101
|
D'Avanzo N, Cheng WWL, Doyle DA, Nichols CG. Direct and specific activation of human inward rectifier K+ channels by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2010; 285:37129-32. [PMID: 20921230 DOI: 10.1074/jbc.c110.186692] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many ion channels are modulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)), but studies examining the PIP(2) dependence of channel activity have been limited to cell expression systems, which present difficulties for controlling membrane composition. We have characterized the PIP(2) dependence of purified human Kir2.1 and Kir2.2 activity using (86)Rb(+) flux and patch clamp assays in liposomes of defined composition. We definitively show that these channels are directly activated by PIP(2) and that PIP(2) is absolutely required in the membrane for channel activity. The results provide the first quantitative description of the dependence of eukaryotic Kir channel function on PIP(2) levels in the membrane; Kir2.1 shows measureable activity in as little as 0.01% PIP(2), and open probability increases to ∼0.4 at 1% PIP(2). Activation of Kir2.1 by phosphatidylinositol phosphates is also highly selective for PIP(2); PI, PI(4)P, and PI(5)P do not activate channels, and PI(3,4,5)P(3) causes minimal activity. The PIP(2) dependence of eukaryotic Kir activity is almost exactly opposite that of KirBac1.1, which shows marked inhibition by PIP(2). This raises the interesting hypothesis that PIP(2) activation of eukaryotic channels reflects an evolutionary adaptation of the channel to the appearance of PIP(2) in the eukaryotic cell membrane.
Collapse
Affiliation(s)
- Nazzareno D'Avanzo
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
102
|
Schué M, Maurin D, Dhouib R, Bakala N'Goma JC, Delorme V, Lambeau G, Carrière F, Canaan S. Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J 2010; 24:1893-903. [PMID: 20103719 DOI: 10.1096/fj.09-144766] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cutinases are extracellular enzymes that are able to degrade cutin, a polyester protecting plant leaves and many kinds of lipids. Although cutinases are mainly found in phytopathogenic fungi or bacteria, 7 genes related to the cutinase family have been predicted in the genome of Mycobacterium tuberculosis. These genes may encode proteins that are involved in the complex lipid metabolism of the bacterium. Here, we report on the biochemical characterization of two secreted proteins of M. tuberculosis, Rv1984c and Rv3452, belonging to the cutinase family. Although their amino acid sequence shows 50% identity with that of the well-characterized cutinase from Fusarium solani pisi, and a high level of homology has been found to exist between these two enzymes, they show distinct substrate specificities. Rv1984c preferentially hydrolyzes medium-chain carboxylic esters and monoacylglycerols, whereas Rv3452 behaves like a phospholipase A(2), and it is able to induce macrophage lysis. The tetrahydrolipstatin inhibitor, a specific lipase inhibitor, abolishes the activity of both enzymes. Site-directed mutagenesis was performed to identify the catalytic triad of Rv1984c. Structural models for Rv1984c and Rv3452 were built, based on the crystal structure of F. solani cutinase, with a view to investigating the contribution of specific residues to the substrate specificity. Our findings open new prospects for investigating the physiological roles of cutinase-like proteins in the lipid metabolism and virulence of M. tuberculosis.
Collapse
Affiliation(s)
- Mathieu Schué
- Centre National de la Recherche Scientifique, Aix-Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UPR 9025, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Kenanov D, Kaleta C, Petzold A, Hoischen C, Diekmann S, Siddiqui RA, Schuster S. Theoretical study of lipid biosynthesis in wild-type Escherichia coli and in a protoplast-type L-form using elementary flux mode analysis. FEBS J 2010; 277:1023-34. [DOI: 10.1111/j.1742-4658.2009.07546.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
104
|
Abstract
The topology of polytopic membrane proteins is determined by topogenic sequences in the protein, protein-translocon interactions, and interactions during folding within the protein and between the protein and the lipid environment. Orientation of transmembrane domains is dependent on membrane phospholipid composition during initial assembly as well as on changes in lipid composition postassembly. The membrane translocation potential of negative amino acids working in opposition to the positive-inside rule is largely dampened by the normal presence of phosphatidylethanolamine, thus explaining the dominance of positive residues as retention signals. Phosphatidylethanolamine provides the appropriate charge density that permits the membrane surface to maintain a charge balance between membrane translocation and retention signals and also allows the presence of negative residues in the cytoplasmic face of proteins for other purposes.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
105
|
|
106
|
Garrett TA, Raetz CRH, Richardson T, Kordestani R, Son JD, Rose RL. Identification of phosphatidylserylglutamate: a novel minor lipid in Escherichia coli. J Lipid Res 2008; 50:1589-99. [PMID: 19096047 DOI: 10.1194/jlr.m800549-jlr200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advances in mass spectrometry have facilitated the identification of novel lipid structures. In this work, we fractionated the lipids of Escherichia coli B and analyzed the fractions using negative-ion electrospray ionization mass spectrometry to reveal unknown lipid structures. Analysis of a fraction eluting with high salt from DEAE cellulose revealed a series of ions not corresponding to any of the known lipids of E. coli. The ions, with m/z 861.5, 875.5, 887.5, 889.5, and 915.5, were analyzed using collision-induced dissociation mass spectrometry (MS/MS) and yielded related fragmentation patterns consistent with a novel diacylated glycerophospholipid. Product ions arising by neutral loss of 216 mass units were observed with all of the unknowns. A corresponding negative product ion was also observed at m/z 215.0. Additional ions at m/z 197.0, 171.0, 146.0, and 128.0 were used to propose the novel structure phosphatidylserylglutamate (PSE). The hypothesized structure was confirmed by comparison with the MS/MS spectrum of a synthetic standard. Normal phase liquid chromatography-mass spectrometry analysis further showed that the endogenous PSE and synthetic PSE eluted with the same retention times. PSE was also observed in the equivalent anion exchange fractions of total lipids extracted from the wild-type E. coli K-12 strain MG1655.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | |
Collapse
|
107
|
Karbarz MJ, Six DA, Raetz CRH. Purification and characterization of the lipid A 1-phosphatase LpxE of Rhizobium leguminosarum. J Biol Chem 2008; 284:414-425. [PMID: 18984595 DOI: 10.1074/jbc.m808390200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LpxE, a membrane-bound phosphatase found in Rhizobium leguminosarum and some other Gram-negative bacteria, selectively dephosphorylates the 1-position of lipid A on the outer surface of the inner membrane. LpxE belongs to the family of lipid phosphate phosphatases that contain a tripartite active site motif and six predicted transmembrane helices. Here we report the purification and characterization of R. leguminosarum LpxE. A modified lpxE gene, encoding a protein with an N-terminal His6 tag, was expressed in Escherichia coli. The protein was solubilized with Triton X-100 and purified to near-homogeneity. Gel electrophoresis reveals a molecular weight consistent with the predicted 31 kDa. LpxE activity is dependent upon Triton X-100, optimal near pH 6.5, and Mg2+-independent. The H197A and R133A substitutions inactivate LpxE, as does treatment with diethyl pyrocarbonate. In a mixed micelle assay system, the apparent Km for the precursor lipid IV(A) is 11 microm. Substrates containing the 3-deoxy-d-manno-oct-2-ulosonic acid disaccharide are dephosphorylated at similar rates to lipid IV(A), whereas glycerophospholipids like phosphatidic acid or phosphatidylglycerol phosphate are very poor substrates. However, an LpxE homologue present in Agrobacterium tumefaciens is selective for phosphatidylglycerol phosphate, demonstrating the importance of determining substrate specificity before assigning the functions of LpxE-related proteins. The availability of purified LpxE will facilitate the preparation of novel 1-dephosphorylated lipid A molecules that are not readily accessible by chemical methods.
