101
|
Mendes-Gomes J, Nunes-de-Souza RL. Concurrent nociceptive stimulation impairs the anxiolytic effect of midazolam injected into the periaqueductal gray in mice. Brain Res 2005; 1047:97-104. [PMID: 15893297 DOI: 10.1016/j.brainres.2005.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 02/02/2023]
Abstract
This study investigated whether the opportunity to avoid or escape the open arms of an elevated plus-maze (EPM) affects the antinociceptive response observed when mice are subjected to open arm confinement. Furthermore, in order to better characterize the relationship between emotion and antinociception in the EPM, we examined the behavioral effects of midazolam injection into the midbrain periaqueductal gray matter (PAG). As our main aim was to evaluate the relevance of different levels of approach-avoid conflict (i.e. the presence of open and closed arms) to maze-induced antinociception, mice were exposed to one of three types of EPM-a standard EPM (sEPM), an open EPM (oEPM: four open arms) or, as a control condition, an enclosed EPM (eEPM: four enclosed arms). Nociception was assessed using the formalin test. Twenty minutes after formalin injection (50 microl, 2.5% formalin) into the dorsal right hind paw, mice received an intra-PAG injection of saline or midazolam (10-20 nmol). Five minutes later, they were individually exposed to one of the mazes for 10 min (25-35 min after formalin injection). Videotapes of the test sessions were scored for a variety of behavioral measures including time spent licking the formalin-injected paw. To examine whether the effects of midazolam on anxiety-like behavior may have been influenced by concurrent nociceptive stimulation (i.e. formalin pretreatment), naive mice were submitted to a similar procedure to that described above for the sEPM test but without formalin pretreatment. Results showed that mice exposed to the oEPM spent significantly less time licking the injected paw compared to groups exposed to either the sEPM or eEPM. Although exposure to the sEPM induced anxiety-like behaviors (i.e. open arm avoidance), it did not result in antinociception. Intra-PAG infusions of midazolam failed to block oEPM-induced antinociception or to alter sEPM-induced anxiety in mice that had received formalin injection. However, under normal test conditions (i.e. in the absence of formalin-induced nociceptive stimulation), intra-PAG midazolam produced clear anti-anxiety effects in mice exposed to the sEPM. Findings are discussed in terms of different emotional states induced by the oEPM and sEPM and the influence of concurrent nociceptive stimulation on the anti-anxiety effect of intra-PAG midazolam.
Collapse
Affiliation(s)
- Joyce Mendes-Gomes
- Lab. Farmacologia, Faculdade de Ciências Farmacêuticas-UNESP, Rod. Araraquara-Jau, Km 01, 14801-902 Araraquara, SP, Brasil
| | | |
Collapse
|
102
|
Lippa A, Czobor P, Stark J, Beer B, Kostakis E, Gravielle M, Bandyopadhyay S, Russek SJ, Gibbs TT, Farb DH, Skolnick P. Selective anxiolysis produced by ocinaplon, a GABA(A) receptor modulator. Proc Natl Acad Sci U S A 2005; 102:7380-5. [PMID: 15870187 PMCID: PMC1129138 DOI: 10.1073/pnas.0502579102] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benzodiazepines remain widely used for the treatment of anxiety disorders despite prominent, often limiting side effects including sedation, muscle relaxation, and ataxia. A compound producing a robust anxiolytic action comparable to benzodiazepines, but lacking these limiting side effects at therapeutic doses (an anxioselective agent), would represent an important advance in the treatment of generalized anxiety disorder, and perhaps other anxiety disorders. Here we report that the pyrazolo[1,5-a]-pyrimidine, ocinaplon, exhibits an anxioselective profile in both preclinical procedures and in patients with generalized anxiety disorder, the most common of the anxiety disorders. In rats, ocinaplon produces significant muscle relaxation, ataxia, and sedation only at doses >25-fold higher than the minimum effective dose (3.1 mg/kg) in the Vogel "conflict" test. This anticonflict effect is blocked by flumazenil (Ro 15-1788), indicating that like benzodiazepines, ocinaplon produces an anxiolytic action through allosteric modulation of GABA(A) receptors. Nonetheless, in eight recombinant GABA(A) receptor isoforms expressed in Xenopus oocytes, the potency and efficacy of ocinaplon to potentiate GABA responses varied with subunit composition not only in an absolute sense, but also relative to the prototypical benzodiazepine, diazepam. In a double blind, placebo controlled clinical trial, a 2-week regimen of ocinaplon (total daily dose of 180-240 mg) produced statistically significant reductions in the Hamilton rating scale for anxiety scores. In this study, the incidence of benzodiazepine-like side effects (e.g., sedation, dizziness) in ocinaplon-treated patients did not differ from placebo. These findings indicate that ocinaplon represents a unique approach both for the treatment and understanding of anxiety disorders.
