMID: 17371289 DOI: 10.1042/bst0350416] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Overwhelming evidence indicates that the Abeta (amyloid beta-peptide) plays a critical role in the pathogenesis of Alzheimer's disease. Abeta is derived from the APP (amyloid precursor protein) by the action of two aspartyl proteases (beta- and gamma-secretases) that are leading candidates for therapeutic intervention. APP is a member of a multigene family that includes APLP1 (amyloid precursor-like protein 1) and APLP2. Both APLPs are processed in a manner analogous to APP, with all three proteins subject to ectodomain shedding and subsequent cleavage by gamma-secretase. Careful study of the APP family of proteins has already revealed important insights about APP. Here, we will review how knowledge of the similarities and differences between APP and the APLPs may prove useful for the development of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- D M Walsh
- Laboratory for Neurodegenerative Research, Conway Institute, University College Dublin, Republic of Ireland.
| | | | | | | | | | | |
Collapse
|
133
|
Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA, Herms J, Buchholz C, Eckman CB, Korte M, Wolfer DP, Müller UC. The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 2007; 27:7817-26. [PMID: 17634375 PMCID: PMC6672885 DOI: 10.1523/jneurosci.1026-07.2007] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is well established that the proteolytic processing of the beta-amyloid precursor protein (APP) generates beta-amyloid (Abeta), which plays a central role in the pathogenesis of Alzheimer's disease (AD). In contrast, the physiological role of APP and of its numerous proteolytic fragments and the question of whether a loss of these functions contributes to AD are still unknown. To address this question, we replaced the endogenous APP locus by gene-targeted alleles and generated two lines of knock-in mice that exclusively express APP deletion variants corresponding either to the secreted APP ectodomain (APPs alpha) or to a C-terminal (CT) truncation lacking the YENPTY interaction motif (APPdeltaCT15). Interestingly, the deltaCT15 deletion resulted in reduced turnover of holoAPP, increased cell surface expression, and strongly reduced Abeta levels in brain, likely because of reduced processing in the endocytic pathway. Most importantly, we demonstrate that in both APP knock-in lines the expression of APP N-terminal domains either grossly attenuated or completely rescued the prominent deficits of APP knock-out mice, such as reductions in brain and body weight, grip strength deficits, alterations in circadian locomotor activity, exploratory activity, and the impairment in spatial learning and long-term potentiation. Together, our data suggest that the APP C terminus is dispensable and that APPs alpha is sufficient to mediate the physiological functions of APP assessed by these tests.
Collapse
Affiliation(s)
- Sabine Ring
- Department of Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Dingwall C. A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer's disease. Biochem Soc Trans 2007; 35:571-3. [PMID: 17511654 DOI: 10.1042/bst0350571] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The amyloidogenic processing pathway of the APP (amyloid precursor protein) generates Abeta (amyloid beta-peptide), the major constituent in Alzheimer's disease senile plaques. This processing is catalysed by two unusual membrane-localized aspartic proteinases, beta-secretase [BACE1 (beta-site APP-cleaving enzyme 1)] and the gamma-secretase complex. There is a clear link between APP processing and copper homoeostasis in the brain. APP binds copper and zinc in the extracellular domain and Abeta also binds copper, zinc and iron. We have found that a 24-residue peptide corresponding to the C-terminal domain of BACE1 binds a single copper(I) atom with high affinity through cysteine residues. We also observed that the cytoplasmic domain of BACE1 interacts with CCS, the dedicated copper chaperone for SOD1 (superoxide dismutase 1). Overproduction of BACE1 reduces SOD1 activity in cells. Consequently, SOD1 activity, cytosolic copper and ectodomain cleavage of APP are linked through BACE1.