Collapse
Affiliation(s)
- Mark J Karbarz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - David A Six
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
108
|
Narayanan N, Follonier S, Chou CP. In vivo monitoring and alleviation of extracytoplasmic stress to recombinant protein overproduction in the periplasm of Escherichia coli. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
109
|
Tran AX, Trent MS, Whitfield C. The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J Biol Chem 2008; 283:20342-9. [PMID: 18480051 PMCID: PMC2459282 DOI: 10.1074/jbc.m802503200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/12/2008] [Indexed: 01/06/2023] Open
Abstract
The LptA protein of Escherichia coli has been implicated in the transport of lipopolysaccharide (LPS) from the inner membrane to the outer membrane. Here we provide evidence that LptA binds structurally diverse LPS substrates in vitro and demonstrate that it interacts specifically with the lipid A domain of LPS. These results are consistent with LptA playing a chaperone role in the transport of LPS across the periplasm and have implications for possible assembly models.
Collapse
Affiliation(s)
- An X Tran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
110
|
Hacker S, Gödeke J, Lindemann A, Mesa S, Pessi G, Narberhaus F. Global consequences of phosphatidylcholine reduction in Bradyrhizobium japonicum. Mol Genet Genomics 2008; 280:59-72. [PMID: 18446372 DOI: 10.1007/s00438-008-0345-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 04/15/2008] [Indexed: 12/26/2022]
Abstract
Phosphatidylcholine (PC) is the major phospholipid in eukaryotic membranes. In contrast, it is found in only a limited number of bacteria including members of the Rhizobiales. Here, PC is required for pathogenic and symbiotic plant-microbe interactions, as shown for Agrobacterium tumefaciens and Bradyrhizobium japonicum, respectively. Two different phospholipid N-methyltransferases, PmtA and PmtX1, convert phosphatidylethanolamine (PE) to PC by three consecutive methylation reactions in B. japonicum. PmtA mainly catalyzes the first methylation reaction converting PE to monomethyl PE, which then serves as substrate for PmtX1 performing the last two methylation reactions. Disruption of the pmtA gene results in a significantly reduced PC content causing a defect in symbiosis with the soybean host. A genome-wide survey for differentially expressed genes in the pmtA mutant with a custom-made Affymetrix gene chip revealed that PC reduction affects transcription of a strictly confined set of genes. Among the 11 up regulated genes were pmtX3 and pmtX4, which code for isoenzymes of PmtA. The expression of two typical two-component systems, a MarR-like regulator and two proteins of a RND-type (resistance nodulation cell division) efflux system were differentially expressed in the pmtA mutant. Our data suggests that a decrease in the PC content of B. japonicum membranes induces a rather specific transcriptional response involving three different transcriptional regulators all involved in the regulatory fine-tuning of a RND-type transport system.
Collapse
Affiliation(s)
- Stephanie Hacker
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, NDEF 06/783, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
111
|
Han GS, O'Hara L, Siniossoglou S, Carman GM. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J Biol Chem 2008; 283:20443-53. [PMID: 18458076 DOI: 10.1074/jbc.m802866200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
112
|
Narayanan N, Chou CP. Periplasmic chaperone FkpA reduces extracytoplasmic stress response and improves cell-surface display on Escherichia coli. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
113
|
Gene expression studies of the dikaryotic mycelium and primordium of Lentinula edodes by serial analysis of gene expression. ACTA ACUST UNITED AC 2008; 112:950-64. [PMID: 18555678 DOI: 10.1016/j.mycres.2008.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/16/2008] [Accepted: 01/24/2008] [Indexed: 02/02/2023]
Abstract
Lentinula edodes (Shiitake mushroom) is a common edible mushroom that has high nutritional and medical value. Although a number of genes involved in the fruit of the species have been identified, little is known about the process of differentiation from dikaryotic mycelium to primordium. In this study, serial analysis of gene expression (SAGE) was applied to determine the gene expression profiles of the dikaryotic mycelium and primordium of L. edodes in an effort to advance our understanding of the molecular basis of fruit body development. A total of 6363 tags were extracted (3278 from the dikaryotic mycelium and 3085 from the primordium), 164 unique tags matched the in-house expressed sequence tag (EST) database. The difference between the expression profiles of the dikaryotic mycelium and primordium suggests that a specific set of genes is required for fruit body development. In the transition from the mycelium to the primordium, different hydrophobins were expressed abundantly, fewer structural genes were expressed, transcription and translation became active, different genes became involved in intracellular trafficking, and stress responses were expressed. These findings advance our understanding of fruit body development. We used cDNA microarray hybridization and Northern blotting to verify the SAGE results, and found SAGE to be highly efficient in the performance of transcriptome analysis. To our knowledge, this is the first SAGE study of a mushroom.
Collapse
|
114
|
Multiple phospholipid N-methyltransferases with distinct substrate specificities are encoded in Bradyrhizobium japonicum. J Bacteriol 2007; 190:571-80. [PMID: 17993534 DOI: 10.1128/jb.01423-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC) is the major phospholipid in eukaryotic membranes. In contrast, it is found in only a few prokaryotes including members of the family Rhizobiaceae. In these bacteria, PC is required for pathogenic and symbiotic plant-microbe interactions, as shown for Agrobacterium tumefaciens and Bradyrhizobium japonicum. At least two different phospholipid N-methyltransferases (PmtA and PmtX) have been postulated to convert phosphatidylethanolamine (PE) to PC in B. japonicum by three consecutive methylation reactions. However, apart from the known PmtA enzyme, we identified and characterized three additional pmt genes (pmtX1, pmtX3, and pmtX4), which can be functionally expressed in Escherichia coli, showing different substrate specificities. B. japonicum expressed only two of these pmt genes (pmtA and pmtX1) under all conditions tested. PmtA predominantly converts PE to monomethyl PE, whereas PmtX1 carries out both subsequent methylation steps. B. japonicum is the first bacterium known to use two functionally different Pmts. It also expresses a PC synthase, which produces PC via condensation of CDP-diacylglycerol and choline. Our study shows that PC biosynthesis in bacteria can be much more complex than previously anticipated.
Collapse
|
115
|
Abstract
MdfA is a 410-residue-long secondary multidrug transporter from E. coli. Cells expressing MdfA from a multicopy plasmid exhibit resistance against a diverse group of toxic compounds, including neutral and cationic ones, because of active multidrug export. As a prerequisite for high-resolution structural studies and a better understanding of the mechanism of substrate recognition and translocation by MdfA, we investigated its biochemical properties and overall structural characteristics. To this end, we purified the beta-dodecyl maltopyranoside (DDM)-solubilized protein using a 6-His tag and metal affinity chromatography, and size exclusion chromatography (SE-HPLC). Purified MdfA was analyzed for its DDM and phospholipid (PL) content, and tetraphenylphosphonium (TPP+)-binding activity. The results are consistent with MdfA being an active monomer in DDM solution. Furthermore, an investigation of two-dimensional crystals by electron crystallography and 3D reconstruction lent support to the notion that MdfA may also be monomeric in reconstituted proteoliposomes.