Collapse
Affiliation(s)
- A Lippa
- DOV Pharmaceutical, Inc., 433 Hackensack Avenue, Hackensack, NJ 07601, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Paul ES, Harding EJ, Mendl M. Measuring emotional processes in animals: the utility of a cognitive approach. Neurosci Biobehav Rev 2005; 29:469-91. [PMID: 15820551 DOI: 10.1016/j.neubiorev.2005.01.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 01/01/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Contemporary researchers regard emotional states as multifaceted, comprising physiological, behavioural, cognitive and subjective components. Subjective, conscious experience of emotion can be inferred from linguistic report in humans, but is inaccessible to direct measurement in non-human animals. However, measurement of other components of emotion is possible, and a variety of methods exist for monitoring emotional processes in animals by measuring behavioural and physiological changes. These are important tools, but they have limitations including difficulties of interpretation and the likelihood that many may be sensitive indicators of emotional arousal but not valence-pleasantness/unpleasantness. Cognitive components of emotion are a largely unexplored source of information about animal emotions, despite the fact that cognition-emotion links have been extensively researched in human cognitive science indicating that cognitive processes-appraisals of stimuli, events and situations-play an important role in the generation of emotional states, and that emotional states influence cognitive functioning by inducing attentional, memory and judgement biases. Building on this research, it is possible to design non-linguistic cognitive measures of animal emotion that may be especially informative in offering new methods for assessing emotional valence (positive as well as negative), discriminating same-valenced emotion of different types, identifying phenotypes with a cognitive predisposition to develop affective disorders, and perhaps shedding light on the issue of conscious emotional experiences in animals.
Collapse
Affiliation(s)
- Elizabeth S Paul
- Centre for Behavioural Biology, Department of Clinical Veterinary Science, University of Bristol, Langford House, Langford BS40 5DU, UK.
| | | | | |
Collapse
|
104
|
Millan MJ, Brocco M, Gobert A, Dekeyne A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology (Berl) 2005; 177:448-58. [PMID: 15289999 DOI: 10.1007/s00213-004-1962-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 06/09/2004] [Indexed: 12/12/2022]
Abstract
RATIONALE The novel antidepressant agent, agomelatine, behaves as an agonist at melatonin receptors and as an antagonist at serotonin (5-HT)(2C) receptors. OBJECTIVES To determine whether, by virtue of its antagonist properties at 5-HT(2C) receptors, agomelatine elicits anxiolytic properties in rats. METHODS Employing a combined neurochemical and behavioural approach, actions of agomelatine were compared to those of melatonin, the selective 5-HT(2C) receptor antagonist, SB243,213, and the benzodiazepine, clorazepate. RESULTS In unfamiliar pairs of rats exposed to a novel environment, agomelatine enhanced the time devoted to active social interaction, an action mimicked by clorazepate and by SB243,213. In a Vogel conflict procedure, agomelatine likewise displayed dose-dependent anxiolytic activity with a maximal effect comparable to clorazepate, and SB243,213 was similarly active in this procedure. In a plus-maze procedure in which clorazepate significantly enhanced percentage entries into open arms, agomelatine revealed only modest activity and SB243,213 was inactive. Further, like SB243,213, and in contrast to clorazepate, agomelatine did not suppress ultrasonic vocalizations emitted by rats re-exposed to an environment associated with an aversive stimulus. Whereas clorazepate reduced dialysate levels of 5-HT and noradrenaline in hippocampus and frontal cortex of freely moving rats, agomelatine did not affect extracellular levels of 5-HT and elevated those of noradrenaline. SB243,213 acted similarly to agomelatine. Melatonin, which did not modify extracellular levels of 5-HT or noradrenaline, was ineffective in all models of anxiolytic activity. Furthermore, the selective melatonin antagonist, S22153, did not modify anxiolytic properties of agomelatine in either the social interaction or the Vogel Conflict tests. CONCLUSIONS In contrast to melatonin, and reflecting blockade of 5-HT(2C) receptors, agomelatine is active in several models of anxiolytic properties in rodents. The anxiolytic profile of agomelatine differs from that of benzodiazepines from which it may also be distinguished by its contrasting influence on corticolimbic monoaminergic pathways.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Centre de Recherches de Croissy, Institut de Recherches Servier, 125 Chemin de Ronde, Croissy/Seine, 78290 Paris, France.