Collapse
Affiliation(s)
- C Dingwall
- Pharmaceutical Sciences Research Division, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
135
|
Crouch PJ, Harding SME, White AR, Camakaris J, Bush AI, Masters CL. Mechanisms of A beta mediated neurodegeneration in Alzheimer's disease. Int J Biochem Cell Biol 2007; 40:181-98. [PMID: 17804276 DOI: 10.1016/j.biocel.2007.07.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/30/2007] [Accepted: 07/24/2007] [Indexed: 11/24/2022]
Abstract
Development of a comprehensive therapeutic treatment for the neurodegenerative Alzheimer's disease (AD) is limited by our understanding of the underlying biochemical mechanisms that drive neuronal failure. Numerous dysfunctional mechanisms have been described in AD, ranging from protein aggregation and oxidative stress to biometal dyshomeostasis and mitochondrial failure. In this review we discuss the critical role of amyloid-beta (A beta) in some of these potential mechanisms of neurodegeneration. The 39-43 amino acid A beta peptide has attracted intense research focus since it was identified as a major constituent of the amyloid deposits that characterise the AD brain, and it is now widely recognised as central to the development of AD. Familial forms of AD involve mutations that lead directly to altered A beta production from the amyloid-beta A4 precursor protein, and the degree of AD severity correlates with specific pools of A beta within the brain. A beta contributes directly to oxidative stress, mitochondrial dysfunction, impaired synaptic transmission, the disruption of membrane integrity, and impaired axonal transport. Further study of the mechanisms of A beta mediated neurodegeneration will considerably improve our understanding of AD, and may provide fundamental insights needed for the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Peter J Crouch
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
136
|
Suazo M, Olivares F, Mendez MA, Pulgar R, Prohaska JR, Arredondo M, Pizarro F, Olivares M, Araya M, González M. CCS and SOD1 mRNA are reduced after copper supplementation in peripheral mononuclear cells of individuals with high serum ceruloplasmin concentration. J Nutr Biochem 2007; 19:269-74. [PMID: 17683925 DOI: 10.1016/j.jnutbio.2007.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 04/11/2007] [Accepted: 04/20/2007] [Indexed: 11/16/2022]
Abstract
The limits of copper homeostatic regulation in humans are not known, making it difficult to define the milder effects of early copper excess. Furthermore, a robust assay to facilitate the detection of early stages of copper excess is needed. To address these issues, we assessed changes in relative mRNA abundance of methallothionein 2A (MT2A), prion (PrP), amyloid precursor-like protein 2 (APLP2), Cu/Zn superoxide dismutase (SOD1) and its copper chaperone (CCS) in peripheral mononuclear cells (PMNCs) from healthy adults representing the 5% highest and lowest extremes in the distribution curve of serum ceruloplasmin (Cp) concentrations of 800 individuals. The intracellular Cu content was also determined. PMNCs were isolated from individuals before and after exposure to a single daily dose of 10 mg Cu (as CuSO(4)) for 2 months. Results showed that although there were fluctuations in serum Cp values of the samples assessed before copper exposure, no significant differences were observed in cell copper content or in the relative abundance of MT2A, PrP and APLP2 transcripts in PMNCs. Also, these values were not modified after copper supplementation. However, CCS and SOD1 mRNA levels were reduced in PMNCs after copper supplementation in the individuals with the high Cp values, suggesting that they should be further explored as biomarkers of moderate copper overload in humans.
Collapse
Affiliation(s)
- Miriam Suazo
- Laboratory of Micronutrients, University of Chile (INTA), Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Crouch PJ, White AR, Bush AI. The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer's disease. FEBS J 2007; 274:3775-83. [PMID: 17617225 DOI: 10.1111/j.1742-4658.2007.05918.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The postmortem Alzheimer's disease brain is characterized histochemically by the presence of extracellular amyloid plaques and neurofibrillary tangles. Also consistent with the disease is evidence for chronic oxidative damage within the brain. Considerable research data indicates that these three critical aspects of Alzheimer's disease are interdependent, raising the possibility that they share some commonality with respect to the ever elusive initial factor(s) that triggers the development of Alzheimer's disease. Here, we discuss reports that show a loss of metal homeostasis is also an important event in Alzheimer's disease, and we identify how metal dyshomeostasis may contribute to development of the amyloid-beta, tau and oxidative stress biology of Alzheimer's disease. We propose that therapeutic agents designed to modulate metal bio-availability have the potential to ameliorate several of the dysfunctional events characteristic of Alzheimer's disease. Metal-based therapeutics have already provided promising results for the treatment of Alzheimer's disease, and new generations of pharmaceuticals are being developed. In this review, we focus on copper dyshomeostasis in Alzheimer's disease, but we also discuss zinc and iron.