Collapse
Affiliation(s)
- Nadejda Sigal
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
116
|
Wang X, Ribeiro AA, Guan Z, Abraham SN, Raetz CRH. Attenuated virulence of a Francisella mutant lacking the lipid A 4'-phosphatase. Proc Natl Acad Sci U S A 2007; 104:4136-41. [PMID: 17360489 PMCID: PMC1820721 DOI: 10.1073/pnas.0611606104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Francisella tularensis causes tularemia, a highly contagious disease of animals and humans, but the virulence features of F. tularensis are poorly defined. F. tularensis and the related mouse pathogen Francisella novicida synthesize unusual lipid A molecules lacking the 4'-monophosphate group typically found in the lipid A of Gram-negative bacteria. LpxF, a selective phosphatase located on the periplasmic surface of the inner membrane, removes the 4'-phosphate moiety in the late stages of F. novicida lipid A assembly. To evaluate the relevance of the 4'-phosphatase to pathogenesis, we constructed a deletion mutant of lpxF and compared its virulence with wild-type F. novicida. Intradermal injection of 10(6) wild-type but not 10(8) mutant F. novicida cells is lethal to mice. The rapid clearance of the lpxF mutant is associated with a stronger local cytokine response and a greater influx of neutrophils compared with wild-type. The F. novicida mutant was highly susceptible to the cationic antimicrobial peptide polymyxin. LpxF therefore represents a kind of virulence factor that confers a distinct lipid A phenotype, preventing Francisella from activating the host innate immune response and preventing the bactericidal actions of cationic peptides. Francisella lpxF mutants may be useful for immunization against tularemia.
Collapse
Affiliation(s)
| | | | | | | | - Christian R. H. Raetz
- Departments of *Biochemistry and
- To whom correspondence should be addressed at:
Box 3711, Duke University Medical Center, Durham, NC 27710. E-mail:
| |
Collapse
|
117
|
Aygun-Sunar S, Mandaci S, Koch HG, Murray IVJ, Goldfine H, Daldal F. Ornithine lipid is required for optimal steady-state amounts of c-type cytochromes in Rhodobacter capsulatus. Mol Microbiol 2006; 61:418-35. [PMID: 16856942 DOI: 10.1111/j.1365-2958.2006.05253.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc(1) complex or the cbb(3)-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex post-translational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes. Molecular analyses of these mutants led us to the ornithine lipid biosynthesis genes of Rhodobacter capsulatus. Herein, we have characterized these mutants, and established the chemical structure of this non-phosphorus membrane lipid from R. capsulatus. Ornithine lipids are known to induce potent host immune responses, including B-lymphocyte mitogenicity, adjuvanticity and macrophage activation. Yet, despite their widespread occurrence in Eubacteria, and the diverse biological effects they elicit in mammals, their physiological role in bacterial cells remained hitherto poorly defined. Our findings now indicate that under certain bacterial growth conditions ornithine lipids are crucial for optimal steady-state amounts of some extracytoplasmic proteins, including several c-type cytochromes, and attribute them a novel and important biological function.
Collapse
Affiliation(s)
- Semra Aygun-Sunar
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
118
|
Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S, Narberhaus F. Virulence ofAgrobacterium tumefaciensrequires phosphatidylcholine in the bacterial membrane. Mol Microbiol 2006; 62:906-15. [PMID: 17010159 DOI: 10.1111/j.1365-2958.2006.05425.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphatidylcholine (PC, lecithin) has long been considered a solely eukaryotic membrane lipid. Only a minority of all bacteria is able to synthesize PC. The plant-transforming bacterium Agrobacterium tumefaciens encodes two potential PC forming enzymes, a phospholipid N-methyltransferase (PmtA) and a PC synthase (Pcs). We show that PC biosynthesis and tumour formation on Kalanchoë plants was impaired in the double mutant. The virulence defect was due to a complete lack of the type IV secretion machinery in the Agrobacterium PC mutant. Our results strongly suggest that PC in bacterial membranes is an important determinant for the establishment of host-microbe interactions.
Collapse
Affiliation(s)
- Mirja Wessel
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
119
|
Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H. Analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol 2006; 81:49-58. [PMID: 16980512 DOI: 10.1189/jlb.0306200] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
HMGB1 (amphoterin) is a 30-kDa heparin-binding protein that mediates transendothelial migration of monocytes and has proinflammatory cytokine-like activities. In this study, we have investigated proinflammatory activities of both highly purified eukaryotic HMGB1 and bacterially produced recombinant HMGB1 proteins. Mass analyses revealed that recombinant eukaryotic HMGB1 has an intrachain disulphide bond. In mass analysis of tissue-derived HMGB1, two forms were detected: the carboxyl terminal glutamic acid residue lacking form and a full-length form. Cell culture studies indicated that both eukaryotic and bacterial HMGB1 proteins induce TNF-alpha secretion and nitric oxide release from mononuclear cells. Affinity chromatography analysis revealed that HMGB1 binds tightly to proinflammatory bacterial substances. A soluble proinflammatory substance was separated from the bacterial recombinant HMGB1 by chloroform-methanol treatment. HMGB1 interacted with phosphatidylserine in both solid-phase binding and cell culture assays, suggesting that HMGB1 may regulate phosphatidylserine-dependent immune reactions. In conclusion, HMGB1 polypeptide has a weak proinflammatory activity by itself, and it binds to bacterial substances, including lipids, that may strengthen its effects.
Collapse
Affiliation(s)
- Ari Rouhiainen
- Neuroscience Center, and Institute of Biotechnology, Viikinkaari 4, PL 56, University of Helsinki, Helsinki 00014, Finland.
| | | | | | | | | |
Collapse
|
120
|
Kumaran D, Bonanno JB, Burley SK, Swaminathan S. Crystal structure of phosphatidylglycerophosphatase (PGPase), a putative membrane-bound lipid phosphatase, reveals a novel binuclear metal binding site and two "proton wires". Proteins 2006; 64:851-62. [PMID: 16838328 DOI: 10.1002/prot.21039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phosphatidylglycerophosphatase (PGPase), an enzyme involved in lipid metabolism, catalyzes formation of phosphatidylglycerol from phosphatidylglycerophosphate. Phosphatidylglycerol is a multifunctional phospholipid, found in the biological membranes of many organisms. Here, we report the crystal structure of Listeria monocytogenes PGPase at 1.8 A resolution. PGPase, an all-helical molecule, forms a homotetramer. Each protomer contains an independent active site with two metal ions, Ca(2+) and Mg(2+), forming a hetero-binuclear center located in a hydrophilic cavity near the surface of the molecule. The binuclear center, conserved ligands, metal-bound water molecules, and an Asp-His dyad form the active site. The catalytic mechanism of this enzyme is likely to proceed via binuclear metal activated nucleophilic water. The binuclear metal-binding active-site environment of this structure should provide insights into substrate binding and metal-dependent catalysis. A long channel with inter-linked linear water chains, termed "proton wires," is observed at the tetramer interface. Comparison of similar water chain structures in photosynthetic reaction centers (RCs), Cytochrome f, gramicidin, and bacteriorhodopsin, suggests that PGPase may conduct protons via proton wires.
Collapse
Affiliation(s)
- Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | |
Collapse
|
121
|
Reynolds CM, Ribeiro AA, McGrath SC, Cotter RJ, Raetz CRH, Trent MS. An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3'-acyloxyacyl moiety of lipid A. J Biol Chem 2006; 281:21974-21987. [PMID: 16704973 PMCID: PMC2702521 DOI: 10.1074/jbc.m603527200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Salmonella and related bacteria modify the structure of the lipid A portion of their lipopolysaccharide in response to environmental stimuli. Some lipid A modifications are required for virulence and resistance to cationic antimicrobial peptides. We now demonstrate that membranes of Salmonella typhimurium contain a novel hydrolase that removes the 3'-acyloxyacyl residue of lipid A in the presence of 5 mM Ca2+. We have identified the gene encoding the S. typhimurium lipid A 3'-O-deacylase, designated lpxR, by screening an ordered S. typhimurium genomic DNA library, harbored in Escherichia coli K-12, for expression of Ca2+-dependent 3'-O-deacylase activity in membranes. LpxR is synthesized with an N-terminal type I signal peptide and is localized to the outer membrane. Mass spectrometry was used to confirm the position of lipid A deacylation in vitro and the release of the intact 3'-acyloxyacyl group. Heterologous expression of lpxR in the E. coli K-12 W3110, which lacks lpxR, resulted in production of significant amounts of 3'-O-deacylated lipid A in growing cultures. Orthologues of LpxR are present in the genomes of E. coli O157:H7, Yersinia enterocolitica, Helicobacter pylori, and Vibrio cholerae. The function of LpxR is unknown, but it could play a role in pathogenesis because it might modulate the cytokine response of an infected animal.