| | | | | | | |
Collapse
|
105
|
Licata SC, Platt DM, Cook JM, Sarma PVVS, Griebel G, Rowlett JK. Contribution of GABAAReceptor Subtypes to the Anxiolytic-Like, Motor, and Discriminative Stimulus Effects of Benzodiazepines: Studies with the Functionally Selective Ligand SL651498 [6-Fluoro-9-methyl-2-phenyl-4-(pyrrolidin-1-yl-carbonyl)-2,9-dihydro-1H-pyridol[3,4-b]indol-1-one]. J Pharmacol Exp Ther 2005; 313:1118-25. [PMID: 15687371 DOI: 10.1124/jpet.104.081612] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Benzodiazepines (BZs) are prescribed for a variety of disorders, including those involving anxiety and sleep, but have unwanted side effects that limit their use. Elucidating the GABA(A) receptor mechanisms underlying the behavioral effects of BZs will help develop new drugs having both maximum clinical benefit and minimum adverse side effects. A recently developed compound is SL651498 [6-fluoro-9-methyl-2-phenyl-4-(pyrrolidin-1-yl-carbonyl)-2,9-dihydro-1H-pyridol[3,4-b]indol-1-one], which is a full agonist at GABA(A) receptors containing alpha(2)and alpha(3) subunits and a partial agonist at GABA(A) receptors containing alpha(1) and alpha(5) subunits. We assessed the ability of SL651498 to engender anxiolytic-like, motor, and subjective effects characteristic of BZ-type drugs in nonhuman primates. Anxiolytic-like activity was assessed with a conflict procedure in rhesus monkeys. Motor effects were evaluated in squirrel monkeys using observational techniques, and the subjective effects of SL651498 were assessed in squirrel monkeys trained to discriminate the nonselective BZ triazolam from saline. SL651498 engendered anxiolytic-like effects similar to conventional BZs. In addition, SL651498 fully induced muscle relaxation, but unlike conventional BZs, engendered minimal ataxia. In drug discrimination studies, SL651498 partially substituted for triazolam. This effect was blocked with the alpha(1) GABA(A) subtype-preferring antagonist beta-CCT (beta-carboline-3-carboxylate-t-butyl ester), implicating alpha(1) GABA(A) effects receptors in the subjective of SL651498. Together, these studies suggest that compounds such as SL651498 that have high intrinsic efficacy at alpha(2)GABA(A) and/or alpha(3)GABA(A) receptors may have clinical potential as anxiolytics and muscle relaxants. Moreover, a compound with reduced efficacy at alpha(1) GABA(A) and/or alpha(5) GABA(A) receptors may lack some of the motor and subjective effects associated with conventional BZs.
Collapse
Affiliation(s)
- Stephanie C Licata
- Harvard Medical School, New England Primate Research Center, Southborough, MA 01772, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Barreto-Estrada JL, Barreto J, Fortis-Santiago Y, Rivera-Ramos I, Fortis-Santiago A, Jorge JC. Modulation of affect after chronic exposure to the anabolic steroid 17alpha-methyltestosterone in adult mice. Behav Neurosci 2005; 118:1071-9. [PMID: 15506889 DOI: 10.1037/0735-7044.118.5.1071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A battery of behavioral tasks in C57BL/6J mice was used to assess changes in affective components of behavior after systemic exposure to the anabolic-androgenic steroid (AAS) 17alpha-methyltestosterone (7.5 mg/kg). Gonadal weight in both sexes was reduced after 16 days of AAS exposure. Changes in discrete components of social behaviors were observed. No changes were recorded in the elevated plus-maze, the light-dark transition, and defensive behavior tests on exposure to 17alpha-methyltestosterone. When compared with controls, AAS-exposed females received a greater number of shocks, and AAS-exposed males displayed a shorter recovery time to consume water after a negative reinforcer in the modified Vogel conflict test. Results show that systemic exposure to a single AAS modified social behaviors, whereas minimal effects on anxiety-related behaviors were observed according to sex.