Collapse
Affiliation(s)
- Peter J Crouch
- Department of Pathology and Centre for Neuroscience, The University of Melbourne, Australia
| | | | | |
Collapse
|
138
|
Squitti R, Ventriglia M, Barbati G, Cassetta E, Ferreri F, Dal Forno G, Ramires S, Zappasodi F, Rossini PM. ‘Free’ copper in serum of Alzheimer’s disease patients correlates with markers of liver function. J Neural Transm (Vienna) 2007; 114:1589-94. [PMID: 17641816 DOI: 10.1007/s00702-007-0777-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/10/2007] [Indexed: 11/28/2022]
Abstract
Non-ceruloplasmin bound copper ('free') seems slightly elevated in Alzheimer's disease (AD) patients. To test the hypothesis of a correlation between 'free' copper and liver function in AD. We evaluated 51 AD patients and 53 controls through typical tests for chronic liver disease (AST, ALT, gamma-GT, Albumin, prothrombin time - PT-, bilirubins), along with copper, ceruloplasmin, iron, cholesterol in the serum and apolipoprotein E epsilon4 (APOE4) genotype. Absolute serum copper and 'free' copper were higher, albumin was lower and PT longer in AD patients than in controls. 'Free' copper correlated negatively with markers of liver function, in that albumin and albumin/PT ratio (r = -0.43, p = 0.004), and positively with direct bilirubin. Copper and 'free' copper were higher in the APOE4 carriers. These results suggest that abnormalities in copper metabolism might have an effect on liver function in AD.
Collapse
Affiliation(s)
- R Squitti
- Department of Neuroscience, AFaR - Ospedale Fatebenefratelli, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Donnelly PS, Xiao Z, Wedd AG. Copper and Alzheimer's disease. Curr Opin Chem Biol 2007; 11:128-33. [PMID: 17300982 DOI: 10.1016/j.cbpa.2007.01.678] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Copper is essential for some of the enzymes that have a role in brain metabolism. Sophisticated mechanisms balance copper import and export to ensure proper nutrient levels (homeostasis) while minimizing toxic effects. Several neurodegenerative diseases including Alzheimer's disease (AD) are characterized by modified copper homeostasis. This change seems to contribute either directly or indirectly to increased oxidative stress, an important factor in neuronal toxicity. When coupled to misfolded proteins, this modified copper homeostasis appears to be an important factor in the pathological progression of AD.
Collapse
Affiliation(s)
- Paul S Donnelly
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
140
|
Zatta P, Frank A. Copper deficiency and neurological disorders in man and animals. ACTA ACUST UNITED AC 2007; 54:19-33. [PMID: 17270275 DOI: 10.1016/j.brainresrev.2006.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/29/2022]
Abstract
Copper metabolism in the brain is far from being completely understood and further studies are needed on the role of copper in the CNS, starting with careful measurements, metal and biological speciation of metabolites on the molecular level, and combining copper concentration in different brain areas with morphological as well as biochemical alteration after Cu-depletion/deficiency. So far a pathological role for copper has been clearly demonstrated in some human genetic diseases (e.g., Menkes' and Wilson's diseases), but other pathological features connected with metal depletion are under investigation in several laboratories. The metabolic interaction between copper and other metal ions in some neurological disorders is also discussed in this contribution.