Collapse
Affiliation(s)
- C Michael Reynolds
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Anthony A Ribeiro
- Duke NMR Spectroscopy Center and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sara C McGrath
- Middle Atlantic Mass Spectrometry Laboratory, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J Cotter
- Middle Atlantic Mass Spectrometry Laboratory, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.
| | - M Stephen Trent
- Department of Microbiology, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614.
| |
Collapse
|
122
|
Hollenback D, Bonham L, Law L, Rossnagle E, Romero L, Carew H, Tompkins CK, Leung DW, Singer JW, White T. Substrate specificity of lysophosphatidic acid acyltransferase beta -- evidence from membrane and whole cell assays. J Lipid Res 2005; 47:593-604. [PMID: 16369050 DOI: 10.1194/jlr.m500435-jlr200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membranes of mammalian cells contain lysophosphatidic acid acyltransferase (LPAAT) activities that catalyze the acylation of sn-1-acyl lysophosphatidic acid (lysoPA) to form phosphatidic acid. As the biological roles and biochemical properties of the six known LPAAT isoforms have yet to be fully elucidated, we have characterized human LPAAT-beta activity using two different assays. In a membrane-based assay, LPAAT-beta used lysoPA and lysophosphatidylmethanol (lysoPM) but not other lysophosphoglycerides as an acyl acceptor, and it preferentially transferred 18:1, 18:0, and 16:0 acyl groups over 12:0, 14:0, 20:0, and 20:4 acyl groups. The fact that lysoPM could traverse cell membranes permitted additional characterization of LPAAT-beta activity in cells: PC-3 and DU145 cells converted exogenously added lysoPM and (14)C-labeled 18:1 into (14)C-labeled phosphatidylmethanol (PM). The rate of PM formation was higher in cells that overexpressed LPAAT-beta and was inhibited by the LPAAT-beta inhibitor CT-32501. In contrast, if lysoPM and (14)C-labeled 20:4 were added to PC-3 or DU145 cells, (14)C-labeled PM was also formed, but the rate was neither higher in cells that overexpressed LPAAT-beta nor inhibited by CT-32501. We propose that LPAAT-beta catalyzes the intracellular transfer of 18:1, 18:0, and 16:0 acyl groups but not 20:4 groups to lysoPA.
Collapse
Affiliation(s)
- David Hollenback
- Department of Biochemistry, Cell Therapeutics, Inc., Seattle, WA 98119, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S, Venter H, Balakrishnan L, van Veen HW. Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J Bacteriol 2005; 187:6363-9. [PMID: 16159769 PMCID: PMC1236644 DOI: 10.1128/jb.187.18.6363-6369.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/22/2005] [Indexed: 11/20/2022] Open
Abstract
MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with K(i) values of 16 and 11 microM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a K(i) of 57 microM, in a similar range as the K(i) for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005).
Collapse
Affiliation(s)
- Barbara Woebking
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Kolomytseva MP, Solyanikova IP, Golovlev EL, Golovleva LA. Heterogeneity of Rhodococcus opacus 1CP as a Response to Stress Induced by Chlorophenols. APPL BIOCHEM MICRO+ 2005. [DOI: 10.1007/s10438-005-0085-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
125
|
Doerrler WT, Raetz CRH. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J Biol Chem 2005; 280:27679-87. [PMID: 15951436 DOI: 10.1074/jbc.m504796200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli yaeT encodes an essential, conserved outer membrane (OM) protein that is an ortholog of Neisseria meningitidis Omp85. Conflicting data with N. meningitidis indicate that Omp85 functions either in assembly of OM proteins or in export of OM lipids. The role of YaeT in E. coli was investigated with a new temperature-sensitive mutant harboring nine amino acid substitutions. The mutant stops growing after 60 min at 44 degrees C. After 30 min at 44 degrees C, incorporation of [35S]methionine into newly synthesized OM proteins is selectively inhibited. Synthesis and export of OM phospholipids and lipopolysaccharide are not impaired. OM protein levels are low, even at 30 degrees C, and the buoyant density of the OM is correspondingly lower. By Western blotting, we show that levels of the major OM protein OmpA are lower in the mutant in whole cells, membranes, and the growth medium. SecA functions as a multicopy suppressor of the temperature-sensitive phenotype and partially restores OM proteins. Our data are consistent with a critical role for YaeT in OM protein assembly in E. coli.
Collapse
Affiliation(s)
- William T Doerrler
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
126
|
Nagarajan S, Swaminathan M, Sabarathinam P. Changes in the Fatty-Acid Profile of Cyanide-UtilizingYersinia Species. Chem Biodivers 2005; 2:780-4. [PMID: 17192021 DOI: 10.1002/cbdv.200590055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A cyanide-utilizing Yersinia species was isolated from the cyanide-bearing gold-plating industrial wastewater. Analysis of the fatty acid composition of the organism revealed that it contains large amounts of saturated fatty acids. The unsaturated hydroxy- and cyclopropyl-ring-bearing fatty acids are present in low concentrations. A comparison of the fatty acid composition with other Yersinia species shows that the genus Yersinia appears homogeneous, and that fatty-acid data of Yersiniae do not reflect the distance between Yersiniae species.
Collapse
|
127
|
Zhou X, Taghizadeh K, Dedon PC. Chemical and biological evidence for base propenals as the major source of the endogenous M1dG adduct in cellular DNA. J Biol Chem 2005; 280:25377-82. [PMID: 15878883 DOI: 10.1074/jbc.m503079200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endogenous DNA adduct, M(1)dG, has been shown to arise in vitro in reactions of dG with malondialdehyde (MDA), a product of both lipid peroxidation and 4'-oxidation of deoxyribose in DNA, and with base propenals also derived from deoxyribose 4'-oxidation. We now report the results of cellular studies consistent with base propenals, and not MDA, as the major source of M1dG under biological conditions. As a foundation for cellular studies, M1dG, base propenals, and MDA were quantified in purified DNA treated with oxidizing agents known to produce deoxyribose 4'-oxidation. The results revealed a consistent pattern; Fe2+-EDTA and gamma-radiation generated MDA but not base propenals or M1dG, whereas bleomycin and peroxynitrite (ONOO-) both produced M1dG as well as base propenals with no detectable MDA. These observations were then assessed in Escherichia coli with controlled membrane levels of polyunsaturated fatty acids (PUFA). ONOO- treatment (2 mm) of cells containing no PUFA (defined medium with 18:0/stearic acid) produced 6.5 M1dG/10(7) deoxynucleotides and no detectable lipid peroxidation products, including MDA, as compared with 3.8 M1dG/10(7) deoxynucleotides and 0.07 microg/ml lipid peroxidation products with control cells grown in a mixture of fatty acids (0.5% PUFA) mimicking Luria-Bertani medium. In cells grown with linoleic acid (18:2), the level of PUFA rose to 54% and the level of MDA rose to 0.14 microg/ml, whereas M1dG fell to 1.4/10(7) deoxynucleotides. Parallel studies with gamma-radiation revealed levels of MDA similar to those produced by ONOO- but no detectable M1dG. These results are consistent with base propenals as the major source of M1dG in this model cell system.