Collapse
|
107
|
Abstract
Animal models for anxiety-related behavior are based on the assumption that anxiety in animals is comparable to anxiety in humans. Being anxious is an adaptive response to an unfamiliar environment, especially when confronted with danger or threat. However, pathological variants of anxiety can strongly impede the daily life of those affected. To unravel neurobiological mechanisms underlying normal anxiety as well as its pathologi- cal variations, animal models are indispensable tools. What are the characteristics of an ideal animal model? First, it should display reduced anxiety when treated with anxiolytics (predictive validity). Second, the behavioral response of an animal model to a threatening stimulus should be comparable to the response known for humans (face validity). And third, the mechanisms underlying anxiety as well as the psychological causes should be identical (construct validity). Meeting these three requirements is difficult for any animal model. Since both the physiological and the behavioral response to aversive (threatening) stimuli are similar in humans and animals, it can be assumed that animal models can serve at least two distinct purposes: as (1) behavioral tests to screen for potential anxiolytic and antidepressant effects of new drugs and (2) tools to investigate specific pathogenetic aspects of cardinal symptoms of anxiety disorders. The examples presented in this chapter have been selected to illustrate the potential as well as the caveats of current models and the emerging possibilities offered by gene technology. The main concepts in generating animal models for anxiety-that is, selective breeding of rat lines, experience-related models, genetically engineered mice, and phenotype-driven approaches-are concisely introduced and discussed. Independent of the animal model used, one major challenge remains, which is to reliably identify animal behavioral characteristics. Therefore, a description of behavioral expressions of anxiety in rodents as well as tests assays to measure anxiety-related behavior in these animals is also included in this chapter.
Collapse
Affiliation(s)
- F Ohl
- Laboratory Animal Science, University Utrecht, PO Box 80166, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
108
|
Olivier B, van Bogaert M, van Oorschot R, Oosting R, Groenink L. Stress-induced hyperthermia. HANDBOOK OF STRESS AND THE BRAIN - PART 2: STRESS: INTEGRATIVE AND CLINICAL ASPECTS 2005. [DOI: 10.1016/s0921-0709(05)80053-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
109
|
Gordon JA, Hen R. The serotonergic system and anxiety. Neuromolecular Med 2004; 5:27-40. [PMID: 15001810 DOI: 10.1385/nmm:5:1:027] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 08/06/2003] [Indexed: 11/11/2022]
Abstract
The wide use of serotonin reuptake inhibitors and serotonin receptor agonists in anxiety disorders has suggested a key role for the modulatory neurotransmitter in anxiety. However, serotonin's specific role is still uncertain. This article reviews the literature concerning how and where serotonergic agents modulate anxiety. Varying and sometimes conflicting data from human and animal studies argue for both anxiolytic and anxiogenic roles for serotonin, depending on the specific disorder, structure, or behavioral task studied. However, recent data from molecular genetic studies in the mouse point toward two important roles for the serotonin 1A receptor. In development, serotonin acts through this receptor to promote development of the circuitry necessary for normal anxiety-like behaviors. In adulthood, serotonin reuptake inhibitors act through the same receptor to stimulate neurogenesis and reduce anxiety-like behaviors. These studies highlight that the complex serotonin system likely plays various roles in the regulation of anxiety both during development and in adulthood.
Collapse
Affiliation(s)
- Joshua A Gordon
- Department of Psychiatry, Center for Neurobiology and Behavior, Columbia University, and the New York State Psychiatric Institute, NY, USA
| | | |
Collapse
|
110
|
Witkin JM, Morrow D, Li X. A rapid punishment procedure for detection of anxiolytic compounds in mice. Psychopharmacology (Berl) 2004; 172:52-7. [PMID: 14504684 DOI: 10.1007/s00213-003-1618-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 07/29/2003] [Indexed: 10/26/2022]
Abstract
RATIONALE Effects of compounds on punished responding have been predictive of anxiolytic efficacy in humans. The use of mice in these tests has been limited, but the utility of this species in drug discovery and for neurobiological inquiry would benefit from a rapid, reliable method. OBJECTIVES The present experiments were designed to validate a new procedure in mice. METHODS Male, NIH Swiss mice were food deprived and placed in an experimental chamber with two nose-poke holes. Every nose poke (FR1) produced a 20 mg food pellet. On the following day, a drug vehicle was administered and the mice were again exposed to the FR1 schedule. On day 3, a compound was given and the mice were run under a mixed FR1 (food), FR1 (food+shock) schedule in alternating, unsignalled periods of 4 and 10 min for three cycles. In the 10-min periods, nose-pokes produced both food plus brief electrification of the grid floor (0.5 mA for 100 ms). Effects of compounds on food intake were also evaluated in separate groups of mice. RESULTS The introduction of shock substantially decreased responding during the 10-min punishment periods without significantly affecting responding during the non-punishment periods. The clinically effective anxiolytic agents chlordiazepoxide, pentobarbital, and bretazenil, but not buspirone, produced dose-dependent increases in suppressed responding, whereas d-amphetamine, chlorpromazine, and morphine were not effective. Chlordiazepoxide and bretazenil increased food consumption. CONCLUSIONS The present method enables rapid and reliable evaluation of potential anxiolytic agents in mice with minimal training. Increases in food intake are not necessary for anxiolytic-like effects under these conditions.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285-0510, USA.
| | | | | |
Collapse
|
111
|
|
112
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|