Collapse
Affiliation(s)
- Paolo Zatta
- CNR-Institute for Biomedical Technologies, Department of Biology, University of Padova, 35100 Padova, Italy.
| | | |
Collapse
|
141
|
Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, Volitakis I, Cherny RA, Bush AI, Hersch S. Mechanisms of copper ion mediated Huntington's disease progression. PLoS One 2007; 2:e334. [PMID: 17396163 PMCID: PMC1828629 DOI: 10.1371/journal.pone.0000334] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 03/06/2007] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH), because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu2+in vitro in a 1∶1 copper∶protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.
Collapse
Affiliation(s)
- Jonathan H. Fox
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Jibrin A. Kama
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Gregory Lieberman
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Raman Chopra
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kate Dorsey
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Vanita Chopra
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Irene Volitakis
- Oxidation Disorders Laboratory, Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert A. Cherny
- Oxidation Disorders Laboratory, Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I. Bush
- Genetics and Aging Research Unit, and Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Oxidation Disorders Laboratory, Mental Health Research Institute of Victoria, and Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Hersch
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
142
|
Kong GKW, Adams JJ, Harris HH, Boas JF, Curtain CC, Galatis D, Masters CL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW. Structural Studies of the Alzheimer’s Amyloid Precursor Protein Copper-binding Domain Reveal How it Binds Copper Ions. J Mol Biol 2007; 367:148-61. [PMID: 17239395 DOI: 10.1016/j.jmb.2006.12.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the major cause of dementia. Amyloid beta peptide (Abeta), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces Abeta levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu(2+)-bound CuBD reveals that the metal ligands are His147, His151, Tyr168 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu(+)-bound CuBD is almost identical to the Cu(2+)-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu(+), thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.
Collapse
Affiliation(s)
- Geoffrey K-W Kong
- Biota Structural Biology Laboratory, St. Vincent's Institute, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid beta peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1976-90. [PMID: 17433250 DOI: 10.1016/j.bbamem.2007.02.002] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/28/2022]
Abstract
There is a growing body of evidence to support a role for oxidative stress in Alzheimer's disease (AD), with increased levels of lipid peroxidation, DNA and protein oxidation products (HNE, 8-HO-guanidine and protein carbonyls respectively) in AD brains. The brain is a highly oxidative organ consuming 20% of the body's oxygen despite accounting for only 2% of the total body weight. With normal ageing the brain accumulates metals ions such iron (Fe), zinc (Zn) and copper (Cu). Consequently the brain is abundant in antioxidants to control and prevent the detrimental formation of reactive oxygen species (ROS) generated via Fenton chemistry involving redox active metal ion reduction and activation of molecular oxygen. In AD there is an over accumulation of the Amyloid beta peptide (Abeta), this is the result of either an elevated generation from amyloid precursor protein (APP) or inefficient clearance of Abeta from the brain. Abeta can efficiently generate reactive oxygen species in the presence of the transition metals copper and iron in vitro. Under oxidative conditions Abeta will form stable dityrosine cross-linked dimers which are generated from free radical attack on the tyrosine residue at position 10. There are elevated levels of urea and SDS resistant stable linked Abeta oligomers as well as dityrosine cross-linked peptides and proteins in AD brain. Since soluble Abeta levels correlate best with the degree of degeneration [C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush, C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol. 46 (1999) 860-866] we suggest that the toxic Abeta species corresponds to a soluble dityrosine cross-linked oligomer. Current therapeutic strategies using metal chelators such as clioquinol and desferrioxamine have had some success in altering the progression of AD symptoms. Similarly, natural antioxidants curcumin and ginkgo extract have modest but positive effects in slowing AD development. Therefore, drugs that target the oxidative pathways in AD could have genuine therapeutic efficacy.