Collapse
Affiliation(s)
- Xinfeng Zhou
- Biological Engineering Division and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
128
|
Katayama K, Sakurai I, Wada H. Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria. FEBS Lett 2005; 577:193-8. [PMID: 15527784 DOI: 10.1016/j.febslet.2004.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 09/30/2004] [Accepted: 10/01/2004] [Indexed: 11/24/2022]
Abstract
Cardiolipin (CL) is an anionic phospholipid with a dimeric structure. In eukaryotes, it is primarily localized in the inner membranes of mitochondria. Although the biosynthetic pathway of CL is well known, the gene for CL synthase has not been identified in any higher organisms. In this study, the CLS gene for a CL synthase has been identified in a higher plant, Arabidopsis thaliana. We have shown that the CLS gene encodes a CL synthase by demonstrating its ability to catalyze the reaction of CL synthesis from CDP-diacylglycerol and phosphatidylglycerol, and that CLS is targeted into mitochondria. These findings demonstrate that CLS is a CL synthase located in mitochondria.
Collapse
Affiliation(s)
- Kenta Katayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
129
|
Klena JD, Parker CT, Knibb K, Ibbitt JC, Devane PML, Horn ST, Miller WG, Konkel ME. Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis by a multiplex PCR developed from the nucleotide sequence of the lipid A gene lpxA. J Clin Microbiol 2005; 42:5549-57. [PMID: 15583280 PMCID: PMC535264 DOI: 10.1128/jcm.42.12.5549-5557.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a multiplex PCR assay to identify and discriminate between isolates of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis. The C. jejuni isolate F38011 lpxA gene, encoding a UDP-N-acetylglucosamine acyltransferase, was identified by sequence analysis of an expression plasmid that restored wild-type lipopolysaccharide levels in Escherichia coli strain SM105 [lpxA(Ts)]. With oligonucleotide primers developed to the C. jejuni lpxA gene, nearly full-length lpxA amplicons were amplified from an additional 11 isolates of C. jejuni, 20 isolates of C. coli, 16 isolates of C. lari, and five isolates of C. upsaliensis. The nucleotide sequence of each amplicon was determined, and sequence alignment revealed a high level of species discrimination. Oligonucleotide primers were constructed to exploit species differences, and a multiplex PCR assay was developed to positively identify isolates of C. coli, C. jejuni, C. lari, and C. upsaliensis. We characterized an additional set of 41 thermotolerant isolates by partial nucleotide sequence analysis to further demonstrate the uniqueness of each species-specific region. The multiplex PCR assay was validated with 105 genetically defined isolates of C. coli, C. jejuni, C. lari, and C. upsaliensis, 34 strains representing 12 additional Campylobacter species, and 24 strains representing 19 non-Campylobacter species. Application of the multiplex PCR method to whole-cell lysates obtained from 108 clinical and environmental thermotolerant Campylobacter isolates resulted in 100% correlation with biochemical typing methods.
Collapse
Affiliation(s)
- John D Klena
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Anderson KS. Detection of novel enzyme intermediates in PEP-utilizing enzymes. Arch Biochem Biophys 2005; 433:47-58. [PMID: 15581565 DOI: 10.1016/j.abb.2004.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/19/2004] [Indexed: 10/26/2022]
Abstract
This review will focus on established and newly emerging strategies for identifying and characterizing enzyme intermediates using a rapid transient kinetic approach. The merits of this methodology as well as the basics of experimental design are described. Several illustrative examples of PEP-utilizing enzymes have been chosen as they all perform unique, novel chemistries involving enzyme intermediates and have proven to be exciting pharmaceutical targets for antibiotics and herbicides. A novel application of this approach using time-resolved electrospray mass spectrometry to detect chemically labile enzyme intermediates is also discussed.
Collapse
Affiliation(s)
- Karen S Anderson
- Department of Pharmacology, SHM B350B, Yale University School of Medicine, 333 Cedar Street New Haven, CT 06520, USA.
| |
Collapse
|
131
|
Bakholdina SI, Sanina NM, Krasikova IN, Popova OB, Solov'eva TF. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis. Biochimie 2004; 86:875-81. [PMID: 15667937 DOI: 10.1016/j.biochi.2004.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
The impact of the availability of glucose in nutrition medium and growth temperature on the composition and thermotropic behavior of lipids from Yersinia pseudotuberculosis (Enterobacteriaceae) was studied. Y. pseudotuberculosis was grown in nutrition broth (NB) with/without glucose at 8 and 37 degrees C, corresponding to the temperatures of saprophytic and parasitic phases of this bacterium life. The decrease of phosphatidylethanolamine, phosphatidylglycerol and unsaturated fatty acids and the parallel increase of lysophosphatidylethanolamine and diphosphatidylglycerol and saturated and cyclopropane acids were the most significant changes with temperature in bacterial phospholipid (PL) classes and fatty acids, respectively. Glucose did not effect the direction of temperature-induced changes in the contents of PLs, fatty acids, however it enhanced (for PLs) or diminished (for fatty acids) intensity of these changes. The thermally induced transitions of lipids were studied by differential scanning calorimetry (DSC). It was revealed that the addition of glucose to NB induced a sharp shift of DSC thermograms to lower temperatures in the "warm" variants of bacteria. The peak maximum temperature (Tmax) of thermal transitions dropped from 50 to 26 degrees C that is the optimal growth temperature of Y. pseudotuberculosis. Tmax of total lipids of the cells grown at 8 degrees C without glucose in NB was equal to growth temperature that corresponded to the classical mechanism of homeoviscous adaptation of bacteria. An addition of glucose to NB at this growth temperature caused the subsequent reduction of Tmax to -8 degrees C, while the temperature ranges of thermograms were not substantially changed. So, not only the temperature growth of bacteria, but also the presence of glucose in NB can modify the physical state of lipids from Y. pseudotuberculosis. In this case, both factors affect additively. It is suggested that glucose influences some membrane-associated proteins and then the fluidity of lipid matrix through temperature-inducible genes.
Collapse
Affiliation(s)
- S I Bakholdina
- Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, prospect 100-let Vladivostoku, 159, Vladivostok 690022, Russia
| | | | | | | | | |
Collapse
|
132
|
Wang X, Karbarz MJ, McGrath SC, Cotter RJ, Raetz CRH. MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli. J Biol Chem 2004; 279:49470-8. [PMID: 15339914 PMCID: PMC2552400 DOI: 10.1074/jbc.m409078200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipid A anchor of Francisella tularensis lipopolysaccharide (LPS) lacks both phosphate groups present in Escherichia coli lipid A. Membranes of Francisella novicida (an environmental strain related to F. tularensis) contain enzymes that dephosphorylate lipid A and its precursors at the 1- and 4'-positions. We now report the cloning and characterization of a membrane-bound phosphatase of F. novicida that selectively dephosphorylates the 1-position. By transferring an F. novicida genomic DNA library into E. coli and selecting for low level polymyxin resistance, we isolated FnlpxE as the structural gene for the 1-phosphatase, an inner membrane enzyme of 239 amino acid residues. Expression of FnlpxE in a heptose-deficient mutant of E. coli caused massive accumulation of a previously uncharacterized LPS molecule, identified by mass spectrometry as 1-dephospho-Kdo2-lipid A. The predicted periplasmic orientation of the FnLpxE active site suggested that LPS export might be required for 1-dephosphorylation of lipid A. LPS and phospholipid export depend on the activity of MsbA, an essential inner membrane ABC transporter. Expression of FnlpxE in the msbA temperature-sensitive E. coli mutant WD2 resulted in 90% 1-dephosphorylation of lipid A at the permissive temperature (30 degrees C). However, the 1-phosphate group of newly synthesized lipid A was not cleaved at the nonpermissive temperature (44 degrees C). Our findings provide the first direct evidence that lipid A 1-dephosphorylation catalyzed by LpxE occurs on the periplasmic surface of the inner membrane.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Mark J. Karbarz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Sara C. McGrath
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Christian R. H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
133
|
Linde K, Gröbner G, Rilfors L. Lipid dependence and activity control of phosphatidylserine synthase fromEscherichia coli. FEBS Lett 2004; 575:77-80. [PMID: 15388336 DOI: 10.1016/j.febslet.2004.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/02/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
The activity of phosphatidylserine synthase from Escherichia coli depends significantly on the nature and level of the lipids in the matrix, at which the enzyme is operating. To elucidate the role of anionic lipids in the regulation of PtdSer synthase, its activity was studied in mixed micelles containing phosphatidylglycerol (one charge) or diphosphatidylglycerol (two charges), the two main anionic membrane lipids in E. coli. Membrane association and activity of PtdSer synthase were increased by the two lipids, indicating their essential role in the positive regulation mechanism of the phosphatidylethanolamine level in the E. coli membrane.