Collapse
Affiliation(s)
- Danielle G Smith
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
144
|
Abstract
Converging lines of evidence suggest that progressive accumulation of the amyloid beta-protein (A beta) plays a central role in the genesis of Alzheimer's disease, but it was long assumed that A beta had to be assembled into extracellular amyloid fibrils to exert its cytotoxic effects. Over the past decade, data have emerged from the use of synthetic A beta peptides, cell culture models, beta-amyloid precursor protein transgenic mice and human brain to suggest that pre-fibrillar, diffusible assemblies of A beta are also deleterious. Although the precise molecular identity of these soluble toxins remains unsettled, accumulating evidence suggests that soluble forms of A beta are indeed the proximate effectors of synapse loss and neuronal injury. Here we review recent progress in understanding the role of soluble oligomers in Alzheimer's disease.
Collapse
Affiliation(s)
- Dominic M Walsh
- Laboratory for Neurodegenerative Research, The Conway Institute, University College Dublin, Belfield, Dublin, Republic of Ireland.
| | | |
Collapse
|
145
|
|
146
|
Huster D, Lutsenko S. Wilson disease: not just a copper disorder. Analysis of a Wilson disease model demonstrates the link between copper and lipid metabolism. MOLECULAR BIOSYSTEMS 2007; 3:816-24. [DOI: 10.1039/b711118p] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
147
|
Anliker B, Müller U. The functions of mammalian amyloid precursor protein and related amyloid precursor-like proteins. NEURODEGENER DIS 2006; 3:239-46. [PMID: 17047363 DOI: 10.1159/000095262] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is well established that proteolytic processing of the beta-amyloid precursor protein (APP) generates beta-amyloid which plays a central role in the pathogenesis of Alzheimer's disease. In contrast, the physiological role of APP and the question of whether a loss of these functions contributes to Alzheimer's disease are still unclear. For a long time, the characterization of APP functions was markedly hampered by the high redundancy between APP and the related APP family members amyloid precursor-like proteins 1 and 2. The generation and analyses of combined gene deficiencies for APP and amyloid precursor-like proteins in mice finally marked the beginning of uncovering the in vivo roles of these proteins in mammals. In the current review, we summarize recent insights into the functions of the APP gene family from mice lacking one, two or all three family members.
Collapse
Affiliation(s)
- Brigitte Anliker
- Department of Neurochemistry, Max Planck Institute for Brain Research, Frankfurt, Germany
| | | |
Collapse
|
148
|
Senechal Y, Larmet Y, Dev KK. Unraveling in vivo functions of amyloid precursor protein: insights from knockout and knockdown studies. NEURODEGENER DIS 2006; 3:134-47. [PMID: 16954700 DOI: 10.1159/000094772] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid precursor protein (APP) is a widely expressed transmembrane protein that is cleaved to generate Abeta peptides in the central nervous system and is a key player in the pathogenesis of Alzheimer's disease. The precise biological functions of APP still remain unclear although various roles have been proposed. While a commonly accepted model argues that Abeta peptides are the cause of onset and early pathogenesis of Alzheimer's disease, recent discussions challenge this 'Abeta hypothesis' and suggest a direct role for APP in this neurodegenerative disease. Loss-of-function studies are an efficient way to elucidate the role of proteins and concurrently a variety of in vitro and in vivo studies has been performed for APP where protein levels have been downregulated and functional consequences monitored. Complete disruption of APP gene expression has been achieved by the generation of APP knockout animal models. Further knockdown studies using antisense and RNA interference have allowed scientists to reduce APP expression levels and have opened new avenues to explore the physiological roles of APP. In the present review, we focus on knockout and knockdown approaches that have provided insights into the physiological functions of APP and discuss their advantages and drawbacks.
Collapse
Affiliation(s)
- Yann Senechal
- Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
149
|
|
150
|
Masters CL, Cappai R, Barnham KJ, Villemagne VL. Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics. J Neurochem 2006; 97:1700-25. [PMID: 16805778 DOI: 10.1111/j.1471-4159.2006.03989.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.
Collapse
Affiliation(s)
- Colin L Masters
- Department of Pathology, The University of Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|