Collapse
Affiliation(s)
- Kajsa Linde
- Department of Biophysical Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
134
|
Wang XG, Scagliotti JP, Hu LT. Phospholipid synthesis in Borrelia burgdorferi: BB0249 and BB0721 encode functional phosphatidylcholine synthase and phosphatidylglycerolphosphate synthase proteins. Microbiology (Reading) 2004; 150:391-397. [PMID: 14766917 DOI: 10.1099/mic.0.26752-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipids are an important component of bacterial membranes.Borrelia burgdorferidiffers from many other bacteria in that it contains only two major membrane phospholipids: phosphatidylglycerol (PG) and phosphatidylcholine (PC).B. burgdorferiappears to lack enzymes required for synthesis of PC through the well-described methylation pathway. However,B. burgdorferidoes contain a gene (BB0249) with significant identity to a recently described phosphatidylcholine synthase gene (pcs) ofSinorhizobium meliloti. B. burgdorferialso contains a gene (BB0721) with significant identity to the gene (pgs) encoding phosphatidylglycerolphosphate synthase, an enzyme in the synthetic pathway of PG. Activity of BB0249 was confirmed by cloning the gene intoEscherichia coli, which does not produce PC. Transformation with a plasmid carryingBB0249resulted in production of PC byE. coli, but only in the presence of exogenously supplied choline, as would be predicted for a Pcs. Because loss of Pgs activity is lethal toE. coli, activity ofBB0721was confirmed by the ability of BB0721 to complement anE. coliPgs−mutant. A plasmid containingBB0721was transformed into a Pgs−mutant ofE. colicontaining a copy of the native gene on a temperature-regulated plasmid. The temperature-regulated plasmid was exchanged for a plasmid containingBB0721and it was shown that BB0721 was able to replace the lost Pgs function and restore bacterial growth. This study has established the existence and function of two critical enzymes in the synthesis of PC and PG inB. burgdorferi. Understanding of the biosynthetic pathways of PC and PG inB. burgdorferiis the first step in delineating the role of these phospholipids in the pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Xing-Guo Wang
- Tupper Research Institute, Division of Geographic Medicine and Infectious Diseases, New England Medical Center, Tufts University School of Medicine, Box 41, 750 Washington Street, Boston, MA 02111, USA
| | - Joanna P Scagliotti
- Tupper Research Institute, Division of Geographic Medicine and Infectious Diseases, New England Medical Center, Tufts University School of Medicine, Box 41, 750 Washington Street, Boston, MA 02111, USA
| | - Linden T Hu
- Tupper Research Institute, Division of Geographic Medicine and Infectious Diseases, New England Medical Center, Tufts University School of Medicine, Box 41, 750 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
135
|
Caviglia JM, Li LO, Wang S, DiRusso CC, Coleman RA, Lewin TM. Rat long chain acyl-CoA synthetase 5, but not 1, 2, 3, or 4, complements Escherichia coli fadD. J Biol Chem 2004; 279:11163-9. [PMID: 14711823 DOI: 10.1074/jbc.m311392200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long chain fatty acids are converted to acyl-CoAs by acyl-CoA synthetase (fatty acid CoA ligase: AMP forming, E.C. 6.2.1.3; ACS). Escherichia coli has a single ACS, FadD, that is essential for growth when fatty acids are the sole carbon and energy source. Rodents have five ACS isoforms that differ in substrate specificity, tissue expression, and subcellular localization and are believed to channel fatty acids toward distinct metabolic pathways. We expressed rat ACS isoforms 1-5 in an E. coli strain that lacked FadD. All rat ACS isoforms were expressed in E. coli fadD or fadDfadR and had ACS specific activities that were 1.6-20-fold higher than the wild type control strain expressing FadD. In the fadD background, the rat ACS isoforms 1, 2, 3, 4 and 5 oxidized [(14)C]oleate at 5 to 25% of the wild type levels, but only ACS5 restored growth on oleate as the sole carbon source. To ensure that enzymes of beta-oxidation were not limiting, assays of ACS activity, beta-oxidation, fatty acid transport, and phospholipid synthesis were also examined in a fadD fadR strain, thereby eliminating FadR repression of the transporter FadL and the enzymes of beta-oxidation. In this strain, fatty acid transport levels were low but detectable for ACS1, 2, 3, and 4 and were nearly 50% of wild type levels for ACS5. Despite increases in beta-oxidation, only ACS5 transformants were able to grow on oleate. These studies show that although ACS isoforms 1-4 variably supported moderate transport activity, beta-oxidation, and phospholipid synthesis and although their in vitro specific activities were greater than that of chromosomally encoded FadD, they were unable to substitute functionally for FadD regarding growth. Thus, membrane composition and protein-protein interactions may be critical in reconstituting bacterial ACS function.
Collapse
Affiliation(s)
- Jorge M Caviglia
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
136
|
Belakhov V, Dovgolevsky E, Rabkin E, Shulami S, Shoham Y, Baasov T. Synthesis and evaluation of a mechanism-based inhibitor of KDO8P synthase. Carbohydr Res 2004; 339:385-92. [PMID: 14698897 DOI: 10.1016/j.carres.2003.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The enzyme 3-deoxy-D-manno-2-octulosonate-8-phosphate (KDO8P) synthase catalyzes the condensation reaction between phosphoenolpyruvate (PEP) and D-arabinose 5-phosphate (A5P) to produce KDO8P and inorganic phosphate. In attempts to investigate the lack of antibacterial activity of the most potent inhibitor of KDO8P synthase, the amino phosphonophosphate 3, we have synthesized its hydrolytically stable isosteric phosphonate analogue 4 and tested it as an inhibitor of the enzyme. The synthesis of 4 was accomplished in a one step procedure by employing the direct reductive amination in aqueous media between unprotected sugar phosphonate and glyphosate. The analogue 4 proved to be a competitive inhibitor of KDO8P synthase with respect to both substrates A5P and PEP binding. In vitro antibacterial tests against a series of different Gram-negative organisms establish that both inhibitors (3 and 4) lack antibacterial activity probably due to their reduced ability to penetrate the bacterial cell membrane.
Collapse
Affiliation(s)
- Valery Belakhov
- Department of Chemistry, Technion--Israel Institute of Technology, 32000, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
137
|
Canet S, Heyde M, Portalier R, Laloi P. Involvement of phospholipids in resistance and adaptation of Escherichia coli to acid conditions and to long-term survival. FEMS Microbiol Lett 2003; 225:207-11. [PMID: 12951243 DOI: 10.1016/s0378-1097(03)00515-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Escherichia coli membranes, three major phospholipids are formed: phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL). We report here the survival of mutants lacking either PE or both PG and CL at an acid pHo and during long-term survival experiments. Stationary phase cultures of E. coli lacking PE are much more sensitive to acid shock (pHo 3) than the wild-type strain. Moreover, in the strain lacking PE, long-term survival in stationary phase is impaired and after 5 days no viable cells are recovered. The survival of an exponential phase culture to acid shock is known to be increased if the culture is exposed to moderately acid conditions (pHo 5) prior to a shift to pHo 3. If either PE or both PG and CL are missing, the exposure to pHo 5 does not increase the survival at pHo 3.
Collapse
Affiliation(s)
- Sylvain Canet
- Unité de Microbiologie et Génétique, UMR CNRS 5122, Bât A. Lwoff, Université Lyon 1, F-69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
138
|
Wilderman PJ, Vasil AI, Martin WE, Murphy RC, Vasil ML. Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J Bacteriol 2002; 184:4792-9. [PMID: 12169604 PMCID: PMC135270 DOI: 10.1128/jb.184.17.4792-4799.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine (PC) is a ubiquitous membrane lipid in eukaryotes but has been found in only a limited number of prokaryotes. Both eukaryotes and prokaryotes synthesize PC by methylating phosphatidylethanolamine (PE) by use of a phospholipid methyltransferase (Pmt). Eukaryotes can synthesize PC by the activation of choline to form choline phosphate and then CDP-choline. The CDP-choline then condenses with diacylglycerol (DAG) to form PC. In contrast, prokaryotes condense choline directly with CDP-DAG by use of the enzyme PC synthase (Pcs). PmtA was the first enzyme identified in prokaryotes that catalyzes the synthesis of PC, and Pcs in Sinorhizobium meliloti was characterized. The completed release of the Pseudomonas aeruginosa PAO1 genomic sequence contains on open reading frame predicted to encode a protein that is highly homologous (35% identity, 54% similarity) to PmtA from Rhodobacter sphaeroides. Moreover, the P. aeruginosa PAO1 genome encodes a protein with significant homology (39% amino acid identity) to Pcs of S. meliloti. Both the pcs and pmtA homologues were cloned from PAO1, and homologous sequences were found in almost all of the P. aeruginosa strains examined. Although the pathway for synthesizing PC by use of Pcs is functional in P. aeruginosa, it does not appear that this organism uses the PmtA pathway for PC synthesis. We demonstrate that the PC synthesized by P. aeruginosa PAO1 localized to both the inner and outer membranes, where it is readily accessible to its periplasmic, PC-specific phospholipase D.
Collapse
Affiliation(s)
- Paula J Wilderman
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
139
|
Rilfors L, Lindblom G. Regulation of lipid composition in biological membranes—biophysical studies of lipids and lipid synthesizing enzymes. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00310-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
140
|
Babinski KJ, Ribeiro AA, Raetz CRH. The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J Biol Chem 2002; 277:25937-46. [PMID: 12000770 DOI: 10.1074/jbc.m204067200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-2,3-diacylglucosamine hydrolase is believed to catalyze the fourth step of lipid A biosynthesis in Escherichia coli. This reaction involves pyrophosphate bond hydrolysis of the precursor UDP-2,3-diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate and UMP. To identify the gene encoding this hydrolase, E. coli lysates generated with individual lambda clones of the ordered Kohara library were assayed for overexpression of the enzyme. The sequence of lambda clone 157[6E7], promoting overproduction of hydrolase activity, was examined for genes encoding hypothetical proteins of unknown function. The amino acid sequence of one such open reading frame, ybbF, is 50.5% identical to a Haemophilus influenzae hypothetical protein and is also conserved in most other Gram-negative organisms, but is absent in Gram-positives. Cell extracts prepared from cells overexpressing ybbF behind the T7lac promoter have approximately 540 times more hydrolase activity than cells with vector alone. YbbF was purified to approximately 60% homogeneity, and its catalytic properties were examined. Enzymatic activity is maximal at pH 8 and is inhibited by 0.01% (or more) Triton X-100. The apparent K(m) for UDP-2,3-diacylglucosamine is 62 microm. YbbF requires a diacylated substrate and does not cleave CDP-diacylglycerol. (31)P NMR studies of the UMP product generated from UDP-2,3-diacylglucosamine in the presence of 40% H(2)180 show that the enzyme attacks the alpha-phosphate group of the UDP moiety. Because ybbF encodes the specific UDP-2,3-diacylglucosamine hydrolase involved in lipid A biosynthesis, it is now designated lpxH.
Collapse
Affiliation(s)
- Kristen J Babinski
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
141
|
Babinski KJ, Kanjilal SJ, Raetz CRH. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J Biol Chem 2002; 277:25947-56. [PMID: 12000771 DOI: 10.1074/jbc.m204068200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lpxH gene encodes the UDP-2,3-diacylglucosamine-specific pyrophosphatase that catalyzes the fourth step of lipid A biosynthesis in Escherichia coli. To confirm the function of lpxH, we constructed KB21/pKJB5. This strain contains a kanamycin insertion element in the chromosomal copy of lpxH, complemented by plasmid pKJB5, which is temperature-sensitive for replication and harbors lpxH(+). KB21/pKJB5 grows at 30 degrees C but loses viability at 44 degrees C, demonstrating that lpxH is essential. CDP-diglyceride hydrolase (Cdh) catalyzes the same reaction as LpxH in vitro but is non-essential and cannot compensate for the absence of LpxH. The presence of Cdh in cell extracts interferes with the LpxH assay. We therefore constructed KB25/pKJB5, which contains both an in-frame deletion of cdh and a kanamycin insertion mutation in lpxH, covered by pKJB5. When KB25/pKJB5 cells are grown at 44 degrees C, viability is lost, and all in vitro LpxH activity is eliminated. A lipid migrating with synthetic UDP-2,3-diacylglucosamine accumulates in KB25/pKJB5 following loss of the covering plasmid at 44 degrees C. This material was converted to the expected products, 2,3-diacylglucosamine 1-phosphate and UMP, by LpxH. Pseudomonas aeruginosa contains two proteins with sequence similarity to E. coli LpxH. The more homologous protein catalyzes UDP-2,3-diacylglucosamine hydrolysis in vitro. The corresponding gene complements KB25/pKJB5 at 44 degrees C, but the less homologous gene does not. The accumulation of UDP-2,3-diacylglucosamine in our lpxH mutant is consistent with the observation that the lipid A disaccharide synthase LpxB, the next enzyme in the pathway, cannot condense two UDP-2,3-diacylglucosamine molecules, but instead utilizes UDP-2,3-diacylglucosamine as its donor and 2,3-diacylglucosamine 1-phosphate as its acceptor.
Collapse
Affiliation(s)
- Kristen J Babinski
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
142
|
Abstract
Envelope stress responses play important physiological roles in a variety of processes, including protein folding, cell wall biosynthesis, and pathogenesis. Many of these responses are controlled by extracytoplasmic function (ECF) sigma factors that respond to external signals by means of a membrane-localized anti-sigma factor. One of the best-characterized, ECF-regulated responses is the sigma(E) envelope stress response of Escherichia coli. The sigma(E) pathway ensures proper assembly of outer-membrane proteins (OMP) by controlling expression of genes involved in OMP folding and degradation in response to envelope stresses that disrupt these processes. Prevailing evidence suggests that, in E. coli, a second envelope stress response controlled by the Cpx two-component system ensures proper pilus assembly. The sensor kinase CpxA recognizes misfolded periplasmic proteins, such as those generated during pilus assembly, and transduces this signal to the response regulator CpxR through conserved phosphotransfer reactions. Phosphorylated CpxR activates transcription of periplasmic factors necessary for pilus assembly.
Collapse
Affiliation(s)
- T L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9; Canada.
| | | |
Collapse
|
143
|
Abstract
Bacterial lipopolysaccharides (LPS) typically consist of a hydrophobic domain known as lipid A (or endotoxin), a nonrepeating "core" oligosaccharide, and a distal polysaccharide (or O-antigen). Recent genomic data have facilitated study of LPS assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and have established the importance of lateral gene transfer in generating structural diversity of O-antigens. Many enzymes of lipid A biosynthesis like LpxC have been validated as targets for development of new antibiotics. Key genes for lipid A biosynthesis have unexpectedly also been found in higher plants, indicating that eukaryotic lipid A-like molecules may exist. Most significant has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. TLR4 belongs to a family of innate immunity receptors that possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment, and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking inflammation associated with infection.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
144
|
Abstract
Escherichia coli phospholipids and lipopolysaccharide, made on the inner surface of the inner membrane, are rapidly transported to the outer membrane by mechanisms that are not well characterized. We now report a temperature-sensitive mutant (WD2) with an A270T substitution in a trans-membrane region of the ABC transporter MsbA. As shown by (32)P(i) and (14)C-acetate labeling, export of all major lipids to the outer membrane is inhibited by approximately 90% in WD2 after 30 min at 44 degrees C. Transport of newly synthesized proteins is not impaired. Electron microscopy shows reduplicated inner membranes in WD2 at 44 degrees C, consistent with a key role for MsbA in lipid trafficking.
Collapse
Affiliation(s)
- W T Doerrler
- Departments of Biochemistry and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
145
|
Gangar A, Karande AA, Rajasekharan R. Isolation and localization of a cytosolic 10 S triacylglycerol biosynthetic multienzyme complex from oleaginous yeast. J Biol Chem 2001; 276:10290-8. [PMID: 11139581 DOI: 10.1074/jbc.m009550200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triacylglycerol is one of the major storage forms of metabolic energy in eukaryotic cells. Biosynthesis of triacylglycerol is known to occur in membranes. We report here the isolation, purification, and characterization of a catalytically active cytosolic 10 S multienzyme complex for triacylglycerol biosynthesis from Rhodotorula glutinis during exponential growth. The complex was characterized and was found to contain lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, acyl-acyl carrier protein synthetase, and acyl carrier protein. The 10 S triacylglycerol biosynthetic complex rapidly incorporates free fatty acids as well as fatty acyl-coenzyme A into triacylglycerol and its biosynthetic intermediates. Lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, and diacylglycerol acyltransferase from the complex were microsequenced. Antibodies were raised against the synthetic peptides corresponding to lysophosphatidic acid acyltransferase and phosphatidic acid phosphatase sequences. Immunoprecipitation and immunolocalization studies show the presence of a cytosolic multienzyme complex for triacylglycerol biosynthesis. Chemical cross-linking studies revealed that the 10 S multienzyme complex was held together by protein-protein interactions. These results demonstrate that the cytosol is one of the sites for triacylglycerol biosynthesis in oleaginous yeast.
Collapse
Affiliation(s)
- A Gangar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
146
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
147
|
Metzler DE, Metzler CM, Sauke DJ. Specific Aspects of Lipid Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
148
|
Peng SB, Wang L, Moomaw J, Peery RB, Sun PM, Johnson RB, Lu J, Treadway P, Skatrud PL, Wang QM. Biochemical characterization of signal peptidase I from gram-positive Streptococcus pneumoniae. J Bacteriol 2001; 183:621-7. [PMID: 11133956 PMCID: PMC94918 DOI: 10.1128/jb.183.2.621-627.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Accepted: 10/25/2000] [Indexed: 11/20/2022] Open
Abstract
Bacterial signal peptidase I is responsible for proteolytic processing of the precursors of secreted proteins. The enzymes from gram-negative and -positive bacteria are different in structure and specificity. In this study, we have cloned, expressed, and purified the signal peptidase I of gram-positive Streptococcus pneumoniae. The precursor of streptokinase, an extracellular protein produced in pathogenic streptococci, was identified as a substrate of S. pneumoniae signal peptidase I. Phospholipids were found to stimulate the enzymatic activity. Mutagenetic analysis demonstrated that residues serine 38 and lysine 76 of S. pneumoniae signal peptidase I are critical for enzyme activity and involved in the active site to form a serine-lysine catalytic dyad, which is similar to LexA-like proteases and Escherichia coli signal peptidase I. Similar to LexA-like proteases, S. pneumoniae signal peptidase I catalyzes an intermolecular self-cleavage in vitro, and an internal cleavage site has been identified between glycine 36 and histidine 37. Sequence analysis revealed that the signal peptidase I and LexA-like proteases show sequence homology around the active sites and some common properties around the self-cleavage sites. All these data suggest that signal peptidase I and LexA-like proteases are closely related and belong to a novel class of serine proteases.
Collapse
Affiliation(s)
- S B Peng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
de Rudder KE, López-Lara IM, Geiger O. Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 2000; 37:763-72. [PMID: 10972799 DOI: 10.1046/j.1365-2958.2000.02032.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In phosphatidylcholine (PC)-containing prokaryotes, only the methylation pathway of PC biosynthesis was thought to occur. However, a second choline-dependent pathway for PC formation, the PC synthase (Pcs) pathway, exists in Sinorhizobium (Rhizobium) meliloti in which choline is condensed with CDP-diacylglyceride. Here, we characterize the methylation pathway of PC biosynthesis in S. meliloti. A mutant deficient in phospholipid N-methyltransferase (Pmt) was complemented with a S. meliloti gene bank and the complementing DNA was sequenced. A gene coding for a S-adenosylmethionine-dependent N-methyltransferase was identified as the sinorhizobial Pmt, which showed little similarity to the corresponding enzyme from Rhodobacter sphaeroides. Upon expression of the sinorhizobial Pmt, besides phosphatidylcholine, the methylated intermediates of the methylation pathway, monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine, are also formed. When Pmt-deficient mutants of S. meliloti are grown on minimal medium, they cannot form PC, and they grow significantly more slowly than the wild type. Growth of the Pmt-deficient mutant in the presence of choline allows for PC formation via the Pcs pathway and restores wild-type-like growth. Double knock-out mutants, deficient in Pmt and in Pcs, are unable to form PC and show reduced growth even in the presence of choline. These results suggest that PC is required for normal growth of S. meliloti.
Collapse
Affiliation(s)
- K E de Rudder
- Institute of Biotechnology, Technical University Berlin, Germany
| | | | | |
Collapse
|
150
|
Huijbregts RP. Topology and transport of membrane lipids in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:43-61. [PMID: 10692637 DOI: 10.1016/s0304-4157(99)00014-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The last two decades have witnessed a break-through in identifying and understanding the functions of both the proteins and lipids of bacterial membranes. This development was parallelled by increasing insights into the biogenesis, topology, transport and sorting of membrane proteins. However, progress in research on the membrane distribution and transport of lipids in bacteria has been slow in that period. The development of novel biochemical in vitro approaches and recent genetic studies have increased our understanding of these subjects. The aim of this review is to present an overview of the current knowledge of the distribution and transport of lipids in both Gram-positive and Gram-negative bacteria. Special attention is paid to recently obtained results, which are expected to inspire further research to finally unravel these poorly understood phenomena.
Collapse
Affiliation(s)
- R P Huijbregts
- Department Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|